This application claims the benefit of Chinese Patent Application No. 201710336114.7 filed on May 12, 2017, the entire disclosure of which is incorporated herein by reference.
The present disclosure relates to the field of display technology, and in particular, to a method of driving a pixel circuit, and a display device.
A pixel circuit in an organic light emitting diode (OLED) display implements a display function by controlling a driving current flowing through the OLED via a drive transistor. The magnitude of the driving current is related to characteristic parameters of the drive transistor, including the threshold voltage. The characteristic parameters of the drive transistor need to be compensated in order to avoid display defects due to the drift of the characteristic parameters of the drive transistor.
The compensation approaches may include internal compensation and external compensation. The internal compensation generally involves addition of new circuit elements in the pixel circuit to allow the driving current to be independent of the threshold voltage of the drive transistor. The internal compensation can be performed during the display operation of the pixel circuit. Therefore, the internal compensation can instantaneously follow a variation of the threshold voltage of the drive transistor, but cannot compensate for other characteristic parameters of the drive transistor. The external compensation generally involves the use of an external circuit to detect the characteristic parameters of the drive transistor and adjust a data voltage supplied to the pixel circuit based on the detection. The detection of the characteristic parameters requires special drive timing and is typically only performed during non-display operations of the pixel circuit, for example, when the display is powering up or down. Therefore, the external compensation cannot follow the variation of the threshold voltage instantaneously. This may affect the effect of compensation.
It would be advantageous to provide a mechanism that can alleviate, mitigate, or eliminate at least one of the above problems.
According to an aspect of the present disclosure, a method of driving a pixel circuit is provided. The pixel circuit comprises: a light emitting element connected between a first node and a first power supply voltage; a drive transistor connected between the first node and a second node, the drive transistor comprising a gate, a source, and a drain, the gate being connected to a third node; a storage capacitor connected between the gate and the source of the drive transistor; a first switch circuit connected to a third scan line, a second power supply voltage, and the second node, the first switch circuit being configured to supply the second power supply voltage to the second node in response to a third scan signal on the third scan line being active; a second switch circuit connected to a first scan line, a data line, and the third node, the second switch circuit being configured to supply a voltage on the data line to the third node in response to a first scan signal on the first scan line being active; and a third switch circuit connected to a second scan line, a sensing line, and the first node, the third switch circuit being configured to couple the first node to the sensing line in response to a second scan signal on the second scan line being active. The method comprises: performing a data write phase comprising: bringing, by the first switch circuit, the second node out of conduction with the second power supply voltage by deactivating the third scan signal on the third scan line; and charging the storage capacitor via the second switch circuit with a data voltage applied to the data line by activating the first scan signal on the first scan line, and performing a detection phase comprising: directing, via the third switch circuit, a driving current generated by the drive transistor based on the data voltage to the sensing line by activating the third scan signal on the third scan line and the second scan signal on the second scan line; and detecting a magnitude of the driving current.
In certain exemplary embodiments, the drive transistor is an N-type transistor, the source of the drive transistor is connected to the first node, and the drain of the drive transistor is connected to the second node.
In certain exemplary embodiments, the performing the data write phase further comprises supplying, via the third switch circuit, a reference voltage applied to the sensing line to the first node by activating the second scan signal on the second scan line.
In certain exemplary embodiments, the method further comprises performing a reset phase and an internal compensation phase prior to the data write phase. The performing the reset phase comprises: supplying, via the second switch circuit, a reset voltage applied to the data line to the third node by activating the first scan signal on the first scan line; and supplying, via the third switch circuit, a reference voltage applied to the sensing line to the first node by activating the second scan signal on the second scan line. The performing the internal compensation phase comprises charging the storage capacitor via the second switch circuit with a charging voltage applied to the data line by activating the third scan signal on the third scan line, by deactivating the second scan signal on the second scan line, and by activating the first scan signal on the scan line. The performing the data write phase further comprises deactivating the second scan signal on the second scan line.
In certain exemplary embodiments, the charging the storage capacitor with the charging voltage comprises: in a first period of time, charging the storage capacitor with a first charging voltage by applying the first charging voltage to the data line; and in a second period of time subsequent to the first period of time, charging the storage capacitor with a second charging voltage by applying the second charging voltage to the data line. The first charging voltage is greater than the second charging voltage, and the second charging voltage is greater than a threshold voltage of the drive transistor.
In certain exemplary embodiments, the performing the detection phase further comprises: deriving a threshold voltage of the drive transistor based on the detected magnitude of the driving current; and determining whether an internal compensation condition is satisfied. The internal compensation condition comprises: a change rate of the threshold voltage being greater than a change rate threshold, and a change amount of the threshold voltage being smaller than a change amount threshold. The method further comprises: responsive to the internal compensation condition being satisfied, sequentially performing a reset phase, an internal compensation phase, the data write phase, and a light emission phase in each frame period during a display operation, wherein the performing the data write phase further comprises deactivating the second scan signal on the second scan line; and responsive to the internal compensation condition being not satisfied, sequentially performing the reset phase, the data write phase, and the light emission phase in each frame period during the display operation, wherein the performing the data write phase further comprises supplying, via the third switch circuit, a reference voltage applied to the sensing line to the first node by activating the second scan signal on the second scan line.
In certain exemplary embodiments, the performing the light emission phase comprises driving the light emitting element to emit light with the driving current generated by the drive transistor by deactivating the first scan signal on the first scan line, by deactivating the second scan signal on the second scan line, and by activating the third scan signal on the third scan line.
According to another aspect of the present disclosure, a display device is provided comprising: a first scan driver configured to sequentially supply first scan signals to a plurality of first scan lines; a second scan driver configured to sequentially supply second scan signals to a plurality of second scan lines; a third scan driver configured to sequentially supply third scan signals to a plurality of third scan lines; a data driver configured to generate output voltages based on input data and apply the generated output voltages to a plurality of data lines; a pixel array comprising a plurality of pixel circuits arranged in an array, each of the pixel circuits comprising: a light emitting element connected between a first node and a first power supply voltage; a drive transistor connected between the first node and a second node, the drive transistor comprising a gate, a source, and a drain, the gate being connected to a third node; a storage capacitor connected between the gate and the source of the drive transistor; a first switch circuit connected to a corresponding one of the plurality of third scan lines, a second power supply voltage, and the second node, the first switch circuit being configured to supply the second power supply voltage to the second node in response to the third scan signal on the corresponding third scan line being active; a second switch circuit connected to a corresponding one of the plurality of first scan lines, a corresponding one of the plurality of data lines, and the third node, the second switch circuit being configured to supply a voltage on the corresponding data line to the third node in response to the first scan signal on the corresponding first scan line being active; and a third switch circuit connected to a corresponding one of the plurality of second scan lines, a corresponding one of the plurality of sensing lines, and the first node, the third switch circuit being configured to couple the first node to the corresponding sensing line in response to the second scan signal on the corresponding second scan line being active; a plurality of detection circuits each connected to a corresponding one of the plurality of sensing lines, each of the plurality of detection circuits being configured to detect a driving current generated by the drive transistor and transferred by the corresponding sensing line; and a timing controller configured to control operations of the first, second, and third scan drivers, the data driver, and the plurality of detection circuits. The timing controller, the first, second, and third scan drivers, the data driver, and the plurality of detection circuits are configured to perform operations for each of the plurality of pixel circuits, the operations comprising: performing a data write phase in which: the third scan driver is configured to supply an inactive third scan signal to the corresponding third scan line such that the first switch circuit brings the second node out of conduction with the second power supply voltage; and the first scan driver is configured to supply an active first scan signal to the corresponding first scan line and the data driver is configured to apply a data voltage to the corresponding data line such that the storage capacitor is charged with the data voltage via the second switch circuit; and performing a detection phase in which: the third scan driver is configured to supply an active third scan signal to the corresponding third scan line and the second scan driver is configured to supply an active second scan signal to the corresponding second scan line such that the driving current generated by the drive transistor based on the data voltage is directed to the corresponding sensing line via the third switch circuit, and a corresponding one of the plurality of detection circuits is configured to detect a magnitude of the driving current.
These and other aspects of the present disclosure will be apparent from and elucidated with reference to the embodiment(s) described hereinafter.
Further details, features, and advantages of the present disclosure are disclosed in the following description of exemplary embodiments in connection with the accompanying drawings, in which:
It will be understood that, although the terms first, second, third etc. may be used herein to describe various elements, components and/or sections, these elements, components and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component or section from another element, component or section. Thus, a first element, component or section discussed below could be termed a second element, component or section without departing from the teachings of the present disclosure.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element is referred to as being “connected to” or “coupled to” another element, it can be directly connected or coupled to the other element, or intervening elements may be present. In contrast, when an element is referred to as being (“directly connected to” or “directly coupled to” another element, there are no intervening elements present.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and/or the present specification and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The pixel array PA includes n×m pixel circuits P. Each pixel circuit P may include a light emitting element (not shown in
The first scan driver 102 is connected to the first scan lines G1[1], G1[2], . . . , G1[n] to apply the first scan signals to the pixel array PA. The second scan driver 104 is connected to the second scan lines G2[1], G2[2], . . . , G2[n] to apply the second scan signals to the pixel array PA. The third scan driver 106 is connected to the third scan lines G3[1], G3[2], . . . , G3[n] to apply the third scan signals to the pixel array PA. The data driver 108 is connected to the data lines D[1], D[2], . . . , D[m] to apply data signals to the pixel array PA. The detection circuits DET1, DET2, . . . , DETm are respectively connected to the sensing lines SL[1], SL[2], . . . , SL[m] to detect the driving currents drawn from the pixel circuits P. The first and second power supply voltages ELVSS and ELVDD (not shown in
The timing controller 112 is used to control the operations of the first scan driver 102, the second scan driver 104, the third scan driver 106, the data driver 108, and the detection circuits DET1, DET2, DETm. The timing controller 112 receives input image data RGBD and an input control signal CONT from an external device (e.g., a host), and receives detection data DD from the detection circuits DET1, DET2, . . . , DETm. The input image data RGBD may include a plurality of input pixel data for the plurality of pixels. Each input pixel data may include red gray data R, green gray data G, and blue gray data B for a respective one of the plurality of pixels. The input control signal CONT may include a master clock signal, a data enable signal, a vertical synchronization signal, a horizontal synchronization signal, and the like. The timing controller 112 generates output image data RGBD′, a first control signal CONT1, a second control signal CONT2, a third control signal CONT3, a fourth control signal CONT4, and a fifth control signal CONT5 based on the input image data RGBD, the detection data DD, and the input control signal CONT.
Specifically, the timing controller 112 may generate the output image data RGBD′ based on the input image data RGBD and the detection data DD. The output image data RGBD′ is supplied to the data driver 108. The output image data RGBD′ may be compensated image data generated by compensating the input image data RGBD using a compensation algorithm. In addition, the first control signal CONT1, the second control signal CONT2, and the third control signal CONT3 are respectively provided to the first scan driver 102, the second scan driver 104, and the third scan driver 106, and the drive timings of the first, second, and third scan drivers 102, 104, and 106 are controlled based on the first, second, and third control signals CONT1, CONT2, and CONT3, respectively. The first, second, and third control signals CONT1, CONT2, and CONT3 may include vertical start signals, gate clock signals, and the like. The fourth control signal CONT4 is supplied to the data driver 108 and the driving timing of the data driver 108 is controlled based on the fourth control signal CONT4. The fourth control signal CONT4 may include a horizontal start signal, a data clock signal, a data load signal, and the like. The fifth control signal CONT5 is provided to the detection circuits DET1, DET2, . . . , DETm, and the drive timings of the detection circuits DET1, DET2, . . . , DETm are controlled based on the fifth control signal CONT5. For example, the detection circuits DET1, DET2, . . . , DETm may be controlled to detect, during the detection phase, the driving currents generated by the corresponding pixel circuits P and transferred via the sensing lines SL[1], SL[2], . . . , SL[m].
The first scan driver 102 generates from the first control signal CONT1 a plurality of scan signals that are sequentially applied to the first scan lines G1[1], G1[2], . . . , G1[n]. The second scan driver 104 generates from the second control signal CONT2 a plurality of scan signals that are sequentially applied to the second scan lines G2[1], G2[2], . . . , G2[n]. The third scan driver 106 generates from the third control signal CONT3 a plurality of scan signals that are sequentially applied to the third scan lines G3[1], G3[2], . . . , G3[n].
The data driver 108 receives the fourth control signal CONT4 and the output image data RGBD′ from the timing controller 112. The data driver 108 generates a plurality of data voltages based on the fourth control signal CONT4 and the output image data RGBD′. The data driver 108 may apply the plurality of data voltages to the data lines D[1], D[2], . . . , D[m].
The detection circuits DET1, DET2, . . . , DETm are connected to the respective sensing lines SL[1], SL[2], . . . , SL[m] and receive the fifth control signal CONT5 from the timing controller 112. Each of the detection circuits DET1, DET2, . . . , DETm detects the driving current transferred via a respective sensing line based on the fifth control signal CONT5.
The data compensator 210 compensates the input image data RGBD based on the detection data DD from the plurality of detection circuits DET1, DET2, . . . , DETm to generate compensated output image data RGBD′. For example, the value of the driving current detected, when given image data is supplied to the data driver 108, can be compared with an ideal current value, and the compensation value for the given image data can be determined from the comparison result. The compensation is such that the pixel circuit P operates at an ideal driving current corresponding to the image data. This is so-called “external compensation.” The algorithm of the external compensation is beyond the scope of this document and any known or future algorithm in the art can be used.
The control signal generator 220 receives the input control signal CONT from an external device, and generates the control signals CONT1, CONT2, CONT3, CONT4, and CONT5 shown in
The timing controller 112 may be implemented in many ways (e.g., such as using dedicated hardware) in order to perform the various functions discussed herein. A “processor” is one example of the timing controller 112 that employs one or more microprocessors that can be programmed using software (e.g., microcode) in order to perform the various functions discussed herein. The timing controller 112 may be implemented with or without a processor and may also be implemented as dedicated hardware to perform some functions and a processor to perform other functions (e.g., a combination of one or more programmed microprocessors and associated circuitry).
Examples of the controller 112 that may be employed in various embodiments of the present disclosure include, but are not limited to, conventional microprocessors, application specific integrated circuits (ASICs), and field programmable gate arrays (FPGAs).
The light emitting element EL is connected between a first node N1 and the first power supply voltage ELVSS. In this embodiment, the light emitting element EL is an organic light emitting diode (OLED) having an equivalent capacitor COLED connected in parallel across the OLED. In other embodiments, the light emitting element EL may of course be other types of electroluminescent elements.
The drive transistor M0 is connected between the first node N1 and a second node N2. The drive transistor M0 includes a gate, a source, and a drain, and the gate is connected to a third node N3. In this embodiment, the drive transistor M0 is an N-type transistor, with its source connected to the first node N1 and its drain connected to the second node N2.
The storage capacitor Cst is connected between the gate and the source of the drive transistor M0.
The first switch circuit 310 is connected to the third scan line G3[n], the second power supply voltage ELVDD, and the second node N2. The first switch circuit 310 is configured to supply the second power supply voltage ELVDD to the second node N2 in response to a third scan signal on the third scan line G3[n] being active. In this embodiment, the first switch circuit 310 includes a first transistor M1 having a gate connected to the third scan line G3[n], a first electrode connected to the second power supply voltage ELVDD, and a second electrode connected to the second node N2.
The second switch circuit 320 is connected to the first scan line G1[n], the data line D[m], and the third node N3. The second switch circuit 320 is configured to supply a voltage on the data line D[m] to the third node N3 in response to a first scan signal on the first scan line G1[n] being active. In this embodiment, the second switch circuit 320 includes a second transistor M2 having a gate connected to the first scan line G1[n], a first electrode connected to the data line D[m], and a second electrode connected to the third node N3.
The third switch circuit 330 is connected to the second scan line G2[n], the sensing line SL[m], and the first node N1. The third switch circuit 330 is configured to couple the first node N1 to the sensing line SL[m] in response to a second scan signal on the second scan line G2[n] being active. In this embodiment, the third switch circuit 330 includes a third transistor M3 having a gate connected to the second scan line G2[n], a first electrode connected to the sensing line SL[m], and a second electrode connected to the first node N1.
It will be understood that the phrase “signal being active” as used herein means that the signal is at such a potential that it can enable the circuit element (e.g., a transistor) involved. For example, for an N-type transistor, the active potential is high, and for a P-type transistor, the active potential is low.
Continuing with the example of
In
The operation of the pixel circuit 300A of
In a data write phase DW, the signal on the first scan line G1[n] is active, so that the data voltage VDATA on the data line D[m] is supplied to the third node N3 (i.e., the gate of the drive transistor M0) through the second transistor M2. The signal on the second scan line G2[n] is active and the first controlled switch SW1 is turned on so that the reference voltage Vss (which generally has a low level) is supplied to the first node N1 (i.e., the source of the drive transistor M0) through the first controlled switch SW1 and the third transistor M3. This can provide a reliable reference level for the data voltage VDATA written to the third node N3. The data voltage VDATA is then written in the storage capacitor Cst. In particular, during the data write phase DW, the signal on the third scan line G3[n] is inactive, so that the first transistor M1 is turned off. The presence of the first transistor M1 may provide an additional advantage in that the turned-off first transistor M1 prevents the driving current from flowing through the drive transistor M0, thereby preventing variation of the potential at the first node N1. This can increase the accuracy of the data voltage VDATA being written and therefore the accuracy of the compensation.
In a detection phase DET that follows, the signal on the third scan line G3[n] is active and the signal on the second scan line G2[n] remains active. This allows the driving current generated by the drive transistor M0 to be coupled to the sensing line SL[m] via the third transistor M3 and charge the capacitance presented on the sensing line SL[m]. As shown in
The driving current ID generated by the drive transistor M0 can be expressed as:
I
D=½K×(Vgs−Vth)α (1)
where
μ is a carrier mobility of the drive transistor M0, C is a capacitance of a gate insulating layer of the drive transistor M0, and W/L is a ratio of width-to-length of the channel of the drive transistor M0, α is an empirical parameter which generally has a value of 2, Vgs is a gate-source voltage of the drive transistor M0, and Vth is a threshold voltage of the drive transistor M0.
In practice, the timing controller 112 may derive one or more of the threshold voltage Vth of the drive transistor M0 and the parameters K and a using the compensation algorithm and equation (1) based on the detection of the voltage Vsense. Such a compensation algorithm is beyond the scope of this document and any known or future compensation algorithm may be used herein for the derivation.
In a reset phase RST, the signal on the first scan line G1[n] is active, so that a reset voltage (e.g., a low level voltage) on the data line D[m] is supplied to the third node N3 (i.e., the gate of the drive transistor M0) through the second transistor M2. The signal on the second scan line G2[n] is active and the first controlled switch SW1 is turned on, so that the reference voltage Vss is supplied to the first node N1 (i.e., driving Source of transistor M0) through the first controlled switch SW1 and the third transistor M3. The voltage across the storage capacitor Cst is then reset. In particular, during the reset phase RST, the signal on the third scan line G3[n] is inactive, such that the first transistor M1 is turned off. The presence of the first transistor M1 may provide an additional advantage in that the turned-off first transistor M1 prevents the driving current from flowing through the drive transistor M0, thereby preventing variation of the potential at the first node N1. This can provide a reliable reset of the voltage across the storage capacitor Cst.
In an internal compensation phase COMP that follows, the signal on the first scan line G1[n] is active, so that the storage capacitor Cst is charged via the second transistor M2 with a charging voltage VH on the data line D[m]. The signal on the third scan line G3[n] is active, and the signal on the second scan line G2[n] is inactive. The drive transistor M0 generates a driving current at the charging voltage VH (VH>Vth). Due to the presence of the capacitor Cst, the driving current charges the first node N1, and thus the potential at the first node N1 gradually increases. In an ideal case (e.g., when the duration of the internal compensation phase COMP is long enough), the potential at the first node N1 may increase up to (VH-Vth). In this case, the gate-source voltage of the drive transistor M0 is equal to Vth, and thus the drive transistor M0 is in a critical state between saturation and off. Then, the internal compensation is completed.
The internal compensation used herein may be referred to as “source-following” compensation because the potential at the source of the drive transistor M0 (or the first node N1) increases with the potential at the gate of the drive transistor M0 during the compensation process. Such an internal compensation may be advantageous in that no additional circuit elements are needed to put the drive transistor M0 in a diode-connected state as in a typical internal compensation.
As shown in
Referring back to
In a detection phase DET that follows, the signal on the third scan line G3[n] is active and the signal on the second scan line G2[n] remains active. This allows the driving current generated by the drive transistor M0 to be coupled to the sensing line SL[m] via the third transistor M3 and charge the capacitance presented on the sensing line SL[m]. As shown in
The operation sequence shown in
It can be seen that the threshold voltage Vth term is not completely eliminated in equation (3). However, this will not be a problem in this document due to the external compensation. By taking into account insufficient internal compensation and even potential shifts of the parameters K and a, the external compensation can provide complementary compensation effects on the basis of the internal compensation.
In addition, given that the internal compensation is able to follow a rapid change in the threshold voltage Vth and, however, has a smaller compensation range, it can be determined whether to perform the internal compensation according to the threshold voltage Vth derived in the external compensation. For example, where the threshold voltage Vth of the drive transistor M0 has a small amount of change (e.g., 0 to 0.1 V) and a large rate of change, the internal compensation may be performed, and where there is a large change in the threshold voltage Vth (e.g., 0 to 3V), the internal compensation may not be performed. By selecting a suitable compensation scheme, the efficiency of compensation can be improved.
The selection of the compensation scheme may be implemented by the timing controller 112 shown in
The details of the reset phase RST, the internal compensation phase COMP, and the data write phase DW are similar to those described above with respect to
Instead of the detection phase DET in
The details of the data write phase DW are similar to those described above with respect to
Instead of the detection phase DET in
It will be understood that the pixel circuits 300A and 300B described above are exemplary, and that the driving method according to the embodiments of the present disclosure may be applied to other pixel circuit embodiments without departing from the scope of the present disclosure.
It will also be understood that the foregoing is only specific embodiments of the disclosure and is not intended to limit the disclosure. Variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed subject matter from a study of the drawings, the disclosure, and the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201710336114.7 | May 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/071139 | 1/4/2018 | WO | 00 |