This invention relates to a spatial light modulator (SLM) implemented in an image display system, arrays and control circuits to control the pixel of the SLM. More particularly, this invention relates to micromirror array and control circuits that include pixel driving circuit with new configurations and methods to drive the pixel with higher voltage using low voltage transistors.
Even though there are significant advances made in recent years on the technologies of implementing spatial light modulator, there are still limitations and difficulties when employed to provide high quality images display. Specifically, the difficulties may occur when the display pixels require higher voltage to drive the micromirrors. The required voltage to drive the micromirrors may be higher than the maximum breakdown voltage of transistors. Particularly, the driving voltage may be higher than the breakdown voltage of a transistors having smaller size to fit in the smaller pixel size because of the higher display resolution requirements.
Specifically,
The conventional configuration of driver circuit generally uses a resistor to obtain ON and OFF states as an output to provide higher driver voltage. However this type circuit requires substantially high power consumption with current flows through the resistor in order to maintain the voltages.
For these reasons, those of ordinary skill in the art are challenged with the technical difficulties to operate the spatial light modulator with lower voltage below the breakdown voltage of the transistors with reduced size of the transistor. Meanwhile, the operation of the mirror device must also maintain high level of mirror performances that requires a higher driving voltage to display images with high quality.
Therefore, a need stills exists to provide a new and improve drive circuit configuration and method of control to implement transistors operable with lower voltages while providing driving circuits to generate high driving voltage such that the above discussed difficulties may be resolved.
It is an aspect of this invention to provide a new and improved driver circuit configuration for operating the transistors with lower voltages while still generating a higher driving voltage to drive the mirrors such that the above discussed difficulties and limitations may be overcome.
Specifically, an aspect of this invention is to provide a new and improved driver circuit configuration by stacking multiple transistors to distribute the voltage applied to these stacked transistors such that each of these transistors is maintained a voltage below the maximum breakdown voltage.
Another aspect of this invention is to provide a new and improved driver circuit configuration by adding a capacitor to avoid constant current flow through a resistor thus preventing unnecessary power consumptions such that the difficulties encountered in the prior art is overcome.
An input signal is applied at Vin, the gate of the transistor Tr1, and the voltage Vh is pulled down to a ground voltage in a short period which causes the capacitor C to discharge. Then the voltage Vh is pulled up to a high voltage when the voltage applied to Vin is OFF, i.e., a zero voltage because the capacitor C is not charged. The gates of transistor Tr1 and Tr2 are turned off and the output voltage Vout is pulled up to the high voltage Vh. On the other hand, if the voltage applied to Vin is ON, the output voltage Vout is pulled down to zero volt because the voltage on the gates of Tr1 and Tr2 turn on these two transistor thus electrically short the Vout to a ground voltage. Therefore, when Vin is applied an ON signal, then the output voltage Vout=0, and if Vin is applied with an OFF signal, then the output voltage Vout=Vh, and meanwhile, the voltages between the drain and source for both transistors Tr1 and Tr2 are about Vh/2.
The purpose of the new drive circuit is to apply a lower voltage transistors, i.e., Tr1 and Tr2, to switch a higher voltage that may be higher than the punch through voltage of Tr1 and Tr2. In an embodiment, the output voltage Vout may be up to 10v. The maximum voltage between drain and source of Tr1 and Tr2 is about 6 volts. By cascading two transistors and a capacitor, the circuit shown in
According to above descriptions, this invention discloses an image display system implemented with a spatial light modulator (SLM) comprising a plurality of pixel elements each comprises a driver circuit. The driver circuit further comprises at least a first and second transistors cascaded with a first capacitor between a high voltage (Vh) and a ground voltage (Vg) wherein each of the first and second transistors having a breakdown voltage less than the high voltage (Vh). The first transistor receives an input signal to turn on the first and second transistors for discharging the first capacitor and pulling down an output voltage to a ground voltage (Vg) and to turn off the first and second transistor to pull up the output voltage to the high voltage (Vh) wherein each of the first and second transistor is biased to approximately half of the high voltage (Vh/2). The image display system of claim 1 wherein the driver circuit further comprising: In another embodiment, the driver circuit further includes a third and a fourth transistors cascaded with a second capacitor between the high voltage and a ground voltage wherein the third and fourth transistors and the second capacitor are complimentary to the first and second transistors with the first capacitors to generate an second output voltage complimentary to the output voltage from the first and second transistors with the first capacitor. In another embodiment, the spatial light modulator (SLM) further comprises a mirror device and each of the pixel elements further comprises a micromirror controlled by the drive circuit. In another embodiment, the SLM further comprises a wordline connected to the high voltage and to the first capacitor of the drive circuit; and a bit line connected to a gate of the first transistor for receiving an input signal to turn on and off the first and second transistors. In another embodiment, the SLM further comprises an input transistor having a gate connected to the wordline and a source connected to the bit line with a drain connected to the gate of the first transistor for receiving an input signal from the bit line when selected by a row-selection signal on the wordline. In another embodiment, each of the pixel elements an additional drive circuit as a second drive circuit; and each of the pixel elements further comprising two sets of electrodes each connected to the driver circuit and the additional driver circuit a first driver circuit and the second driver circuit. In another embodiment, the second driver circuit is further connected to the first driver circuit to receive an input signal received from a bitline whereby the pixel element is operable with a single bitline. In another embodiment, illustrated in
According to above descriptions, this invention discloses an image display system implemented with a spatial light modulator (SLM) comprises a plurality of pixel elements each comprises a driver circuit. The driver circuit further comprises at least a first and second transistors cascaded with a high value resistance connected to a static supply voltage between a high voltage (Vh) and a ground voltage (Vg) wherein each of the first and second transistors having a breakdown voltage less than the high voltage (Vh). The first transistor receives an input signal to turn on the first and second transistors for discharging the first capacitor and pulling down an output voltage to a ground voltage (Vg) and to turn off the first and second transistor to stop discharging the first capacitor to pull up the output voltage to the high voltage (Vh) wherein each of the first and second transistor is biased to approximately half of the high voltage (Vh/2). In an embodiment, the high value resistance is formed as a low doped silicon.
Although the present invention has been described in terms of the presently preferred embodiment, it is to be understood that such disclosure is not to be interpreted as limiting. Various alterations and modifications will no doubt become apparent to those skilled in the art after reading the above disclosure. Accordingly, it is intended that the appended claims be interpreted as covering all alterations and modifications as fall within the true spirit and scope of the invention.
This application is a Non-provisional application of a Provisional application 61/199,658 filed on Nov. 19, 2008. This Application is also a Continuation in Part (CIP) Application of patent Ser. No. 11/600,625, filed on Nov. 16, 2006 and 60/845,294 dated Sep. 18, 2006. The disclosures made in these Patent Applications are hereby incorporated by reference in this Patent Application.
Number | Date | Country | |
---|---|---|---|
61199658 | Nov 2008 | US | |
60845294 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11600625 | Nov 2006 | US |
Child | 12592267 | US |