1. Technical Field
The present invention relates to the field of display technologies, and particularly, to a pixel unit used in an array substrate of a display device and a method for manufacturing the same, an array substrate comprising the pixel unit, and a display device and a method for manufacturing the same. The present invention is specifically suitable to these pixel units, array substrates and display devices including a thin-film transistor (TFT) which comprises an active layer made of oxide.
2. Description of the Related Art
Organic Light-Emitting Diode (OLED) has advantages of active luminescence, high luminescent efficiency, fast response time (at a magnitude of 1 μs), low working voltage (of 3˜10V), wide viewing angle (of greater than 170°), thin panel thickness (of less than 2 mm), low power consumption, broad working temperature range (of −4° C.˜85° C.), flexible displaying and the likes. Accordingly, it becomes a third generation display technology after CRT and LCD.
Production processes such as small molecule evaporation, polymer spin coating, inkjet printing, large-area printing may be adopted in the manufacture of OLED, which have relatively low manufacturing cost and are suitable to mass production. This makes OLED more and more competitive with fluorescent lamps in the long run. Relative to point light source of LED, White Organic Light-Emitting Diode (WOLED), belonging to surface light source, can be used to manufacture flat plate light source and is more suitable for backlight source of liquid crystal display device and full color OLED display device. WOLED has great potential on application of flat plate lightings, accordingly, WOLED becomes hot topic of development over the past 10 years and is expected to be a leading role in new generation semiconductor lighting as the LED does. Nowadays, in order to achieve manufacture of OLED array substrate with large-scale in area and high in resolution ratio, bottom-gate 7-Mask (7 times of patterning, that is, the mask is used 7 times) process is used in prior art.
Each pixel unit used in the OLED array substrate comprises two thin-film transistors (i.e., Switching TFT and Driving TFT), and a drain of the switching TFT is electrically connected with a gate of the driving TFT.
Referring to
Step S11 of forming a gate 102 of a switching TFT and a gate 102′ of a driving TFT on a substrate 101, and depositing a Gate Insulating Layer (FIL) 103 over the gate 102 of the switching TFT and the gate 102′ of the driving TFT.
Procedure of forming the gate 102 of the switching TFT and the gate 102′ of the driving TFT comprises: forming a gate layer thin film, and forming a pattern including the gate 102 and the gate 102′ by means of one patterning process (1st Mask).
Step S12 of forming an active layer 104 over the gate insulating layer 103.
Material for the active layer can be Indium Gallium Zinc Oxide (IGZO). Procedure of forming the active layer 104 comprises: forming an active layer thin film, and, forming a pattern including the acting layer by means of one patterning process (2nd Mask).
Step S13 of forming an Etch Stop Layer (ESL) 105 over the active layer 104.
Procedure of forming the etch stop layer 105 over the active layer 104 comprises: forming a pattern including the etch stop layer 105 by means of one patterning process (3rd Mask).
Step S14 of forming an opening, for connection between a gate 102′ of the driving TFT and a drain of a switching TFT to be formed later, on the gate insulating layer 103 above the gate of the driving TFT.
Procedure of forming the opening comprises: forming a gate insulating layer pattern including the opening by means of one patterning process (4th Mask).
Referring to
Procedure of forming the source 1061 and the drain 1062 comprises: forming a source-drain thin film, and, forming a pattern including the source 1061 and the drain 1062 by means of one patterning process (5th Mask).
Step S16 of depositing a protective layer (PVX or passivation layer) 107, and forming an opening, for connection between a gate 102′ of the driving TFT and a drain 1062 of the switching TFT, on the protective layer 107 above the drain 1062 of the switching TFT and the gate of the driving TFT.
Procedure of forming the opening comprises: forming a protective layer pattern including the opening by means of one patterning process (6th Mask).
Step S17 of forming a conductive pattern 108 over the protective layer 107. Material for the conductive pattern can be Indium Tin Oxide (ITO).
Procedure of forming the conductive pattern 108 comprises: forming a transparent conductive film thin film, and, forming a pattern including the conductive pattern 108 by means of one patterning process (7th Mask).
Concerning the above manufacturing method, the manufacture of TFT requires 7 times of patterning processes (7-mask), which is complicated in process flow.
Nowadays, Active Matrix Organic Light Emitting Diode (AMOLED) with large-scale size, high resolution ratio, high refresh rate and 3D form is considered as a trend of future development. It employs low-resistivity wiring technology and high mobility TFT. Cu+Oxide (Copper Gate and Oxide Active Layer) technology is very competitive if it fulfills above mentioned requirements. However, Cu itself has very high diffusion coefficient, and, Cu element will diffuse towards the active layer during use of the TFT, which deteriorates semiconductor performance of the TFT and increases the drain current.
One of the technical problems to be solved lies in diffusion of metal Cu towards the oxide active layer and relatively great increase of the drain current in the TFT where the Cu+Oxide (Copper Gate and Oxide Active Layer) wiring is used.
In order to overcome at least one of the abovementioned technical problems, the present invention provides a pixel unit used in an array substrate of a display device, the pixel unit comprising a gate line, a source-drain line and a thin-film transistor, wherein, the gate line is in an overlapped structure comprising a first MoW layer, a Cu layer and a second MoW layer overlapped successively; and a gate of the thin-film transistor is formed of the first MoW layer.
According to an embodiment of the present invention, an active layer of the thin-film transistor is oxide.
The present invention provides a method of manufacturing the abovementioned pixel unit. The method comprises steps of: S1. forming a first MoW layer, a Cu layer and a second MoW layer successively on a substrate, to form the overlapped structure; S2. coating photoresists onto a region for the gate line and a region for the thin-film transistor over the overlapped structure, respectively, and, performing a halftone process so that a thickness of the photoresist on the region for the gate line is greater than a thickness of the photoresist on the region for the thin-film transistor; S3, etching regions of the overlapped structure where no photoresist is coated, to remove all the regions of the overlapped structure where no photoresist is coated; S4, etching the photoresists, so that the photoresist over the region for the thin-film transistor is completely etched off, to expose the overlapped structure, while the photoresist over the region for the gate line is not completely etched off; S5, etching the exposed overlapped structure obtained in the step S4, to remove the second MoW layer and the Cu layer of the exposed overlapped structure so as to expose the first MoW layer; and, S6, manufacturing the thin-film transistor where the exposed first MoW layer obtained in the step S5 is served as the gate layer.
According to an embodiment of the present invention, in the step S6, oxide is served as an organic layer of the thin-film transistor.
The present invention further provides a pixel unit used in an array substrate of a display device, the pixel unit comprising a gate line, a thin-film transistor and a source-drain line connected to a source and a drain of the thin-film transistor, wherein, the source-drain line is in an overlapped structure comprising a first MoW layer, a Cu layer and a second MoW layer overlapped successively; and the source and the drain of the thin-film transistor are formed of the first MoW layer.
According to an embodiment of the present invention, the source-drain line comprises at least one of a data line and a VDD line.
According to an embodiment of the present invention, an active layer of the thin-film transistor is oxide.
The present invention further provides a method for manufacturing a pixel unit of claim 5, wherein, the method comprises steps of: T1, forming a gate layer including the gate line and a gate of the thin-film transistor, a gate stop layer, an active layer and an etching stop layer on a substrate successively; T2, forming a first MoW layer over a region for the source-drain line and a region for the source and the drain of the thin-film transistor; T3, coating photoresists onto regions, other than the region for the source-drain line, to form photoresist regions; T4, forming a Cu layer and a second MoW layer over the photoresist regions and the region for the source-drain line successively; T5, removing the photoresists as well as the Cu layer and the second MoW layer formed thereover, by means of a lift off process, to expose the first MoW layer in the region for the source-drain of the thin-film transistor; and, T6, manufacturing the thin-film transistor where the exposed first MoW layer obtained in the step T5 is served as the source and the drain.
According to an embodiment of the present invention, the source-drain line comprises at least one of a data line and a VDD line.
According to an embodiment of the present invention, in the step T1, oxide is used as an active layer of the thin-film transistor.
The present invention further provides an array substrate comprising the abovementioned pixel unit.
The present invention further provides a display device comprising the abovementioned array substrate.
The present invention further provides a method for manufacturing an array substrate, wherein a pixel unit of the array substrate is manufactured by a method for manufacturing the abovementioned pixel unit.
The present invention further provides a method for manufacturing a display device, wherein an array substrate of the display device is manufactured by the abovementioned method for manufacturing the array substrate.
On one hand, in the manufacture of the pixel unit of the array substrate according to the present invention, MoW/Cu/MoW is used as material for gate line. In the patterning of the gate of the TFT, the upper MoW layer and the Cu layer of the material for gate of the TFT is etched off by means of a halftone process while remaining the lower MoW layer served as the gate of the TFT, which ensures that no metal Cu is present below the oxide active layer of the TFT, thereby solving the problems of diffusion of Cu towards the oxide active layer of the TFT and relatively great increase of the drain current.
On the other hand, in the manufacture of the pixel unit of the array substrate according to the present invention, MoW/Cu/MoW is used as the source-drain line. Only the MoW layer is remained over the source-drain of the TFT by means of Lift Off technology, thereby solving the problems of diffusion of Cu towards the active layer of the TFT and achieving high speed of signal transmission.
In order to clearly describe technical solutions of the embodiments of the present invention, the drawings used in the embodiments will be introduced briefly hereinafter. Obviously, the technical solutions illustrated in these drawings are only some exemplary embodiments of the present invention. For those skilled in the art, other drawings may be achieved by referring to the following drawings without involving any inventive steps.
In order to provide a more clear understanding of objects, technique solutions and advantages of the present invention, the present invention will be further described hereinafter in detail in conjunction with these embodiments and with reference to the attached drawings.
In addition, for purpose of explanations, lots of details are presented in the following description in order to provide a complete understanding of these disclosed embodiments. However, it should be understood that one or more embodiments can be implemented without these details. In other cases, well-known structures and devices are simplified for clear purposes.
As mentioned above, in the manufacture of the array substrate of the display device, when a MoW/Cu/MoW overlapped structure is used as materials for gate or source-drain of the TFT, diffusion of Cu layer towards the active layer of the TFT needs to be prevented. Accordingly, one of the MoW layers and the Cu layer in-between of materials for gate or source-drain are removed while only one of the MoW layers is remained served as materials for gate and/or source-drain of the TFT.
According to one aspect of the present invention, there provides a pixel unit comprising a gate line, a source-drain line and a thin-film transistor (TFT). The gate line is in an overlapped structure comprising a first MoW layer, a Cu layer and a second MoW layer overlapped successively; and, a gate of the thin-film transistor is formed of the first MoW layer.
As mentioned above, in the abovementioned pixel unit, an active layer of the TFT may be oxide. Problem of diffusion of Cu towards the active layer is naturally eliminated since no Cu is included in the gate of the TFT.
As to the abovementioned pixel unit, the present invention provides a method of manufacturing a pixel unit. The method comprises: first of all, forming a first MoW layer, a Cu layer and a second MoW layer successively on a substrate, to form the overlapped structure; then, coating photoresists onto a region for the gate line and a region for the thin-film transistor over the overlapped structure, respectively, and, performing a halftone process so that a thickness of the photoresist on the region for the gate line is greater than a thickness of the photoresist on the region for the thin-film transistor; after that, etching regions of the overlapped structure where no photoresist is coated, to remove all the regions of the overlapped structure where no photoresist is coated x.
Then, etching the photoresists so that the photoresist over the region for the thin-film transistor is completely etched off, to expose the overlapped structure while the photoresist over the region for the gate line is not completely etched off. After that, etching the exposed overlapped structure obtained in the above step, to remove the second MoW layer and the Cu layer of the exposed overlapped structure so as to expose the first MoW layer. Finally, manufacturing the thin-film transistor where the exposed first MoW layer is served as the gate layer.
According to another aspect of the present invention, there is provided a pixel unit comprising a gate line, a thin-film transistor and a source-drain line connected to a source and a drain of the thin-film transistor. The source-drain line is in an overlapped structure comprising a first MoW layer, a Cu layer and a second MoW layer overlapped successively; and, the source and the drain of the thin-film transistor are formed of the first MoW layer.
As mentioned above, in the abovementioned pixel unit, an active layer of the TFT may be oxide. Problem of diffusion of Cu towards the active layer is naturally eliminated since no Cu is included in the source and the drain of the TFT. The source-drain line comprises at least one of a data line and a VDD line.
A method for manufacturing the above pixel unit comprises steps of: first of all, forming a gate layer including the gate line and a gate of the thin-film transistor, a gate stop layer, an active layer and an etching stop layer on a substrate successively; then, forming a first MoW layer over a region for the source-drain line and a region for the source and the drain of the thin-film transistor; coating photoresists onto regions, other than the region for the source-drain line, to form photoresist regions; and, forming a Cu layer and a second MoW layer over the photoresist regions and the region for the source-drain line successively.
After that, removing the photoresists as well as the Cu layer and the second MoW layer formed thereover, by means of a lift off process, to expose the first MoW layer in the region for the source-drain of the thin-film transistor; and, manufacturing the thin-film transistor where the exposed first MoW layer is served as the source and the drain.
The present invention further discloses an array substrate and a display device comprising the above pixel unit and methods for manufacturing the same.
In order to provide a more clear understanding of objects, technique solutions and advantages of the present invention, the present invention will be further described hereinafter in detail in conjunction with these embodiments and with reference to the attached drawings.
In this embodiment, material for gate line formed on the region for gate line is in an overlapped structure comprising a first MoW layer, a Cu layer and a second MoW layer from bottom to top. And, a gate formed on the region for the gate of the thin-film transistor is formed of the first MoW layer.
Then, the pixel unit shown in
As to the pixel unit shown in
S1. forming a first MoW layer, a Cu layer and a second MoW layer successively on a substrate, to form the overlapped structure.
Referring to
S2. coating photoresists onto a region for the gate line and a region for the thin-film transistor over the overlapped structure, respectively, and, performing a halftone process so that a thickness of the photoresist on the region for the gate line is greater than a thickness of the photoresist on the region for the thin-film transistor.
S3, etching regions of the overlapped structure where no photoresist 14 is coated, to remove all the regions of the overlapped structure where no photoresist is coated.
Referring to
After the etching, GI and an active layer are deposited, and, corresponding patternings are performed. SD metal is deposited, to form a bottom gate type TFT device.
S4, etching the photoresists, so that the photoresist over the region for the thin-film transistor is completely etched off, to expose the overlapped structure, while the photoresist over the region for the gate line is not completely etched off.
Referring to
S5, etching the exposed overlapped structure obtained in the step S4, to remove the second MoW layer and the Cu layer of the exposed overlapped structure so as to expose the first MoW layer.
Since the overlapped structure at the region for the TFT is exposed in the step S4, it continues to perform the etching on the overlapped structure at the region for the TFT while keeping the etching on the photoresist over the region for the gate. Gas Cl2 is employed during the etching. The etching process is controlled so that the overlapped structure at the region for the TFT has the second MoW layer 13 and the Cu layer 12 etched off while remaining the first MoW layer 11, meanwhile the photoresist over the region for the gate line is completely etched off.
S6, manufacturing the thin-film transistor where the exposed first MoW layer obtained in the step S5 is served as the gate layer.
After completion of the step S5, manufacture of the TFT may be made in a conventional manner. For example, a flat structure shown in
The second embodiment also relates to construction and manufacturing method for a pixel unit used in an array substrate of a display device. In the pixel unit, a MoW/Cu/MoW overlapped structure is employed for the source-drain line, while a layer of MoW is employed for a source and a drain of the TFT.
In this embodiment, the source-drain line comprises a data line and a VDD line. The date line is used for providing data driving, while the VDD line is used for providing current source line of light to OLED.
In this embodiment, material for the source-drain line formed on the regions 7, 8 for the source-drain layer is in an overlapped structure comprising a first MoW layer, a Cu layer and a second MoW layer from bottom to top. And, a source and a drain formed on the region for the source and the drain of the TFT is formed of the first MoW layer.
It should be noted that, the first MoW layer, the Cu layer and the second MoW layer of the second embodiment and those of the first embodiment can be made of the same materials, although they are different in layers.
As to the pixel unit shown in
T1, forming a gate layer including the gate line and a gate of the thin-film transistor, a gate stop layer, an active layer and an etching stop layer on a substrate successively. Referring to
T2, forming a first MoW layer over a region for the source-drain line and a region for the source and the drain of the thin-film transistor.
As mentioned above, the source-drain line comprises a data line and a VDD line. In this embodiment, the first MoW layer 16 is formed over both the region for the data line and the region for the VDD line.
T3, coating photoresists onto regions, other than the region for the source-drain line, to form photoresist regions.
Referring to
T4, forming a Cu layer and a second MoW layer over the photoresist regions and the region for the source-drain line successively.
Referring to
T5, removing the photoresists as well as the Cu layer and the second MoW layer formed thereover, by means of a lift off process, to expose the first MoW layer in the region for the source-drain of the thin-film transistor.
Referring to
T6, manufacturing the thin-film transistor where the exposed first MoW layer obtained in the step T5 is served as the source and the drain. Accordingly, the source and the drain of the manufactured TFT includes a MoW layer only and excludes a Cu layer, thereby eliminating adverse effect due to diffusion of Cu towards the oxide active layer, so as to achieve the object of the present invention.
Concerning the above, on one hand, in the manufacture of the pixel unit of the array substrate according to the present invention, MoW/Cu/MoW is used as material for gate line. In the patterning of the gate of the TFT, the upper MoW layer and the Cu layer of the material for gate of the TFT is etched off by means of a halftone process while remaining the lower MoW layer served as the gate of the TFT, which ensures that no metal Cu is present below the oxide active layer of the TFT, thereby solving the problems of diffusion of Cu towards the oxide active layer of the TFT and relatively great increase of the drain current. On the other hand, in the manufacture of the pixel unit of the array substrate according to the present invention, MoW/Cu/MoW is used as the source-drain line. Only the MoW layer is remained over the source-drain of the TFT by means of Lift Off technology, thereby solving the problems of diffusion of Cu towards the active layer of the TFT and achieving high speed of signal transmission.
A further description of objects, technique solutions and advantages of the present invention has been made in conjunction with abovementioned embodiments. It should be understood that the above description is merely used to illustrate specific embodiments of the present invention, but not intended to limit the scope of the present invention. All of changes, equivalent alternatives, improvements, made within principles and spirit of the invention, should be construed to fall within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201410478300.0 | Sep 2014 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2014/094970 | 12/25/2014 | WO | 00 |