Pixel arrangement structure and organic light-emitting diode display device

Information

  • Patent Grant
  • 10861905
  • Patent Number
    10,861,905
  • Date Filed
    Thursday, December 20, 2018
    6 years ago
  • Date Issued
    Tuesday, December 8, 2020
    4 years ago
Abstract
A pixel arrangement structure includes a plurality of pixel rows. Two adjacent ones of the pixel rows are disposed to be misaligned with each other. Each of the pixel rows includes a plurality of pixels. Each of the pixels includes a first sub pixel; a second sub pixel; and a third sub pixel. The first sub pixel in an N+1-th pixel row is disposed adjacent to the first sub pixel of one of the pixels in an N+2-th pixel row, the second sub pixel in an N-th pixel row is disposed adjacent to the second sub pixel of one of the pixels in the N+1-th pixel row, and N is a positive odd number greater than or equal to 1. An organic light-emitting diode display device is further provided.
Description
RELATED APPLICATIONS

This application is a National Phase of PCT Patent Application No. PCT/CN2018/122461 having International filing date of Dec. 20, 2018, which claims the benefit of priority of Chinese Patent Application No. 201811343991.8 filed on Nov. 13, 2018. The contents of the above applications are all incorporated by reference as if fully set forth herein in their entirety.


FIELD AND BACKGROUND OF THE INVENTION

The present disclosure relates to a pixel arrangement, and more particularly to a pixel arrangement structure and an organic light-emitting diode display device.


Organic light-emitting diode display devices have advantages of light weight, emitting light actively, fast response speed, a large view angle, wide gamut, high brightness and low power consumption and have become developing display technologies after liquid crystal display devices. Currently, people's requirements for a resolution of a display device are high. However, manufacturing organic light-emitting diode display devices having high quality and a high resolution still faces many challenges.


In the sub-pixel rendering (SPR) technologies, adjacent pixels share a part of sub pixels to implement the increasing of a sense resolution. As such, display devices can have a higher sense resolution when the density of a sub pixel arrangement is not changed. Alternatively, a requirement for the density of a sub pixel arrangement is lowered when the sense resolution is not changed. Accordingly, the sub-pixel rendering technologies provide a scheme to solve the above-mentioned problem.


In another aspect, fine metal mask (FMM) technologies are one of key technologies of limiting the development of the organic light-emitting diode display device. With the increasing of the requirement for the resolution, it is more difficult to manufacture the fine metal masks. In the mainstream RGB stripe arrangement and the PenTile arrangement, each sub pixel corresponds to one opening of a fine metal mask. To prevent colors from being mixed, a distance between openings corresponding to sub pixels having different colors has a minimum limitation, and thus the increasing of the resolution is limited.


Consequently, there is a need to solve the above-mentioned problems in the prior art.


SUMMARY OF THE INVENTION

An objective of the present disclosure is to provide a pixel arrangement structure and an organic light-emitting diode display device capable of solving the problems in the prior art.


To solve the above problems, a pixel arrangement structure provided by the present disclosure includes a plurality of pixel rows. Two adjacent ones of the pixel rows are disposed to be misaligned with each other. Each of the pixel rows includes a plurality of pixels. Each of the pixels includes a first sub pixel; a second sub pixel; and a third sub pixel. The first sub pixel in an N+1-th pixel row is disposed adjacent to the first sub pixel of one of the pixels in an N+2-th pixel row, the second sub pixel in an N-th pixel row is disposed adjacent to the second sub pixel of one of the pixels in the N+1-th pixel row, and N is a positive odd number greater than or equal to 1. The first sub pixel in the N+1-th pixel row and the first sub pixel of the one of the pixels in the N+2-th pixel row have same color, and the second sub pixel in the N-th pixel row and the second sub pixel of the one of the pixels in the N+1-th pixel row have same color.


In one embodiment, a center of the first sub pixel, a center of the second sub pixel and a center of the third sub pixel of each of the pixels are arranged in a triangle.


In one embodiment, the first sub pixel and the second sub pixel of each of the pixels are disposed at a first side of each of the pixels, and the third sub pixel of each of the pixels is disposed at a second side of each of the pixels opposite to the first side.


In one embodiment, one of the first sub pixel and the second sub pixel of each of the pixels overlaps a center line of a long side of the third sub pixel of each of the pixels.


In one embodiment, an arrangement of the first sub pixel, the second sub pixel and the third sub pixel in odd pixel rows is different from an arrangement of the first sub pixel, the second sub pixel and the third sub pixel in even pixel rows.


To solve the above problems, a pixel arrangement structure provided by the present disclosure includes a plurality of pixel rows. Two adjacent ones of the pixel rows are disposed to be misaligned with each other. Each of the pixel rows includes a plurality of pixels. Each of the pixels includes a first sub pixel; a second sub pixel; and a third sub pixel. The first sub pixel in an N+1-th pixel row is disposed adjacent to the first sub pixel of one of the pixels in an N+2-th pixel row, the second sub pixel in an N-th pixel row is disposed adjacent to the second sub pixel of one of the pixels in the N+1-th pixel row, and N is a positive odd number greater than or equal to 1.


In one embodiment, a center of the first sub pixel, a center of the second sub pixel and a center of the third sub pixel of each of the pixels are arranged in a triangle.


In one embodiment, the first sub pixel and the second sub pixel of each of the pixels are disposed at a first side of each of the pixels, and the third sub pixel of each of the pixels is disposed at a second side of each of the pixels opposite to the first side.


In one embodiment, one of the first sub pixel and the second sub pixel of each of the pixels overlaps a center line of a long side of the third sub pixel of each of the pixels.


In one embodiment, an arrangement of the first sub pixel, the second sub pixel and the third sub pixel in odd pixel rows is different from an arrangement of the first sub pixel, the second sub pixel and the third sub pixel in even pixel rows.


An organic light-emitting diode display device provided by the present disclosure includes a pixel arrangement structure; and a driving circuit electrically coupled to the pixel arrangement structure and configured to provide scan signals and data signals for the pixel arrangement structure. The pixel arrangement structure includes a plurality of pixel rows. Two adjacent ones of the pixel rows are disposed to be misaligned with each other. Each of the pixel rows includes a plurality of pixels. Each of the pixels includes a first sub pixel; a second sub pixel; and a third sub pixel. The first sub pixel in an N+1-th pixel row is disposed adjacent to the first sub pixel of one of the pixels in an N+2-th pixel row, the second sub pixel in an N-th pixel row is disposed adjacent to the second sub pixel of one of the pixels in the N+1-th pixel row, and N is a positive odd number greater than or equal to 1.


In one embodiment, a center of the first sub pixel, a center of the second sub pixel and a center of the third sub pixel of each of the pixels are arranged in a triangle.


In one embodiment, the first sub pixel and the second sub pixel of each of the pixels are disposed at a first side of each of the pixels, and the third sub pixel of each of the pixels is disposed at a second side of each of the pixels opposite to the first side.


In one embodiment, one of the first sub pixel and the second sub pixel of each of the pixels overlaps a center line of a long side of the third sub pixel of each of the pixels.


In one embodiment, an arrangement of the first sub pixel, the second sub pixel and the third sub pixel in odd pixel rows is different from an arrangement of the first sub pixel, the second sub pixel and the third sub pixel in even pixel rows.


Compared to the prior art, in the pixel arrangement structure and the organic light-emitting diode display device, since the two first sub pixels which are disposed adjacent to each other may share one first opening of the fine metal mask, the problem of color mixing can be avoided. The resolution of the organic light-emitting diode display device can be increased when the manufacturing process is not changed. Alternatively, the difficulty of the manufacturing process can be decreased when the resolution is not changed. Furthermore, since the two second sub pixels which are disposed adjacent to each other may share one second opening of the fine metal mask, the problem of color mixing can be avoided. The resolution of the organic light-emitting diode display device can be increased when the manufacturing process is not changed. Alternatively, the difficulty of the manufacturing process can be decreased when the resolution is not changed. Moreover, a number of the sub pixels in the pixel arrangement structure of the present disclosure can be decreased, when compared to the RGB stripe arrangement in the prior art.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 illustrates a pixel arrangement structure of an organic light-emitting diode display device in accordance with an embodiment of the present disclosure.



FIG. 2 illustrates a pixel row R1 and a pixel row R2 in FIG. 1.



FIG. 3 illustrates an organic light-emitting diode display device in accordance with an embodiment of the present disclosure.





DESCRIPTION OF SPECIFIC EMBODIMENTS OF THE INVENTION

Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the accompanying drawings for illustrating specific embodiments which can be carried out by the present disclosure.


Please refer to FIG. 1 and FIG. 2. FIG. 1 illustrates a pixel arrangement structure of an organic light-emitting diode display device in accordance with an embodiment of the present disclosure. FIG. 2 illustrates a pixel row R1 and a pixel row R2 in FIG. 1.


The organic light-emitting diode display device includes a plurality of pixel rows R1-R5. Each of the pixel rows R1-R5 includes a plurality of pixels 10. Each of the pixels 10 includes a first sub pixel 100, a second sub pixel 102 and a third sub pixel 104.


The first sub pixel 100, the second sub pixel 102 and the third sub pixel 104 may be any one of a red sub pixel, a green sub pixel and a blue sub pixel. The first sub pixel 100, the second sub pixel 102 and the third sub pixel 104 have different colors.


A center of the first sub pixel 100, a center of the second sub pixel 102 and a center of the third sub pixel 104 of each of the pixels 10 are arranged in a triangle.


In the present embodiment, two adjacent ones of the pixel rows R1-R5 are disposed to be misaligned with each other. In detail, even pixel rows including the pixel rows R2 and R4 are shifted by a distance X in a horizontal direction with respect to odd pixel rows including the pixel rows R1, R3 and R5. The distance X may be designed adequately according to requirements.


The first sub pixel 100 of each of the pixels 10 is disposed adjacent to the first sub pixel 100 of one of the pixels 10 in an adjacent one of the pixel rows R1-R5, and/or the second sub pixel 102 of each of the pixels 10 is disposed adjacent to the second sub pixel 102 of one of the pixels 10 in an adjacent one of the pixel rows R1-R5.


That is, the second sub pixel 102 in the pixel row R1 is disposed adjacent to the second sub pixel 102 of one of the pixels 10 in the pixel row R2 (an adjacent pixel row of the pixel row R1). The second sub pixel 102 in the pixel row R3 is disposed adjacent to the second sub pixel 102 of one of the pixels 10 in the pixel row R4 (an adjacent pixel row of the pixel row R3). It can be understood form the above that the second sub pixel 102 in an N-th pixel row is disposed adjacent to the second sub pixel 102 of one of the pixels 10 in an N+1-th pixel row (an adjacent pixel row of the N-th pixel row). N is a positive odd number greater than or equal to 1.


The first sub pixel 100 in the pixel row R2 is disposed adjacent to the first sub pixel 100 of one of the pixels 10 in the pixel row R3 (an adjacent pixel row of the pixel row R2). The first sub pixel 100 in the pixel row R4 is disposed adjacent to the first sub pixel 100 of one of the pixels 10 in the pixel row R5 (an adjacent pixel row of the pixel row R4). It can be understood form the above that the first sub pixel 100 in the N+1-th pixel row is disposed adjacent to the first sub pixel 100 of one of the pixels 10 in an N+2-th pixel row (an adjacent pixel row of the N-th+1 pixel row).


The two first sub pixels 100 which are disposed adjacent to each other may share one first opening of a fine metal mask in an evaporation process. That is, a shape and an area of the two first sub pixels 100 which are disposed adjacent to each other correspond to a shape and area of one first opening of the fine metal mask.


The two second sub pixels 102 which are disposed adjacent to each other may share one second opening of a fine metal mask in an evaporation process. That is, a shape and an area of the two second sub pixels 102 which are disposed adjacent to each other correspond to a shape and area of one second opening of the fine metal mask.


Since the two first sub pixels 100 (i.e., having the same color) which are disposed adjacent to each other may share one first opening of the fine metal mask, the problem of color mixing can be avoided. A resolution of the organic light-emitting diode display device can be increased when a manufacturing process is not changed. Alternatively, difficulty of the manufacturing process can be decreased when the resolution is not changed. Furthermore, since the two second sub pixels 102 (i.e., having the same color) which are disposed adjacent to each other may share one second opening of the fine metal mask, the problem of color mixing can be avoided. The resolution of the organic light-emitting diode display device can be increased when the manufacturing process is not changed. Alternatively, the difficulty of the manufacturing process can be decreased when the resolution is not changed.


A shape and an area of the third second sub pixel 104 correspond to a shape and area of one third opening of the fine metal mask.


The two first sub pixels 100 which are disposed adjacent to each other may be driven by two driving circuits or may be driven by one driving circuit. The two second sub pixels 102 which are disposed adjacent to each other may be driven by two driving circuits or may be driven by one driving circuit.


Furthermore, the first sub pixel 100 and the second sub pixel 102 of each of the pixels 10 are disposed at a first side of each of the pixels 10. The third sub pixel 104 of each of the pixels 10 is disposed at a second side of each of the pixels 10 opposite to the first side.


One of the first sub pixel 100 and the second sub pixel 102 of each of the pixels 10 overlaps a center line AA′ (in FIG. 2) of a long side of the third sub pixel 104 of each of the pixels 10.


Furthermore, an arrangement of the first sub pixel 100, the second sub pixel 102 and the third sub pixel 104 in the odd pixel rows including the pixel rows R1, R3 and R5 is different from an arrangement of the first sub pixel 100, the second sub pixel 102 and the third sub pixel 104 in the even pixel rows including the pixel rows R2 and R4. For example, the arrangement of the first sub pixel 100, the second sub pixel 102 and the third sub pixel 104 in the even pixel rows including the pixel rows R2 and R4 may be the same as the arrangement of the first sub pixel 100, the second sub pixel 102 and the third sub pixel 104 in the odd pixel rows including the pixel rows R1, R3 and R5 by counterclockwise rotating the arrangement of the first sub pixel 100, the second sub pixel 102 and the third sub pixel 104 in the odd pixel rows including the pixel rows R1, R3 and R5 by an angle. The angle may be one angle greater than 0 degree and smaller than 180 degrees.


Please refer to FIG. 3. FIG. 3 illustrates an organic light-emitting diode display device 20 in accordance with an embodiment of the present disclosure.


The organic light-emitting diode display device 20 includes a driving circuit 200 and the pixel arrangement structure 202 as shown in FIG. 1.


The driving circuit 200 is electrically coupled to the pixel arrangement structure 202 and may include a scan driving circuit and a data driving circuit. The driving circuit 200 is configured to provide scan signals (the scan driving circuit) for the pixel arrangement structure 202 and is configured to provide data signals (the data driving circuit) for the pixel arrangement structure 202.


In the pixel arrangement structure and the organic light-emitting diode display device, since the two first sub pixels which are disposed adjacent to each other may share one first opening of the fine metal mask, the problem of color mixing can be avoided. The resolution of the organic light-emitting diode display device can be increased when the manufacturing process is not changed. Alternatively, the difficulty of the manufacturing process can be decreased when the resolution is not changed. Furthermore, since the two second sub pixels which are disposed adjacent to each other may share one second opening of the fine metal mask, the problem of color mixing can be avoided. The resolution of the organic light-emitting diode display device can be increased when the manufacturing process is not changed. Alternatively, the difficulty of the manufacturing process can be decreased when the resolution is not changed. Moreover, a number of the sub pixels in the pixel arrangement structure of the present disclosure can be decreased, when compared to the RGB stripe arrangement in the prior art.


In summary, although the present disclosure has been provided in the preferred embodiments described above, the foregoing preferred embodiments are not intended to limit the present disclosure. Those skilled in the art, without departing from the spirit and scope of the present disclosure, may make modifications and variations, so the scope of the protection of the present disclosure is defined by the claims.

Claims
  • 1. A pixel arrangement structure, comprising a plurality of pixel rows, two adjacent ones of the pixel rows disposed to be misaligned with each other, each of the pixel rows comprising a plurality of pixels, each of the pixels comprising: a first sub pixel;a second sub pixel; anda third sub pixel,wherein the first sub pixel in an N+1-th pixel row is disposed adjacent to the first sub pixel of one of the pixels in an N+2-th pixel row, the second sub pixel in an N-th pixel row is disposed adjacent to the second sub pixel of one of the pixels in the N+1-th pixel row, and N is a positive odd number greater than or equal to 1,wherein the first sub pixel in the N+1-th pixel row and the first sub pixel of the one of the pixels in the N+2-th pixel row have same color, and the second sub pixel in the N-th pixel row and the second sub pixel of the one of the pixels in the N+1-th pixel row have same color,wherein an arrangement of the first sub pixel, the second sub pixel and the third sub pixel in even pixel rows is the same as an arrangement of the first sub pixel, the second sub pixel and the third sub pixel in odd pixel rows by counterclockwise rotating the arrangement of the first sub pixel, the second sub pixel and the third sub pixel in the odd pixel rows by an angle, and the angle is one angle greater than 0 degree and smaller than 180 degrees.
  • 2. The pixel arrangement structure of claim 1, wherein a center of the first sub pixel, a center of the second sub pixel and a center of the third sub pixel of each of the pixels are arranged in a triangle.
  • 3. The pixel arrangement structure of claim 1, wherein the first sub pixel and the second sub pixel of each of the pixels are disposed at a first side of each of the pixels, and the third sub pixel of each of the pixels is disposed at a second side of each of the pixels opposite to the first side.
  • 4. The pixel arrangement structure of claim 3, wherein one of the first sub pixel and the second sub pixel of each of the pixels overlaps a center line of a long side of the third sub pixel of each of the pixels.
  • 5. The pixel arrangement structure of claim 4, wherein the arrangement of the first sub pixel, the second sub pixel and the third sub pixel in the odd pixel rows is different from the arrangement of the first sub pixel, the second sub pixel and the third sub pixel in the even pixel rows.
  • 6. A pixel arrangement structure, comprising a plurality of pixel rows, two adjacent ones of the pixel rows disposed to be misaligned with each other, each of the pixel rows comprising a plurality of pixels, each of the pixels comprising: a first sub pixel;a second sub pixel; anda third sub pixel,wherein the first sub pixel in an N+1-th pixel row is disposed adjacent to the first sub pixel of one of the pixels in an N+2-th pixel row, the second sub pixel in an N-th pixel row is disposed adjacent to the second sub pixel of one of the pixels in the N+1-th pixel row, and N is a positive odd number greater than or equal to 1,wherein an arrangement of the first sub pixel, the second sub pixel and the third sub pixel in even pixel rows is the same as an arrangement of the first sub pixel, the second sub pixel and the third sub pixel in odd pixel rows by counterclockwise rotating the arrangement of the first sub pixel, the second sub pixel and the third sub pixel in the odd pixel rows by an angle, and the angle is one angle greater than 0 degree and smaller than 180 degrees.
  • 7. The pixel arrangement structure of claim 6, wherein a center of the first sub pixel, a center of the second sub pixel and a center of the third sub pixel of each of the pixels are arranged in a triangle.
  • 8. The pixel arrangement structure of claim 6, wherein the first sub pixel and the second sub pixel of each of the pixels are disposed at a first side of each of the pixels, and the third sub pixel of each of the pixels is disposed at a second side of each of the pixels opposite to the first side.
  • 9. The pixel arrangement structure of claim 8, wherein one of the first sub pixel and the second sub pixel of each of the pixels overlaps a center line of a long side of the third sub pixel of each of the pixels.
  • 10. The pixel arrangement structure of claim 9, wherein the arrangement of the first sub pixel, the second sub pixel and the third sub pixel in the odd pixel rows is different from the arrangement of the first sub pixel, the second sub pixel and the third sub pixel in the even pixel rows.
  • 11. An organic light-emitting diode display device, comprising: a pixel arrangement structure; anda driving circuit electrically coupled to the pixel arrangement structure and configured to provide scan signals and data signals for the pixel arrangement structure,the pixel arrangement structure comprising a plurality of pixel rows, two adjacent ones of the pixel rows disposed to be misaligned with each other, each of the pixel rows comprising a plurality of pixels, each of the pixels comprising:a first sub pixel;a second sub pixel; anda third sub pixel,wherein the first sub pixel in an N+1-th pixel row is disposed adjacent to the first sub pixel of one of the pixels in an N+2-th pixel row, the second sub pixel in an N-th pixel row is disposed adjacent to the second sub pixel of one of the pixels in the N+1-th pixel row, and N is a positive odd number greater than or equal to 1,wherein an arrangement of the first sub pixel, the second sub pixel and the third sub pixel in even pixel rows is the same as an arrangement of the first sub pixel, the second sub pixel and the third sub pixel in odd pixel rows by counterclockwise rotating the arrangement of the first sub pixel, the second sub pixel and the third sub pixel in the odd pixel rows by an angle, and the angle is one angle greater than 0 degree and smaller than 180 degrees.
  • 12. The organic light-emitting diode display device of claim 11, wherein a center of the first sub pixel, a center of the second sub pixel and a center of the third sub pixel of each of the pixels are arranged in a triangle.
  • 13. The organic light-emitting diode display device of claim 11, wherein the first sub pixel and the second sub pixel of each of the pixels are disposed at a first side of each of the pixels, and the third sub pixel of each of the pixels is disposed at a second side of each of the pixels opposite to the first side.
  • 14. The organic light-emitting diode display device of claim 13, wherein one of the first sub pixel and the second sub pixel of each of the pixels overlaps a center line of a long side of the third sub pixel of each of the pixels.
  • 15. The organic light-emitting diode display device of claim 14, wherein the arrangement of the first sub pixel, the second sub pixel and the third sub pixel in the odd pixel rows is different from the arrangement of the first sub pixel, the second sub pixel and the third sub pixel in the even pixel rows.
Priority Claims (1)
Number Date Country Kind
2018 1 1343991 Nov 2018 CN national
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2018/122461 12/20/2018 WO 00
Publishing Document Publishing Date Country Kind
WO2020/098070 5/22/2020 WO A
US Referenced Citations (78)
Number Name Date Kind
4908609 Stroomer Mar 1990 A
6714206 Martin Mar 2004 B1
6867549 Cok Mar 2005 B2
7184066 Elliot Feb 2007 B2
7508126 Miyagawa Mar 2009 B2
7916244 Hur Mar 2011 B2
8330352 Sung Dec 2012 B2
8405692 Brown Elliott Mar 2013 B2
8421820 Brown Elliott Apr 2013 B2
8576311 Okumura Nov 2013 B2
9647039 Wang May 2017 B1
9653033 Kobayashi May 2017 B2
9824646 Shimmen Nov 2017 B2
10074670 Itou Sep 2018 B2
10141380 Chung Nov 2018 B2
10204540 Chaji Feb 2019 B2
10236326 Lee Mar 2019 B2
10347220 Jiang Jul 2019 B1
10504969 Tian Dec 2019 B2
10629656 Jo Apr 2020 B2
10672328 Wang Jun 2020 B1
10707273 Madigan Jul 2020 B2
20020070909 Asano Jun 2002 A1
20020186214 Siwinski Dec 2002 A1
20030071943 Choo Apr 2003 A1
20040201558 Arnold Oct 2004 A1
20050225575 Brown Elliott Oct 2005 A1
20050270444 Miller Dec 2005 A1
20050275769 Roh Dec 2005 A1
20060033422 Chao Feb 2006 A1
20070024183 Lih Feb 2007 A1
20070085959 Kim Apr 2007 A1
20080001525 Chao Jan 2008 A1
20080084376 Hirota Apr 2008 A1
20080290794 Yuasa Nov 2008 A1
20090009673 Hisada Jan 2009 A1
20090302331 Smith Dec 2009 A1
20100156279 Tamura Jun 2010 A1
20110025723 Kim Feb 2011 A1
20110157502 Qiao Jun 2011 A1
20110291550 Kim Dec 2011 A1
20120147065 Byun Jun 2012 A1
20130155034 Nakayama Jun 2013 A1
20150048322 So Feb 2015 A1
20150061978 Shih et al. Mar 2015 A1
20150137130 Wang May 2015 A1
20150187859 Choi et al. Jul 2015 A1
20150270317 Lee Sep 2015 A1
20150379924 Matsueda Dec 2015 A1
20160027376 Chen Jan 2016 A1
20160041424 Guo Feb 2016 A1
20160079333 Shishido Mar 2016 A1
20160104413 Matsueda Apr 2016 A1
20160126296 Feng May 2016 A1
20160154273 Itou Jun 2016 A1
20160203748 Matsueda Jul 2016 A1
20160240593 Gu Aug 2016 A1
20160322433 Kim Nov 2016 A1
20170047382 Huangfu Feb 2017 A1
20170170200 Ikeda Jun 2017 A1
20170294155 Kim Oct 2017 A1
20180097039 Jeong Apr 2018 A1
20180182828 Kim Jun 2018 A1
20180308412 Wu Oct 2018 A1
20190096962 Han et al. Mar 2019 A1
20190096971 Ukigaya Mar 2019 A1
20190206310 Tian et al. Jul 2019 A1
20190237518 Sun Aug 2019 A1
20190251895 Zhang Aug 2019 A1
20200035156 Yanase Jan 2020 A1
20200043989 Liu Feb 2020 A1
20200043990 Huangfu Feb 2020 A1
20200058713 Zhang Feb 2020 A1
20200075690 Li Mar 2020 A1
20200075691 Zhou Mar 2020 A1
20200091250 Wang Mar 2020 A1
20200144339 He May 2020 A1
20200168674 Tan May 2020 A1
Foreign Referenced Citations (9)
Number Date Country
103715227 Apr 2014 CN
104009063 Aug 2014 CN
104037190 Sep 2014 CN
104332486 Feb 2015 CN
104576696 Apr 2015 CN
104659064 May 2015 CN
107275361 Oct 2017 CN
107731870 Feb 2018 CN
108198840 Jun 2018 CN
Related Publications (1)
Number Date Country
20200203440 A1 Jun 2020 US