This application claims priority to Korean Patent Application No. 10-2021-0029086, filed on Mar. 4, 2021, and all the benefits accruing therefrom under 35 U.S.C. § 119, the content of which in its entirety is herein incorporated by reference.
Embodiments of the present invention relate to a pixel and a display apparatus including the pixel. More particularly, embodiments of the present invention relate to a pixel operating a bias operation of a driving switching element using a boosting capacitor in a display apparatus supporting a variable frequency and a display apparatus including the pixel.
Generally, a display apparatus includes a display panel and a display panel driver. The display panel includes a plurality of gate lines, a plurality of data lines, a plurality of emission lines and a plurality of pixels. The display panel driver includes a gate driver, a data driver, an emission driver and a driving controller. The gate driver outputs gate signals to the gate lines. The data driver outputs data voltages to the data lines. The emission driver outputs emission signals to the emission lines. The driving controller controls the gate driver, the data driver and the emission driver.
In a display apparatus supporting a variable frequency, a bias operation of a driving switching element may be operated to enhance a hysteresis characteristic of the driving switching element. When an additional gate driver and an additional switching element are formed to operate the bias operation of the driving switching element, a high resolution integration of the display panel may be difficult due to the additional switching elements and additional horizontal wirings.
Embodiments of the present invention provide a pixel capable of operating a bias operation of a driving switching element using a boosting capacitor.
Embodiments of the present invention also provide a display apparatus including the pixel.
In an embodiment of a pixel according to the present invention, the pixel includes a light emitting element, a data write switching element, a driving switching element, a light emitting element initialization switching element and a boosting capacitor. The data write switching element is configured to receive a data voltage from the outside. The driving switching element is configured to apply a driving current to the light emitting element based on the data voltage. The light emitting element initialization switching element is configured to apply an initialization voltage to a first electrode of the light emitting element. The boosting capacitor includes a first electrode connected to a control electrode of the light emitting element initialization switching element and a second electrode connected to an output electrode of the data write switching element.
In an embodiment, the pixel may further include: a first transistor including a control electrode connected to a first node, an input electrode connected to a second node and an output electrode connected to a third node; a second transistor including a control electrode which receives a data write gate signal, an input electrode which receives the data voltage and an output electrode connected to a fourth node; a third transistor including a control electrode which receives a compensation gate signal, an input electrode connected to the first node and an output electrode connected to the third node; a fourth transistor including a control electrode which receives a data initialization gate signal, an input electrode which receives the initialization voltage and an output electrode connected to the first node; a fifth transistor including a control electrode which receives the compensation gate signal, an input electrode which receives a reference voltage and an output electrode connected to the fourth node; a sixth transistor including a control electrode which receives an emission signal, an input electrode connected to the third node and an output electrode connected to an anode electrode of the light emitting element; and a seventh transistor including a control electrode which receives a light emitting element initialization gate signal, an input electrode which receives the initialization voltage and an output electrode connected to the anode electrode of the light emitting element. The driving switching element may be the first transistor, the data write switching element may be the second transistor, and the light emitting element initialization switching element may be the seventh transistor.
In an embodiment, the pixel may further include: a storage capacitor including a first electrode connected to the first node and a second electrode connected to the fourth node; and a hold capacitor including a first electrode which receives a high power voltage and a second electrode connected to the fourth node.
In an embodiment, when a voltage change amount of the control electrode of the first transistor is ΔVGT1 where a voltage of the control electrode is changed by the boosting capacitor in a bias period, a capacitance of the storage capacitor is CST, a capacitance of the hold capacitor is CHOLD, a capacitance of the boosting capacitor is CBOOST, a capacitance of the first transistor T1 is CGT1, a high level of the light emitting element initialization gate signal is VGH and a low level of the light emitting element initialization gate signal is VGL, the voltage change amount may be determined by following Equation:
// means a parallel connection of capacitances.
In an embodiment, the data write gate signal may have an inactive level in a bias period. The compensation gate signal may have an inactive level in the bias period. The data initialization gate signal may have an inactive level in the bias period. The light emitting element initialization gate signal may have an active level in the bias period.
In an embodiment, the data write gate signal may maintain the inactive level in the bias period. The compensation gate signal may maintain the inactive level in the bias period. The data initialization gate signal may maintain the inactive level in the bias period. The light emitting element initialization gate signal may have a plurality of pulses having the active level in the bias period.
In an embodiment, the pixel may further include an eighth transistor including a control electrode which receives a first emission signal, an input electrode which receives a high power voltage and an output electrode connected to the second node. The emission signal may be a second emission signal.
In an embodiment, a width of a high duration of the first emission signal in a data writing period when the data voltage is applied to the pixel may be different from a width of a high duration of the first emission signal in a self scan period when the data voltage is not written to the pixel and the light emitting element is turned on.
In an embodiment, the first electrode of the boosting capacitor may be disposed at a first layer connected to the control electrode of the light emitting element initialization switching element. The second electrode of the boosting capacitor may be connected to the output electrode of the data write switching element and disposed at a second layer different from the first layer.
In an embodiment of a pixel according to the present invention, the pixel includes a light emitting element, a driving switching element, a light emitting element initialization switching element and a boosting capacitor. The driving switching element is configured to apply a driving current to the light emitting element. The light emitting element initialization switching element is configured to apply an initialization voltage to a first electrode of the light emitting element. The boosting capacitor includes a first electrode connected to a control electrode of the light emitting element initialization switching element and a second electrode connected to a control electrode of the driving switching element.
In an embodiment, the pixel may further include: a first transistor comprising a control electrode connected to a first node, an input electrode connected to a second node and an output electrode connected to a third node; a second transistor comprising a control electrode which receives a data write gate signal, an input electrode which receives the data voltage and an output electrode connected to a fourth node; a third transistor comprising a control electrode which receives a compensation gate signal, an input electrode connected to the first node and an output electrode connected to the third node; a fourth transistor comprising a control electrode which receives a data initialization gate signal, an input electrode which receives the initialization voltage and an output electrode connected to the first node; a fifth transistor comprising a control electrode which receives the compensation gate signal, an input electrode which receives a reference voltage and an output electrode connected to the fourth node; a sixth transistor comprising a control electrode which receives an emission signal, an input electrode connected to the third node and an output electrode connected to an anode electrode of the light emitting element; and a seventh transistor comprising a control electrode which receives a light emitting element initialization gate signal, an input electrode which receives the initialization voltage and an output electrode connected to the anode electrode of the light emitting element. The driving switching element may be the first transistor. The light emitting element initialization switching element may be the seventh transistor.
In an embodiment, the pixel may further include: a storage capacitor including a first electrode connected to the first node and a second electrode connected to the fourth node; and a hold capacitor including a first electrode which receives a high power voltage and a second electrode connected to the fourth node.
In an embodiment, when a voltage change amount of the control electrode of the first transistor is ΔVGT1 where a voltage of the control electrode is changed by the boosting capacitor in a bias period, a capacitance of the storage capacitor is CST, a capacitance of the hold capacitor is CHOLD, a capacitance of the boosting capacitor is CBOOST, a capacitance of the first transistor T1 is CGT1, a high level of the light emitting element initialization gate signal is VGH and a low level of the light emitting element initialization gate signal is VGL, the voltage change amount may be determined by following Equation
// means a parallel connection of capacitances.
In an embodiment, the pixel may further include an eighth transistor including a control electrode which receives a first emission signal, an input electrode which receives a high power voltage and an output electrode connected to the second node. The emission signal may be a second emission signal.
In an embodiment, the first electrode of the boosting capacitor may be disposed at a first layer connected to the control electrode of the light emitting element initialization switching element. The second electrode of the boosting capacitor may be connected to the control electrode of the driving switching element and disposed at a second layer different from the first layer.
In an embodiment of a display apparatus according to the present invention, the display apparatus includes a display panel, a gate driver, a data driver and an emission driver. The display panel includes a pixel. The gate driver is configured to provide a gate signal to the pixel. The data driver is configured to provide a data voltage to the pixel. The emission driver is configured to provide an emission signal to the pixel. The pixel includes a light emitting element; a data write switching element which receives the data voltage; a driving switching element which applies a driving current to the light emitting element based on the data voltage; a light emitting element initialization switching element which applies an initialization voltage to a first electrode of the light emitting element; and a boosting capacitor including a first electrode connected to a control electrode of the light emitting element initialization switching element and a second electrode connected to an output electrode of the data write switching element.
In an embodiment, the gate driver may include: a normal gate driver which generates a gate signal not applied to the light emitting element initialization switching element; and a bias gate driver which generates a gate signal applied to the light emitting element initialization switching element.
In an embodiment, a stage of the normal gate driver may be configured to receive a first clock signal, a gate high voltage and a gate low voltage. A stage of the bias gate driver may be configured to receive a second clock signal different from the first clock signal, the gate high voltage and the gate low voltage.
In an embodiment, a high level of the first clock signal may be equal to the gate high voltage. A high level of the second clock signal may be greater than the gate high voltage.
In an embodiment, a stage of the normal gate driver may be configured to receive a clock signal, a first gate high voltage and a first gate low voltage. A stage of the bias gate driver may be configured to receive the clock signal, a second gate high voltage different from the first gate high voltage and a second gate low voltage different from the first gate low voltage.
According to the pixel and the display apparatus, in the display apparatus supporting the variable frequency, the additional gate driver and the additional switching element are not formed to operate the bias operation of the driving switching element but the bias operation of the driving switching element may be operated using the boosting capacitor.
Thus, the pixels may be integrated in a high resolution in the display apparatus supporting the variable frequency.
Hereinafter, the present invention will be explained in detail with reference to the accompanying drawings.
It will be understood that, although the terms “first,” “second,” “third” etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, “a first element,” “component,” “region,” “layer” or “section” discussed below could be termed a second element, component, region, layer or section without departing from the teachings herein.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms, including “at least one,” unless the content clearly indicates otherwise. “At least one” is not to be construed as limiting “a” or “an.” “Or” means “and/or.” As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
Referring to
The display panel 100 has a display region on which an image is displayed and a peripheral region adjacent to the display region.
The display panel 100 includes a plurality of gate lines GWL, GCL, GIL and EBL, a plurality of data lines DL, a plurality of emission lines EML and a plurality of pixels electrically connected to the gate lines GWL, GCL, GIL and EBL, the data lines DL and the emission lines EML. The gate lines GWL, GCL, GIL and EBL may extend in a first direction D1, the data lines DL may extend in a second direction D2 crossing the first direction D1 and the emission lines EML may extend in the first direction D1.
The driving controller 200 receives input image data IMG and an input control signal CONT from an external apparatus. For example, the input image data IMG may include red image data, green image data and blue image data. The input image data IMG may include white image data. The input image data IMG may include magenta image data, cyan image data and yellow image data. The input control signal CONT may include a master clock signal and a data enable signal. The input control signal CONT may further include a vertical synchronizing signal and a horizontal synchronizing signal.
The driving controller 200 generates a first control signal CONT1, a second control signal CONT2, a third control signal CONT3, a fourth control signal CONT4 and a data signal DATA based on the input image data IMG and the input control signal CONT.
The driving controller 200 generates the first control signal CONT1 for controlling an operation of the gate driver 300 based on the input control signal CONT, and outputs the first control signal CONT1 to the gate driver 300. The first control signal CONT1 may include a vertical start signal and a gate clock signal.
The driving controller 200 generates the second control signal CONT2 for controlling an operation of the data driver 500 based on the input control signal CONT, and outputs the second control signal CONT2 to the data driver 500. The second control signal CONT2 may include a horizontal start signal and a load signal.
The driving controller 200 generates the data signal DATA based on the input image data IMG. The driving controller 200 outputs the data signal DATA to the data driver 500.
The driving controller 200 generates the third control signal CONT3 for controlling an operation of the gamma reference voltage generator 400 based on the input control signal CONT, and outputs the third control signal CONT3 to the gamma reference voltage generator 400.
The driving controller 200 generates the fourth control signal CONT4 for controlling an operation of the emission driver 600 based on the input control signal CONT, and outputs the fourth control signal CONT4 to the emission driver 600.
The gate driver 300 generates gate signals transferred through the gate lines GWL, GCL, GIL and EBL in response to the first control signal CONT1 received from the driving controller 200. The gate driver 300 may sequentially output the gate signals to the gate lines GWL, GCL, GIL and EBL.
The gamma reference voltage generator 400 generates a gamma reference voltage VGREF in response to the third control signal CONT3 received from the driving controller 200. The gamma reference voltage generator 400 provides the gamma reference voltage VGREF to the data driver 500. The gamma reference voltage VGREF has a value corresponding to a level of the data signal DATA.
In an embodiment, the gamma reference voltage generator 400 may be disposed in the driving controller 200, or in the data driver 500.
The data driver 500 receives the second control signal CONT2 and the data signal DATA from the driving controller 200, and receives the gamma reference voltages VGREF from the gamma reference voltage generator 400. The data driver 500 converts the data signal DATA into data voltages having an analog type using the gamma reference voltages VGREF. The data driver 500 outputs the data voltages to the data lines DL.
The emission driver 600 generates emission signals to drive the emission lines EML in response to the fourth control signal CONT4 received from the driving controller 200. The emission driver 600 may output the emission signals to the emission lines EML.
Although the gate driver 300 is disposed at a first side of the display panel 100 and the emission driver 600 is disposed at a second side of the display panel 100 opposite to the first side in
Referring to
The first active period AC1 may have a length substantially the same as a length of the second active period AC2. The first blank period BL1 may have a length different from a length of the second blank period BL2.
The second active period AC2 may have the length substantially the same as a length of the third active period AC3. The second blank period BL2 may have the length different from a length of the third blank period BL3.
The display apparatus supporting the variable frequency may include a data writing period in which the data voltage is written to the pixel and a self scan period in which only light emission is operated without writing the data voltage to the pixel. The data writing period may be disposed in the active period AC1, AC2 and AC3. The self scan period may be disposed in the blank period BL1, BL2 and BL3.
Referring to
In the present embodiment, the pixel may include: a first transistor T1 including a control electrode connected to a first node N1, an input electrode connected to a second node N2 and an output electrode connected to a third node N3; a second transistor T2 including a control electrode receiving a data write gate signal GW, an input electrode receiving the data voltage VDATA and an output electrode connected to a fourth node ND; and a third transistor T3 including a control electrode receiving a compensation gate signal GC, an input electrode connected to the first node N1 and an output electrode connected to the third node N3. The pixel may also include: a fourth transistor T4 including a control electrode receiving a data initialization gate signal GI, an input electrode receiving the initialization voltage VINT and an output electrode connected to the first node N1; and a fifth transistor T5 including a control electrode receiving the compensation gate signal GC, an input electrode receiving a reference voltage VREF and an output electrode connected to the fourth node ND. The pixel may also include: a sixth transistor T6 including a control electrode receiving an emission signal EM, an input electrode connected to the third node N3 and an output electrode connected to an anode electrode of the light emitting element EE; and a seventh transistor T7 including a control electrode receiving a light emitting element initialization gate signal EB, an input electrode receiving the initialization voltage VINT and an output electrode connected to the anode electrode of the light emitting element EE.
The driving switching element may be the first transistor T1. The data write switching element may be the second transistor T2. The light emitting element initialization switching element may be the seventh transistor T7.
The pixel may further include: a storage capacitor CST including a first electrode connected to the first node N1 and a second electrode connected to the fourth node ND; and a hold capacitor CHOLD including a first electrode receiving a high power voltage ELVDD and a second electrode connected to the fourth node ND.
In the present embodiment, the high power voltage ELVDD may be applied to the second node N2. A low power voltage ELVSS may be applied to a cathode electrode of the light emitting element EE.
Referring to
In contrast, as shown in
As shown in
In the present embodiment, the driving switching element T1 may operate a bias operation in response to the light emitting element initialization gate signal EB.
When a level of the light emitting element initialization gate signal EB decreases to a low level which is the active level, a voltage of a first electrode of the boosting capacitor CBOOST where the light emitting element initialization gate signal EB is received is decreased. According to the decrease of the voltage of the first electrode of the boosting capacitor CBOOST, a voltage of a second electrode of the boosting capacitor CBOOST is also decreased.
Since the second electrode of the boosting capacitor CBOOST is connected to the fourth node ND, a voltage of the fourth node ND is also decreased.
When the voltage of the fourth node ND is decreased, a voltage of the first node N1 is also decreased by the storage capacitor CST connected between the fourth node N4 and the first node N1.
A voltage of the input electrode of the driving switching element T1 maintains the high power voltage ELVDD but the voltage of the control electrode N1 of the driving switching element T1 is decreased. Therefore, a gate-source voltage VGS of the driving switching element T1 is applied between the input electrode and the control electrode of the driving switching element T1. According to the gate-source voltage VGS of the driving switching element T1, the bias operation of the driving switching element T1 is performed.
When a bias of the driving switching element T1 is T1_VGS_BIAS, a normal voltage level of the control electrode of the driving switching element T1 is VGT1 and a normal bias voltage applied to the input electrode of the driving switching element T1 is VBIAS, the bias T1_VGS_BIAS satisfies the following Equation 1 in a method of applying the bias voltage VBIAS to the input electrode of the driving switching element T1.
T1_VGS_BIAS=VBIAS−VGT1 [Equation 1]
In contrast, in the present embodiment, the bias operation of the driving switching element T1 may be performed by not applying the bias voltage VBIAS. For example, in the present embodiment, the bias voltage VBIAS may not be applied but the voltage of the control electrode of the driving switching element T1 may be dropped to operate the bias operation of the driving switching element T1. Therefore, the bias T1_VGS_BIAS according to the present embodiment satisfies the following Equation 2.
T1_VGS_BIAS=ELVDD−(VGT1+ΔVGT1) [Equation 2]
Herein, in order to operate the same level of bias as in Equation 1, the voltage change amount ΔVGT1 of the control electrode of the driving switching element T1, which amounts to the decrease by the boosting capacitor CBOOST, may satisfy ELVDD—VBIAS. The change amount ΔVGT1 may be determined to be approximately 1.5 voltages (V) to 2.0V depending on the display apparatus.
In the present embodiment, when a voltage change amount of the control electrode of the first transistor T1 is ΔVGT1 where a voltage of the control electrode is changed by the boosting capacitor CBOOST in a bias period, a capacitance of the storage capacitor CST is Cst, a capacitance of the hold capacitor CHOLD is Chold, a capacitance of the boosting capacitor CBOOST is Cboost, a capacitance of the first transistor T1 is CGT1, a high level of the light emitting element initialization gate signal is VGH and a low level of the light emitting element initialization gate signal is VGL, the voltage change amount ΔVGT1 may be determined by following Equation 3.
herein, // means a parallel connection of capacitances.
As shown in
Referring to
Referring to
In the present embodiment, the pixel may include: a first transistor T1 including a control electrode connected to a first node N1, an input electrode connected to a second node N2 and an output electrode connected to a third node N3; a second transistor T2 including a control electrode receiving a data write gate signal GW, an input electrode receiving the data voltage VDATA and an output electrode connected to a fourth node ND; and a third transistor T3 including a control electrode receiving a compensation gate signal GC, an input electrode connected to the first node N1 and an output electrode connected to the third node N3. The pixel may also include: a fourth transistor T4 including a control electrode receiving a data initialization gate signal GI, an input electrode receiving the initialization voltage VINT and an output electrode connected to the first node N1; and a fifth transistor T5 including a control electrode receiving the compensation gate signal GC, an input electrode receiving a reference voltage VREF and an output electrode connected to the fourth node ND/The pixel may also include: a sixth transistor T6 including a control electrode receiving an emission signal EM, an input electrode connected to the third node N3 and an output electrode connected to an anode electrode of the light emitting element EE; and a seventh transistor T7 including a control electrode receiving a light emitting element initialization gate signal EB, an input electrode receiving the initialization voltage VINT and an output electrode connected to the anode electrode of the light emitting element EE.
The driving switching element may be the first transistor T1. The light emitting element initialization switching element may be the seventh transistor T7.
The pixel may further include a storage capacitor CST including a first electrode connected to the first node N1 and a second electrode connected to the fourth node ND and a hold capacitor CHOLD including a first electrode receiving a high power voltage ELVDD and a second electrode connected to the fourth node ND.
In the present embodiment, the high power voltage ELVDD may be applied to the second node N2. A low power voltage ELVSS may be applied to a cathode electrode of the light emitting element EE.
As shown in
In the present embodiment, when a voltage change amount of the control electrode of the first transistor T1 is ΔVGT1 where a voltage of the control electrode is changed by the boosting capacitor CBOOST in a bias period, a capacitance of the storage capacitor CST is Cst, a capacitance of the hold capacitor CHOLD is Chold, a capacitance of the boosting capacitor CBOOST is Cboost, a capacitance of the first transistor T1 is CGT1, a high level of the light emitting element initialization gate signal is VGH and a low level of the light emitting element initialization gate signal is VGL, the change amount ΔVGT1 may be determined by following Equation 4.
herein, // means a parallel connection of capacitances.
As shown in
As shown in
Referring to
In an embodiment, for example, the normal gate driver may include a data write gate driver GWD, a compensation gate driver GCD and a data initialization gate driver GID. The bias gate driver may include a light emitting element initialization gate driver EBD.
In an embodiment, for example, the data write gate driver GWD may include a first to N-th stages GWST(1) to GWST(N). The compensation gate driver GCD may include a first to N-th stages GCST(1) to GCST(N). The data initialization gate driver GID may include a first to N-th stages GIST(1) to GIST(N). The light emitting element initialization gate driver EBD may include a first to N-th stages EBST(1) to EBST(N).
Referring to
As shown in
According to
Referring to
According to
Referring to
In the present embodiment, the pixel may include: a first transistor T1 including a control electrode connected to a first node N1, an input electrode connected to a second node N2 and an output electrode connected to a third node N3; a second transistor T2 including a control electrode receiving a data write gate signal GW, an input electrode receiving the data voltage VDATA and an output electrode connected to a fourth node ND; and a third transistor T3 including a control electrode receiving a compensation gate signal GC, an input electrode connected to the first node N1 and an output electrode connected to the third node N3. The pixel may also include: a fourth transistor T4 including a control electrode receiving a data initialization gate signal GI, an input electrode receiving the initialization voltage VINT and an output electrode connected to the first node N1 and a fifth transistor T5 including a control electrode receiving the compensation gate signal GC, an input electrode receiving a reference voltage VREF and an output electrode connected to the fourth node ND. The pixel may also include: a sixth transistor T6 including a control electrode receiving a second emission signal EM2, an input electrode connected to the third node N3 and an output electrode connected to an anode electrode of the light emitting element EE; and a seventh transistor T7 including a control electrode receiving a light emitting element initialization gate signal EB, an input electrode receiving the initialization voltage VINT and an output electrode connected to the anode electrode of the light emitting element EE.
The driving switching element may be the first transistor T1. The data write switching element may be the second transistor T2. The light emitting element initialization switching element may be the seventh transistor T7.
In the present embodiment, the pixel may further include an eighth transistor T8 including a control electrode receiving a first emission signal EM1, an input electrode receiving a high power voltage ELVDD and an output electrode connected to the second node N2. In the present embodiment, the first emission signal EM1 and the second emission signal EM2 are separated so that a bias operation may be operated by applying the high power voltage ELVDD to the input electrode of the first transistor T1 using the first emission signal EM1.
The pixel may further include a storage capacitor CST including a first electrode connected to the first node N1 and a second electrode connected to the fourth node ND; and a hold capacitor CHOLD including a first electrode receiving the high power voltage ELVDD and a second electrode connected to the fourth node ND.
In the present embodiment, a low power voltage ELVSS may be applied to a cathode electrode of the light emitting element EE.
As shown in
In a low duration of the first emission signal EM1, the eighth transistor T8 is turned on so that the bias operation may be operated using the high power voltage ELVDD. A degree of the bias operation using the high power voltage ELVDD may be properly adjusted by adjusting the widths WF1 and WF2 of the high duration of the first emission signal EM1. As explained above, a difference in degrees of the bias operations in the data writing period and the self scan period may be adjusted by adjusting the bias operation using the high power voltage ELVDD.
Referring to
In the present embodiment, the pixel may include: a first transistor T1 including a control electrode connected to a first node N1, an input electrode connected to a second node N2 and an output electrode connected to a third node N3; a second transistor T2 including a control electrode receiving a data write gate signal GW, an input electrode receiving the data voltage VDATA and an output electrode connected to a fourth node ND; and a third transistor T3 including a control electrode receiving a compensation gate signal GC, an input electrode connected to the first node N1 and an output electrode connected to the third node N3. The pixel may include: a fourth transistor T4 including a control electrode receiving a data initialization gate signal GI, an input electrode receiving the initialization voltage VINT and an output electrode connected to the first node N1, and a fifth transistor T5 including a control electrode receiving the compensation gate signal GC, an input electrode receiving a reference voltage VREF and an output electrode connected to the fourth node ND. The pixel may also include a sixth transistor T6 including a control electrode receiving a second emission signal EM2, an input electrode connected to the third node N3 and an output electrode connected to an anode electrode of the light emitting element EE, and a seventh transistor T7 including a control electrode receiving a light emitting element initialization gate signal EB, an input electrode receiving the initialization voltage VINT and an output electrode connected to the anode electrode of the light emitting element EE.
The driving switching element may be the first transistor T1. The light emitting element initialization switching element may be the seventh transistor T7.
In the present embodiment, the pixel may further include an eighth transistor T8 including a control electrode receiving a first emission signal EM1, an input electrode receiving a high power voltage ELVDD and an output electrode connected to the second node N2. In the present embodiment, the first emission signal EM1 and the second emission signal EM2 are separated so that a bias operation may be operated by applying the high power voltage ELVDD to the input electrode of the first transistor T1 using the first emission signal EM1.
The pixel may further include a storage capacitor CST including a first electrode connected to the first node N1 and a second electrode connected to the fourth node ND and a hold capacitor CHOLD including a first electrode receiving the high power voltage ELVDD and a second electrode connected to the fourth node ND.
In the present embodiment, a low power voltage ELVSS may be applied to a cathode electrode of the light emitting element EE.
Like
In an embodiment, for example, when a sufficient degree of bias is not achieved by the bias period TBIAS of
In an embodiment, for example, in the bias period TBIAS, the data write gate signal GW maintains an inactive level, the compensation gate signal GC maintains an inactive level, the data initialization gate signal GI maintains an inactive level and the light emitting element initialization gate signal EB may have a plurality of pulses having an active level.
In the present embodiment, the degree of the bias may be properly adjusted by adjusting the number of the pulses of the light emitting element initialization gate signal EB in the bias period TBIAS.
In an embodiment, for example, when a sufficient degree of bias is not achieved by the number (e.g., one time) of bias operations (the number of the pulses of the light emitting element initialization gate signal EB) of
According to the present embodiment, in the display apparatus supporting the variable frequency, the additional gate driver and the additional switching element are not formed to operate the bias operation of the driving switching element but the bias operation of the driving switching element may be operated using the boosting capacitor CBOOST.
Thus, the pixels may be integrated in a high resolution in the display apparatus supporting the variable frequency.
According to the pixel and the display apparatus of the present embodiment as explained above, the pixels of the display panel may be integrated in a high resolution.
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although a few example embodiments of the present invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the example embodiments without materially departing from the novel teachings and advantages of the present invention. Accordingly, all such modifications are intended to be included within the scope of the present invention as defined in the claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Therefore, it is to be understood that the foregoing is illustrative of the present invention and is not to be construed as limited to the specific example embodiments disclosed, and that modifications to the disclosed example embodiments, as well as other example embodiments, are intended to be included within the scope of the appended claims. The present invention is defined by the following claims, with equivalents of the claims to be included therein.
Number | Date | Country | Kind |
---|---|---|---|
10-2021-0029086 | Mar 2021 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
20160351160 | In | Dec 2016 | A1 |
20170061914 | Park | Mar 2017 | A1 |
20180366066 | Kim | Dec 2018 | A1 |
20190066598 | Kim | Feb 2019 | A1 |
20190139617 | Sasaki | May 2019 | A1 |
20190245126 | Lim | Aug 2019 | A1 |
20200380911 | Park | Dec 2020 | A1 |
20200394968 | Kwon | Dec 2020 | A1 |
20210366408 | In | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
101329964 | Nov 2013 | KR |
101351416 | Jan 2014 | KR |
1020160052942 | May 2016 | KR |
102045546 | Dec 2019 | KR |
Number | Date | Country | |
---|---|---|---|
20220284850 A1 | Sep 2022 | US |