The application claims priority to Chinese patent application No. 201710774035.4, filed on Aug. 31, 2017, the entire disclosure of which is incorporated herein by reference as part of the present application.
Embodiments of the present disclosure relate to a pixel circuit and a driving method thereof, a display substrate and a display device.
Organic Light Emitting Diode (OLED) display devices have traits of wide viewing angle, high contrast, fast response speed and so on. Moreover, as compared with inorganic light emitting display devices, the organic light emitting diode display devices have a higher luminance, a lower driving voltage and other advantages. In virtue of possessing the above-mentioned traits and advantages, the organic light emitting diode (OLED) display devices have gradually attracted wide attentions of people, and can be suitable for mobile phones, displays, notebook computers, digital cameras, instruments and meters and other apparatuses having a display function.
At least one embodiment of the present disclosure provides a pixel circuit, and the pixel circuit comprises a light-emitting element, a drive element, a first switch element, a reset circuit and a compensating circuit. The drive element is connected to the light-emitting element and configured to drive the light-emitting element to emit light; the first switch circuit is configured to apply a data voltage to the drive element under control of a scan signal; the reset circuit is connected to the compensating circuit, and configured to apply a reset signal to the compensating circuit under control of the scan signal; the compensating circuit is configured to compensate the drive element, so as to allow a signal output from the drive element to be irrelative to threshold characteristic of the drive element.
For example, in the pixel circuit provided by at least one embodiment of the present disclosure, the data voltage is applied to the control terminal of the drive element, the reset signal is a reset voltage; the signal output from the drive element is a drive current; and the compensating circuit is further configured to allow the signal output from the drive element to be relevant with the data voltage and the reset signal.
For example, the pixel circuit provided by at least one embodiment of the present disclosure further comprising a control circuit, the control circuit is connected to the drive element and the compensating circuit, and configured to apply a drive signal to the drive element and the compensating circuit based on a control signal.
For example, the pixel circuit provided by at least one embodiment of the present disclosure further comprising a first node, a second node and a third node, the control circuit comprises a first transistor; a control terminal of the first transistor is configured to receive the control signal; a first terminal of the first transistor is configured to receive the drive signal; and a second terminal of the first transistor is connected to the third node.
For example, in the pixel circuit provided by at least one embodiment of the present disclosure, the compensating circuit comprises a storage capacitor and a second switch circuit; and the second switch circuit is configured to control whether or not the storage capacitor is connected to a control terminal of the drive element based on a second scan signal.
For example, in the pixel circuit provided by at least one embodiment of the present disclosure, a first end of the storage capacitor is connected to the second node, and a second end of the storage capacitor is connected to the third node; and the second switch circuit comprises a third transistor, a control terminal of the third transistor is configured to receive the second scan signal, a first terminal of the third transistor is connected to the second node, and a second terminal of the third transistor is connected to the first node.
For example, in the pixel circuit provided by at least one embodiment of the present disclosure, the reset circuit comprises a second transistor; a control terminal of the second transistor is configured to receive the scan signal; a first terminal of the second transistor is configured to receive the reset signal; and a second terminal of the second transistor is connected to the second node.
For example, in the pixel circuit provided by at least one embodiment of the present disclosure, the first switch circuit comprises a fourth transistor, a control terminal of the fourth transistor is configured to receive the scan signal, a first terminal of the fourth transistor is configured to receive the data voltage, and a second terminal of the fourth transistor is connected to the first node; and the drive element comprises a fifth transistor, a control terminal of the fifth transistor is configured to be the control terminal of the drive element, and configured to be connected to the first node, the data voltage is applied to the control terminal of the drive element; a first terminal of the fifth transistor is connected to the third node, and a second terminal of the fifth transistor is connected to a first terminal of the light-emitting element.
For example, in the pixel circuit provided by at least one embodiment of the present disclosure, the light-emitting element is an organic light-emitting element, and a second terminal of the light-emitting element is connected to a second power supply terminal.
For example, in the pixel circuit provided by at least one embodiment of the present disclosure, the first transistor, the third transistor and the fifth transistor are P-type transistors.
For example, in the pixel circuit provided by at least one embodiment of the present disclosure, the second transistor and the fourth transistor are N-type transistors; and the control terminals of the second transistor, the third transistor and the fourth transistor are connected to same one scan control terminal.
For example, the pixel circuit provided by at least one embodiment of the present disclosure further comprising a phase inverter. The phase inverter is arranged between the control terminal of the third transistor and a scan control terminal; the second transistor and the fourth transistor are P-type transistors; and the control terminals of the second transistor, the third transistor and the fourth transistor are connected to same one scan control terminal.
At least one embodiment of the present disclosure further provides a display substrate, and the display substrate comprises the pixel circuit provided by any one of the embodiments of the present disclosure.
At least one embodiment of the present disclosure further provides a display device, and the display device comprises the pixel circuit or the display substrate provided by any one of the embodiments of the present disclosure.
At least one embodiment of the present disclosure further provides a driving method of a pixel circuit, the driving method comprises: compensating the drive element with the compensating circuit during a threshold compensating stage; and outputting a signal by the drive element so as to drive the light-emitting element to emit light during a display stage, in which the signal output from the drive element is irrelative to the threshold characteristic of the drive element.
For example, the driving method provided by at least one embodiment of the present disclosure further comprises: applying the data voltage to the drive element, and applying the reset signal to the compensating circuit by the reset circuit, during a reset stage.
In order to clearly illustrate the technical solution of the embodiments of the disclosure, the drawings of the embodiments will be briefly described in the following; it is obvious that the described drawings are only relevant with some embodiments of the disclosure and thus are not limitative of the disclosure.
In order to allow objects, technical details and advantages of the embodiments of the disclosure apparent, the technical solutions of the embodiments will be described in a clearly and fully understandable way in connection with the drawings relevant with the embodiments of the disclosure. Apparently, the described embodiments are just a part but not all of the embodiments of the disclosure. Based on the described embodiments herein, those skilled in the art can obtain other embodiment(s), without any inventive work, which should be within the scope of the disclosure.
Unless otherwise defined, all the technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which the present disclosure belongs. The terms “first,” “second,” etc., which are used in the description and the claims of the present application for disclosure, are not intended to indicate any sequence, amount or importance, but distinguish various components. Also, the terms such as “a,” “an,” etc., are not intended to limit the amount, but indicate the existence of at least one. The terms “comprise,” “comprising,” “include,” “including,” etc., are intended to specify that the elements or the objects stated before these terms encompass the elements or the objects and equivalents thereof listed after these terms, but do not preclude the other elements or objects. The phrases “connect”, “connected”, etc., are not intended to define a physical connection or mechanical connection, but may include an electrical connection, directly or indirectly. “On,” “under,” “right,” “left” and the like are only used to indicate relative position relationship, and when the position of the object which is described is changed, the relative position relationship may be changed accordingly.
Pixel circuits in an OLED display device generally adopt a matrix drive mode, which is classified into Active Matrix (AM) drive mode and Passive Matrix (PM) drive mode according to whether or not a switching component is introduced into each pixel unit. As regards AMOLEDs, a set of thin film transistors and a storage capacitor are integrated into the pixel circuit of each pixel, and by means of drive control of the thin film transistors and the storage capacitor, the control of the current flowing through OLEDs is realized, thereby allowing OLEDs to emit light as required.
Basic pixel circuits used in AMOLED display devices are usually 2T1C pixel circuits, namely, two Thin-film transistors (TFTs) and one storage capacitor Cs are utilized to drive an OLED to emit light.
As illustrated in
As illustrated in
In addition, regarding the pixel circuits as illustrated in
The OLED display device usually includes a plurality of pixel units arranged in arrays, and each of the pixel units may, for example, include the above-mentioned pixel circuit. In the OLED display device, the threshold voltage of the drive transistor in each pixel circuit may vary from each other owing to manufacturing process. Further, due to the influence of temperature variation, a drift phenomenon may occur to the threshold voltage of the drive transistor. Consequently, the differences between the voltage thresholds of the drive transistors can lead to display defects (e.g., display inhomogeneous), and therefore it is necessary to conduct threshold voltage compensation. Moreover, because the existence of leakage current in the turn-off state, the display defects can be resulted as well.
It is noticed by the inventors of the present disclosure that, as compared to a voltage drive type display device, a current drive type display device is more susceptible to the threshold characteristic of transistors in the display device, and therefore a phenomenon of uneven brightness exists in the display device can be caused.
The embodiments of the present disclosure provide a pixel circuit and a driving method thereof, a display substrate and a display device. With respect to the pixel circuit and the driving method thereof, the display substrate and the display device, threshold compensation is realized, and therefore, the uniformity of the brightness of the display substrate and the display device including the pixel circuit is promoted.
It is to be noted that, for the sake of clarity, the embodiments of the present disclosure are concretely described with reference to the example in which a reset voltage, a drive voltage and a drive current respectively act as a reset signal, a drive signal and the signal output from a drive element, but the embodiments of the present disclosure are not limited to this case.
At least one embodiment of the present disclosure provides a pixel circuit, and the pixel circuit comprises a light-emitting element, a drive element, a first switch element, a reset circuit and a compensating circuit. The drive element is connected to the light-emitting element and configured to drive the light-emitting element to emit light; the first switch circuit is configured to apply a data voltage to the drive element under control of a scan signal; the reset circuit is connected to the compensating circuit, and configured to apply a reset signal to the compensating circuit under control of the scan signal; the compensating circuit is configured to compensate the drive element, so as to allow a signal output from the drive element to be irrelative to threshold characteristic of the drive element.
Non-limitive descriptions are given to the pixel circuit provided by the examples of the present disclosure in the following with reference to a plurality of examples. As described in the following, in case of no conflict, different features in these specific examples may be combined so as to obtain new examples, and the new examples are also fall within the scope of present disclosure.
An embodiment of the present disclosure provides a pixel circuit 100, which can be used in a display substrate and a display device. For example,
For example, the drive element 120 is electrically connected to the light-emitting element 110 and configured to output a drive current for driving the light-emitting element 110 to emit light. For example, the first switch circuit 130 is configured to apply a data voltage to the control terminal of the drive element 120 under control of a scan signal. For example, the reset circuit 140 is electrically connected to the compensating circuit 150, and configured to apply a reset voltage to the compensating circuit 150 based on the scan signal, so as to reset the compensating circuit 150. For example, the compensating circuit 150 is configured to compensate the drive element 120, so as to allow the drive current of the drive element 120 to be relevant with the data voltage and the reset voltage while to be irrelative to the threshold voltage of the drive element 120.
For example, as illustrated in
For example, specific implementations of the light-emitting element 110, the drive element 120, the first switch circuit 130, the reset circuit 140, the compensating circuit 150 and the control circuit 160 may be set according to actual application requirements, and no specific limitation will be given to the embodiment of the present disclosure in this respect. For example, the pixel circuit 100 provided by an embodiment of the present disclosure may be implemented as the circuit diagram as illustrated in
For example, as illustrated in
For example, as illustrated in
For example, as illustrated in
For example, as illustrated in
For example, as illustrated in
For example, the second transistor T2 and the fourth transistor T4 may be in a turned-on state simultaneously or in a turn-off state simultaneously. For example, each of the second transistor T2 and the fourth transistor T4 may be a P-type transistor, and in this case, the control terminals of the second transistor T2 and the fourth transistor T4 may be connected to same one scan control terminal Scan1, and may receive same one scan signal. Consequently, the pixel circuit 100 can be simplified. However, the embodiment of the present disclosure is not limited to this case.
For example, as illustrated in
For example, as illustrated in
For example, the third transistor T3 may be in a state opposite to that of the second transistor T2 and the fourth transistor T4 (for example, in the case where the third transistor T3 is in a turn-off state, the second transistor T2 and the fourth transistor T4 are in a turned-on state). For example, the third transistor T3 may be a P-type transistor, and in the case where the second transistor T2 and the fourth transistor T4 are also P-type transistors, the control terminal of the third transistor T3 may be connected to a second scan control terminal Scan2. In this way, the second scan signal that is provided by the second scan control terminal Scan2 and received by the control terminal of the third transistor T3 can be inverted in phase with respect to the scan signal that is provided by the scan control terminal Scan1 and received by the control terminal of the second transistor T2 and the control terminal of the fourth transistor T4 (for example, in the case where the second scan signal received by the control terminal of the third transistor T3 is a signal with high voltage level, the scan signal received by the control terminal of the second transistor T2 and the control terminal of the fourth transistor T4 may be a signal with low voltage level). However, the embodiment of the present disclosure is not limited to this case.
For example, as illustrated in
For example, an exemplary operation of the pixel circuit 100 provided by an embodiment of the present disclosure will be specifically described below by taking the pixel circuit 100 as illustrated in
Step S110, at a reset stage S1, the first transistor T1, the second transistor T2 and the fourth transistor T4 are turned on, and the third transistor T3 is turned off.
Step S120, at a threshold compensating stage S2, the second transistor T2 and the fourth transistor T4 are turned on, and the first transistor T1 and the third transistor T3 are turned off.
Step S130, at a display stage S3, the first transistor T1 and the third transistor T3 are turned on, and the second transistor T2 and the fourth transistor T4 are turned off.
For example, as illustrated in
For example, as illustrated in
For example, as illustrated in
For example, at the threshold compensating stage S2, the voltage at the control terminal of the fifth transistor T5 and the first node A is V_A=V_data; at an initial phase of the threshold compensating stage S2, the voltage at the first terminal of the fifth transistor T5 and the third node C is V_C=V_dd. For example, as for a P-type transistor, difference between the drive voltage V_dd and the data voltage V_data can be usually far greater than the absolute value |Vth| of the threshold voltage of the fifth transistor T5 (the value of the drive voltage V_dd is usually greater than 15V, and the value of the data voltage V_data is usually less than 5V), and therefore, the fifth transistor T5 will be turned on at the threshold compensating stage S2 and electric charges are discharged, until the voltage at the third node C and the first terminal of the fifth transistor T5 is reduced to be such a value that allows the fifth transistor T5 to be turned off.
For example, in the case where the fifth transistor T5 is a P-type transistor, the threshold voltage of the fifth transistor T5 is negative, and the expression of allowing the fifth transistor T5 to be turned on satisfies |V_A−V_C|>|Vth|, namely, V_C−V_A>|Vth|. Therefore, in the case where the voltage at the third node C and the first terminal of the fifth transistor T5 is reduced to be V_C=V_data+|Vth|, the fifth transistor T5 is turned off, and the voltage V_A at the first node A, the voltage V_B at the second node B and the voltage V_C at the third node C satisfy the following expressions respectively: V_A=V_data; V_B=V_ref; V_C=V_data+|Vth|. As can be deduced from the above-mentioned expressions, the voltage difference between the third node C and the second node B is V_C−V_B=V_data+|Vth|−V_ref.
For example, as illustrated in the figure, at the threshold compensating stage S2, the data voltage V_data, which is provided by the data source terminal Vdata, can be a positive voltage. For example, at the threshold compensating stage S2, the positive voltage provided by the data source terminal Vdata may be equal to a positive voltage provided at the reset stage S1 of the same display period. It is to be noted that, for the threshold compensating stage S2 of different display periods, the values of the positive voltages provided by the data source terminal Vdata may be different from each other, so as to display different grayscales at different display periods according to actual application requirements.
For example, as illustrated in
For example, because the first transistor T1 is turned on, the voltage V_C at the third node C is increased to V_dd. For example, because the second transistor T2 and the fourth transistor T4 are turned off, and the second node B is in a suspension state, the amount of the electric charges stored in the storage capacitor Cst cannot be changed suddenly, namely, the amount of the electric charges stored in the storage capacitor Cst remains unchanged. Accordingly, according to the capacitance charge conservation laws (i.e., amp-second balance), the voltage difference between two ends of the storage capacitor remains unchanged as well (namely, it is kept to be V_data+|Vth|−V_ref), and thus the voltage V_B at the second node B becomes to be V_dd−V_data−|Vth|+V_ref. For example, because the third transistor T3 is turned on, the voltage V_A at the first node A is equal to voltage V_B at the second node B, namely, V_A=V_dd−V_data−|Vth|+V_ref.
For example, the current Ids (i.e., the drive current) output from a drive transistor (i.e., the fifth transistor T5) in a saturated state may be obtained by the following computation formula:
where K=W/L×C×μ, W/L is the width-to-length ratio (i.e., the ratio of width to length) of the channel of the drive transistor (i.e., the fifth transistor T5), μ is electron mobility, C is capacitance per unit area.
Thus, the drive current output from the fifth transistor T5 is only relevant with the data voltage V_data and the reset voltage V_ref, but is irrelevant with the threshold voltage Vth of the fifth transistor T5. By virtue of this, the uniformity of the brightness of the display substrate and the display device including the pixel circuit 100 can be promoted.
For example, in the 5T1C circuit provided by the present embodiment, the first power supply terminal can directly charge the storage capacitor via the control circuit in a turned-on state. Because the drive voltage provided by the first power supply terminal is relatively large, charging time can be reduced.
It is to be noted that, at the display stage S3, the data voltage provided by the data source terminal Vdata can be zero, and thereby the power consumption of the pixel circuit 100 can be reduced. However, the embodiment of the present disclosure is not limited to this case. For example, at the display stage S3, the data voltage provided by the data source terminal Vdata may also be equal to the data voltage provided at the reset stage S1 and the threshold compensating stage S2 of the same display period, and thereby the drive complexity can be reduced. In the above-mentioned case, because the fourth transistor T4 is turned off, the voltage provided by the data source terminal Vdata will not be loaded to the first node A.
It is to be noted that, regarding the drive timing diagram as illustrated in
For example, the threshold compensation is realized for the pixel circuit 100 provided by the present embodiment, and therefore the uniformity of the brightness of the display substrate and the display device including the pixel circuit 100 can be promoted.
An embodiment of the present disclosure provides another pixel circuit 100, which can be used in a display substrate and a display device. For example,
For example, the phase inverter G1 may be arranged between the control terminal of the third transistor T3 and the scan control terminal Scan1, and the phase inverter G1 can allow a signal (i.e., the second scan signal) applied to the control terminal of the third transistor T3 and the scan signal provided by the scan control terminal Scan1 to be in the opposite states. For example, in the case where the signal provided by the scan control terminal Scan1 is a signal with high voltage level, the signal applied to the control terminal of the third transistor T3 is a signal with low voltage level; for another example, in the case where the signal provided by the scan control terminal Scan1 is a signal with low voltage level, the signal applied to the control terminal of the third transistor T3 is a signal with high voltage level. It is to be noted that, the phase inverter G1 may be a circuit including one element or a plurality of elements, and the embodiment of the present disclosure do not make specific limitation on this.
For example, the third transistor T3 may be in a state opposite to that of the second transistor T2 and the fourth transistor T4; for example, in the case where the third transistor T3 is in a turned-on state, the second transistor T2 and the fourth transistor T4 are in a turn-off state. For example, in the case where each of the second transistor T2, the third transistor T3 and the fourth transistor T4 is a P-type transistor, all of the control terminal of the second transistor T2, the control terminal of the third transistor T3 and the control terminal of the fourth transistor T4 may be connected to the same scan control terminal (i.e., the scan control terminal Scan1). By virtue of this, it may be unnecessary to arrange a second scan control terminal Scan2, and therefore, the pixel circuit 100 can be further simplified.
For example,
For example, the drive current output from the drive element of the pixel circuit provided by the present embodiment is only relevant to the data voltage and the reset voltage, and is irrelative to the threshold voltage of the drive element; thereby the threshold compensation is achieved. Therefore, the uniformity of the brightness of the display substrate and the display device including the pixel circuit 100 can be promoted.
An embodiment of the present disclosure provides still another pixel circuit 100, which can be used in a display substrate and a display device. For example,
For example, the second transistor T2 and the fourth transistor T4 in still another pixel circuit 100 provided by an embodiment of the present disclosure may be N-type transistors. For example, each of the first transistor T1, the third transistor T3 and the fifth transistor T5 may be a P-type transistor, but the embodiment of the present disclosure is not limited thereto. For example, according to actual application requirements, the first transistor T1 may also be an N-type transistor.
For example, in still another pixel circuit 100 provided by an embodiment of the present disclosure, because each of the second transistor T2 and the fourth transistor T4 is an N-type transistor, as compared to the pixel circuit 100 as illustrated in
For example, the third transistor T3 may be in a state opposite to that of the second transistor T2 and the fourth transistor T4; and for example, in the case where the third transistor T3 is in a turned-on state, the second transistor T2 and the fourth transistor T4 are in a turn-off state. For example, in the case where each of the first transistor T1, the third transistor T3 and the fifth transistor T5 is a P-type transistor, and each of the second transistor T2 and the fourth transistor T4 is an N-type transistor, all of the control terminal of the second transistor T2, the control terminal of the third transistor T3 and the control terminal of the fourth transistor T4 may be connected to the same scan control terminal Scan1, and in this case, it is unnecessary to arrange a second scan control terminal Scan2. Therefore, the pixel circuit 100 can be further simplified.
For example,
For example,
It is to be noted that, in the drive timing diagrams as illustrated in
For example, as for the drive timing diagram as illustrated in
For example, the drive current output from the drive element of the pixel circuit provided by the present embodiment is only relevant to the data voltage and the reset voltage, and is irrelative to the threshold voltage of the drive element, thereby realizing threshold compensation. Therefore, the uniformity of the brightness of the display substrate and the display device including the pixel circuit can be promoted.
For the pixel circuit according to embodiments of the present disclosure, other component may further be added as required. For example, between the light-emitting element and the drive circuit, a light-emitting control circuit may be arranged, the first terminal of the light-emitting control circuit is connected to the drive circuit, the second terminal of the light-emitting control circuit is connected to the light-emitting element, while the control terminal of the light-emitting control circuit is configured to receive a light-emitting control signal. By virtue of this, the light-emitting element can be disconnected from or connected with the drive circuit as required, so as to avoid the light emitting of the light-emitting element in unnecessary situations. In this way, the contrast ratio of the display device adopting the pixel circuit is enhanced, and the energy consumption is reduced. The light-emitting control circuit is, for example, a switching circuit; for example, the switching circuit is a transistor, and it may be an N-type transistor or a P-type transistor.
At least an embodiment of the present disclosure provides a display substrate and a display device, the display substrate includes the pixel circuit provided by any embodiment of the present disclosure; the display device includes the pixel circuit or the display substrate provided by any embodiment of the present disclosure. Hereinafter, the display substrate and the display device according to the embodiment of the present disclosure will be described with reference to the embodiment as illustrated in
Another embodiment of the present disclosure provides a display substrate 10. For example, as illustrated in
For example, the display substrate may further include a plurality of scan signal lines (e.g., gate lines) and a plurality of data lines that are intersected with (e.g., be perpendicular to) each other, and a plurality of voltage control lines disposed in parallel to the scan signal lines. For example, each of the pixel circuits is connected to a corresponding scan signal line and a corresponding data line, and for example, for each of pixel circuits, the scan control terminal may be connected to a corresponding scan signal line, the data source terminal may be connected to a corresponding data line, and the voltage control terminal may be connected to a corresponding voltage control line. For example, in the case where the plurality of pixel circuits are arranged in an arrays, the pixel circuits located in each row of the pixel circuit array may be connected to the same scan signal line, the pixel circuits located in each row of the pixel circuit array may be connected to the same voltage control line, and the pixel circuits located in each column of the pixel circuit array may be connected to the same data line. However, the embodiment of the present disclosure is not limited to this case.
For example, the present embodiment further provides a display device 20. For example, as illustrated in
It should be noted that other components (for example, the control device of a thin film transistor, an image data encoding/decoding device, a row scan driver, a column scan driver, a clock circuit and so on) of the display substrate 10 and the display device 20 may adopt conventional suitable components, this should be understood by those skilled in the art, no further descriptions will be given herein and it should not be construed as a limitation on the embodiments of the present disclosure.
Threshold compensation can be realized for the display substrate and the display device provided by the present embodiment, and therefore the uniformity of the brightness of the display substrate and the display device can be promoted.
At least an embodiment of the present disclosure further provides a driving method of a pixel circuit, the driving method includes: compensating a drive element at a threshold compensating stage, and driving a light-emitting element to emit light by the drive element, in which the luminance of the light-emitting element is irrelative to the threshold characteristic of the drive element. The driving method of the pixel circuit according to embodiments of the present disclosure will be described below with reference to the embodiment as illustrated in
Further another embodiment of the present disclosure provides a driving method of a pixel circuit, which may be used to drive the pixel circuit provided by any embodiment of the present disclosure. For example,
Step S10, compensating a drive element with a compensating circuit at a threshold compensating stage.
Step S20, driving a light-emitting element by the drive element to emit light at a display stage.
For example, the driving method may further include a step S30, namely, at a reset stage, applying a data voltage to the drive element, and applying a reset signal to the compensating circuit with the reset circuit.
For example, in the step S10, namely, at the threshold compensating stage, an electric signal including the data voltage, a reset voltage and a threshold voltage may be applied to the storage capacitor of the compensating circuit, and thereby compensation of the drive element can be realized.
For example, in the step S20, namely, at the display stage, the light-emitting element is driven by the drive element to emit light. Because the electric signal including the data voltage, the reset voltage and the threshold voltage can be transferred from the storage capacitor of the compensating circuit to the control terminal of the drive element at the display stage, the signal output from the drive element and the luminance of the light-emitting element can be irrelative to the threshold characteristic of the drive element.
For example, the driving method of the pixel circuit may be executed in the order of step S30, step S10 and step S20, but the embodiment of the present disclosure is not limited thereto. For example, regarding concrete implementing method of the step S10, step S20 and step S30, reference to embodiments as illustrated in
For example, threshold compensation can be realized for the driving method of the pixel circuit provided by the present embodiment, and therefore the uniformity of the brightness of the display substrate and the display device including the pixel circuit can be promoted.
It is apparent that the presented disclosure may be changed and modified by those skilled in the art without departure from the spirit and scope of the disclosure, if the above-mentioned changes and modifications of the presented disclosure belong to the scope of the claims of the presented disclosure and its equivalent technologies, the presented disclosure is intended to include the above-mentioned changes and modifications.
What are described above is relevant with the illustrative embodiments of the disclosure only and not limitative to the scope of the disclosure; the scopes of the disclosure are defined by the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
201710774035.4 | Aug 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/082963 | 4/13/2018 | WO | 00 |