This application claims priority to Taiwan Application Number 108140145, filed on Nov. 5, 2019, which is herein incorporated by reference in its entirety.
The present disclosure generally relates to a pixel circuit. More particularly, the present disclosure relates to a pixel circuit immune to variations of device characteristics.
Micro LEDs have the advantages of low power consumption, high color saturation, and high response speed, and thus have become one of the popular technologies applied to the next-generation display panels. However, the Micro LED pixel circuits located in different areas of the display panel may have different device characteristics due to manufacturing process factors, and the Micro LED pixel circuits also face different power line impedances, causing the displayed pictures having non-uniform luminance.
The disclosure provides a pixel circuit including a driving transistor, a light emission element, a compensation circuit, a storage capacitor, and a writing circuit. The light emission control circuit is configured to selectively conduct the light emission element to the driving transistor. The compensation circuit is coupled with the light emission control circuit and a control terminal of the driving transistor, and is configured to form a diode-connected structure with the driving transistor. The storage capacitor includes a first terminal and a second terminal. The first terminal of the storage capacitor is coupled with the control terminal of the driving transistor, and the light emission control circuit is configured to selectively conduct the second terminal of the storage capacitor to a first power terminal. The writing circuit is configured to provide different voltages to the first terminal of the storage capacitor and the second terminal of the storage capacitor.
The disclosure provides a pixel array including a plurality of pixel circuits arranged to from n pixel rows, and n is a positive integer. Each of the n pixel rows receives corresponding three of a plurality of first gate control signals as a first control signal, a second control signal, and a third control signal. Each of the plurality of pixel circuits Includes a driving transistor, a light emission element, a light emission control circuit, a compensation circuit, a storage capacitor, and a writing circuit. The light emission control circuit is configured to selectively conduct the light emission element to the driving transistor. The compensation circuit is coupled with the light emission control circuit and a control terminal of the driving transistor, and is configured to form a diode-connected structure with the driving transistor according to the third control signal. The storage capacitor includes a first terminal and a second terminal. The first terminal of the storage capacitor is coupled with the control terminal of the driving transistor, and the light emission control circuit is configured to selectively conduct the second terminal of the storage capacitor to a first power terminal. The writing circuit is configured to provide, according to the first control signal and the second control signal, different voltages to the first terminal of the storage capacitor and the second terminal of the storage capacitor.
The disclosure provides a pixel structure including a first pixel, a second pixel, and a third pixel. Each of the first pixel, the second pixel, and the third pixel includes a driving transistor, a driving transistor, a light emission control circuit, a compensation circuit, a storage capacitor, and a writing circuit. The light emission control circuit is configured to selective conduct the light emission element to the driving transistor. The compensation circuit is coupled with the light emission control circuit and a control terminal of the driving transistor, and is configured to form a diode-connected structure with the driving transistor. The storage capacitor includes a first terminal and a second terminal. The first terminal of the storage capacitor is coupled with the control terminal of the driving transistor, and the light emission control circuit is configured to selectively conduct the second terminal of the storage capacitor to a first power terminal. The writing circuit is configured to provide different voltages to the first terminal of the storage capacitor and the second terminal of the storage capacitor. The light emission element of the first pixel, the light emission element of the second pixel, and the light emission element of the third pixel are configured to generate red light, green light, and blue light, respectively.
It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the disclosure as claimed.
Reference will now be made in detail to the present embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
The compensation circuit 140 is coupled with a control terminal of the driving transistor 110 and the light emission control circuit 130. When the compensation circuit 140 is conducted, the compensation circuit 140 forms a diode-connected structure with the driving transistor 110 in order to detect a threshold voltage of the driving transistor 110.
The storage capacitor 150 comprises a first terminal and a second terminal. The first terminal of the storage capacitor 150 is coupled with the control terminal of the driving transistor 110, and the second terminal of the storage capacitor 150 is coupled with the light emission control circuit 130 and the writing circuit 160. The writing circuit 160 is configured to provide a data voltage Vdata to the second terminal of the storage capacitor 150. After the compensation circuit 140 stores the detected threshold voltage at the first terminal of the storage capacitor 150, the light emission control circuit 130 selectively conducts the second terminal of the storage capacitor 150 to a first power terminal NA in order to receive a system low voltage VSS from the first power terminal NA. Therefore, the data voltage Vdata is written to the control terminal of the driving transistor 110 from the second terminal of the storage capacitor 150 because of the capacitive coupling effect. The writing circuit 160 is further configured to provide a system high voltage VDD to the first terminal of the storage capacitor 150 to reset the voltage of the control terminal of the driving transistor 110.
In other words, the pixel circuit 100 is capable of compensation of the threshold voltage variation of the driving transistor 110, and thus display panels implemented with the pixel circuits 100 are capable of displaying pictures with uniform brightness. In this disclosure, the term “compensation” means calibrations which are performed to mitigate the current offset induced by certain factors. For example, after the pixel circuit 100 compensates the threshold voltage variation of the driving transistor 110, the current flowing through the light emission element 120 will have the magnitude substantially irrelevant to the threshold voltage of the driving transistor 110.
As shown in
In this embodiment, the control terminal of the first light emission transistor 132 and the control terminal of the second light emission transistor 134 are both configured to receive the light emission signal EM.
The writing circuit 160 comprises a first writing transistor 162 and a second writing transistor 164. Each of the first writing transistor 162 and the second writing transistor 164 comprises a first terminal, a second terminal, and a control terminal. The first terminal of the first writing transistor 162 is coupled with the control terminal of the driving transistor 110. The second terminal of the first writing transistor 162 is configured to receive the system high voltage VDD. The control terminal of the first writing transistor 162 is configured to receive a first control signal S1. The first terminal of the second writing transistor 164 is coupled with the second terminal of the storage capacitor 150. The second terminal of the second writing transistor 164 is configured to receive the data voltage Vdata. The control terminal of the second writing transistor 164 is configured to receive a second control signal S2.
The compensation circuit 140 comprises a compensation transistor 142 comprising a first terminal, a second terminal, and a control terminal. The first terminal of the compensation transistor 142 is coupled with the first terminal of the driving transistor 110. The second terminal of the compensation transistor 142 is coupled with the control terminal of the driving transistor 110. The control terminal of the compensation transistor 142 is configured to receive a third control signal S3.
The resistor Rs of
In some embodiments, the transistors of
In other embodiments, the light emission element 120 of
In yet other embodiments, the light emission element 120 of
Reference is made to
V1=VSScomp+Vth (Formula 1)
In the formulas of this disclosure, the symbol “V1” represents the voltage of the first terminal of the storage capacitor 150; the symbol “VSScomp” represents the voltage received by the second terminal of the driving transistor 110 in the second operation period 220; and the symbol “Vth” represents the threshold voltage of the driving transistor 110.
In a standby period 201 between the second operation period 220 and the third operation period 230, the pixel circuit 100 switches off the light emission control circuit 130, the compensation circuit 140, and the writing circuit 160 in order to maintain voltages at the two terminals of the storage capacitor 150. In some embodiments, in a case that multiple pixel circuits 100 are disposed in a display panel, the standby period 201 is for waiting the pixel circuits 100 in other rows (not shown in
Reference is made to
V1=VSScomp+Vh+VSSemi−Vdata (Formula 2)
Idr=K(Vgs−Vth)2−K(VSScomp−Vdata)2 (Formula 3)
In the formulas of this document, the symbol “VSSemi” represents the voltage received by the second terminal of the driving transistor 110 in the third operation period 230; the symbol “Vgs” represents a voltage difference between the control terminal and the second terminal of the driving transistor 110 in the third operation period 230; and the symbol K represents a product of the carrier mobility, the gate oxide capacitance per unit area, and the width-to-length ratio of the driving transistor 110.
In some embodiments that multiple pixel circuits 100 are disposed in a display panel, all or part of the pixel circuits 100 are commonly coupled with the same power line for providing the system low voltage VSS. Therefore, a significant voltage drop is caused in the third operation period 230 by multiple driving currents Idr flowing simultaneously through the resistor Rs, and thus the pixel circuits 100 in different areas of the display panel may receive different system low voltages VSS in the third operation period 230 (i.e., with respect to different pixel circuits 100, the symbol “VSSemi” in Formula 2 may represent different voltages).
The operation of the pixel circuit 100 further comprises a fourth operation period 240 following the third operation period 230. In the fourth operation period 240, the first control signal S1, the second control signal S2, the third control signal S3, and the light emission signal EM have the logic low level, and thus the light emission control circuit 130, compensation circuit 140, and writing circuit 160 are switched off. The pixel circuit 100 generates luminance which may be determined by the magnitude of the driving current Idr and/or a ratio of the time length of the third operation period 230 to the time length of the fourth operation period 240.
In some embodiments, the pixel circuit 100 needs approximately a quarter of a frame to perform corresponding operations of the first operation period 210, the second operation period 220, and the standby period 201, and needs approximately three quarters of a frame to perform corresponding operations of the third operation period 230 and the fourth operation period 240, but this disclosure is not limited thereto. In practice, the time lengths of the first operation period 210, second operation period 220, the standby period 201, third operation period 230, and the fourth operation period 240 may be adjusted independently according to practical design requirements.
In some embodiments, the control terminal of the second light emission transistor 134 is configured to receive another control signal different from the light emission signal EM. In the third operation period 230, the control signal different from the light emission signal EM may have a rising edge earlier than that of the light emission signal EM.
As can be appreciated from the foregoing descriptions, both of the system low voltage VSS received by the pixel circuit 100 in the third operation period 230 and the threshold voltage of the driving transistor 110 cause little effects to the magnitude of the driving current Idr, and thus the pixel circuit 100 generates correct luminance. In addition, the first control signal 81, the second control signal S2, and the third control signal S3, which have similar waveforms and periodical patterns, can be generated by the same set of shift registers in a display panel to simplify the circuit structure.
The foregoing descriptions regarding to other corresponding implementations, connections, operations, and related advantages of the pixel circuit 100 are also applicable to the pixel circuit 400. For the sake of brevity, those descriptions will not be repeated here.
The pixel circuit PX may be realized by the pixel circuit 100 of
Each of the pixel rows 610[1]-610[n] receives a second control signal S2 the same as the third control signal S3 of the previous pixel row, and also the same as the first control signal S1 of the next pixel row.
For example, the pixel row 610[1] receives the first gate control signals GA[1]-GA[3] respectively as the first control signal S1, the second control signal S2, and the third control signal S3; the pixel row 610[2] receives the first gate control signals GA[2]-GA[4] respectively as the first control signal S1, the second control signal S2, and the third control signal S3; and the pixel row 610[3] receives the first gate control signals GA[3]-GA[5] respectively as the first control signal S1, the second control signal S2, and the third control signal S3. Therefore, the pixel row 610[2] has the second control signal S2 which is the same as the third control signal S3 of the pixel row 610[1] and the first control signal S1 of the pixel row 610[3], and so forth.
The pixel array 600 is further configured to receive a plurality of second gate control signals GB[1]-GB[n] from another set of shift registers (not shown in
For example, the first pulse Pa[2] is partially overlapping with the first pulse Pa[1], and is also partially overlapping with the first pulse Pa[3]. The first pulse Pa[4] is partially overlapping with the first pulse Pa[3] and the first pulse Pa[5], and so on.
In addition, each of first pulses Pa[1]-Pa[n+2] is not overlapping with the pulses former to the previous pulse, and also is not overlapping with the pulses following the next pulse.
For example, the first pulse Pa[3] is not overlapping with the first pulse Pa[1], and also is not overlapping with the first pulse Pa[5]. The first pulse Pa[4] is not overlapping with the first pulse Pa[2] and the first pulse Pa[6], and so forth.
The second gate control signals GB[1]-GB[n] are sequentially switched to the logic high level to sequentially generate a plurality of second pulses Pb[1]-Pb[n] having the logic high level. The second pulses Pb[1]-Pb[n] are not overlapping with the first pulses Pa[1]-Pa[n+2].
In some embodiments, the first pulses Pa[1]-Pa[n+2] are generated approximately within the first quarter of a frame, and the second pulses Pb[1]-Pb[n] are generated approximately within the last three quarters of the frame, but this disclosure is not limited thereto.
In one embodiment, all of the pixel rows 610[1]-610[n] receive the same second gate control signal as their light emission signal EM, that is, all of the pixel circuits PX receive the same light emission signal EM to emit light simultaneously. As a result, the circuit area can be further reduced.
In the formulas of this disclosure, the symbol “Err” represents the relative current offset; the symbol “Iv” represents the driving current Idr in which the threshold voltage of the driving transistor 110 has variations; the symbol “I(0)” represents the driving current Idr in which the pixel circuit 100 has no characteristic variations. In this embodiment, the variations in the threshold voltage of the driving transistor 110 (represented by the symbols “ΔVth” in
In the formulas of this disclosure, the symbol “Iss” represents the driving current Idr in which the system low voltage VSS has variations. In this embodiment, the variation in the system low voltage VSS (represented by the symbol “ΔVSS” in
As can be appreciated from the foregoing descriptions, the pixel circuit 100 can conduct the driving current Idr with the correct magnitude under the situations that the threshold voltage of the driving transistor 110 or the system low voltage VSS has variations.
Certain terms are used throughout the description and the claims to refer to particular components. One skilled in the art appreciates that a component may be referred to as different names. This disclosure does not intend to distinguish between components that differ in name but not in function. In the description and in the claims, the term “comprise” is used in an open-ended fashion, and thus should be interpreted to mean “include, but not limited to.” The term “couple” is intended to compass any indirect or direct connection. Accordingly, if this disclosure mentioned that a first device is coupled with a second device, it means that the first device may be directly or indirectly connected to the second device through electrical connections, wireless communications, optical communications, or other signal connections with/without other intermediate devices or connection means.
The term “and/or” may comprise any and all combinations of one or more of the associated listed items. In addition, the singular forms “a,” “an,” and “the” herein are intended to comprise the plural forms as well, unless the context clearly indicates otherwise.
Other embodiments of the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the present disclosure disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the present disclosure being indicated by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
108140145 | Nov 2019 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
20090040150 | Senda | Feb 2009 | A1 |
20130314305 | Liu | Nov 2013 | A1 |
20160180772 | Ma | Jun 2016 | A1 |
20160275854 | Wang | Sep 2016 | A1 |
20160275861 | Yang et al. | Sep 2016 | A1 |
20170047002 | Xuan | Feb 2017 | A1 |
20180197469 | Lo | Jul 2018 | A1 |
20180301105 | Kim | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
104658484 | May 2015 | CN |
108305587 | Jul 2018 | CN |
109087609 | Dec 2018 | CN |
201942894 | Nov 2019 | TW |
Number | Date | Country | |
---|---|---|---|
20210134211 A1 | May 2021 | US |