Pixel having an organic light emitting diode and method of fabricating the pixel

Abstract
A pixel having an organic light emitting diode (OLED) and method for fabricating the pixel is provided. A planarization dielectric layer is provided between a thin-film transistor (TFT) based backplane and OLED layers. A through via between the TFT backplane and the OLED layers forms a sidewall angle of less than 90 degrees to the TFT backplane. The via area and edges of an OLED bottom electrode pattern may be covered with a dielectric cap.
Description
FIELD OF THE INVENTION

This invention relates to a pixel, more particularly, to a pixel having an organic emitting diode.


BACKGROUND OF THE INVENTION

Organic light emitting diodes (OLEDS) are electro-luminescent (EL) devices for emitting light. The OLED generates light by a current flowing through an organic compound. Pixels including the OLEDs have various advantages, i.e. simple structure, fast response and wide viewing angle. There are two types of matrix displays with the OLEDs, passive type and active type. In the active matrix display, thin-film transistors (TFT) are provided in each pixel to drive the OLEDs of display. The active matrix eliminates high peak driving currents and thereby enables high-resolutions and high information density, improves power consumption and life-time compared to the passive matrix.


Vertical pixel architecture, in which the TFT and the OLED device are stacked vertically, has been developed. Such architecture can achieve higher aperture ratios. This favors using lower mobility amorphous silicon TFT backplanes compared polysilicon TFT technology, which is of higher mobility but also of higher cost.


The difficult part in building the vertical stacked pixels is to make a TFT backplane suitable for subsequent OLED fabrication and provide high yield and good performance of OLED pixels. The OLED device is typically made of very thin layers. Overall thickness of organic layers in the OLED is of the order of 100 nm. For this reason, it requires a smooth substrate to achieve good performance and yield. Step-wise features on the substrate surface and roughness can cause deterioration of light-emitting properties or OLED device failure due to shorts between its electrodes.


It is, therefore, desirable to provide new pixel architecture, which can achieve a high aperture rate, and at the same time, higher yield rate.


SUMMARY OF THE INVENTION

It is an object of the invention to provide novel pixel architecture that obviates or mitigates at least one of the disadvantages of existing pixels.


In accordance with an aspect of the present invention, there is provided vertical pixel architecture in which a planarization dielectric layer is disposed between a TFT based backplane and OLED layers. The planarization dielectric layer is thick enough to smoothen a TFT substrate profile to such an extent that will make it suitable for subsequent fabrication of the OLEDs. Preferably, the planarization dielectric and subsequent electrode layer have a roughness of the order of 1 nm to permit successful OLED fabrication.


Electrical connection between TFT circuit and OLED is provided by means through-via made in planarization dielectric.


In accordance with a further aspect of the present invention, there is provided a vertical pixel architecture in which continuous sidewall coverage is provided by pixel electrode material in a through-via profile provided in the planarization dielectric. This is achieved by the formation of sloped sidewalls of the through-via. Preferably, the angle between the via and a TFT substrate is less than 45 degrees.


In accordance with a further aspect of the present invention, the interconnection between TFT final metal and OLED bottom electrode in vertical pixel architecture is provided via a smooth contact plate made of conductive material.


In accordance with a further aspect of the present invention, there is provided a vertical pixel architecture in which a dielectric layer is deposited and patterned on the top of the pixel electrode in such a way that it covers pixel via and the edges of the pixel electrode.


Other aspects and features of the present invention will be readily apparent to those skilled in the art from a review of the following detailed description of preferred embodiments in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be further understood from the following description with reference to the drawings in which:



FIG. 1 is a schematic cross-section view showing a vertically integrated pixel in accordance with an embodiment of the present invention.



FIG. 2 is a schematic cross-section view showing an example of the pixel of FIG. 1.



FIG. 3 is a schematic cross-section view showing an example of the pixel of FIG. 1, which incorporates a shield electrode.



FIG. 4 is a schematic diagram showing an example of surface planarization with BCB.



FIG. 5 is a schematic cross-section view showing a sidewall slope .beta. of the pixel of FIGS. 2 to 3.



FIGS. 6 to 8 are schematic diagrams showing fabricating process of the pixel of FIG. 2.



FIG. 9 is a schematic cross-section view showing an example of the pixel of FIG. 1, which incorporates a contact plate.



FIG. 10 is a schematic cross-section view showing an example of the pixel of FIG. 1, which incorporates a shield electrode and a contact plate.



FIG. 11 is a schematic cross-section view showing a vertically integrated pixel in accordance with another embodiment of the present invention.



FIG. 12 is a schematic diagram showing fabricating process of the pixel of FIG. 11.



FIG. 13 is a schematic diagram of a vertically integrated pixel in accordance with another embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A vertically integrated pixel of the present invention is described. FIG. 1 shows a vertically integrated pixel 10 in accordance with an embodiment of the present invention. The pixel 10 includes OLED device layer 12 and a TFT based backplane 14 (hereinafter referred to as TFT backplane).


The OLED device 12 includes one or more organic layers, a cathode and an anode. In the description, layers between the cathode and the anode are referred to as OLED layers 18. The OLED layers 18 may be incorporating an electron transport layer, an organic light emitting layer, a hole transport layer, and a hole injection layer. In FIG. 1, an OLED top electrode 16 and an OLED bottom electrode 20 are shown as the cathode and the anode, respectively.


The top electrode 16 is transparent to enable the light to be emitted by the OLED in the direction opposite to the substrate (i.e., top-emitting OLED). However, reverse top-emitting OLED structure, where the bottom electrode 20 is a cathode, and the top electrode 16 is an (transparent) anode, is also possible.


Each pixel of the TFT backplane 14 includes TFT pixel circuits formed on a substrate 30. In FIG. 1, two TFTs T1 and T2 form a pixel circuit. Each of the transistors T1-T2 has metallization for a source, a drain and a gate 6. In FIG. 1, “2” represents either a source node or a drain node. However, the pixel 10 may include more than two transistors.


The OLED bottom electrode 20 is formed on the top of the TFT backplane 14, and is separated from the backplane 14 by a dielectric layer 22. The dielectric layer 22 is continuously provided everywhere on the top of the TFT pixel circuit except at a through-via 8, which provides electrical connection between a specific node of the TFT pixel circuit and the OLED bottom electrode 20. This specific node may be source node or drain node of a TFT, which depends on pixel circuit design and order of deposition for the OLED electrodes and layers. The details of circuit design and OLED fabrication are not to restrict the applicability of the present invention.


Preferably, the planarization dielectric and subsequent electrode layer have a roughness of the order of 1 nm to permit successful OLED fabrication. Optionally, a shield electrode 24 is provided on the top of TFTs.



FIG. 2 shows an example of the pixel 10 of FIG. 1. In FIG. 2, the sidewalls of the through-via 8 are sloped. The OLED bottom electrode material is disposed on the top surface of the dielectric layer 22 and along the sidewall of the sloped through-via 8.



FIG. 3 is another example of the pixel of FIG. 1. In FIG. 3, the shield electrode 24 is provided above the TFT layers to keep the potential right on the top of the TFT pixel circuit at certain designed level regardless of the potential of the pixel electrode. The shield electrode 24 may be a thin-film conductor, Al, Al-alloy, Mo, Cr or the like. An interlayer dielectric 21 is provided between source/drain and shield layers. The connection between the desired pixel circuit node and the OLED bottom electrode 20 is made by means-of a via in the interlayer insulator 21, an interconnection plate 26 formed in the shield metal layer and the through-via 8 formed in the dielectric layer 22.


The transistor structure of FIGS. 1-3 is typical for bottom-gate amorphous silicon TFT, and it is shown here as one possible example only. However, the method of pixel integration described here may be applicable in general to any appropriate known TFT backplane, including recrystallized or deposited poly-silicon, micro- and nano-crystalline silicon, CdSe and others.


Active matrix TFT backplane may be fabricated by successive deposition and patterning of metal, insulator and semiconductor layers leading to an overall profile height of the structure that is in the range of a few 100 nm to 1 micron, with nearly vertical or sharp-angled sidewalls of the structures. On the other hand, in high performance small molecule and polymer organic light emitting devices, active organic layers have an overall thickness in the range of 10-100 nm. This implies that it is desirable to provide the OLED substrate with the roughness in 1 nm range to prevent electrical shorts between OLED layers or top and bottom electrodes. In addition, it is desirable that the substrate is either planer or has sufficiently smooth features whose vertical profile does not prevent reliable step coverage with thin OLED layers and their continuity, where necessary.


In the embodiment of the preset invention, the planarization dielectric and subsequent electrode layer are formed so as to have a roughness of the order of 1 nm. The dielectric layer 22 smoothens or planarizes the vertical profiles of the structures on the substrate with fabricated TFT 14. Further, the through-via profile in the dielectric layer 22 enables continuous sidewall coverage by the OLED bottom electrode material, and reduction of thickness of the pixel electrode.


The dielectric layer 22 of the pixel 10 is described in detail. The dielectric layer 22, which is used for separating the TFT backplane 14 and the OLED bottom electrode 20, smoothens or planarizes the vertical profiles of the structures on the substrate 30 with the fabricated TFT backplane 14. This ensures continuity of the electrodes 16, 20 and organic layers 18 in the OLED device 12. This smooting/planarizing is achieved by using a planarizing dielectric, rather than one coating the substrate conformally. The planarizing dielectric may be an organic polymer such as benzocyclobutene (BCB), polyimide, polyamide, acrilic and others. Minimum thickness of planarization layer required depends on planarization properties of the dielectric and the profile height of TFT backplane. The thickness of planarizing dielectric can be between 0.5 and 5 ·mu·m. In the embodiment of the present invention, BCB layer, about 3 micron-thick, produced from photosensitive BCB-material is used as the planarizing layer.


Planarizing dielectric layers are most often produced by application of corresponding initial material or monomer, which can be polymerized on the substrate by means of thermal cure, UV-cure with our without catalyst or by other method. The initial or monomer material can or cannot be patterned by photo-exposure. This property depends on chemical formulation of initial material or monomer by the manufacturer, whether the photosensitive components were added or not. The processing of the former may include steps such as application of initial material, pattern definition by photoexposure trough a photomask, pattern developing and final cure. As a result a patterned polymer layer is obtained. The processing of the latter may include application of initial material, cure, application and patterning of the mask, patterning cured polymer by means of plasma or wet etching with the mask, strip the mask. In some cases, like polyimides and BCB, there are available both photosensitive and non-photosensitive versions of initial material that can lead to about the same chemical composition and structure of polymer dielectric material after final cure.


In the embodiment of the present invention, BCB-layer made of photosensitive initial material is used as a planarization dielectric. However, the present invention may be applicable to different types of material, such as but not limited to other planarization materials made of both of photosensitive and non-photosensitive initial formulations.



FIG. 4 shows the planarization effect of BCB-layer. In this example, a TFT substrate is schematically shown as-having stepwise profile of the patterns 50 with nearly vertical sidewalls and profile height of 0.5-0.9 .mu·m before application of BCB. After application of BCB-film, the patterns 50 are translated into 0.3-0.5 micron profiles 52 with the sidewall angle a about 10 degrees on the surface of BCB dielectric. In this example, the BCB-polymer film was produced by spin-coating photosensitive material (photosensitive BCB) with subsequent soft bake, exposure, post-exposure bake, pattern developing, solvent removal and cure. The process conditions are shown in Table 1.









TABLE 1







Process conditions for planarization layer









Nr
Step
Conditions





1
Spin-coating
2500-4000 rpm, 25-40 sec


2
Soft-bake
60-70 degree C., 90 sec


3
Exposure
12-60 sec


4
Post-exposure bake
50-60.degree C., 30 sec


5
Developing
2-4 min


6
Solvent removal
75 degree C., 60 sec


7
Cure
190-250.degree C., 2-4 hrs









The through-via profile in the dielectric 22 of the pixel 10 is now described in detail. The OLED bottom electrode 20 is a conductive material such as indium-tin oxide (ITO) or the like, a metal film, Au, Pd, Ni or the like, sputtered, evaporated or fabricated by other method of thin film deposition. Other metals or thin multi-layer metal coatings may be also applicable. Typically, conductive layers in a flat-panel display substrate are fabricated by sputtering which has limitations in terms of step coverage. On the other hand, the roughness of the conductive layers such as metal films and ITO, increases with layer thickness. A thinner electrode layer produces a smoother surface suitable for OLED fabrication. This also reduces the cost of production. Therefore, a reduction of the thickness of the pixel electrode while maintaining its continuity over substrate profile is desirable.


If the through-via had a nearly vertical sidewall, the thickness of the metal to cover sidewall continuously, could be of the same order as the depth of the via, which is equal to the thickness of the planarization dielectric layer (in a range of few micron). In the pixel 10 of FIGS. 2 to 3, the sidewall is made sloped rather than vertical. That permits the thickness of the pixel electrode to be reduced substantially in a vertically stacked pixel structure.



FIG. 5 shows one example of a sidewall slop inside the via 8 of FIGS. 2 and 3. In FIG. 5, an angle .beta. between the OLED bottom electrode 20 on the sidewall and a TFT final material 54 is less than 90 degrees. If planarizing polymer dielectric is formed from photosensitive initial formulation, the sloped sidewall can be achieved by means of appropriate exposure conditions.


An example of sidewall slope control in the through-via for BCB-layer (i.e., dielectric 22), which is produced from photosensitive initial material, is presented in Table 2.









TABLE 2







Sidewall angle in cured BCB layer which was produced from


photosensitive BCB-material as a function of exposure time










Exposure time, sec
Sidewall angle, deg














20
45



30
33



13
27










The formation of the layer and patterning of the vias were achieved by means of spin-coating photosensitive BCB material with subsequent soft-bake, light-exposure, developing, developer solvent removal and cure. In Table 1, the sidewall angle .beta. between the planarization layer 22 and the TFT final material 54 is shown as a function of photosensitive BCB-exposure time.


After the exposure, the film underwent 30 seconds post-exposure bake at 55. degree C. and was developed for around 3 minutes in the developer solvent followed by 60 second bake at 75. degree C. for developer solvent removal and then final cure.


The conditions for spin-coating, soft-bake, exposure, post-exposure bake and final cure are variable, and may depend on pixel design requirements. Recommendations about process conditions of Photo-BCB are given, for example, by “Cyclotene™ 4000 Series Advanced Electronic Resins (Photo-BCB)” of Dow Chemical™, at hftp://www.dow.com/cyclotene/prods/402235 htm.


As shown in Table 2, the sidewall angle .beta. relates to the exposure time. The sidewall angle .beta. becomes smaller when exposure time is longer. For example, for the sidewall angle .beta. of less than 45 degrees and the planarization dielectric thickness of around 3 .mu.m, the continuous coverage of the via sidewalls was achieved with a pixel electrode thickness of order 100 nm. This is much less than the through-via depth and enables the electrode surface of the OLED bottom electrode 20 to be sufficiently smooth.


For polymer dielectric material made of non-photosensitive initial formulation, the sloped sidewall can be also achieved. For example, this can be done, by optimizing masking and plasma etching steps.


The parameters, materials and/or process of fabricating the sloped through-vias 8 are adjusted so as to: ensure the continuous sidewall coverage by a material of the pixel electrode; make the roughness of the OLED electrode small enough (1 nm order) to prevent electrical shorts between the OLED top electrode 16 and the OLED bottom electrode 20.


One example of fabricating the pixel 10 of FIG. 2 is shown in FIGS. 6 to 8. First, the TFT backplane 14 is fabricated (FIG. 6) on the substrate 30. Next, the TFT backplane 14 is coated with a planarization layer 22, where the vias 8 with sloped sidewalls are opened to the selected nodes of the TFT backplane 14 (FIG. 7). For BCB planarization layer made of photosensitive formulation, BCB material is applied by spin coating, and processed including soft-bake, UV-exposure through a photomask, post-exposure cure, developing, solvent removal and final cure. This sequence gives patterned material (with the through-vias 8) whose layer thickness and via sidewall slope depend on processing conditions, such as the exposure time as described above. Typically, surface roughness of cured BCB-layer is about 1 nm. Then, a thin residual layer on the bottom of the through-vias 8 is removed by plasma etching. Etching conditions are optimized for short etching time and minimum roughening of the BCB surface. For example, the fabrication of the pixel 10 may include plasma etching in CF4+O2 gas mixture or SF6+O2 gas mixture, a combination of high power high density plasma (for example, inductively coupled plasma) and low power reactive ion etching to achieve short etching time (few-20 seconds); and virtually no change in roughness after plasma etching.


Subsequently, a conductive material is deposited and patterned to form the OLED bottom electrode 20 (FIG. 8). Finally; the OLED layers 18 and transparent electrode top electrode 16 of the OLED are continuously applied over the pixels (FIG. 2).


The shield electrode 24 of FIG. 3 is now described in detail. As shown in FIG. 3, optional shield electrode can be incorporated in a pixel structure. After formation of the TFT backplane 14, interlayer dielectric 21 is deposited. This can be done by means of CVD, plasma-enhanced CVD process or other method. Silicon nitride, silicon oxide or silicon oxide nitride with the thickness between 0.1 and 1 .mu·m can be used as the interlayer dielectric 21. After formation of the vias in the interlayer dielectric that provide interconnection between source-drain and shield metallization layers, shield metal layer is deposited and patterned to form the shield electrodes 24 and interconnection plates 26. The interconnection plates 26 serve to carry the potential from the certain node of TFT pixel, which can be either source or drain of a TFT, to the bottom electrode of OLED device 20. Then, the planarization layer 22 is applied and patterned, as described above, which is followed by deposition and patterning of OLED bottom electrode 20, deposition of the OLED layers 18 and top transparent electrode 16.



FIG. 9 shows another example of the pixel of FIG. 1. In FIG. 9, TFT source/drain metal overlaps a contact plate 23 made of thin and smooth conductive material, such as Cr, Mo or other. The contact plate 23 is formed by deposition and patterning of conductive films on the flat portion of pixel area. Preferably, the thickness of the contact plate 23 is between 50 and 150 nm.


The contact between the certain node of the TFT circuit, which is in the source/drain metallization layer of the TFT backplane 14, and the OLED bottom electrode 20 is made via the contact plate 23 rather than directly.


Depending on structure and fabrication method of the TFT backplane 14, the source-drain metal may have surface roughness well in excess of 1 nm. This may be the case if relatively thick metal layer, especially Al or Al-alloy, is used for source/drain metallization. Such a source-drain metallization can be required for the reasons associated with particular TFT fabrication process or display design. For example, highly conductive routing metallization is beneficial for reduction of power dissipation or better OLED brightness uniformity over the substrate area, especially if the display size is large. If such a source/drain metal would be in a direct contact with the bottom electrode of the OLED 20, its surface roughness is translated into the roughness of electrode 20 inside via area. This can make this area a source of shortages between OLED electrodes 20 and 16 and therefore cause OLED failure. Thus, in the pixel of FIG. 9, the contact to the bottom OLED electrode 20 is made via the smooth contact plate 23 formed in separate layer. In addition, if the TFT final metal (source/drain-metal) 2 is Al or Al-alloy or the like, and the bottom OLED electrode 20 is conductive oxide such as ITO, having a contact to the electrode 20 made of Cr, Mo or the like instead of Al/Al-alloy will reduce contact resistance, heat dissipation in the contact and improve overall contact reliability.


The contact plate 23 is formed before source/drain metallization of the TFT backplane 14. The TFT source drain-metal, which is formed next, has to overlap some portion of the contact plate 23 but leave a sufficient portion open for formation of via 8. In addition, it is desirable that source/drain metal can be selectively etched over contact plate metal. For example, if source/drain metal is Al or Al-alloy, using Cr for contact plate would provide excellent wet-etch selectivity. Roughness of the order 1 nm is easy to achieve with thin layers of metals such as Cr, Mo, Ti produced by sputtering, evaporation or other methods. Appropriate thin multi-layer metal coating can off cause be also used for contact plate 23.


After the TFT backplane 14 with the contact plate 23 is formed, further steps, application and patterning of the planarization dielectric layer 22, deposition and patterning of the bottom OLED electrode 20, deposition of the OLED layers 18 and OLED top electrode are performed in a manner described above.



FIG. 10 shows another example of the pixel of FIG. 1. In FIG. 10, the pixel has the shield electrode 24 and the contact plate 23. As described above, the shield 24 is formed to keep electric potential on the top of the TFTs at certain desired level. As the TFT backplane 14 is formed, the interlayer dielectric 21 is deposited. Then the contact plate 23 is formed of a thin and smooth metal layer such as Cr, Mo or the like on a flat portion of the pixel area. Preferably, the thickness of the contact plate 23 is between 50 and 150 nm. The vias in the dielectric 21 are patterned to provide interconnections between the source/drain and shield metallization levels where necessary. Then, shield metal is deposited and patterned to form the shield electrodes 24 and the interconnection plates 26. The interconnection plate 26 is to overlap the contact plate 23 but to leave its sufficient portion open, as shown schematically in FIG. 10. Preferably, the shield metal is selectively etched over the contact plate metal. As the TFT backplane 14 with the shield electrodes 24 and the contact plates 23 is formed, the planarization dielectric 22 is applied and though-via 8 is formed on the top of the portion of contact plate 23, which is free from shield metal (FIG. 10). Further steps (deposition and patterning of the bottom OLED electrode 20, deposition of the OLED layers 18 and OLED top electrode) may be performed in a similar manner as described above.



FIG. 11 shows a vertically integrated TFT-OLED pixel in accordance with another embodiment of the present invention. The dielectric layer 22 and the through-via profile of FIG. 11 are similar to those of FIG. 2.


The pixel 10 of FIG. 11 further includes an additional dielectric layer, i.e., dielectric cap 40, which is deposited on the top of the OLED bottom electrode 20. The dielectric cap 40 is patterned so as to cover the via area and the edges of the OLED bottom electrode pattern leaving the rest of the OLED bottom electrode 20 uncovered. The OLED layers 18 and the top electrode 16 are deposited in a similar manner as described above.


The dielectric cap 40 is provided to avoid breakage of continuously deposited OLED top electrode layers at the pixel edges, and therefore to prevent shortage of OLED devices. Further, the dielectric cap 40 insulates the via area, which, depending on the structure and fabrication method of the TFT backplane 14, may have higher surface roughness than the rest of the OLED bottom electrode 20 and may be therefore a source of the shortage of the OLED device.


The dielectric cap 40 is made of material, which may be either polymer dielectric (such as, BCB, polyimide, other polymer dielectric) or inorganic insulator (such as, silicon oxide, silicon nitride, silicon oxide-nitride).


The thickness of the polymer insulator may be from a few 100 nm to a few micron. With the polymer insulator, as shown above, the sidewall profile of the cap pattern can be made smooth enough to enable continuous coverage with the OLED layers 18 and OLED top electrode 16.


With inorganic insulator, the thickness of the dielectric cap 40 is adjusted in such a way to enable continuous coverage of the profile steps associated with the cap layer by the OLED top electrode 16. The thickness of an inorganic insulator can be between 50 and 500 nm (most preferably 50 to 200 nm). In addition, the conditions of dry or wet patterning of an inorganic insulator, such as silicon oxide or the like, can be adjusted to form the sloped sidewalls.


One example of the fabricating process for the pixel 10 of FIG. 11 is seen from FIGS. 6 to 8, 11 and 12. As the TFT backplane 14 is formed on the substrate 30 (FIG. 6), the planarization dielectric 22 is applied where the vias 8 with sloped sidewalls are opened to the source-drain metal 2 (FIG. 7). A conductive material is deposited and patterned to form the OLED bottom electrode 20 (FIG. 8). Then, the dielectric cap 40 is disposed as described above (FIG. 12). Then, the OLED layers 18 and the electrode are disposed and which completes the formation of the pixel structure shown in FIG. 11.



FIG. 13 shows a vertically integrated pixel in accordance with another embodiment of the present invention. The pixel 10 in FIG. 13 includes the shield electrode 26 and the dielectric cap 40. First, the TFT backplane 14 is fabricated followed by deposition and patterning of the interlayer dielectric 21 and the shield electrode 24. The vias in the interlayer dielectric are formed to provide interconnection between the source/drain and interconnection plates 26 made in the shield metallization layer, where necessary. Next, shield metal is deposited and patterned to form the shield electrodes 24 and the interconnection plates 26. Next, the planarization dielectric 22 and the OLED bottom electrode 20 are deposited and patterned in a similar manner as described above. Then, the cap dielectric layer 40 is disposed and pattern as described in the previous embodiment. Finally, the OLED layers 18 and the OLED top electrode 16 are formed.


According to the embodiments of the present invention, the vertical pixel integration provides higher aperture ratio, which leads to: the possibility of using more advanced multi-transistor pixel driver circuit for improved display performance without taking up extra light-emitting area from the pixel; the possibility of using a TFT backplane, such as amorphous silicon, having lower mobility in contrast to poly-silicon, thereby simplifying the manufacturing process and reducing cost; and the reduction of current density through OLED providing higher operational stability and improved lifetime of the display device.


Further, the fabrication process sequences and critical processing details described above solve a variety of issues pertinent to vertical integration such as: smoothening out/planarizing vertical profiles in the dielectric layer 22 of the structures on the TFT substrate 14 to enable continuity of the OLED device layers 12; continuous sidewall coverage by pixel electrode material in the through-via profile in the dielectric 22; roughness of the order of 1 nm on the dielectric 22 and subsequent electrode layer, which enables successful OLED fabrication and to higher yield rate; and capping structure feature which do not comply to OLED fabrication process in terms of step height, sidewall angle and surface roughness by a dielectric layer. The via and edges of the electrode are covered with the dielectric cap 40.


While particular embodiments of the present invention have been shown and described, changes and modifications may be made to such embodiments without departing from the true scope of the invention which is defined in the claims.

Claims
  • 1. A pixel having a vertical architecture, comprising: an organic light emitting diode (OLED) device having a bottom electrode, one or more OLED layers and a transparent top electrode for emitting light;a thin-film transistor (TFT) based backplane for electrically driving the OLED device, the TFT based backplane being vertically integrated with the OLED layers and located below said bottom electrode to form a top-emitting OLED, the TFT based backplane comprising: source and drain nodes; anda thin conductive contact plate formed entirely on a flat portion of the pixel area and electrically coupled to a source or drain node, the thin conductive contact plate defined by a top surface, a bottom surface, and side surfaces, its vertical dimension defined by the top and bottom surfaces substantially smaller than its horizontal dimensions defined by the side surfaces;a planarization dielectric layer provided between the TFT based backplane and the OLED bottom electrode so as to planarize the vertical profile on the TFT based backplane, said planarization dielectric layer being in direct contact with both said TFT based backplane and said OLED bottom electrode;a via in said planarization dielectric layer to provide a communication path between said TFT based backplane and said OLED device and through said thin conductive contact plate; anda dielectric layer deposited on top of said bottom electrode and covering said via and all the edges of said bottom electrode while leaving the rest of said bottom electrode uncovered.
  • 2. The pixel as claimed in claim 1, wherein the sidewall of said via in the planarization layer is sloped against the TFT based backplane.
  • 3. The pixel as claimed in claim 2, wherein the TFT based backplane includes: a substrate;an interlayer dielectric layer on the source and drain nodes; andan interconnection plate patterned on a via of the interlayer dielectric layer and being connected to the source or drain node and the thin conductive contact plate;wherein the planarization dielectric layer planarizes the vertical profile on the substrate with the fabricated TFT based backplane, and the sloped via providing the communication path through the interconnection plate.
  • 4. The pixel as claimed in claim 3, wherein the thin conductive contact plate is formed on a flat portion of the interlayer dielectric layer such that the interconnection plate overlaps a part of the contact plate.
  • 5. The pixel as claimed in claim 3, further comprising a shield electrode disposed between the planarization dielectric layer and the interlayer dielectric layer, which is located separately from the interconnection plate.
  • 6. The pixel as claimed in claim 2, wherein the TFT based backplane includes: a substrate;wherein the thin conductive contact plate is formed such that the source or drain material overlaps the thin conductive contact plate and the planarization dielectric layer planarizes the vertical profile on the substrate with the fabricated TFT based backplane.
  • 7. The pixel as claimed in claim 6, further comprising a shield electrode formed separately from said thin conductive contact plate.
  • 8. The pixel as claimed in claim 1, in which said dielectric layer is patterned in such a way that it insulates the OLED layers from the OLED bottom electrode at pixel edges and in and around the via while leaving the rest of the OLED bottom electrode in the direct contact with the OLED layers.
  • 9. The pixel as claimed in claim 8, wherein said dielectric layer includes polymer dielectric or inorganic insulator.
  • 10. The pixel as claimed in claim 8, wherein said dielectric layer includes material selected from the group from BCB, polyimide, polymer dielectric, silicon nitride and a thin film inorganic.
  • 11. The pixel as claimed in claim 1, wherein the pixel has a roughness of the order of 1 nm on the planarization dielectric layer and subsequent electrode layer.
  • 12. The pixel as claimed in claim 1, further comprising continuous sidewall coverage by pixel electrode material in the via profile in the planarization dielectric layer.
  • 13. The pixel as claimed in claim 1, further comprising a shield electrode formed over the TFT.
  • 14. The pixel as claimed in claim 1, wherein the planarization dielectric layer includes photosensitive benzocylobutene (BCB), the slope of the via being adjusted by the exposure time of the photosensitive BCB.
  • 15. A method of fabricating a pixel, the pixel having an organic light emitting diode (OLED) bottom electrode, one or more OLED layers on the OLED bottom electrode, a transparent top electrode, and a thin-film transistor (TFT) based backplane for electrically driving the OLED and including a substrate, the method comprising the steps of: providing the TFT based backplane on said substrate, including forming within the TFT based backplane a thin conductive contact plate entirely on a flat portion of the pixel area and electrically coupled to a source or drain node of the TFT based backplane, the thin conductive contact plate defined by a top surface, a bottom surface, and side surfaces, its vertical dimension defined by the top and bottom surfaces substantially smaller than its horizontal dimensions defined by the side surfaces;providing a dielectric layer on the TFT based backplane, including the step of planarizing a vertical profile in the dielectric layer so as to planarize the vertical profile on the substrate with the TFT based backplane, said planarized dielectric layer being in direct contact with said TFT based backplane;forming a via in said planarization dielectric layer to provide a communication path between said TFT based backplane and said OLED device and through said thin conductive contact plate;depositing said OLED bottom electrode directly on top of said planarized dielectric layer and extending through said via into direct contact with said thin conductive contact plate of said TFT based backplane; anddepositing a dielectric layer on top of said bottom electrode and covering said via and all the edges of said bottom electrode while leaving the rest of said bottom electrode uncovered.
  • 16. A method as claimed in claim 15, wherein forming said via which provides the communication path between the TFT backplane and the OLED device through the planarization dielectric layer, comprises forming the via such that the sidewall of the via in the planarization layer is sloped against the TFT based backplane.
  • 17. A method as claimed in claim 15, wherein providing said dielectric layer between the OLED bottom electrode and the OLED layers, comprises patterning the dielectric layer in such a way that it insulates the OLED layers from the OLED bottom electrode at pixel edges and in and around the via while leaving the rest of the OLED bottom electrode in the direct contact with the OLED layers.
  • 18. A method as claimed in claim 15, wherein the planarization dielectric layer including photosensitive benzocylobutene (BCB), further comprising the step of adjusting the exposure time of the photosensitive BCB such that the sidewall of the via in the planarization layer is sloped against the TFT based backplane.
  • 19. A method as claimed in claim 15, wherein the pixel is formed such that the pixel has a roughness of the order of 1 nm on the planarization dielectric layer and subsequent electrode layer.
  • 20. A method as claimed in claim 15, further comprising the step of providing continuous sidewall coverage by pixel electrode material in the via profile in the planarization dielectric layer.
  • 21. A method of fabricating a pixel, the pixel having an organic light emitting diode (OLED) bottom electrode, one or more OLED layers on the OLED bottom electrode, and a thin-film transistor (TFT) based backplane for electrically driving the OLED and including a substrate, the method comprising the steps of: providing the TFT based backplane on said substrate, including forming within the TFT based backplane a thin conductive contact plate entirely on a flat portion of the pixel area and electrically coupled to a source or drain node of the TFT based backplane, the thin conductive contact plate defined by a top surface, a bottom surface, and side surfaces, its vertical dimension defined by the top and bottom surfaces substantially smaller than its horizontal dimensions defined by the side surfaces;providing a dielectric layer on the TFT based backplane, including the step of planarizing a vertical profile in the dielectric layer so as to planarize the vertical profile on the substrate with the TFT based backplane, said planarized dielectric layer being in direct contact with said TFT based backplane;forming a via in said planarization dielectric layer to provide a communication path between said TFT based backplane and said OLED device and through said thin conductive contact plate;depositing said OLED bottom electrode directly on top of said planarized dielectric layer and extending through said via into direct contact with said thin conductive contact plate of said TFT based backplane, anddepositing a dielectric layer on top of said bottom electrode and covering said via and all the edges of said bottom electrode while leaving the rest of said bottom electrode uncovered.
Priority Claims (1)
Number Date Country Kind
2419704 Feb 2003 CA national
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/112,654, filed May 20, 2011, which is a continuation of U.S. application Ser. No. 10/546,695, filed May 18, 2006, which is a U.S. National Stage of International Application No. PCT/CA2004/00256, filed Feb. 24, 2003, which claims priority to Canadian Patent No. 2,419,704, filed Feb. 24, 2003, each of which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (363)
Number Name Date Kind
4354162 Wright Oct 1982 A
4758831 Kasahara et al. Jul 1988 A
4963860 Stewart Oct 1990 A
4975691 Lee Dec 1990 A
4996523 Bell et al. Feb 1991 A
5051739 Hayashida et al. Sep 1991 A
5222082 Plus Jun 1993 A
5266515 Robb et al. Nov 1993 A
5498880 Lee et al. Mar 1996 A
5589847 Lewis Dec 1996 A
5619033 Weisfield Apr 1997 A
5648276 Hara et al. Jul 1997 A
5670973 Bassetti et al. Sep 1997 A
5684365 Tang et al. Nov 1997 A
5686935 Weisbrod Nov 1997 A
5712653 Katoh et al. Jan 1998 A
5714968 Ikeda Feb 1998 A
5747928 Shanks et al. May 1998 A
5748160 Shieh et al. May 1998 A
5784042 Ono et al. Jul 1998 A
5790234 Matsuyama Aug 1998 A
5815303 Berlin Sep 1998 A
5870071 Kawahata Feb 1999 A
5874803 Garbuzov et al. Feb 1999 A
5880582 Sawada Mar 1999 A
5903248 Irwin May 1999 A
5917280 Burrows et al. Jun 1999 A
5923794 McGrath et al. Jul 1999 A
5952789 Stewart et al. Sep 1999 A
5990629 Yamada et al. Nov 1999 A
6023259 Howard et al. Feb 2000 A
6069365 Chow et al. May 2000 A
6081131 Ishii Jun 2000 A
6091203 Kawashima et al. Jul 2000 A
6097360 Holloman Aug 2000 A
6144222 Ho Nov 2000 A
6157583 Starnes et al. Dec 2000 A
6166489 Thompson et al. Dec 2000 A
6177915 Beeteson et al. Jan 2001 B1
6225846 Wada et al. May 2001 B1
6229508 Kane May 2001 B1
6232939 Saito et al. May 2001 B1
6246180 Nishigaki Jun 2001 B1
6252248 Sano et al. Jun 2001 B1
6259424 Kurogane Jul 2001 B1
6274887 Yamazaki et al. Aug 2001 B1
6288696 Holloman Sep 2001 B1
6300928 Kim Oct 2001 B1
6303963 Ohtani et al. Oct 2001 B1
6306694 Yamazaki et al. Oct 2001 B1
6307322 Dawson et al. Oct 2001 B1
6316786 Mueller et al. Nov 2001 B1
6320325 Cok et al. Nov 2001 B1
6323631 Juang Nov 2001 B1
6323832 Nishizawa et al. Nov 2001 B1
6345085 Yeo et al. Feb 2002 B1
6348835 Sato et al. Feb 2002 B1
6365917 Yamazaki Apr 2002 B1
6373453 Yudasaka Apr 2002 B1
6384427 Yamazaki et al. May 2002 B1
6392617 Gleason May 2002 B1
6399988 Yamazaki Jun 2002 B1
6414661 Shen et al. Jul 2002 B1
6420758 Nakajima Jul 2002 B1
6420834 Yamazaki et al. Jul 2002 B2
6420988 Azami et al. Jul 2002 B1
6433488 Bu Aug 2002 B1
6445376 Parrish Sep 2002 B2
6468638 Jacobsen et al. Oct 2002 B2
6489952 Tanaka et al. Dec 2002 B1
6501098 Yamazaki Dec 2002 B2
6501466 Yamagashi et al. Dec 2002 B1
6512271 Yamazaki et al. Jan 2003 B1
6518594 Nakajima et al. Feb 2003 B1
6524895 Yamazaki et al. Feb 2003 B2
6531713 Yamazaki Mar 2003 B1
6559594 Fukunaga et al. May 2003 B2
6573195 Yamazaki et al. Jun 2003 B1
6573584 Nagakari et al. Jun 2003 B1
6576926 Yamazaki et al. Jun 2003 B1
6577302 Hunter Jun 2003 B2
6580408 Bae et al. Jun 2003 B1
6580657 Sanford et al. Jun 2003 B2
6583775 Sekiya et al. Jun 2003 B1
6583776 Yamazaki et al. Jun 2003 B2
6587086 Koyama Jul 2003 B1
6593691 Nishi et al. Jul 2003 B2
6594606 Everitt Jul 2003 B2
6597203 Forbes Jul 2003 B2
6611108 Kimura Aug 2003 B2
6617644 Yamazaki et al. Sep 2003 B1
6618030 Kane et al. Sep 2003 B2
6641933 Yamazaki et al. Nov 2003 B1
6661180 Koyama Dec 2003 B2
6661397 Mikami et al. Dec 2003 B2
6670637 Yamazaki et al. Dec 2003 B2
6677713 Sung Jan 2004 B1
6680577 Inukai et al. Jan 2004 B1
6687266 Ma et al. Feb 2004 B1
6690344 Takeuchi et al. Feb 2004 B1
6693388 Oomura Feb 2004 B2
6693610 Shannon et al. Feb 2004 B2
6697057 Koyama et al. Feb 2004 B2
6720942 Lee et al. Apr 2004 B2
6734636 Sanford et al. May 2004 B2
6738034 Kaneko et al. May 2004 B2
6738035 Fan May 2004 B1
6771028 Winters Aug 2004 B1
6777712 Sanford et al. Aug 2004 B2
6780687 Nakajima et al. Aug 2004 B2
6806638 Lih et al. Oct 2004 B2
6806857 Sempel et al. Oct 2004 B2
6809706 Shimoda Oct 2004 B2
6859193 Yumoto Feb 2005 B1
6861670 Ohtani et al. Mar 2005 B1
6873117 Ishizuka Mar 2005 B2
6873320 Nakamura Mar 2005 B2
6878968 Ohnuma Apr 2005 B1
6909114 Yamazaki Jun 2005 B1
6909419 Zavracky et al. Jun 2005 B2
6919871 Kwon Jul 2005 B2
6937215 Lo Aug 2005 B2
6940214 Komiya et al. Sep 2005 B1
6943500 LeChevalier Sep 2005 B2
6954194 Matsumoto et al. Oct 2005 B2
6956547 Bae et al. Oct 2005 B2
6995510 Murakami et al. Feb 2006 B2
6995519 Arnold et al. Feb 2006 B2
7022556 Adachi Apr 2006 B1
7023408 Chen et al. Apr 2006 B2
7027015 Booth, Jr. et al. Apr 2006 B2
7034793 Sekiya et al. Apr 2006 B2
7088051 Cok Aug 2006 B1
7106285 Naugler Sep 2006 B2
7116058 Lo et al. Oct 2006 B2
7129914 Knapp et al. Oct 2006 B2
7129917 Yamazaki et al. Oct 2006 B2
7141821 Yamazaki et al. Nov 2006 B1
7161566 Cok et al. Jan 2007 B2
7193589 Yoshida et al. Mar 2007 B2
7199516 Seo et al. Apr 2007 B2
7220997 Nakata May 2007 B2
7235810 Yamazaki et al. Jun 2007 B1
7245277 Ishizuka Jul 2007 B2
7248236 Nathan et al. Jul 2007 B2
7264979 Yamagata et al. Sep 2007 B2
7274345 Imamura et al. Sep 2007 B2
7274363 Ishizuka et al. Sep 2007 B2
7279711 Yamazaki et al. Oct 2007 B1
7304621 Oomori et al. Dec 2007 B2
7310092 Imamura Dec 2007 B2
7315295 Kimura Jan 2008 B2
7317429 Shirasaki et al. Jan 2008 B2
7319465 Mikami et al. Jan 2008 B2
7321348 Cok et al. Jan 2008 B2
7339636 Voloschenko et al. Mar 2008 B2
7355574 Leon et al. Apr 2008 B1
7358941 Ono et al. Apr 2008 B2
7402467 Kadono et al. Jul 2008 B1
7414600 Nathan et al. Aug 2008 B2
7432885 Asano et al. Oct 2008 B2
7474285 Kimura Jan 2009 B2
7485478 Yamagata et al. Feb 2009 B2
7502000 Yuki et al. Mar 2009 B2
7535449 Miyazawa May 2009 B2
7554512 Steer Jun 2009 B2
7569849 Nathan et al. Aug 2009 B2
7619594 Hu Nov 2009 B2
7619597 Nathan et al. Nov 2009 B2
7697052 Yamazaki et al. Apr 2010 B1
7825419 Yamagata et al. Nov 2010 B2
7859492 Kohno Dec 2010 B2
7868859 Tomida et al. Jan 2011 B2
7876294 Sasaki et al. Jan 2011 B2
7948170 Striakhilev et al. May 2011 B2
7969390 Yoshida Jun 2011 B2
7995010 Yamazaki et al. Aug 2011 B2
8044893 Nathan et al. Oct 2011 B2
8115707 Nathan et al. Feb 2012 B2
8378362 Heo et al. Feb 2013 B2
8493295 Yamazaki et al. Jul 2013 B2
8497525 Yamagata et al. Jul 2013 B2
20010002703 Koyama Jun 2001 A1
20010004190 Nishi et al. Jun 2001 A1
20010013806 Notani Aug 2001 A1
20010015653 De Jong et al. Aug 2001 A1
20010020926 Kujik Sep 2001 A1
20010024186 Kane Sep 2001 A1
20010026127 Yoneda et al. Oct 2001 A1
20010026179 Saeki Oct 2001 A1
20010026257 Kimura Oct 2001 A1
20010030323 Ikeda Oct 2001 A1
20010033199 Aoki Oct 2001 A1
20010038098 Yamazaki et al. Nov 2001 A1
20010043173 Troutman Nov 2001 A1
20010045929 Prache et al. Nov 2001 A1
20010052606 Sempel et al. Dec 2001 A1
20010052898 Osame et al. Dec 2001 A1
20020000576 Inukai Jan 2002 A1
20020011796 Koyama Jan 2002 A1
20020011799 Kimura Jan 2002 A1
20020011981 Kujik Jan 2002 A1
20020015031 Fujita et al. Feb 2002 A1
20020015032 Koyama et al. Feb 2002 A1
20020030528 Matsumoto et al. Mar 2002 A1
20020030647 Hack et al. Mar 2002 A1
20020036463 Yoneda et al. Mar 2002 A1
20020047852 Inukai et al. Apr 2002 A1
20020048829 Yamazaki et al. Apr 2002 A1
20020050795 Imura May 2002 A1
20020053401 Ishikawa et al. May 2002 A1
20020070909 Asano et al. Jun 2002 A1
20020080108 Wang Jun 2002 A1
20020084463 Sanford et al. Jul 2002 A1
20020101172 Bu Aug 2002 A1
20020101433 McKnight Aug 2002 A1
20020113248 Yamagata et al. Aug 2002 A1
20020122308 Ikeda Sep 2002 A1
20020130686 Forbes Sep 2002 A1
20020154084 Tanaka et al. Oct 2002 A1
20020158823 Zavracky et al. Oct 2002 A1
20020163314 Yamazaki et al. Nov 2002 A1
20020167471 Everitt Nov 2002 A1
20020180369 Koyama Dec 2002 A1
20020180721 Kimura et al. Dec 2002 A1
20020186214 Siwinski Dec 2002 A1
20020190332 Lee et al. Dec 2002 A1
20020190924 Asano et al. Dec 2002 A1
20020190971 Nakamura et al. Dec 2002 A1
20020195967 Kim et al. Dec 2002 A1
20020195968 Sanford et al. Dec 2002 A1
20030020413 Oomura Jan 2003 A1
20030030603 Shimoda Feb 2003 A1
20030062524 Kimura Apr 2003 A1
20030063081 Kimura et al. Apr 2003 A1
20030071804 Yamazaki et al. Apr 2003 A1
20030071821 Sundahl Apr 2003 A1
20030076048 Rutherford Apr 2003 A1
20030090445 Chen et al. May 2003 A1
20030090447 Kimura May 2003 A1
20030090481 Kimura May 2003 A1
20030095087 Libsch May 2003 A1
20030107560 Yumoto et al. Jun 2003 A1
20030111966 Mikami et al. Jun 2003 A1
20030122745 Miyazawa Jul 2003 A1
20030140958 Yang et al. Jul 2003 A1
20030146693 Ishihara Aug 2003 A1
20030151569 Lee et al. Aug 2003 A1
20030169219 LeChevalier Sep 2003 A1
20030174152 Noguchi Sep 2003 A1
20030178617 Appenzeller et al. Sep 2003 A1
20030179626 Sanford et al. Sep 2003 A1
20030197663 Lee et al. Oct 2003 A1
20030206060 Suzuki Nov 2003 A1
20030230980 Forrest et al. Dec 2003 A1
20040027063 Nishikawa Feb 2004 A1
20040056604 Shih et al. Mar 2004 A1
20040066357 Kawasaki Apr 2004 A1
20040070557 Asano et al. Apr 2004 A1
20040080262 Park et al. Apr 2004 A1
20040080470 Yamazaki et al. Apr 2004 A1
20040090400 Yoo May 2004 A1
20040108518 Jo Jun 2004 A1
20040113903 Mikami et al. Jun 2004 A1
20040129933 Nathan et al. Jul 2004 A1
20040130516 Nathan et al. Jul 2004 A1
20040135749 Kondakov et al. Jul 2004 A1
20040145547 Oh Jul 2004 A1
20040150592 Mizukoshi et al. Aug 2004 A1
20040150594 Koyama et al. Aug 2004 A1
20040150595 Kasai Aug 2004 A1
20040155841 Kasai Aug 2004 A1
20040174347 Sun et al. Sep 2004 A1
20040174349 Libsch Sep 2004 A1
20040183759 Stevenson et al. Sep 2004 A1
20040189627 Shirasaki et al. Sep 2004 A1
20040196275 Hattori Oct 2004 A1
20040201554 Satoh Oct 2004 A1
20040207615 Yumoto Oct 2004 A1
20040233125 Tanghe et al. Nov 2004 A1
20040239596 Ono et al. Dec 2004 A1
20040252089 Ono et al. Dec 2004 A1
20040257355 Naugler Dec 2004 A1
20040263437 Hattori Dec 2004 A1
20050007357 Yamashita et al. Jan 2005 A1
20050030267 Tanghe et al. Feb 2005 A1
20050035709 Furuie et al. Feb 2005 A1
20050067970 Libsch et al. Mar 2005 A1
20050067971 Kane Mar 2005 A1
20050068270 Awakura Mar 2005 A1
20050088085 Nishikawa et al. Apr 2005 A1
20050088103 Kageyama et al. Apr 2005 A1
20050110420 Arnold et al. May 2005 A1
20050117096 Voloschenko et al. Jun 2005 A1
20050140598 Kim et al. Jun 2005 A1
20050140610 Smith et al. Jun 2005 A1
20050145891 Abe Jul 2005 A1
20050156831 Yamazaki et al. Jul 2005 A1
20050168416 Hashimoto et al. Aug 2005 A1
20050206590 Sasaki et al. Sep 2005 A1
20050225686 Brummack et al. Oct 2005 A1
20050260777 Brabec et al. Nov 2005 A1
20050269959 Uchino et al. Dec 2005 A1
20050269960 Ono et al. Dec 2005 A1
20050285822 Reddy et al. Dec 2005 A1
20050285825 Eom et al. Dec 2005 A1
20060007072 Choi et al. Jan 2006 A1
20060012310 Chen et al. Jan 2006 A1
20060027807 Nathan et al. Feb 2006 A1
20060030084 Young Feb 2006 A1
20060038758 Routley et al. Feb 2006 A1
20060044227 Hadcock Mar 2006 A1
20060066527 Chou Mar 2006 A1
20060092185 Jo et al. May 2006 A1
20060232522 Roy et al. Oct 2006 A1
20060261841 Fish Nov 2006 A1
20060264143 Lee et al. Nov 2006 A1
20060273997 Nathan et al. Dec 2006 A1
20060284801 Yoon et al. Dec 2006 A1
20070001937 Park et al. Jan 2007 A1
20070001939 Hashimoto et al. Jan 2007 A1
20070008268 Park et al. Jan 2007 A1
20070008297 Bassetti Jan 2007 A1
20070046195 Chin et al. Mar 2007 A1
20070069998 Naugler et al. Mar 2007 A1
20070080905 Takahara Apr 2007 A1
20070080906 Tanabe Apr 2007 A1
20070080908 Nathan et al. Apr 2007 A1
20070080918 Kawachi et al. Apr 2007 A1
20070103419 Uchino et al. May 2007 A1
20070182671 Nathan et al. Aug 2007 A1
20070273294 Nagayama Nov 2007 A1
20070285359 Ono Dec 2007 A1
20070296672 Kim et al. Dec 2007 A1
20080042948 Yamashita et al. Feb 2008 A1
20080055209 Cok Mar 2008 A1
20080074413 Ogura Mar 2008 A1
20080088549 Nathan et al. Apr 2008 A1
20080122803 Izadi et al. May 2008 A1
20080230118 Nakatani et al. Sep 2008 A1
20090032807 Shinohara et al. Feb 2009 A1
20090051283 Cok et al. Feb 2009 A1
20090160743 Tomida et al. Jun 2009 A1
20090162961 Deane Jun 2009 A1
20090174628 Wang et al. Jul 2009 A1
20090213046 Nam Aug 2009 A1
20100052524 Kinoshita Mar 2010 A1
20100078230 Rosenblatt et al. Apr 2010 A1
20100079711 Tanaka Apr 2010 A1
20100097335 Jung et al. Apr 2010 A1
20100133994 Song et al. Jun 2010 A1
20100134456 Oyamada Jun 2010 A1
20100140600 Clough et al. Jun 2010 A1
20100156279 Tamura et al. Jun 2010 A1
20100237374 Chu et al. Sep 2010 A1
20100328294 Sasaki et al. Dec 2010 A1
20110090210 Sasaki et al. Apr 2011 A1
20110133636 Matsuo et al. Jun 2011 A1
20110180825 Lee et al. Jul 2011 A1
20120212468 Govil Aug 2012 A1
20130009930 Cho et al. Jan 2013 A1
20130032831 Chaji et al. Feb 2013 A1
20130113785 Sumi May 2013 A1
Foreign Referenced Citations (84)
Number Date Country
1294034 Jan 1992 CA
2109951 Nov 1992 CA
2 249 592 Jul 1998 CA
2 368 386 Sep 1999 CA
2 242 720 Jan 2000 CA
2 354 018 Jun 2000 CA
2 436 451 Aug 2002 CA
2 438 577 Aug 2002 CA
2 483 645 Dec 2003 CA
2 463 653 Jan 2004 CA
2498136 Mar 2004 CA
2522396 Nov 2004 CA
2443206 Mar 2005 CA
2472671 Dec 2005 CA
2567076 Jan 2006 CA
2526782 Apr 2006 CA
1381032 Nov 2002 CN
1448908 Oct 2003 CN
1776922 May 2006 CN
20 2006 00542 Jun 2006 DE
0 940 796 Sep 1999 EP
1 028 471 Aug 2000 EP
1 103 947 May 2001 EP
1 130 565 Sep 2001 EP
1 184 833 Mar 2002 EP
1 194 013 Apr 2002 EP
1 310 939 May 2003 EP
1 335 430 Aug 2003 EP
1 372 136 Dec 2003 EP
1 381 019 Jan 2004 EP
1 418 566 May 2004 EP
1 429 312 Jun 2004 EP
1 439 520 Jul 2004 EP
1 465 143 Oct 2004 EP
1 467 408 Oct 2004 EP
1 517 290 Mar 2005 EP
1 521 203 Apr 2005 EP
2317499 May 2011 EP
2 205 431 Dec 1988 GB
09 090405 Apr 1997 JP
10-153759 Jun 1998 JP
10-254410 Sep 1998 JP
11 231805 Aug 1999 JP
11-282419 Oct 1999 JP
2000056847 Feb 2000 JP
2000-077192 Mar 2000 JP
2000-089198 Mar 2000 JP
2000-352941 Dec 2000 JP
2002-91376 Mar 2002 JP
2002-268576 Sep 2002 JP
2002-278513 Sep 2002 JP
2002-333862 Nov 2002 JP
2003-022035 Jan 2003 JP
2003-076331 Mar 2003 JP
2003-150082 May 2003 JP
2003-177709 Jun 2003 JP
2003-271095 Sep 2003 JP
2003-308046 Oct 2003 JP
2005-057217 Mar 2005 JP
2006065148 Mar 2006 JP
2009282158 Dec 2009 JP
485337 May 2002 TW
502233 Sep 2002 TW
538650 Jun 2003 TW
569173 Jan 2004 TW
WO 9425954 Nov 1994 WO
WO 9948079 Sep 1999 WO
WO 0127910 Apr 2001 WO
WO 02067327 Aug 2002 WO
WO 03034389 Apr 2003 WO
WO 03063124 Jul 2003 WO
WO 03077231 Sep 2003 WO
WO 03105117 Dec 2003 WO
WO 2004003877 Jan 2004 WO
WO 2004034364 Apr 2004 WO
WO 2005022498 Mar 2005 WO
WO 2005029455 Mar 2005 WO
WO 2005055185 Jun 2005 WO
WO 2006053424 May 2006 WO
WO 2006063448 Jun 2006 WO
WO 2006137337 Dec 2006 WO
WO 2007003877 Jan 2007 WO
WO 2007079572 Jul 2007 WO
WO 2010023270 Mar 2010 WO
Non-Patent Literature Citations (81)
Entry
Ahnood et al.: “Effect of threshold voltage instability on field effect mobility in thin film transistors deduced from constant current measurements”; dated Aug. 2009 (3 pages).
Alexander et al.: “Pixel circuits and drive schemes for glass and elastic AMOLED displays”; dated Jul. 2005 (9 pages).
Alexander et al.: “Unique Electrical Measurement Technology for Compensation, Inspection, and Process Diagnostics of AMOLED HDTV”; dated May 2010 (4 pages).
Ashtiani et al.: “AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation”; dated Mar. 2007 (4 pages).
Chaji et al.: “A Current-Mode Comparator for Digital Calibration of Amorphous Silicon AMOLED Displays”; dated Jul. 2008 (5 pages).
Chaji et al.: “A fast settling current driver based on the CCII for AMOLED displays”; dated Dec. 2009 (6 pages).
Chaji et al.: “A Low-Cost Stable Amorphous Silicon AMOLED Display with Full V˜T- and V˜O˜L˜E˜D Shift Compensation”; dated May 2007 (4 pages).
Chaji et al.: “A low-power driving scheme for a-Si:H active-matrix organic light-emitting diode displays”; dated Jun. 2005 (4 pages).
Chaji et al.: “A low-power high-performance digital circuit for deep submicron technologies”; dated Jun. 2005 (4 pages).
Chaji et al.: “A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs”; dated Oct. 2005 (3 pages).
Chaji et al.: “A Novel Driving Scheme and Pixel Circuit for AMOLED Displays”; dated Jun. 2006 (4 pages).
Chaji et al.: “A novel driving scheme for high-resolution large-area a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages).
Chaji et al.: “A Stable Voltage-Programmed Pixel Circuit for a-Si:H AMOLED Displays”; dated Dec. 2006 (12 pages).
Chaji et al.: “A Sub-μA fast-settling current-programmed pixel circuit for AMOLED displays”; dated Sep. 2007.
Chaji et al.: “An Enhanced and Simplified Optical Feedback Pixel Circuit for AMOLED Displays”; dated Oct. 2006.
Chaji et al.: “Compensation technique for DC and transient instability of thin film transistor circuits for large-area devices”; dated Aug. 2008.
Chaji et al.: “Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel”; dated Apr. 2005 (2 pages).
Chaji et al.: “Dynamic-effect compensating technique for stable a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages).
Chaji et al.: “Electrical Compensation of OLED Luminance Degradation”; dated Dec. 2007 (3 pages).
Chaji et al.: “eUTDSP: a design study of a new VLIW-based DSP architecture”; dated May 2003 (4 pages).
Chaji et al.: “Fast and Offset-Leakage Insensitive Current-Mode Line Driver for Active Matrix Displays and Sensors”; dated Feb. 2009 (8 pages).
Chaji et al.: “High Speed Low Power Adder Design With a New Logic Style: Pseudo Dynamic Logic (SDL)”; dated Oct. 2001 (4 pages).
Chaji et al.: “High-precision, fast current source for large-area current-programmed a-Si flat panels”; dated Sep. 2006 (4 pages).
Chaji et al.: “Low-Cost AMOLED Television with IGNIS Compensating Technology”; dated May 2008 (4 pages).
Chaji et al.: “Low-Cost Stable a-Si:H AMOLED Display for Portable Applications”; dated Jun. 2006 (4 pages).
Chaji et al.: “Low-Power Low-Cost Voltage-Programmed a-Si:H AMOLED Display”; dated Jun. 2008 (5 pages).
Chaji et al.: “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging”; dated Nov. 2008 (3 pages).
Chaji et al.: “Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays”; dated May 2007 (6 pages).
Chaji et al.: “Pseudo dynamic logic (SDL): a high-speed and low-power dynamic logic family”; dated 2002 (4 pages).
Chaji et al.: “Stable a-Si:H circuits based on short-term stress stability of amorphous silicon thin film transistors”; dated May 2006 (4 pages).
Chaji et al.: “Stable Pixel Circuit for Small-Area High-Resolution a-Si:H AMOLED Displays”; dated Oct. 2008 (6 pages).
Chaji et al.: “Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback”; dated Feb. 2010 (2 pages).
Chaji et al.: “Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays”; dated 2008 (177 pages).
European Search Report and Written Opinion for Application No. 08 86 5338 dated Nov. 2, 2011 (7 pages).
European Search Report for European Application No. EP 04 78 6661 dated Mar. 9, 2009.
European Search Report for European Application No. EP 05 75 9141 dated Oct. 30, 2009.
European Search Report for European Application No. EP 05 82 1114 dated Mar. 27, 2009 (2 pages).
European Search Report for European Application No. EP 07 71 9579 dated May 20, 2009.
European Search Report dated Mar. 26, 2012 in corresponding European Patent Application No. 10000421.7 (6 pages).
Extended European Search Report dated Apr. 27, 2011 issued during prosecution of European patent application No. 09733076.5 (13 pages).
Goh et al., “A New a-Si:H Thin Film Transistor Pixel Circul for Active-Matrix Organic Light-Emitting Diodes”, IEEE Electron Device Letters, vol. 24, No. 9, Sep. 2003, 4 pages.
International Search Report for International Application No. PCT/CA02/00180 dated Jul. 31, 2002 (3 pages).
International Search Report for International Application No. PCT/CA2004/001741 dated Feb. 21, 2005.
International Search Report for International Application No. PCT/CA2005/001844 dated Mar. 28, 2006 (2 pages).
International Search Report for International Application No. PCT/CA2005/001007 dated Oct. 18, 2005.
International Search Report for International Application No. PCT/CA2007/000652 dated Jul. 25, 2007.
International Search Report for International Application No. PCT/CA2008/002307, dated Apr. 28. 2009 (3 pages).
International Search Report for International Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages).
International Search Report dated Jul. 30, 2009 for International Application No. PCT/CA2009/000501 (4 pages).
Jafarabadiashtiani et al.: “A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback”; dated 2005 (4 pages).
Lee et al.: “Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon”; dated 2006 (6 pages).
Ma e y et al: “Organic Light-Emitting Diode/Thin Film Transistor Integration for foldable Displays” Conference record of the 1997 International display research conference and international workshops on LCD technology and emissive technology. Toronto, Sep. 15-19, 1997 (6 pages).
Matsueda y et al.: “35.1: 2.5-in. AMOLED with Integrated 6-bit Gamma Compensated Digital Data Driver”; dated May 2004.
Nathan et al.: “Backplane Requirements for Active Matrix Organic Light Emitting Diode Displays”; dated 2006 (16 pages).
Nathan et al.: “Call for papers second international workshop on compact thin-film transistor (TFT) modeling for circuit simulation”; dated Sep. 2009 (1 page).
Nathan et al.: “Driving schemes for a-Si and LTPS AMOLED displays”; dated Dec. 2005 (11 pages).
Nathan et al.: “Invited Paper: a -Si for AMOLED—Meeting the Performance and Cost Demands of Display Applications (Cell Phone to HDTV)”; dated 2006 (4 pages).
Nathan et al.: “Thin film imaging technology on glass and plastic” ICM 2000, Proceedings of the 12th International Conference on Microelectronics, (IEEE Cat. No. 00EX453), Tehran Iran; dated Oct. 31-Nov. 2, 2000, pp. 11-14, ISBN: 964-360-057-2, p. 13, col. 1, line 11-48; (4 pages).
Nathan et al., “Amorphous Silicon Thin Film Transistor Circuit Integration for Organic LED Displays on Glass and Plastic”, IEEE Journal of Solid-State Circuits, vol. 39, No. 9, Sep. 2004, pp. 1477-1486.
Office Action issued in Chinese Patent Application 200910246264.4 dated Jul. 5, 2013; 8 pages.
Patent Abstracts of Japan, vol. 2000, No. 09, Oct. 13, 2000—JP 2000 172199 A, Jun. 3, 2000, abstract.
Patent Abstracts of Japan, vol. 2002, No. 03, Apr. 3, 2002 (Apr. 4, 2004 & JP 2001 318627 A (Semiconductor EnergyLab DO LTD), Nov. 16, 2001, abstract, paragraphs '01331-01801, paragraph '01691, paragraph '01701, paragraph '01721 and figure 10.
Philipp: “Charge transfer sensing” Sensor Review, vol. 19, No. 2, Dec. 31, 1999 (Dec. 31, 1999), 10 pages.
Rafati et al.: “Comparison of a 17 b multiplier in Dual-rail domino and in Dual-rail D L (D L) logic styles”; dated 2002 (4 pages).
Safavaian et al.: “Three-TFT image sensor for real-time digital X-ray imaging”; dated Feb. 2, 2006 (2 pages).
Safavian et al.: “3-TFT active pixel sensor with correlated double sampling readout circuit for real-time medical x-ray imaging”; dated Jun. 2006 (4 pages).
Safavian et al.: “A novel current scaling active pixel sensor with correlated double sampling readout circuit for real time medical x-ray imaging”; dated May 2007 (7 pages).
Safavian et al.: “A novel hybrid active-passive pixel with correlated double sampling CMOS readout circuit for medical x-ray imaging”; dated May 2008 (4 pages).
Safavian et al.: “Self-compensated a-Si:H detector with current-mode readout circuit for digital X-ray fluoroscopy”; dated Aug. 2005 (4 pages).
Safavian et al.: “TFT active image sensor with current-mode readout circuit for digital x-ray fluoroscopy [5969D-82]”; dated Sep. 2005 (9 pages).
Sanford, James L., et al., “4.2 TFT AMOLED Pixel Circuits and Driving Methods”, SID 03 Digest, ISSN/0003, 2003, pp. 10-13.
Stewart M. et al., “Polysilicon TFT technology for active matrix OLED displays” IEEE transactions on electron devices, vol. 48, No. 5; Dated May 2001 (7 pages).
Tatsuya Sasaoka et al., 24.4L; Late-News Paper: A 13.0-inch AM-Oled Display with Top Emitting Structure and Adaptive Current Mode Programmed Pixel Circuit (TAC), SID 01 Digest, (2001), pp. 384-387.
Vygranenko et al.: “Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition”; dated 2009.
Wang et al.: “Indium oxides by reactive ion beam assisted evaporation: From material study to device application”; dated Mar. 2009 (6 pages).
Written Opinion dated Jul. 30, 2009 for International Application No. PCT/CA2009/000501 (6 pages).
Yi He et al., “Current-Source a-Si:H Thin Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays”, IEEE Electron Device Letters, vol. 21, No. 12, Dec. 2000, pp. 590-592.
Zhiguo Meng et al; “24.3: Active-Matrix Organic Light-Emitting Diode Display implemented Using Metal-Induced Unilaterally Crystallized Polycrystalline Silicon Thin-Film Transistors”, SID 01Digest, (2001), pp. 380-383.
International Search Report for Application No. PCT/IB2014/059409, Canadian Intellectual Property Office, dated Jun. 12, 2014 (4 pages).
Written Opinion for Application No. PCT/IB2014/059409, Canadian Intellectual Property Office, dated Jun. 12, 2014 (5 pages).
Extended European Search Report for Application No. EP 14181848.4, dated Mar. 5, 2015, (9 pages).
Related Publications (1)
Number Date Country
20170125498 A1 May 2017 US
Continuations (2)
Number Date Country
Parent 13112654 May 2011 US
Child 15403313 US
Parent 10546695 US
Child 13112654 US