The disclosure relates to a pixel array, and in particular, to a light-emitting diode pixel array.
Due to a growing awareness of environmental protection, energy saving, service life, color saturation, and power quality have gradually become the concerns of consumers when they are making a purchase. At the same time, light-emitting diode (LED) chips rapidly advance and the cost thereof is decreasing, so the light-emitting diodes have become a mainstream of the lighting and display market in the future.
The LEDs of different colors require different materials, which means that the light-emitting efficiency curves of the LEDs of different colors may be different. Therefore, to enhance the light-emitting efficiency of an LED panel, it may be necessary to adjust a pixel circuit based on the light-emitting efficiency of the LED.
The disclosure provides a pixel array capable of causing light-emitting efficiency of a green light-emitting diode to approach the greatest light-emitting efficiency, thereby enhancing the light-emitting efficiency of a green pixel circuit.
A pixel array of the disclosure includes multiple red pixels, multiple green pixels, and multiple blue pixels. The green pixels are arranged along a first direction to form multiple green pixel lines. Each of the green pixels includes a light-emitting diode, a first transistor, a second transistor, a third transistor, and a fourth transistor. The light-emitting diode has an anode and a cathode receiving a system low voltage. The first transistor has a first end receiving a first data signal, a control terminal receiving a first scan signal, and a second end. The second transistor has a first end, a control terminal coupled to the second end of the first transistor, and a second end coupled to the anode of the light-emitting diode. The third transistor has a first end receiving a system high voltage, a control terminal receiving a first control signal, and a second end coupled to the first end of the second transistor. The fourth transistor has a first end coupled to the anode of the light-emitting diode of an adjacent green pixel, a control terminal coupled to the control terminal of the third transistor, and a second end coupled to the anode of the light-emitting diode.
Based on the above, in the pixel array of the embodiment of the disclosure, the second transistor, the third transistor, and the fourth transistor are turned on and connected in parallel to the green light-emitting diodes of the green pixels of a current stage and a previous stage, thereby reducing a current passing through each of the green light-emitting diodes. In this way, the light-emitting efficiency of the green light-emitting diodes may approach the greatest light-emitting efficiency.
In order to make the aforementioned features and advantages of the disclosure comprehensible, embodiments accompanied with drawings are described in detail below.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by those of ordinary skill in the art to which the disclosure belongs. It will be further understood that terms such as those defined in commonly used dictionaries shall be construed to have a meaning consistent with their meaning in the context of the relevant art and the disclosure and will not be construed to have an idealized or overly formal meaning unless expressly defined as such herein.
It should be noted that although the terms “first”, “second”, “third”, etc. may be used for describing various elements, components, regions, layers and/or portions, the elements, components, regions, layers and/or portions are not limited by these terms. These terms are only used for separating one element, component, region, layer or portion from another element, component, region, layer or portion. Therefore, the following discussed “first element”, “component”, “region”, “layer” or “portion” may be referred to as a second element, component, region, layer or portion without departing from the scope of the invention.
The terminology used herein is for the purpose of describing particular embodiments and is not intended to be limiting of the invention. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. “Or” represents “and/or”. The term “and/or” used herein includes any or a combination of one or more of the associated listed items. It will be further understood that the terms “comprises,” “comprising,” “includes” and/or “including,” when used herein, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
In the embodiment, the red pixels (e.g. PXR(n) to PXR(n+1)) are arranged along a first direction D1 (e.g. a vertical direction of the drawings) to form multiple red pixel lines. The green pixels (e.g. PXG(n−1) to PXG(n+1)) are arranged along the first direction D1 to form multiple green pixel lines. The blue pixels (e.g. PXB(n) to PXB(n+1)) are arranged along the first direction D1 to form multiple blue pixel lines. The red pixel lines, the green pixel lines, and the blue pixel lines may be alternately disposed along a second direction D2 perpendicular to the first direction D1.
In the embodiment, each of the green pixels (e.g. PXG(n−1) to PXG(n+1)) includes a light-emitting diode LED1 (here, it is a green light-emitting diode), a first transistor T1, a second transistor T2, a third transistor T3, and a fourth transistor T4. The light-emitting diode LED1 has an anode and a cathode receiving a system low voltage VSS. The first transistor T1 has a first end receiving a first data signal (e.g. green data signals GDX(n−1) to GDX(n+1)), a control terminal receiving a first scan signal (e.g. SN(n−1) to SN(n+1)), and a second end. The second transistor T2 has a first end, a control terminal coupled to the second end of the first transistor T1, and a second end coupled to the anode of the light-emitting diode LED1.
The third transistor T3 has a first end receiving a system high voltage VDD, a control terminal receiving a first control signal (e.g. light-emitting signals EM(n−1) to EM(n+1)), and a second end coupled to the first end of the second transistor T2. The fourth transistor T4 has a first end coupled to the anode of the light-emitting diode LED1 of a vertically adjacent green pixel (e.g. PXG(n−1) to PXG(n+1)), a control terminal coupled to the control terminal of the third transistor T3, and a second end coupled to the anode of the light-emitting diode LED1.
Specifically, taking the green pixel PXG(n) as an example, the first end of the first transistor T1 receives the green data signal GDX(n), and the control terminal of the first transistor T1 receives the scan signal SN(n). In addition, the control terminal of the third transistor T3 receives the light-emitting signal EM(n).
For example, in a case where the green pixel PXG(n) is driven, when the scan signal SN(n) is enabled, the green data signal GDX(n) performs writing. Next, when the light-emitting signal EM(n) is enabled, the third transistor T3 and the fourth transistor T4 of the green pixel PXG(n) are turned on, and a conductivity degree of the second transistor T2 of the green pixel PXG(n) reflects a voltage level of the green data signal GDX(n). At this time, starting from the system high voltage VDD, a current passes through the second transistor T2, the third transistor T3, and the light-emitting diode LED1 of the green pixel PXG(n) and flows to the system low voltage VSS. In addition, the current also passes through the second transistor T2, the third transistor T3, and the fourth transistor T4 of the green pixel PXG(n) and the light-emitting diode LED1 of the pixel PXG(n−1) and flows to the system low voltage VSS.
In other words, the second transistor T2, the third transistor T3, and the fourth transistor T4 that are turned on are connected in parallel to the two light-emitting diodes LED1 of the green pixels PXG(n) and PXG(n−1). In the embodiment of the disclosure, when a greater current passes through a red light-emitting diode and a blue light-emitting diode, there is greater light-emitting efficiency. However, the same does not apply to the green light-emitting diode. The green light-emitting diode only exhibits the greatest light-emitting efficiency at a specific current, and as the current increases, the light-emitting efficiency decreases. Hence, with the two light-emitting diodes LED1 of the two green pixels (e.g. PXG(n−1) to PXG(n+1)) connected in parallel, a current passing through each of the green light-emitting diodes may be reduced so that the light-emitting efficiency of the green light-emitting diodes may approach the greatest light-emitting efficiency.
Referring to
Specifically, taking the green pixel PXGa(n) as an example, the first end of the first transistor T1 receives the green data signal GDX(n), and the control terminal of the first transistor T1 receives the scan signal SN(n). The control terminal of the third transistor T3 receives the light-emitting signal EM(n), and the control terminal of the fifth transistor T5 receives the light-emitting signal EM(n−1). Referring to
Referring to
In other words, the second transistor T2, the third transistor T3, and the fourth transistor T4 of the green pixel PXGa(n) and the fifth transistor T5 of the green pixel PXGa(n+1) that are turned on are connected in parallel to the three light-emitting diodes LED1 of the green pixels PXGa(n−1) to PXGa(n+1). Hence, a current passing through each of the green light-emitting diodes may be reduced so that the light-emitting efficiency of the green light-emitting diodes may approach the greatest light-emitting efficiency.
In the embodiment, taking the compensation circuit CPC of each of the green pixels (e.g. PXGb(n−1) to PXGb(n+1)) as an example, the compensation circuit CPC includes a first capacitor C1 and a sixth transistor T6. The first capacitor C1 is coupled between the control terminal and the second end of the second transistor T2. The sixth transistor T6 has a first end coupled to the second end of the second transistor T2, a control terminal receiving the scan signal (e.g. SN(n−1) to SN(n+1)), and a second end receiving an initializing voltage Vini. The initializing voltage Vini may be set according to the critical voltage of the second transistor T2 (or the transistor M2) to compensate for the critical voltage of the second transistor T2 (or the transistor M2).
As shown in
Similarly, the pixel array PAX2 may only adopt the scan signals (e.g. SN(n) to SN(n+2)). Referring to
In summary of the above, in the pixel array of the embodiment of the disclosure, the second transistor, the third transistor, and the fourth transistor are turned on and connected in parallel to the green light-emitting diodes of the green pixels of the current stage and the previous stage, thereby reducing the current passing through each of the green light-emitting diodes. In addition, the second transistor, the third transistor, and the fourth transistor of the current stage and the fifth transistor of the next stage are turned on and connected in parallel to the green light-emitting diodes of the green pixels of the current stage, the previous stage, and the next stage, thereby further reducing the current passing through each of the green light-emitting diodes. In this way, the light-emitting efficiency of the green light-emitting diode may approach the greatest light-emitting efficiency.
Although the disclosure has been described with reference to the above embodiments, they are not intended to limit the disclosure. It will be apparent to one of ordinary skill in the art that modifications to the described embodiments may be made without departing from the spirit and the scope of the disclosure. Accordingly, the scope of the disclosure will be defined by the attached claims and their equivalents and not by the above detailed descriptions.
Number | Date | Country | Kind |
---|---|---|---|
111110664 | Mar 2022 | TW | national |
This application claims the priority benefit of U.S. provisional application Ser. No. 63/177,345, filed on Apr. 20, 2021 and Taiwan application serial no. 111110664, filed on Mar. 22, 2022. The entirety of each of the above-mentioned patent applications is hereby incorporated by reference herein and made a part of this specification.
Number | Date | Country | |
---|---|---|---|
63177345 | Apr 2021 | US |