The present disclosure relates to the field of display technologies, and in particular, relates to a pixel structure, a display panel, and a display device.
Liquid crystal display (LCD) panels are widely used in display apparatuses due to low power consumption.
In an aspect, a pixel structure is provided. The pixel structure includes:
a first electrode, a second electrode and a liquid crystal layer disposed on one side of a substrate and successively stacked, wherein one of the first electrode and the second electrode is a pixel electrode and the other of the first electrode and the second electrode is a common electrode, and the second electrode includes:
a plurality of electrode branches sequentially arranged in a first direction, wherein each of the electrode branches includes a first end portion, a body portion and a second end portion that are successively connected in a second direction, the body portion including at least one body segment, and an extending direction of each of the body segment, extending direction of the first end portion and an extending direction of the second end portion being intersected with the second direction, and the second direction being perpendicular to the first direction;
wherein the first end portions of the plurality of electrode branches are communicated with each other, the second end portions of the plurality of electrode branches are communicated with each other, the first end portions of at least two electrode branches are communicated with each other in an arc, the second end portions of at least two electrode branches are communicated with each other in an arc, and a slit is disposed between each of the two adjacent electrode branches, the slit including a first slit segment, a second slit segment and a third slit segment that are successively connected in the second direction, and an angle between at least one of the first slit segment and the third slit segment and the second slit segment being equal to 180 degrees.
In another aspect, a display panel is provided. The display panel includes: a substrate, a plurality of pixel structures described in the above aspect, and a color filter disposed on a side, distal from the substrate, of the pixel structures.
In still another aspect, a display device is provided. The display device includes: a drive circuit, and a display panel described in the above aspect;
wherein the drive circuit is connected to the display panel and is configured to drive signals to the pixel structures in the display panel.
To describe the technical solutions in the embodiments of the present disclosure more clearly, the following briefly introduces the accompanying drawings required for describing the embodiments. Apparently, the accompanying drawings in the following description show merely some embodiments of the present disclosure, and a person of ordinary skill in the art may still derive other drawings from these accompanying drawings without creative efforts.
To make the objectives, technical solutions and advantages of the present disclosure clearer, the followings will describe the embodiments of the present disclosure in detail with reference to the drawings.
In the related art, a pixel electrode in a liquid crystal display panel generally includes a plurality of strip-shaped electrodes, a first connection electrode for connecting one end of the plurality of strip electrodes, and a second connection electrode for connecting the other end of the plurality of strip electrodes. Both an extension direction of the first connection electrode and an extension direction of the second connection electrode intersect with an extension direction of the plurality of strip-shaped electrodes.
However, an electric field at a joint of the plurality of strip-shaped electrodes and the connection electrode is relatively disordered. Therefore, when the liquid crystal display panel is squeezed by an external force, arrangement of liquid crystals disposed at the joint of the plurality of strip-shaped electrodes and the connection electrode in the liquid crystal display panel will be relatively disordered, and the LCD panel is prone to trace mura (trace mura).
An electric field of a middle area 10a of the pixel electrode 10 is determined by the first electrode 101. An electric field of a first area 10b of the pixel electrode 10 including the second electrode 102 is determined by both the second electrode 102 and the first electrode 101. An electric field of a second area 10c of the pixel electrode 10 including the third electrode 103 is determined by both the third electrode 103 and the first electrode 101.
The first area 10b of the pixel electrode 10 is used to connect to a pixel circuit in a display panel, so that the pixel circuit provides a driving signal for the pixel electrode. If a common electrode in the display panel is disposed between the pixel electrode and the pixel circuit, the common electrode may be provided with a through hole, so that the pixel electrode is connected to the pixel circuit via the through hole. Since the through hole of the common electrode is disposed in the first area 10b, there may be no electric field or a weak electric field in the first area 10b. Liquid crystals disposed in the first area 10b in the display panel reach equilibrium mainly under an action of an anchoring force of a film disposed at a side of the pixel electrode 10 away from a base substrate.
Since the electric field of the middle area 10a in the pixel electrode 10 is determined by the first electrode 101, liquid crystals in the middle area 10a in the display panel can reach equilibrium under an action of the anchoring force of the film disposed at the side of the pixel electrode 10 away from the base substrate.
Since the common electrode is not provided with a through hole in the second area 10c, an electric field can be generated in an area in which the third electrode 103 and the first electrode 101 are disposed. Liquid crystals disposed in the second area 10c in the display panel can reach equilibrium under an action of the generated electric field around the third electrode 103 and the first electrode 101 and an action of the anchoring force of the film disposed at the side of the pixel electrode 10 away from the base substrate.
Under a same applied voltage, the stronger the electric field F, the greater rotation angle of the liquid crystal and the stronger anchoring force f of the film disposed at the side of the pixel electrode 10 away from the base substrate. On the contrary, the weaker the electric field F, the smaller rotation angle of the liquid crystal and the weaker anchoring force f of the film disposed at the side of the pixel electrode 10 away from the base substrate. Referring to
The liquid crystals disposed in the middle area 10a and the liquid crystals disposed in the second area 10c in the pixel electrode 10 in the display panel reach equilibrium under an impact of the electric field. Therefore, it can be analyzed whether the liquid crystals in these two areas can reach equilibrium under an action of the electric field.
Referring to
Referring to
An embodiment of the present disclosure provides a pixel electrode, which can solve a problem in the related art that the display panel is prone to trace mura. Referring to
The plurality of first electrodes 201 may be arranged along a first direction X, and each first electrode 201 may extend along a second direction Y, and the second direction Y may intersect with the first direction X. For example, the first direction X may be a pixel row direction, and the second direction Y may intersect with both the pixel row direction and a pixel column direction.
The second electrode 202 may be connected to first ends of the plurality of first electrodes 201, and the first ends of the plurality of first electrodes 201 may be connected through the second electrode 202. In other words, each first electrode 201 can be connected to the second electrode 202. The second electrode 202 may be configured to connect to a pixel circuit in the display panel, so that the pixel circuit can provide a driving signal for the pixel electrode through the second electrode 202.
The third electrode 203 may be connected to a second end of at least one first electrode 201, and a direction of an electric field of the area in which the third electrode 203 is located intersects with both the first direction X and the second direction Y. Therefore, referring to
Therefore, referring to
In summary, the embodiment of the present disclosure provides a pixel electrode. The third electrode included in the pixel electrode is connected to the other end of at least one first electrode, and the direction of the electric field of the area in which the third electrode is located intersects with both the first direction and the second direction. The direction of the electric field formed at the joint of the third electrode and the second end of the first electrode is relatively regular, so that the liquid crystals disposed at the joint of the third electrode and the first electrode in the display panel can be arranged regularly under the action of the electric field. This avoids trace mura on the display panel, and a display effect of the display panel is better.
Optionally, referring to
As an optional implementation, the third electrode 203 may extend along the first direction X, and the third electrode 203 may be connected to the second end of at least one first electrode 201, and at least one of a first end and a second end of the third electrode 203 protrudes in a direction away from the plurality of first electrodes 201 relative to second ends of the plurality of first electrodes 201.
Since at least one of the first end and the second end of the third electrode 203 protrudes in the direction away from the plurality of first electrodes 201 relative to the second ends of the plurality of first electrodes, an angle between an extension direction of the first electrode 201 and a direction of a connection line between the second end of the first electrode 201 and a protruding end of the third electrode 203 may be relatively small. The direction of the electric field at the joint of the second end of the first electrode 201 and the third electrode 203 may be relatively regular.
In the embodiment of the present disclosure, the first end of the third electrode 203 may be connected to the second end of at least one first electrode 201, and the second end of the third electrode 203 may protrude in the direction away from the plurality of first electrodes 201 relative to the second ends of the plurality of first electrodes 201.
Referring to
For example, in
For the pixel electrode 20 in
Referring to
In the embodiment of the present disclosure, the number of arrangement directions of the liquid crystals disposed at the joint of the third electrode 203 and the first electrode 201 in the display panel may be positively related to the number of directions of the electric field formed by the third electrode 203 and the second ends of the plurality of first electrodes 201. In addition, the smaller the number of the arrangement directions of the liquid crystals disposed at the joint of the third electrode 203 and the first electrode 201 in the display panel, the more regular, the arrangement of the liquid crystals. In other words, the smaller the number of the directions of the electric field formed by the third electrode 203 and the second ends of the plurality of first electrodes 201, the more regular the arrangement of the liquid crystals disposed at the joint of the third electrode 203 and the first electrode 201 in the display panel. In this way, a display effect of the display panel is better.
Other first electrodes except the first target electrode 201a in the plurality of first electrodes 201 may all be disposed on one side of the first target electrode 201a. Other first electrodes except the second target electrode 201b in plurality of first electrodes 201 may all be disposed on one side of the second target electrode 201b. In other words, the first target electrode 201a and the second target electrode 201b may be first electrodes 201 that are disposed at two edges of the plurality of first electrodes 201. For example, referring to
For the pixel electrode 20 shown in
However, the number of directions of the electric field formed by the third electrode 203 and the second ends of the plurality of first electrodes 201 is small. Therefore, the liquid crystals disposed at the joint of the third electrode 203 and the first electrode 201 in the display panel are more regularly arranged after the squeezing force is released, so that a display effect of the display panel is better.
Since directions of connection lines between two protruding ends of the third electrode 203 and the second ends of the plurality of first electrodes 201 are different, directions of electric fields formed by the two protruding ends of the third electrode 203 and the second ends of the plurality of first electrodes 201 are different. For the pixel electrode 20 shown in
In addition, since the electric fields formed by the two protruding ends of the third electrode 203 and the second ends of the plurality of first electrodes 201 have different directions, arrangement directions of liquid crystals disposed at the two ends of the third electrode 203 in the display panel are different.
Referring to
In the embodiment of the present disclosure, referring to
Optionally, when the width d2 of the side, which is closer to the plurality of first 6electrodes 201, of the protruding end of the third electrode 203 is less than or equal to 2.5 μm, and the distance d3 between the protruding end of the third electrode 203 and the plurality of first electrodes 201 is greater than or equal to 1.2 μm, trace mura does not exist on the display panel. When the width d2 of the side, which is closer to the plurality of first electrodes 201, of the protruding end of the third electrode is greater than 2.5 μm and less than or equal to 3.5 μm, and the distance d3 between the protruding end of the third electrode 203 and the plurality of first electrodes 201 is greater than or equal to 1.87 μm, trace mura does not exist on the display panel. When the width d2 of the side, which is closer to the plurality of first electrodes 201, of the protruding end of the third electrode is greater than 3.5 μm and less than or equal to 4.5 μm, and the distance d3 between the protruding end of the third electrode 203 and the plurality of first electrodes 201 is greater than or equal to 3.3 μm, trace mura does not exist on the display panel.
In other words, to avoid trace mura on the display panel, the following conditions need to be met: d2≤2.5 μm, and d3≥1.2 μm; 2.5 μ<d2≤3.5 μm, and d3≥1.87 μm; or 3.5 μm<d2≤4.5 μm, and d3≥3.3 μm.
As another optional implementation, referring to
Since there is at most one bent portion 203a between the first end and the second end of the third electrode 203, angles between parts of the third electrode 203 disposed on both sides of the bent portion 203a and the extension direction of the first electrode 201 may both be smaller. Referring to
Optionally, referring to
Referring to
As can be further seen from
One end of the third sub-electrode 2031b may be connected to a second end of one first electrode 201. The other end of the third sub-electrode 2031b may be connected to one end of the fourth sub-electrode 2032b, and the other end of the third sub-electrode 2031b and the one end of the fourth sub-electrode 2032b form the bent portion 203a. The other end of the fourth sub-electrode 2032b may be connected to a second end of another first electrode 201. The one end of the third sub-electrode 2031b is the first end of the third electrode 203, and the other end of the fourth sub-electrode 2032b is the second end of the third electrode 203.
Referring to
In the embodiment of the present disclosure, there may be three or more first electrodes 201 in the pixel electrode 20. Then, other first electrodes in the plurality of first electrodes 201 except the two first electrodes 201 connected to the first end and the second end of the third electrode 203 may all be disposed between the two first electrodes 201. In other words, the two first electrodes 201 connected to the first end and the second end of the third electrode 203 may be two first electrodes 201 disposed at the edges of the plurality of first electrodes 201 respectively.
If there are three first electrodes 201 in the pixel electrode, the plurality of first electrodes 201 may include one other first electrode. If there are more than three first electrodes 201 in the pixel electrode 20, the plurality of first electrodes 201 may include a plurality of other first electrodes.
In summary, the embodiment of the present disclosure provides a pixel electrode. The third electrode included in the pixel electrode is connected to the other end of at least one first electrode, and the direction of the electric field of the area in which the third electrode is located intersects with both the first direction and the second direction. The direction of the electric field formed at the joint of the third electrode and the second end of the first electrode is relatively regular, so that the liquid crystals disposed at the joint of the third electrode and the first electrode in the display panel can be arranged regularly under the action of the electric field. This avoids trace mura on the display panel, and a display effect of the display panel is better.
As can further be seen from
The common electrode 30 may be provided with a first through hole, the passivation layer 004 may be provided with a second through hole communicating with the first through hole, and a second electrode 202 in the pixel electrode 20 may be connected to the pixel circuit 003 via the first through hole and the second through hole.
The pixel circuit 003 may include a transistor. A gate of the transistor may be connected to a gate line, a source of the transistor may be connected to a data line, and a drain of the transistor may be connected to the pixel electrode 20. For example, the drain of the transistor may be connected to the second electrode 202 in the pixel electrode 20.
Referring to
Referring to
Optionally, the display apparatus may be any product or component with a display function, such as a liquid crystal display apparatus, electronic paper, a mobile phone, a tablet computer, a TV, a display, a notebook computer, a digital photo frame, or a navigator.
Then referring to
The plurality of electrode branches L1 are arranged sequentially in a first direction Y1. Each of the electrode branches L1 includes a first end portion L11, a body portion L12, and a second end portion L13 that are successively connected in a second direction Y2. The body portion L12 includes at least one body segment L121, and an extension direction of each of the body segments L121, an extension direction of the first end portion L11, and a second end portion L113 are intersected with the second direction Y2, and the second direction Y2 is perpendicular to the first direction Y1. Taking the row direction of the plurality of pixel structures arranged in the array as a reference, the first direction Y1 may refer to the pixel row direction and the second direction Y2 may refer to the pixel column direction, In addition, the first end portions L11 of the plurality of electrode branches L1 are communicated with each other, and the second end portions L13 of the plurality of electrode branches L1 are communicated with each other. The first end portions L11 of at least two electrode brandies L1 are communicated with each other in an arc, and the second end portions L13 of at least two electrode branches L1 communicated with each other in an arc.
For example, the second electrode 02 illustrated in
Based on the above structure, it can be seen in
it should also be noted that, in the second direction Y2, the length of the first end portion L11 and the length of the second end portion L13 of the electrode branch L1 are both smaller than the length of the body portion L12. Accordingly, the length of the first slit segment X11 and the length of the third slit segment X13 are both smaller than the length of the second slit segment X12.
Referring to
Based on the above embodiment, it can be seen that the angle g equal to 180 degrees between the first slit segment X11 and the second slit segment X12 can be equivalent to that the communication of the first end portions L11 of each of the two adjacent electrode branches L1 does not have an inner corner. Referring to FG. 24, the inner corner can be referred to as the upper inner corner. Similarly, the angle g between the third slit segment X13 and the second slit segment X12 equal to 180 degrees can be equivalent to that the communication of the second end portions L13 of each of the adjacent electrode branches L1 does not have an inner corner. Referring to
in summary, embodiments of the present disclosure provide a pixel structure. The pixel structure includes a first electrode, a second electrode, and a liquid-crystal layer disposed on one side of a substrate and successively stacked. The second electrode includes a plurality of electrode branches arranged sequentially in the first direction, and each of the two adjacent electrode branches have slits between them. In the second direction intersecting the first direction, each of the electrode branches includes a first end portion, a body portion and a second end portion, and the slit includes a first slit segment, a second slit segment and a third slit segment, and the first end portions of the plurality of electrode branches are communicated with each other, and the second end portions are communicated with each other. Because the angle between the first slit segment and/or the third slit segment and the second slit segment is equal to 180 degrees, it is possible to make the communication of the first end portions and/or the communication of the second end portions of each of the two adjacent electrode branches do not have inner corners, In this way, the transmittance of the display panel can be made better. Based on this, the shape of the electrode branches can be flexibly set to improve the Trace Mura problem and a better display quality of the display panel is ensured.
Optionally, the following embodiment of the present disclosure is illustrated with the first electrode 01 as a common electrode and the second electrode 02 as a pixel electrode. That is, the embodiments of the present disclosure may be an improvement to the structure of the pixel electrode so as to ensure a better transmittance and contrast of the display panel while also effectively and reliably improving the Trace Mura problem that is common in the display panel. In the case that the second electrode 02 is a common electrode, it can be considered that the present disclosure embodiment is an improvement of the structure of the common electrode.
It should be noted that, with reference to
Optionally, the pixel structure in embodiments of the present disclosure may also include a thin film transistor (TFT), And, with continued reference to
The thin film transistor TFT may be connected to the second end portion L13 of the plurality of electrode branches L1 through the connection portion 131 and is configured to supply a voltage to the plurality of electrode branches L1. For example, the supplied voltage may be a pixel voltage Vop to drive the deflection of the liquid-crystal molecules. The electric field formed by the common electrode and the pixel electrode described above may refer to an electric field formed by the pressure difference between that pixel voltage Vop and the common voltage Vcom. The common voltage Vcom is the voltage loaded to the common electrode. The thin film transistor TFT that supplies the voltage may be part of the pixel circuit.
Accordingly, based on the above connection, it is known that in the disclosed embodiment, the second end portion L13 of the electrode branch L1 may be considered to be the side where the TFT is disposed, and the first end portion L11 of the electrode branch L1 may be considered to be the opposite side of the side where the TFT is disposed, thereby further achieving a distinction between the first end portion L11 and the second end portion L13.
Optionally, the substrate 10 may be generally divided into a plurality of pixel domains arranged in an array, and the display panel may include a plurality of pixel structures, and the second electrode 02 in a pixel structure may occupy two adjacent pixel domains disposed in the same column, and the pixel structures may also be referred to as 1P2D two-domain pixel structures. Alternatively, the second electrode 02 in a pixel structure may occupy only one pixel domain, and the type of pixel structure may also be referred to as a single-domain pixel structure. That is, the pixel structure can usually be divided into various structure types such as double-domain and single-domain, and the embodiments of the present disclosure have different designs for different types of electrode branches in the pixel structure as follows, thereby reliably improving the Trace Mura problem of display panels including various types of pixel structures.
As an optional implementation, for the single-domain pixel structure, it can be seen in the
Based on this, one end of the first end portion L11 in the first target electrode branch of the plurality of electrode branches L1 may protrude in a direction away from remaining electrode branches L1 except the first target electrode branch. That is, the first target electrode branch may have a first protrusion 101 as shown in
The first target electrode branch is the outermost electrode branch of the plurality of electrode branches L1, and the protruding direction of the first end portion L11 of the first target electrode branch is a same direction as an inclining direction of the first end portion L11, i.e., in exactly the same direction. The inclining direction of the first end portion L11 may refer to the direction in which the first end portion L11 inclines toward the side distal from the body portion L12. In this way, the end of the first target electrode branch in which the first end portion L11 protrudes is the end that is not connected to the first end portion L11 of the remaining electrode branch L1. For the pixel structure shown in
By setting the first end portion L11 of the first target electrode branch to have a first protrusion T01 protruding in the above direction, i.e., by setting the second electrode 02 to also have an upper outer corner, the liquid-crystal molecules disposed at the position (i.e., the upper region described in the above embodiment) can also be quickly deflected back to the equilibrium state under the action of the electric field, such that the liquid-crystal molecules at remaining positions can be released for the arrangement state of the remaining positions. The liquid-crystal molecules at the remaining positions are quickly deflected back to the equilibrium state, thus avoiding the disorder of the liquid-crystal molecules and improving the Trace Mura problem.
Referring to
The second target electrode branch is another outermost electrode branch of the plurality of electrode branches L1, and a protruding direction of the second end portion L13 of the second target electrode branch is in a same direction as an inclining direction of the second end portion L13, i.e., in exactly the same direction. The inclining direction of the second end portion L13 may also refer to the direction in which the second end portion L13 inclines toward the side distal from the body portion L12. In this way, the end of the second target electrode branch in which the second end portion L13 protrudes is the end that is not connected to the second end portion L13 of the remaining electrode branch L1. For the structure shown in
As setting the first protrusion T01 described above, by setting the second end portion L13 of the second target electrode branch to have the second protrusion T02 protruding in the above direction, by setting the second electrode 02 to also have a lower outer corner, the liquid-crystal molecules disposed at this position (i.e., the lower end described in the above embodiment) can also be quickly deflected back to the equilibrium state, such that the liquid-crystal molecules at the remaining positions can be released for the arrangement state of the remaining positions. The liquid-crystal molecules at the remaining positions are quickly deflected back to the equilibrium state, thus avoiding the disorder of the liquid-crystal molecules and improving the Trace Mura problem.
Because the second end portion L13 of the electrode branch L1 (i.e., the side where the TFT is disposed) has a more complicated structure, it is also possible to set only the first end portion L11 of the first target electrode branch (i.e., the opposite side of the side where the TFT is disposed) to have an outer corner to improve the Trace Mura problem.
Optionally, referring to the enlarged schematic diagrams of the first protrusion T01 and the second protrusion T02 shown in
Refuting to
Optionally, the shape of the first edge z1, the second edge z2, the third edge z3, and the fourth edge z4 that are successively connected may be a trapezoid as shown in
Optionally, in embodiments of the present disclosure, the angle α between the extending direction of the third edge z3 and the third direction Y3 can be equal to 45 degrees or 60 degrees. That is, the angle between the second edge z2 and the second edge z3 is equal to 45 degrees or 60 degrees.
Optionally, in embodiments of the present disclosure, the length d1 of the third edge z3 may be less than or equal to 5 μm m addition to greater than or equal to 2 μm. Considering process limitation effects, the length d1 of the third edge z3 may preferably be greater than or equal to 3 μm.
It has been tested and verified that by setting the angle α, between the second edge z2 and the second edge z3 equal to 45 degrees or 60 degrees, and/or, setting the length d1 of the third edge z3 greater than or equal to 3 microns, the Trace Mura problem can be effectively solved while ensuring the maximum transmittance, thus reliably improving the display quality of the display panel.
In some other embodiments, the shape of the protruding end of the first target electrode branch (i.e., the first protrusion T01) and the shape of the protruding end of the second target electrode branch (i.e., the second protrusion T02) may also be triangular. For example, referring to
Optionally, as can be seen with continued reference to
For example, referring to
It should be noted that, referring to
The above designs regarding the parameters of the embodiments are reliably acquired by validation and test. In the validation, 4 groups of influence factors can be applied to verify each of them. Referring to
Referring to the comparison the influence factor of group (1) in
Referring to the comparison the influence factor of group (2) in
Referring to the comparison the influence factor of group (3) in
Referring to the comparison the influence factor of group (4) in
It should be noted that the single-domain pixel structure may include a 1P1D single-domain pixel structure and a 2PD single-domain pixel structure. Referring to
As another optional implementation, for the 1P2D two-domain pixel structure, with reference to
The first body segment L1211 may be connected to the first end portion L11 and the second body segment L1212, and the second body segment L1212 may also be connected to the second end portion L13. The extending direction of the first end portion L11 and the extending direction of the first body segment L1211 may both be a fourth direction Y4, i.e., the extending direction is the same. The extending direction of the second end portion L13 and the extending direction of the second body segment L1212 are both in a fifth direction Y5, i.e., the extending direction is the same. The fourth direction Y4 and the fifth direction Y5 can be intersected with and the angle γ can be greater than 90 degrees and less than 180 degrees, i.e., not parallel. Based on the extending direction, it is known that the angle γ may refer to the angle between the first body segment L1211 and the second body segment L1212, and the angle γ is the angle toward the slit X1.
By setting the body portion L12 of the electrode branches L1 to include two body segments with the angle γ greater than 90 degrees and less than 180 degrees in the extending direction, normal deflection of the liquid-crystal molecules in the intermediate region can be ensured.
With continued reference to
The first corner portion B21 extends in a sixth direction Y6 and the second corner portion B22 extends in a seventh direction Y7. The sixth direction Y6 is intersected with the fourth direction Y4. The seventh direction Y7 is intersected with the fifth direction Y5. And the sixth direction Y6 is intersected with the seventh direction Y7. In this way, it can be seen that any two of the first body segment L1211, the first Corner portion B21, the second corner portion B22, and the second body segment 1,1212, which are successively connected, are not parallel.
Optionally, referring to
Optionally, referring to
For example, considering the actual level of the process, in the embodiment of the present disclosure, referring to
For example, referring to
It should be noted that, for the embodiment structure shown in
It should also be noted that the design of the total depth of the intermediate corner is related to the level of the equipment used to manufacture the intermediate corner, and it is sufficient to ensure that this intermediate corner has the shape shown in
Optionally, in the embodiments of the present disclosure, the first electrode 01 and the second electrode 02 may both include indium tin oxide (IT0) material. The IT0 material is generally a transparent material, such that a better transmittance of the display panel can be further ensured. Based on this, in the first electrode 01 and the second electrode 02, the first electrode 01 that is relatively close to the substrate 10 can be referred to as IT01 and the second electrode 02 that is relatively distal from the substrate 10 can be referred to as IT02.
Optionally, the display mode employed in the display panel including the above pixel structure may be a high-advanced dimension switch (HADS) display mode with a high opening rate.
It is noted that a second electrode 02 may be a monolithic structure, and the various parts (e.g., electrode branch L1) included in the second electrode 02 as described in the above embodiment are not physically independent.
Combined with the above embodiments, it can be seen that the solution described in the present disclosure can effectively improve the Trace Mura problem while effectively enhancing the transmittance and contrast of the display panel by only optimizing the design of the second electrode 02 structure based on not changing the structure of the liquid-crystal box. The specific optimization design can be summarized as follows.
(1) For the 1P1D pixel structure or 2PD pixel structure, the inner corner is partially or completely eliminated, and only the outer corner on the same direction as the slit is retained, in which the angle α≥45° and the length d1≥2 μm.
(2) For 1P2D pixel structure, the inner corners are partially or completely cancelled, and the total depth of the designed intermediate corners is equal to 3+3 μ, and the angle θ=45°, and the outer corners can be completely cancelled.
In summary, embodiments of the present disclosure provide a pixel structure. The pixel structure includes a first electrode, a second electrode, and a liquid-crystal layer disposed on one side of a substrate and successively stacked. The second electrode includes a plurality of electrode branches arranged sequentially in the first direction, and each of the two adjacent electrode branches have slits between them. in the second direction intersecting the first direction, each of the electrode branches includes a first end portion, a body portion and a second end portion, and the slit includes a first slit segment, a second slit segment and a third slit segment, and the first end portions of the plurality of electrode branches are communicated with each other, and the second end portions are communicated with each other. Because the angle between the first slit segment and/or the third slit segment and the second slit segment is equal to 180 degrees, it is possible to make the communication of the first end portions and/or the communication of the second end portions of each of the two adjacent electrode branches do not have inner corners. In this way, the transmittance of the display panel can be made better. Based on this, the shape of the electrode branches can be flexibly set to improve the Trace Mura problem and a better display quality of the display panel is ensured.
Referring to
The driver circuit 000 may be connected to the display panel 100 and provide a drive signal to the pixel structure 00 in the display panel 100, thereby driving the pixel structure 00 to emit light. For example, the driver circuit 000 may provide a common voltage to a common electrode in the pixel structure 00.
Optionally, the display device described in embodiments of the present disclosure may be an LCD display device, a cell phone, a tablet computer, a flexible display device, a television set, and a monitor, and any other product or component having a display function.
The terms used in the embodiments of the present disclosure are used only for the purpose of explaining embodiments of the present disclosure and are not intended to limit the present disclosure. Unless otherwise defined, technical terms or scientific terms used in embodiments of the present disclosure shall have the ordinary meaning as understood by persons having ordinary skill in the art to which the present disclosure belongs.
For example, the words “first,” “second,” or “third” and the like as used in the specification of the patent application and claims of the disclosure do not indicate any order, number, or importance, but only to distinguish the different components.
Similarly, the words “a” or one and the like do not indicate a quantitative but rather the presence of at least one.
Similar words such as “includes” or “contains” are intended to indicate that the component or object present before “includes” or “contains” covers. The element or object preceding “includes” or “contains” covers the element or object appearing after “includes” or “contains” and its equivalent, and does not exclude other elements or objects.
The terms “up”, “down”, “left” or “right” are used only to indicate relative positional relationships. When the absolute position of the object being described changes, the relative position relationship may also change accordingly.
“And/or” indicates that three relationships may exist, e.g., A and/or B, which may indicate the presence of A alone, the presence of both A and B, and the presence of B alone. The character “/” generally indicates an “or” relationship between the associated former objects and later objects.
The above is only an optional embodiment of the present disclosure and is not intended to limit the present disclosure. Any modification, equivalent replacement, improvement, etc. made within the spirit and principles of the present disclosure shall be included in the scope of protection of the present disclosure.
The above descriptions are merely optional embodiments of the present disclosure and are not intended to limit the present disclosure. Any modification, equivalent replacement, improvement, or the like made within the spirit and principle of the present disclosure shall fall within the protection scope of claims of the present disclosure.
This application is a continuation in part application of U.S. application Ser. No. 17/441,272, filed on Sep. 20, 2021, and the continuation in part application claims priority to international application No. PCT/CN2022/090564, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17441272 | Jan 0001 | US |
Child | 17976079 | US |