In some settings, a surgeon may want to position a surgical instrument through an orifice of the patient and use the instrument to adjust, position, attach, and/or otherwise interact with tissue within the patient. For instance, in some surgical procedures, portions of the gastrointestinal tract may be cut and removed to eliminate undesirable tissue or for other reasons. Once the desired tissue is removed, the remaining portions may need to be recoupled together. One such tool for accomplishing these anastomotic procedures is a circular stapler that is inserted through a patient's orifice.
Examples of circular surgical staplers are described in U.S. Pat. No. 5,205,459, entitled “Surgical Anastomosis Stapling Instrument,” issued Apr. 27, 1993; U.S. Pat. No. 5,271,544, entitled “Surgical Anastomosis Stapling Instrument,” issued Dec. 21, 1993; U.S. Pat. No. 5,275,322, entitled “Surgical Anastomosis Stapling Instrument,” issued Jan. 4, 1994; U.S. Pat. No. 5,285,945, entitled “Surgical Anastomosis Stapling Instrument,” issued Feb. 15, 1994; U.S. Pat. No. 5,292,053, entitled “Surgical Anastomosis Stapling Instrument,” issued Mar. 8, 1994; U.S. Pat. No. 5,333,773, entitled “Surgical Anastomosis Stapling Instrument,” issued Aug. 2, 1994; U.S. Pat. No. 5,350,104, entitled “Surgical Anastomosis Stapling Instrument,” issued Sep. 27, 1994; and U.S. Pat. No. 5,533,661, entitled “Surgical Anastomosis Stapling Instrument,” issued Jul. 9, 1996. The disclosure of each of the above-cited U.S. patents is incorporated by reference herein. Some such staplers are operable to clamp down on layers of tissue, cut through the clamped layers of tissue, and drive staples through the layers of tissue to substantially seal the severed layers of tissue together near the severed ends of the tissue layers, thereby joining two severed ends of an anatomical lumen.
Merely additional other exemplary surgical staplers are disclosed in U.S. Pat. No. 4,805,823, entitled “Pocket Configuration for Internal Organ Staplers,” issued Feb. 21, 1989; U.S. Pat. No. 5,415,334, entitled “Surgical Stapler and Staple Cartridge,” issued May 16, 1995; U.S. Pat. No. 5,465,895, entitled “Surgical Stapler Instrument,” issued Nov. 14, 1995; U.S. Pat. No. 5,597,107, entitled “Surgical Stapler Instrument,” issued Jan. 28, 1997; U.S. Pat. No. 5,632,432, entitled “Surgical Instrument,” issued May 27, 1997; U.S. Pat. No. 5,673,840, entitled “Surgical Instrument,” issued Oct. 7, 1997; U.S. Pat. No. 5,704,534, entitled “Articulation Assembly for Surgical Instruments,” issued Jan. 6, 1998; U.S. Pat. No. 5,814,055, entitled “Surgical Clamping Mechanism,” issued Sep. 29, 1998; U.S. Pat. No. 6,978,921, entitled “Surgical Stapling Instrument Incorporating an E-Beam Firing Mechanism,” issued Dec. 27, 2005; U.S. Pat. No. 7,000,818, entitled “Surgical Stapling Instrument Having Separate Distinct Closing and Firing Systems,” issued Feb. 21, 2006; U.S. Pat. No. 7,143,923, entitled “Surgical Stapling Instrument Having a Firing Lockout for an Unclosed Anvil,” issued Dec. 5, 2006; U.S. Pat. No. 7,303,108, entitled “Surgical Stapling Instrument Incorporating a Multi-Stroke Firing Mechanism with a Flexible Rack,” issued Dec. 4, 2007; U.S. Pat. No. 7,367,485, entitled “Surgical Stapling Instrument Incorporating a Multistroke Firing Mechanism Having a Rotary Transmission,” issued May 6, 2008; U.S. Pat. No. 7,380,695, entitled “Surgical Stapling Instrument Having a Single Lockout Mechanism for Prevention of Firing,” issued Jun. 3, 2008; U.S. Pat. No. 7,380,696, entitled “Articulating Surgical Stapling Instrument Incorporating a Two-Piece E-Beam Firing Mechanism,” issued Jun. 3, 2008; U.S. Pat. No. 7,404,508, entitled “Surgical Stapling and Cutting Device,” issued Jul. 29, 2008; U.S. Pat. No. 7,434,715, entitled “Surgical Stapling Instrument Having Multistroke Firing with Opening Lockout,” issued Oct. 14, 2008; and U.S. Pat. No. 7,721,930, entitled “Disposable Cartridge with Adhesive for Use with a Stapling Device,” issued May 25, 2010. The disclosure of each of the above-cited U.S. patents is incorporated by reference herein. While the surgical staplers referred to above are described as being used in endoscopic procedures, it should be understood that such surgical staplers may also be used in open procedures and/or other non-endoscopic procedures.
While various kinds of surgical stapling instruments and associated components have been made and used, it is believed that no one prior to the inventor(s) has made or used the invention described in the appended claims.
While the specification concludes with claims which particularly point out and distinctly claim this technology, it is believed this technology will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:
The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the technology may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present technology, and together with the description serve to explain the principles of the technology; it being understood, however, that this technology is not limited to the precise arrangements shown.
The following description of certain examples of the technology should not be used to limit its scope. Other examples, features, aspects, embodiments, and advantages of the technology will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the technology. As will be realized, the technology described herein is capable of other different and obvious aspects, all without departing from the technology. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
In the present example, instrument (10) comprises a closure system and a firing system. The closure system comprises a trocar (38), a trocar actuator (39), and an adjusting knob (98). An anvil (40) may be coupled to a distal end of trocar (38). Rotating knob (98) is operable to longitudinally translate trocar (38) relative to stapling head assembly (20), thereby translating anvil (40) when anvil (40) is coupled to trocar (38), to clamp tissue between anvil (40) and stapling head assembly (20). The firing system comprises a trigger (74), a trigger actuation assembly (84), a driver actuator (64), and a staple driver (24). Staple driver (24) includes a knife (36) configured to sever tissue when staple driver (24) is actuated longitudinally. In addition, staples (66) are positioned distal to a plurality of staple driving members (30) of staple driver (24) such that staple driver (24) also drives staples (66) distally when staple driver (24) is actuated longitudinally. Thus, when trigger (74) is actuated and trigger actuation assembly (84) actuates staple driver (24) via driver actuator (64), knife (36) and members (30) substantially simultaneously sever tissue (2) and drive staples (66) distally relative to stapling head assembly (20) into tissue. The components and functionalities of the closure system and firing system will now be described in greater detail.
A. Exemplary Anvil
As shown in
Anvil head (48) of the present example comprises a plurality of staple forming pockets (52) formed in a proximal face (50) of anvil head (48). Accordingly, when anvil (40) is in the closed position and staples (66) are driven out of stapling head assembly (20) into staple forming pockets (52), as shown in
With anvil (40) as a separate component, it should be understood that anvil (40) may be inserted and secured to a portion of tissue (2) prior to being coupled to stapling head assembly (20). By way of example only, anvil (40) may be inserted into and secured to a first tubular portion of tissue (2) while instrument (10) is inserted into and secured to a second tubular portion of tissue (2). For instance, the first tubular portion of tissue (2) may be sutured to or about a portion of anvil (40), and the second tubular portion of tissue (2) may be sutured to or about trocar (38).
As shown in
When anvil (40) is coupled to trocar (38), the distance between a proximal face of the anvil (40) and a distal face of stapling head assembly (20) defines a gap distance d. Trocar (38) of the present example is translatable longitudinally relative to stapling head assembly (20) via an adjusting knob (98) located at a proximal end of actuator handle assembly (70), as will be described in greater detail below. Accordingly, when anvil (40) is coupled to trocar (38), rotation of adjusting knob (98) enlarges or reduces gap distance d by actuating anvil (40) relative to stapling head assembly (20). For instance, as shown sequentially in
As noted above, gap distance d corresponds to the distance between anvil (40) and stapling head assembly (20). When instrument (10) is inserted into a patient, this gap distance d may not be easily viewable. Accordingly, a moveable indicator bar (110), shown in
Referring back to
Anvil (40) may be further constructed in accordance with at least some of the teachings of U.S. Pat. Nos. 5,205,459; 5,271,544; 5,275,322; 5,285,945; 5,292,053; 5,333,773; 5,350,104; 5,533,661, the disclosures of which are incorporated by reference herein; and/or in accordance with other configurations as will be apparent to one of ordinary skill in the art in view of the teachings herein.
B. Exemplary Stapling Head Assembly
Stapling head assembly (20) of the present example is coupled to a distal end of shaft assembly (60) and comprises a tubular casing (22) housing a slidable staple driver (24) and a plurality of staples (66) contained within staple pockets (32). Staples (66) and staple pockets (32) are disposed in a circular array about tubular casing (22). In the present example, staples (66) and staple pockets (32) are disposed in a pair of concentric annular rows of staples (66) and staple pockets (32). Staple driver (24) is operable to actuate longitudinally within tubular casing (22) in response to rotation of trigger (74) of actuator handle assembly (70). As shown in
Staple driver (24) further includes a cylindrical knife (36) that is coaxial to trocar opening (26) and inset from staple pockets (32). In the present example, cylindrical knife (36) is disposed within central recess (28) to translate distally with staple driver (24). When anvil (40) is secured to trocar (38), as described above, anvil head (48) provides a surface against which cylindrical knife (36) cuts the material contained between anvil (40) and stapling head assembly (20). In some versions, anvil head (48) may include a recess (not shown) for cylindrical knife (36) to aid in cutting the material (e.g., by providing a cooperative shearing edge). In addition, or in the alternative, anvil head (48) may include one or more opposing cylindrical knives (not shown) offset from cylindrical knife (36) such that a scissor-type cutting action may be provided. Still other configurations will be apparent to one of ordinary skill in the art in view of the teachings herein. Stapling head assembly (20) is thus operable to both staple and cut tissue (2) substantially simultaneously in response to actuation by actuator handle assembly (70).
Of course stapling head assembly (20) may be further constructed in accordance with at least some of the teachings of U.S. Pat. Nos. 5,205,459; 5,271,544; 5,275,322; 5,285,945; 5,292,053; 5,333,773; 5,350,104; 5,533,661, the disclosures of which are incorporated by reference herein; and/or in accordance with other configurations as will be apparent to one of ordinary skill in the art in view of the teachings herein.
As noted previously, staple driver (24) includes a trocar opening (26). Trocar opening (26) is configured to permit trocar (38) to longitudinally slide relative to stapling head assembly (20) and/or shaft assembly (60). As shown in
C. Exemplary Shaft Assembly
Stapling head assembly (20) and trocar (38) are positioned at a distal end of shaft assembly (60), as shown in
Shaft assembly (60) may be further constructed in accordance with at least some of the teachings of U.S. Pat. Nos. 5,205,459; 5,271,544; 5,275,322; 5,285,945; 5,292,053; 5,333,773; 5,350,104; 5,533,661, the disclosures of which are incorporated by reference herein; and/or in accordance with other configurations as will be apparent to one of ordinary skill in the art in view of the teachings herein.
D. Exemplary Actuator Handle Assembly
Referring now to
As shown in
Trigger actuation assembly (84) may be further constructed in accordance with at least some of the teachings of U.S. Pat. Nos. 5,205,459; 5,271,544; 5,275,322; 5,285,945; 5,292,053; 5,333,773; 5,350,104; 5,533,661, the disclosures of which are incorporated by reference herein; and/or in accordance with other configurations as will be apparent to one of ordinary skill in the art in view of the teachings herein.
Body (72) also houses a trocar actuation assembly (90) configured to actuate trocar (38) longitudinally in response to rotation of adjusting knob (98). As best shown in
Groove (96) of the present example comprises a plurality of different portions (96A, 96B, 96C) that have a varying pitch or number of grooves per axial distance. The present groove (96) is divided into a distal portion (96A), a middle portion (96B) and a proximal portion (96C). As shown in
Trocar actuation assembly (90) may be further constructed in accordance with at least some of the teachings of U.S. Pat. Nos. 5,205,459; 5,271,544; 5,275,322; 5,285,945; 5,292,053; 5,333,773; 5,350,104; 5,533,661, the disclosures of which are incorporated by reference herein; and/or in accordance with other configurations as will be apparent to one of ordinary skill in the art in view of the teachings herein.
In the example shown in
As shown in
In the present example, a portion of lockout feature (82) abuts a surface (141) of indicator bracket (140) when indicator bracket (140) is in a longitudinal position that does not correspond to when the anvil gap is within a desired operating range (e.g., a green colored region or “green zone”). When the anvil gap is within a desired operating range (e.g., a green colored region or “green zone”), indicator bracket (140) narrows to provide a pair of gaps (145) on either side of an indicator arm (146) that permits lockout feature (82) to pivot, thereby releasing trigger (74). Accordingly, lockout feature (82) and indicator bracket (140) can substantially prevent a user from releasing and operating trigger (74) until anvil (40) is in a predetermined operating range. Of course it should be understood that lockout feature (82) may be omitted entirely in some versions.
This operating range may be visually communicated to the user via an indicator bar (110) of an indicator (104) shown against a scale (130), described briefly above. At the distal end of indicator bracket (140) is a distally projecting indicator arm (146) which terminates at a laterally projecting finger (148) for controlling the movement of indicator (104). Indicator arm (146) and finger (148), best shown in
Of course indicator bracket (140), indicator (104), and/or actuator handle assembly (70) may be further constructed in accordance with at least some of the teachings of U.S. Pat. Nos. 5,205,459; 5,271,544; 5,275,322; 5,285,945; 5,292,053; 5,333,773; 5,350,104; 5,533,661, the disclosures of which are incorporated by reference herein; and/or in accordance with other configurations as will be apparent to one of ordinary skill in the art in view of the teachings herein.
As described above, an anvil such as anvil (40) of
With respect to a trans-oral introduction of the anvil, the anvil may be introduced trans-orally and directed downward into a patient's esophagus (4) to a first suturing position shown in, for example,
Additional exemplary modifications that may be provided for instrument (10) to reduce esophageal trauma during transport of anvil (40) will be described in greater detail below. Various suitable ways in which the below teachings may be incorporated into instrument (10) will be apparent to those of ordinary skill in the art. Similarly, various suitable ways in which the below teachings may be combined with various teachings of the references cited herein will be apparent to those of skill in the art. It should also be understood that the below teachings are not limited to instrument (10) or devices taught in the references cited herein. The below teachings may be readily applied to various other kinds of instruments, including instruments that would not be classified as surgical staplers. Various other suitable devices and settings in which the below teachings may be applied will be apparent to those of ordinary skill in the art in view of the teachings herein.
A. Exemplary First Tilting Anvil Version Including Multiple Pivots
As shown in
Anvil head (248) is linked to proximal shaft (242). Proximal shaft (242) includes link (254) and shaft portion (256). Link (254) and shaft portion (256) are linked together via linking pivot (258). Link (254) is rotatable about a longitudinal axis of linking pivot (258). Anvil head (248) is linked to link (254) via head pivot (252). Anvil head (248) is rotatable about a longitudinal axis of head pivot (252) in the direction of arrow (A), as shown in
As shown in
In some versions, the longitudinal position of driver rod (253) relative to anvil head (248) is based on the position of anvil (240) in relation to stapling head assembly (20). For instance, driver rod (253) may be configured to remain in the distal position whenever anvil (240) is decoupled from trocar (38) of stapling head assembly (20). In some such versions, driver rod (253) may automatically retract proximally upon coupling anvil (240) with trocar (38). Alternatively, driver rod (253) may be configured to remain in the distal position even after anvil (240) is coupled with trocar (38), when anvil (240) is still spaced significantly from stapling head assembly (20) (e.g., before anvil (240) is drawn toward stapling head assembly (20) by trocar (38) to clamp tissue between anvil (240) and stapling head assembly (20), etc.). In some such versions, a feature in anvil (240) and/or a feature in stapling head assembly (20) may be configured to retract driver rod (253) proximally, thereby allowing anvil head (248) to pivot to the position shown in
In use, anvil (240) is inserted into an interior lumen of tissue (2) in an anvil inserting direction. For instance, anvil (240) may be inserted trans-orally into esophagus (4) of a patient. Before anvil (240) is inserted, a portion of esophagus (4) may be resected and removed (e.g., using an endocutter type of linear cutting/stapling device), resulting in separation of upper esophagus (4A) from lower esophagus (4B). Anvil (240) may be fed down upper esophagus (4A) until it reaches the bottom end of upper esophagus (4A), where instrument (10) may be used to join upper esophagus (4A) and lower esophagus (4B) through an end-to-end anastomosis (6). Anvil (240) may be in positions shown in
Anvil (240) may be straightened into a position as shown in
To retract anvil (240), driver rod (253) is distally advanced, causing anvil head (248) to pivot about head pivot (252) in the direction of arrow (A) shown in
Shaft portion (256) is proximally retracted along the direction of arrow (C) to retract anvil (240) through the lumen defined by tissue (2) (such as the esophagus (4)). Load on anvil head (248) from this retraction may provide the pivoting at linking pivot (258). For example, anvil head (248) may abut inner surface walls of tissue (2), causing link (254) to pivot about linking pivot (258) at angles of from about 30 degrees to about 45 degrees with respect to shaft portion (256) as anvil (240) is retracted proximally. Further, anvil head (248) is pivoted about head pivot (252) such that anvil head (248) may be retracted within an internal passageway of tissue (2) with minimal interaction with the inner surface walls of tissue (2). In other words, the above-described tilting and pivoting may prevent the outer edge of anvil head (248) from scraping against the inner wall of esophagus as anvil (240) is transported through esophagus. In the position shown in
Driver rod (253) may remain extended during retraction of anvil (240) as described above. Further, anvil head (248) may be lockable at either the position shown in
In some versions, anvil head (248) is resiliently biased to tilt to the position shown in
Other suitable ways in which an anvil may include a multi-pivot shaft will be apparent to those of ordinary skill in the art in view of the teachings herein.
B. Exemplary Second Tilting Anvil Version Including Off-Center Pivot
Anvil head (348) includes linking connector (351), which connects anvil head (348) to proximal shaft (342). Anvil head (348) is linked to proximal shaft (342) via off-set head pivot (352). Anvil head (348) is rotatable about a longitudinal axis of head pivot (352) in the direction of arrow (D), as shown in
In use, anvil (340) is inserted into an interior lumen of tissue (2) (e.g., upper esophagus (4A), etc.) in an anvil inserting direction in a manner similar to that described above for anvil (240). Anvil (340) may be in a position shown in
To retract anvil (340), driver rod (353) is distally advanced, causing anvil head (348) to pivot about head pivot (352) in the direction of arrow (D) shown in
Anvil head (348) may be lockable at the obliquely angled position of
First portion (354) is proximally retracted downwardly through esophagus (4) to retract anvil (340) from esophagus (4) in a manner as described above. Load on anvil head (348) from this retraction may cause proximal shaft (342) to tilt in a direction opposite arrow (D) while within esophagus (4), such that longitudinal axis (LA) of proximal shaft (342) is tilted relative to the axis of esophagus (4). With anvil head (348) and proximal shaft (342) tilted (as shown in
It should be understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The above-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Versions of the devices described above may have application in conventional medical treatments and procedures conducted by a medical professional, as well as application in robotic-assisted medical treatments and procedures. By way of example only, various teachings herein may be readily incorporated into a robotic surgical system such as the DAVINCI™ system by Intuitive Surgical, Inc., of Sunnyvale, Calif. Similarly, those of ordinary skill in the art will recognize that various teachings herein may be readily combined with various teachings of U.S. Pat. No. 6,783,524, entitled “Robotic Surgical Tool with Ultrasound Cauterizing and Cutting Instrument,” published Aug. 31, 2004, the disclosure of which is incorporated by reference herein.
Versions described above may be designed to be disposed of after a single use, or they can be designed to be used multiple times. Versions may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, some versions of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, some versions of the device may be reassembled for subsequent use either at a reconditioning facility, or by a user immediately prior to a procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
By way of example only, versions described herein may be sterilized before and/or after a procedure. In one sterilization technique, the device is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and device may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the device and in the container. The sterilized device may then be stored in the sterile container for later use. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
This application is a Continuation of prior U.S. application Ser. No. 13/688,992, entitled “Pivoting Anvil for Surgical Circular Stapler,” filed Nov. 29, 2012, and issued as U.S. Pat. No. 9,498,222 on Nov. 22, 2016.
Number | Name | Date | Kind |
---|---|---|---|
4304236 | Conta et al. | Dec 1981 | A |
4310115 | Inoue | Jan 1982 | A |
4505414 | Filipi | Mar 1985 | A |
4700703 | Resnick et al. | Oct 1987 | A |
4752024 | Green et al. | Jun 1988 | A |
4805823 | Rothfuss | Feb 1989 | A |
4893622 | Green et al. | Jan 1990 | A |
4903697 | Resnick et al. | Feb 1990 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5271544 | Fox et al. | Dec 1993 | A |
5275322 | Brinkerhoff et al. | Jan 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5292053 | Bilotti et al. | Mar 1994 | A |
5333773 | Main et al. | Aug 1994 | A |
5350104 | Main et al. | Sep 1994 | A |
5411508 | Bessler et al. | May 1995 | A |
5415334 | Main et al. | May 1995 | A |
5465895 | Williamson, IV et al. | Nov 1995 | A |
5533661 | Knodel et al. | Jul 1996 | A |
5588579 | Schnut | Dec 1996 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5639008 | Gallagher et al. | Jun 1997 | A |
5673840 | Schulze et al. | Oct 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5704898 | Kokish | Jan 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5758814 | Gallagher | Jun 1998 | A |
5814055 | Knodel et al. | Sep 1998 | A |
5839639 | Sauer et al. | Nov 1998 | A |
5860581 | Robertson et al. | Jan 1999 | A |
5947363 | Bolduc et al. | Sep 1999 | A |
5951576 | Wakabayashi | Sep 1999 | A |
6053390 | Green et al. | Apr 2000 | A |
6485496 | Suyker et al. | Nov 2002 | B1 |
6769590 | Vresh et al. | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6957758 | Aranyi | Oct 2005 | B2 |
6978921 | Shelton, IV et al. | Dec 2005 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7018387 | Suyker et al. | Mar 2006 | B2 |
7022127 | Suyker et al. | Apr 2006 | B2 |
7080769 | Vresh et al. | Jul 2006 | B2 |
7143923 | Shelton, IV et al. | Dec 2006 | B2 |
7168604 | Milliman | Jan 2007 | B2 |
7303108 | Shelton, IV | Dec 2007 | B2 |
7325713 | Aranyi | Feb 2008 | B2 |
7364060 | Milliman | Apr 2008 | B2 |
7367485 | Shelton, IV et al. | May 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7431191 | Milliman | Oct 2008 | B2 |
7434715 | Shelton, IV et al. | Oct 2008 | B2 |
7494038 | Milliman | Feb 2009 | B2 |
7516877 | Aranyi | Apr 2009 | B2 |
7546940 | Milliman et al. | Jun 2009 | B2 |
7556186 | Milliman | Jul 2009 | B2 |
7721930 | McKenna et al. | May 2010 | B2 |
7784662 | Wales et al. | Aug 2010 | B2 |
7802712 | Milliman et al. | Sep 2010 | B2 |
7857187 | Milliman | Dec 2010 | B2 |
7874981 | Whitman et al. | Jan 2011 | B2 |
8109426 | Milliman et al. | Feb 2012 | B2 |
8123103 | Milliman | Feb 2012 | B2 |
8141763 | Milliman | Mar 2012 | B2 |
8328062 | Viola | Dec 2012 | B2 |
8328063 | Milliman et al. | Dec 2012 | B2 |
8413870 | Pastorelli et al. | Apr 2013 | B2 |
8496157 | Olson | Jul 2013 | B2 |
8540132 | Marczyk | Sep 2013 | B2 |
8858590 | Shelton, IV et al. | Oct 2014 | B2 |
9113883 | Aronhalt et al. | Aug 2015 | B2 |
9492172 | Weisshaupt et al. | Nov 2016 | B2 |
9498222 | Scheib et al. | Nov 2016 | B2 |
9592055 | Milliman et al. | Mar 2017 | B2 |
20050116009 | Milliman | Jun 2005 | A1 |
20050205639 | Milliman | Sep 2005 | A1 |
20060201989 | Ojeda | Sep 2006 | A1 |
20070194081 | Hueil | Aug 2007 | A1 |
20070272722 | Aranyi | Nov 2007 | A1 |
20080230581 | Marczyk | Sep 2008 | A1 |
20090082785 | Milliman | Mar 2009 | A1 |
20100038401 | Milliman | Feb 2010 | A1 |
20100327041 | Milliman | Dec 2010 | A1 |
20110011916 | Levine | Jan 2011 | A1 |
20110101065 | Milliman | May 2011 | A1 |
20110152861 | Weisshaupt | Jun 2011 | A1 |
20110295269 | Swensgard et al. | Dec 2011 | A1 |
20120211544 | Olson | Aug 2012 | A1 |
20120234890 | Aronhalt | Sep 2012 | A1 |
20120239082 | Shelton, IV | Sep 2012 | A1 |
20120253367 | Yamakawa | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
20 2010 013152 | Mar 2011 | DE |
0 698 376 | Feb 1996 | EP |
2 153 781 | Feb 2010 | EP |
2 489 311 | Aug 2012 | EP |
2 505 148 | Oct 2012 | EP |
2006-501950 | Jan 2006 | JP |
2007-307364 | Nov 2007 | JP |
2012205718 | Oct 2012 | JP |
1242140 | Jul 1986 | SU |
WO 2003030745 | Apr 2003 | WO |
WO 2004112583 | Dec 2004 | WO |
WO 2011109988 | Sep 2011 | WO |
Entry |
---|
Merriam-Webster entry for term “freely”, retrieved on Oct. 22, 2019 from URL https://www.merriam-webster.com/dictionary/freely (Year: 2019). |
International Search Report dated Jun. 20, 2014 for Application No. PCT/US2013/071622, 8 pgs. |
International Preliminary Report on Patentability and Written Opinion dated Jun. 2, 2015 for Application No. PCT/US2013/071622, 11 pgs. |
Japanese Office Action, Notification of Reasons for Refusal, dated Jul. 4, 2017 for Application No. JP 2015-545140, 6 pgs. |
Japanese Office Action, Notifications of Reasons for Refusal, Final, dated Mar. 13, 2018 for Application No. JP 2015-545140, 5 pgs. |
Chinese Office Action, The First Office Action, and First Search dated Jan. 3, 2017 for Application No. CN 201380062163.6, 15 pgs. |
European Examination Report dated Sep. 12, 2016 for Application No. EP 13808330.8, 4 pgs. |
European Office Action, Decision to Grant, dated Jun. 7, 2018 for Application No. EP 13808330.8, 2 pgs. |
European Search Report and Written Opinion dated Oct. 17, 2018 for Application No. EP 18181393.2, 7 pgs. |
Japanese Office Action, Final Notification of Reasons for Refusal, dated Sep. 25, 2018 for Application No. JP 2015-545140, 2 pgs. |
Russian Office Action and Search Report dated Oct. 26, 2017 for Application No. 2015125314, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20170042544 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13688992 | Nov 2012 | US |
Child | 15338594 | US |