The present application claims the priority of Chinese Patent Application No. 202110261781.X, filed on Mar. 10, 2021, the contents of which are incorporated herein in their entirety by reference.
The present disclosure relates to the field of display technology, and particularly relates to a pixel rendering method, a pixel rendering device, a computer readable storage medium and a display panel.
Currently, organic light emitting diode (OLED) display products are increasingly popular.
In the field of OLED displaying, due to limitation of manufactured precision of a fine metal mask (FMM) used in an evaporation process and a demand for a high resolution, a sub-pixel rendering (SPR) technology is applied when an OLED display product displays. In a pixel rendering method of related art, a weight of color, shared by a target sub-pixel, of a sub-pixel around the target sub-pixel and having the same color as the target sub-pixel, is constant under different values of brightness, for example, under display modes with different values of brightness, such as Normal1, Normal2, . . . , Normal9, and HBM (high brightness display mode), the weight of color, shared by the target sub-pixel, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel, is constant.
The present disclosure provides a pixel rendering method, including:
In some implementations, the determining the data range where the initial data signal is located, includes:
In some implementations, the determining the weight of color, shared by the target sub-pixel, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel, according to the data range where the initial data signal is located, includes:
In some implementations, a minimum amount of change in the weight of color, shared by the target sub-pixel of each color, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel, in each display mode ranges from 1/8 to 1/64.
In some implementations, the calculating the target data signal of the target sub-pixel according to the weight of color, shared by the target sub-pixel, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel, is based on a following formula:
I
out=αn×(Wcur×Icur+Wref×Iref),
In some implementations, the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel is adjacent to the target sub-pixel.
In some implementations, there are three to twelve sub-pixels around the target sub-pixel and having the same color as the target sub-pixel.
In some implementations, a color of the target sub-pixel includes red, green, or blue.
In some implementations, the number of the display modes is ten, a display brightness of the sub-pixel is varied in different display modes, and the data ranges corresponding to the different display modes do not intersect with each other.
The present disclosure further provides a pixel rendering device, including:
In some implementations, the first determining module is configured to:
In some implementations, the second determining module is configured to:
In some implementations, the calculation module is configured to calculate the target data signal of the target sub-pixel according to a following formula:
I
out=αn×(Wcur×Icur+Wref×Iref),
The present disclosure further provides a computer readable storage medium having stored thereon a computer program which, when executed by a processor, implements the pixel rendering method described above.
The present disclosure further provides a display panel, which includes sub-pixels arranged in an array, a memory and a processor, where the memory having stored thereon a computer program which, when executed by the processor, implements the pixel rendering method described above.
In order to make those skilled in the art better understand the technical solution of the present disclosure, the pixel rendering method, the pixel rendering device, the computer readable storage medium, and the display panel provided in the present disclosure are described in further detail below with reference to the accompanying drawings and the detailed description.
In the related art, the pixel rendering method in which the weight of color, shared by a target sub-pixel, of a sub-pixel around the target sub-pixel and having the same color as the target sub-pixel is constant, causes following problems during displaying of an OLED display product: in a low brightness display mode, a sharpness of a picture displayed under an action of pixel rendering is relatively good, but a relatively serious color cast is caused; in a high brightness display mode, the sharpness of the picture displayed by the action of pixel rendering is relatively poor, but a relatively small color cast is caused. Therefore, it is desirable for an improvement of the pixel rendering method in which the weight of color, shared by a target sub-pixel, of a sub-pixel around the target sub-pixel and having the same color as the target sub-pixel is constant, and a relatively poor sharpness of the picture displayed during high brightness displaying and a relatively serious color cast of the picture displayed during low brightness displaying are caused.
The pixel rendering method, the pixel rendering device, the computer readable storage medium, and the display panel according to embodiments of the present disclosure can solve or improve at least part of the above problems.
An embodiment of the present disclosure provides a pixel rendering method, as shown in
At step S01, receiving an initial data signal, and the initial data signal is used for driving a target sub-pixel to display.
At step S02, determining a data range where the initial data signal is located, where different data ranges correspond to different display modes.
At this step, the data range where the initial data signal is located refers to a brightness data range where the initial data signal is located. Different brightness data ranges correspond to different display modes, that is, display brightness is varied in the different display modes.
At step S03, determining a weight of color, shared by the target sub-pixel, of a sub-pixel around the target sub-pixel and having the same color as the target sub-pixel, according to the data range where the initial data signal is located.
At this step, the weight of color, shared by the target sub-pixel, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel, refers to a brightness weight of color, shared by the target sub-pixel, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel.
At step S04, calculating a target data signal of the target sub-pixel according to the weight of color, shared by the target sub-pixel, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel.
At step S05, outputting the target data signal to the target sub-pixel, so that the target sub-pixel displays based on the target data signal.
In the pixel rendering method, the weight of color, shared by the target sub-pixel, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel is determined according to the data range where the initial data signal is located, and can be dynamically adjusted according to a brightness of the target sub-pixel, so that a dynamic color sharing of the sub-pixel is realized, compared with the technical solution of related art in which the weight of color, shared by the target sub-pixel, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel is constant for different brightness, a relatively poor sharpness of the picture displayed during high brightness displaying and a relatively serious color cast of the picture displayed during low brightness displaying are improved greatly, the color of the picture displayed would be more delicate, and an improved display effect is obtained.
In some implementations, as shown in
At step S021, establishing a mapping table between different data ranges and different display modes, where the different data ranges correspond to the different display modes one by one.
At this step, as shown in
The sub-pixels around the target sub-pixel and having the same color as the target sub-pixel refer to the sub-pixels which surround the target sub-pixel, are adjacent to the target sub-pixel and have the same color as the target sub-pixel. In some implementations, the number of the sub-pixels around the target sub-pixel and having the same color as the target sub-pixel ranges from 3 to 12. That is, according to the arrangement of the pixels in the display panel, in the middle area of the display panel, the number of the sub-pixels around the target sub-pixel and having the same color as the target sub-pixel may range from 4 to 12, and in an edge area of the display panel, the number of the sub-pixels around the target sub-pixel and having the same color as the target sub-pixel may range from 3 to 4. As shown in
In some implementations, the number of the display modes is ten, a display brightness of the sub-pixel is different in different display modes, and the data ranges corresponding to the different display modes do not intersect with each other. For example, the display panel has ten display modes, i.e., Normal9,
Normal8, . . . , Normal1, HBM (high brightness mode), the brightness of the ten display modes is successively increased, and brightness data ranges corresponding to the ten display modes are successively increased accordingly. In practical applications, as shown in
At step S022, comparing the initial data signal with end values of each data range.
At this step, the initial data signal may be a current value, and corresponds to a corresponding value in a binary data range from 0 to 4095, and then the corresponding value of the initial data signal is compared with end values of the brightness data range in each display mode.
When the initial data signal is greater than or equal to one end value of a certain data range and less than or equal to the other end value of the data range, at step S023, it is determined that the initial data signal is within the data range.
In some implementations, as shown in
At step S031, establishing a color sharing rule table of sub-pixels of colors in the display modes.
At step S032, looking for the weight of color, shared by the target sub-pixel, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel, in the color sharing rule table according to the data range where the initial data signal is located.
The color sharing rule table stores the weight of color, shared by the target sub-pixel of each color, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel in each display mode; and in each display mode, a sum of a weight of color of the target sub-pixel and the weight of color, shared by the target sub-pixel, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel equals to 1.
The weight of color, shared by the target sub-pixel of each color, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel in each display mode may have an optimal measured value determined by experiments, and in each display mode, color sharing rule tables for red, green and blue target sub-pixels to share color of sub-pixels around the target sub-pixels and having the same color as the target sub-pixels are independent from each other.
As shown in
In some implementations, a minimum amount of change in the weight of color, shared by the target sub-pixel of each color, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel, in each display mode ranges from 1/8 to 1/64 (3 bits to 6 bits after being converted into binary data). That is, an adjustment of the weight can realize dynamic change from 0 to 1 with the minimum change amount ranging from 1/8 to 1/64, thereby realizing finer adjustment of color of a picture displayed.
In some implementations, the step S04 (i.e., calculating the target data signal of the target sub-pixel according to the weight of color, shared by the target sub-pixel, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel) is based on a following formula:
I
out=αn×(Wcur×Icur+Wref×Iref),
The target data signal of the target sub-pixel calculated according to the above formula is then output to the target sub-pixel to finally drive the target sub-pixel to display, can greatly improve a relatively poor sharpness of the picture displayed during high brightness displaying and a relatively serious color cast of the picture displayed during low brightness displaying, the color of the picture displayed would be more delicate, and an improved display effect is obtained.
Based on the pixel rendering method described above, an embodiment of the present disclosure further provides a pixel rendering device, as shown in
In the pixel rendering device provided in the embodiment of the present disclosure, the weight of color, shared by the target sub-pixel, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel is determined according to the data range where the initial data signal is located, and can be dynamically adjusted according to a brightness of the target sub-pixel, so that a dynamic color sharing of the sub-pixel is realized, compared with the technical solution of related art in which the weight of color, shared by the target sub-pixel, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel is constant for different brightness, a relatively poor sharpness of the picture displayed during high brightness displaying and a relatively serious color cast of the picture displayed during low brightness displaying are improved greatly, the color of the picture displayed would be more delicate, and an improved display effect is obtained.
An embodiment of the present disclosure further provides a computer readable storage medium on which a computer program is stored, and the computer program, when executed by a processor, implements the pixel rendering method in the above embodiment.
The computer readable storage medium may be a driver chip in the display panel, the driver chip is provided with one or more registers, and the computer program and related data for implementing the pixel rendering method in the above embodiment are stored in the registers.
The computer program may include assembly instructions, instruction set architecture (ISA) instructions, machine instructions, microcode, firmware instructions, state setting data, or source or object code written in any combination of one or more programming languages.
An embodiment of the present disclosure further provides a display panel, as shown in
The memory 10 in this embodiment may be the computer readable storage medium in the above embodiment, may be of any type suitable to local technical environments and may be implemented using any suitable data storage technology, such as, but not limited to, a read only memory (ROM), a random access memory (RAM), an optical storage device or system (e.g., digital versatile disc DVD or CD disc), or the like. The computer readable medium may include a non-transitory storage medium. The processor 11 may be of any type suitable to the local technical environments, such as but not limited to general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (FGPAs), and processors based on a multi-core processor architecture.
When the display panel provided in the embodiment displays a picture with a same gray scale in different display modes, by observing the target sub-pixel through an optical or electrical microscope, it can be observed that the weight of color, shared by the target sub-pixel, of the sub-pixel around the target sub-pixel and having the same color as the target sub-pixel changes along with the change of the display modes.
By implementing the pixel rendering method in the above embodiment, the display panel provided in this embodiment can greatly improve a relatively poor sharpness of the picture displayed during high brightness displaying and a relatively serious color cast of the picture displayed during low brightness displaying, so that the color of the picture displayed by the display panel would be more delicate, and the display effect of the display panel is improved.
The display panel provided in the embodiment may be an OLED display panel, and may be used for any product or component having a display function, such as an OLED television, a display, a mobile phone, and a navigator.
It will be understood that the above embodiments are merely exemplary embodiments employed to illustrate the principles of the present disclosure, and the present disclosure is not limited thereto. It will be apparent to those skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope of the present disclosure, and these changes and modifications are to be considered within the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202110261781.X | Mar 2021 | CN | national |