This application is a U.S. national phase application of International Patent Application No. PCT/KR2019/015203, filed on Nov. 8, 2019, which claims priority to Korean Patent Application No. 10-2019-0053918, filed on May 8, 2019, and all the befits accruing therefrom under 35 U.S.C. § 119, the content of which in its entirety is herein incorporated by reference.
The present disclosure relates to a pixel, a display device including the pixel, and a method of driving the display device.
A display device includes pixels connected to data lines and scan lines. Each pixel commonly includes a light emitting element and a driving transistor for controlling an amount of a current flowing to the light emitting element. The driving transistor controls an amount of a current flowing from a first driving power source through the light emitting element to a second driving power source in response to a data signal. In this case, the light emitting element generates light of a certain brightness corresponding to the amount of the current from the driving transistor.
A method of implementing high brightness by setting a voltage of the second driving power source to a low level or minimizing power consumption by driving the display device at a low frequency is used these days. However, in the case of setting the second driving power source to a low level or driving the display device at a low frequency, a certain leakage current is generated in the driving transistor. In this case, the voltage of the data signal is not maintained during a single frame, and accordingly, an image with a desired brightness is not displayed.
The present disclosure is directed to a pixel, a display device including the pixel, and a method of driving the display device, which may display an image with a desired brightness by minimizing a leakage current in a driving transistor.
The present disclosure is also directed to a pixel, a display device including the pixel, and a method of driving the display device, which may prevent deterioration of a light emitting element and a brightness deviation due to an IR drop of a driving power source.
According to an embodiment of the present disclosure, a pixel includes a first transistor connected between a first power source and a fourth node and having a gate electrode connected to a first node, a second transistor connected between a third node and a data line and turned on in response to a scan signal applied to an i-th first scan line, where i is a natural number, a third transistor connected between the first node and the fourth node and turned on in response to a scan signal applied to an i-th third scan line, where i is a natural number, a fourth transistor connected between the second node and an initialization voltage and turned on in response to a scan signal applied to an i-th second scan line, where i is a natural number, a first capacitor connected between the third node and the first node, a second capacitor connected between the first node and the second node, and an organic light emitting diode connected between the second node and a second power source, wherein the third transistor may be an N-type transistor.
At least one of the second transistor and the fourth transistor may be the N-type transistor.
The fourth transistor may be the N-type transistor, and the i-th second scan line may be the same scan line as an (i+1)-th third scan line.
The second transistor may be the N-type transistor, and the i-th first scan line may be the same scan line as the i-th third scan line.
The fourth transistor may be the N-type transistor, and the i-th second scan line may be the same scan line as the (i+1)-th third scan line.
The i-th second scan line may be the same scan line as an (i+1)-th first scan line.
The pixel may further include a fifth transistor connected between a reference voltage and the third node and turned on in response to a light emission signal applied to a light emission control line, and a sixth transistor connected between the fourth node and the second node and turned on in response to the light emission signal applied to the light emission control line.
The second transistor and the third transistor may be turned on for a first period, and the fourth transistor may be turned on for a second period subsequent to the first period.
The second transistor and the third transistor may be turned on during a first period, the fourth transistor may be turned on during a second period subsequent to the first period, and the fifth transistor and the sixth transistor may be turned on during an emission period subsequent to the second period.
According to an embodiment of the present disclosure, a display device includes pixels connected to scan lines and data lines, a scan driver supplying a scan signal to the scan lines, and a data driver supplying a data signal to the data lines, wherein at least one of the pixels, which is connected to an i-th horizontal line, where i is a natural number, includes a first transistor connected between a first power source and a fourth node and having a gate electrode connected to a first node, a second transistor connected between a third node and a data line and turned on in response to a scan signal applied to an i-th first scan line, where i is a natural number, a third transistor connected between the first node and the fourth node and turned on in response to a scan signal applied to an i-th third scan line, a fourth transistor connected between the second node and an initialization voltage and turned on in response to a scan signal applied to an i-th second scan line, a first capacitor connected between the third node and the first node, a second capacitor connected between the first node and the second node, and an organic light emitting diode connected between the second node and a second power source, wherein the third transistor may be an N-type transistor.
The scan driver may supply a scan signal with one of a first polarity or a second polarity opposite the first polarity to the first to third scan lines.
The display device may further include an emission driver supplying a light emission signal to light emission control lines, and the at least one pixel may further include a fifth transistor connected between a reference voltage and the third node and turned on in response to the light emission signal applied to the light emission control line, and a sixth transistor connected between the fourth node and the second node and turned on in response to the light emission signal applied to the light emission control line.
The scan driver may set a scan signal applied to the first scan line and the third scan line during a first period to a turn-on level and set a scan signal applied to the second scan line during a second period subsequent to the first period to a turn-on level.
The scan driver may set a scan signal applied to the first scan line and the third scan line during a first period to a turn-on level, set a scan signal applied to the second scan line during a second period subsequent to the first period to a turn-on level, and set the light emission signal to a turn-on level during an emission period subsequent to the second period.
According to an embodiment of the present disclosure, a method of driving a display device including a plurality of pixels, at least one of the pixels, which is connected to an i-th horizontal line, where i is a natural number, including a first transistor connected between a first power source and a fourth node and having a gate electrode connected to a first node, a second transistor connected between a third node and a data line and turned on in response to a scan signal applied to an i-th first scan line, where i is a natural number, a third transistor connected between the first node and the fourth node and turned on in response to a scan signal applied to an i-th third scan line, where i is integer natural number, a fourth transistor connected between the second node and an initialization voltage and turned on in response to a scan signal applied to an i-th second scan line, where i is integer natural number, a first capacitor connected between the third node and the first node, a second capacitor connected between the first node and the second node, and an organic light emitting diode connected between the second node and a second power source, includes turning on the second transistor and the third transistor during a first period, and turning on the forth transistor during a second period subsequent to the first period.
The third transistor may be an N-type transistor.
The at least one pixel may further include a fifth transistor connected between a reference voltage and the third node and turned on in response to the light emission signal applied to the light emission control line, and a sixth transistor connected between the fourth node and the second node and turned on in response to the light emission signal applied to the light emission control line, and the method may further include turning on the fifth transistor and the sixth transistor during an emission period subsequent to the second period.
According to the present disclosure, a pixel, a display device including the pixel, and a method of driving the display device may improve driving reliability and power consumption by minimizing a leakage current in a driving transistor.
Furthermore, the pixel, the display device including the pixel, and the method of driving the display device may improve a deterioration of a light emitting element and brightness deviation due to IR drop of a driving power source.
Embodiments of the present disclosure will now be described in detail with reference to accompanying drawings. Like elements in the drawings use identical or similar reference numerals.
Referring to
The timing controller 10 may provide grayscale values and control signals to the data driver 20 which suit for specifications of the data driver 20. The timing controller 10 may also provide a clock signal, a start scanning signal, etc., to the scan driver 30 which suit for specifications of the scan driver 30. The timing controller 10 may also provide a clock signal, a stop light emission signal, etc., to the emission driver 40 which suit for specifications of the emission driver 40.
The data driver 20 may use the grayscale values and control signals received from the timing controller 10 to generate data voltages to be provided to data lines D1 to Dm. For example, the data driver 20 may use the clock signal to sample the grayscale values and apply data voltages corresponding to the grayscale values to the data lines D1 to Dm one pixel row at a time, here ‘m’ may be a natural number.
The scan driver 30 may receive the clock signal, the start scanning signal, etc., from the timing controller 10 to generate scan signals to be provided to scan lines S11 to S1n, S21 to S2n and S31 to S3n, here ‘n’ may be a natural number.
For example, the scan driver 30 may include shift registers, and may generate scan signals in a manner that sequentially delivers a turn-on level pulse of the start scanning signal to the next stage under the control of the clock signal.
In various embodiments of the present disclosure, the scan driver 30 may provide scan signals having opposite electrical polarities. The term polarity may refer to a logic level of the pulse. For example, the scan driver 30 may provide scan signals with a first polarity to at least some of the first to third scan lines S11 to S1n, S21 to S2n and S31 to S3n and scan signals with a second polarity opposite the first polarity to the some others. For this, the scan driver 30 may have first stages for providing the first polarity scan signals and second stages for providing the second polarity scan signals.
In an embodiment, the first polarity scan signals provided to the at least some of the first to third scan lines S11 to S1n, S21 to S2n and S31 to S3n may have identical or different waveforms. Alternatively, each of the first polarity scan signals may be a delayed scan signal from a previous scan signal.
In an embodiment, the second polarity scan signal provided to some others of the first to third scan lines S11 to S1n, S21 to S2n and S31 to S3n may have an opposite phase to one of the first polarity scan signals.
When a pulse has the first polarity, the pulse may have a gate-on voltage at a low level. When the gate-on voltage having the low level is supplied to a gate electrode of a P-type transistor, the P-type transistor may be turned on. It is assumed that a voltage at a sufficiently high level is applied to a source electrode of the P-type transistor as compared to the gate electrode. For example, the P-type transistor may be a P-channel metal oxide semiconductor (PMOS).
When a pulse has the second polarity, the pulse may have a gate-on voltage at a high level. When the gate-on voltage having the high level is applied to a gate electrode of an N-type transistor, the N-type transistor may be turned on. It is assumed that a voltage at a sufficiently low level is applied to a source electrode of the N-type transistor as compared to the gate electrode. For example, the N-type transistor may be an N-channel metal oxide semiconductor (NMOS).
The emission driver 40 may receive the clock signal, the stop light emission signal, etc., from the timing controller 10 to generate light emission signals to be provided to light emission control lines E1 to En. For example, the emission driver 40 may sequentially provide light emission signals having a turn-off level to the light emission control lines E1 to En. For example, the emission driver 40 may include shift registers, and may generate light emission signals in a manner that sequentially delivers a turn-off level pulse of the stop light emission signal to the next light emission stage under the control of the clock signal.
The display 50 includes pixels PX. For example, each of the pixels PX may be connected to a corresponding data line, first to third scan lines S11 to S1n, S21 to S2n and S31 to S3n, and a light emission control line En.
Although there are n first to third scan lines S11 to S1n, S21 to S2n and, S31 to S3n and n light emission control lines E1 to En shown in
Although there are the first scan lines S11 to S1n, second scan lines S21 to S2n and third scan lines S31 to S3n shown in
Furthermore, although the light emission control lines E1 to En are shown in
Referring to
The first stage ST1 supplies the first scan signal SS11 to the first scan line S11 connected thereto in response to the start scanning signal GSP. The other stages ST2 to STn supply a scan signal SS12 to SS1n to the first scan line (one of S12 to S1n) connected thereto in response to an output signal (i.e., the first scan signal) supplied from their previous stage. For example, the i-th stage STi may supply the first scan signal SS1i to the i-th first scan line S1i in response to the first scan signal SS1i−1 supplied from the (i−1)-th stage STi−1.
The scan driver 30 may receive clock signals CLK1 and CLK2. Although an example of supplying the first clock signal CLK1 and the second clock signal CLK2 is shown in
The first clock signal CLK1 and the second clock signal CLK2 are supplied to different stages ST. For example, the first clock signal CLK1 may be supplied to odd numbered stages and the second clock signal CLK2 may be supplied to even numbered stages. Alternatively, the second clock signal CLK2 may be supplied to odd numbered stages and the first clock signal CLK1 may be supplied to even numbered stages. The first clock signal CLK1 and the second clock signal CLK2 may be supplied to the first scan lines S11 to S1n as the first scan signal SS1.
The first clock signal CLK1 and the second clock signal CLK2 are square wave signals that includes gate-on voltages (e.g., a low level voltage) and gate-off voltages (e.g., a high level voltage) disposed alternatingly. In a single cycle of the first clock signal CLK1 and the second clock signal CLK2, the gate-on voltage period may be set to be shorter than the gate-off voltage period. The gate-on voltage period may correspond to a width of the first scan signal SS1, which may be variously set according to the circuit configuration of the pixel PX.
The first clock signal CLK1 and the second clock signal CLK2 may have the same cycle, for example, two periods (e.g., 2 H) and may be shifted one horizontal period (1 H) form each other. For example, the first clock signal CLK1 and the second clock signal CLK2 may have phases, one of which is shifted from the earlier clock signal by the one horizontal period (1 H). Specifically, when the first clock signal CLK1 and the second clock signal CLK2 are supplied sequentially, the phase of the second clock signal CLK2 may be shifted by the one horizontal period (1 H) from the first clock signal CLK1.
As described above, in an embodiment of the present disclosure, the gate-on voltage period of the first clock signal CLK1 and the second clock signal CLK2 may be shorter than the gate-off voltage period. For example, when the first and second clock signals CLK1 and CLK2 have a cycle of 2 H, the gate-on voltage period of the first and second clock signals CLK1 and CLK2 may be shorter than 1 H. In this embodiment, the first clock signal CLK1 and the second clock signal CLK2 may be shifted one horizontal period (1 H). Based on the clock signals CLK1 and CLK2 set as described above, the first scan signals SS1i and SS1i+1 output to the i-th first scan line S1i and the (i+1)-th first scan line S1i+1 have waveforms as shown in
The present disclosure is not limited thereto. For example, in various embodiments, when the gate-on voltage period of transistors in a pixel circuit is set to be a low level voltage period in the first and second clock signals CLK1 and CLK2, a rising edge of the first scan signal SS1i output to the i-th first scan line S1i is in synchronization with a falling edge of the first scan signal SS1i+1 output to the (i+1)-th first scan line S1i+1.
In the following embodiments, assume that the first scan signals SS11 to SS1n output to the first scan lines S11 to S1n have the waveforms as shown in
Referring to
The first transistor T1 is connected between a first driving power source ELVDD and a terminal of the sixth transistor T6, i.e., a fourth node N4. A gate electrode of the first transistor T1 is connected to a first node N1. The first transistor T1 may be turned on according to a voltage applied to the first node N1 to control an amount of a current flowing from the first driving power source ELVDD to the organic light emitting diode OLED through the sixth transistor T6. In various embodiments of the present disclosure, the first transistor T1 may be termed as a driving transistor.
The second transistor T2 is connected between a third node N3 and a data line Dj. A gate electrode of the second transistor T2 is connected to the first scan line S1i. The second transistor T2 may be turned on in response to a first scan signal applied to the first scan line S1i. When the second transistor T2 is turned on, a data signal applied to the data line Dj may be supplied to the third node N3.
The third transistor T3 is connected between the first node N1 and the fourth node N4. A gate electrode of the third transistor T3 is connected to the third scan line S3i. The third transistor T3 may be turned on in response to a third scan signal applied to the third scan line S3i.
The fourth transistor T4 is connected between a second node N2 and an initialization voltage Vint. A gate electrode of the fourth transistor T4 is connected to the second scan line S2i. The fourth transistor T4 may be turned on in response to a second scan signal applied to the second scan line S2i. When the fourth transistor T4 is turned on, the initialization voltage Vint may be applied to the second node N2, i.e., an anode electrode of the organic light emitting diode OLED.
In various embodiments of the present disclosure, the initialization voltage Vint may have a lower voltage value than the second driving power source ELVSS. For example, the initialization voltage Vint may be −3.5 V, without being limited thereto.
The fifth transistor T5 is connected between a reference voltage Vref and the third node N3. A gate electrode of the fifth transistor T5 is connected to a light emission control line Ei.
The fifth transistor T5 may be turned on in response to a light emission control signal supplied to the light emission control line Ei. When the fifth transistor T5 is turned on, the reference voltage Vref may be applied to the third node N3. As the reference voltage Vref is applied to the third node N3, the voltage at the third node N3 may be stably maintained even when the first capacitor C1 is floated, and as a result, a gate voltage of the first transistor T1 (i.e., a voltage at the first node N1) may be stably maintained in conjunction with the second capacitor C2.
In various embodiments of the present disclosure, the reference voltage Vref may have a positive voltage value or a negative voltage value, but the specific value is not particularly limited.
The sixth transistor T6 is connected between the fourth node N4 and the second node N2. A gate electrode of the sixth transistor T6 is connected to the light emission control line Ei. The sixth transistor T6 may be turned on in response to a light emission signal supplied to the light emission control line Ei. When the sixth transistor T6 is turned on, the fourth node N4 and the second node N2 may be electrically connected to each other.
The first capacitor C1 is connected between the first node N1 and the third node N3. The first capacitor C1 may store a voltage corresponding to a voltage difference between the first node N1 and the third node N3. In other words, the first capacitor C1 may control a voltage across the first and third nodes N1 and N3. In various embodiments of the present disclosure, the first capacitor C1 may be termed a storage capacitor.
The second capacitor C2 is connected between the first node N1 and the second node N2. The second capacitor C2 may store a voltage corresponding to a voltage difference between the first node N1 and the second node N2. In other words, the second capacitor C2 may control a voltage across the first and second nodes N1 and N2.
In various embodiments of the present disclosure, the second capacitor C2 may control the voltage at the second node N2 in consideration of a threshold voltage of the organic light emitting diode OLED, and control the voltage at the first node N1 according to the second node N2 voltage in conjunction with the first capacitor C1. The threshold voltage of the organic light emitting diode OLED may increase as the organic light emitting diode OLED deteriorates, and accordingly, an amount of a current required for the organic light emitting diode OLED to emit light with uniform brightness may increase. In various embodiments of the present disclosure, the second capacitor C2 may control voltages at both terminals (the first node N1 and the second node N2) in consideration of the threshold voltage of the organic light emitting diode OLED for a data write period as will be described later, and allow the voltage at the first node N1 to be controlled by reflecting the threshold voltage of the organic light emitting diode OLED for an emission period. Then, the gate-source voltage Vgs of the first transistor T1 is controlled so that an amount of a current flowing to the organic light emitting diode OLED may be controlled. Accordingly, in the present disclosure, deterioration of the organic light emitting diode OLED is compensated and the organic light emitting diode OLED may emit light with a desired brightness.
The organic light emitting diode OLED has an anode electrode connected to the second node N2 and a cathode electrode connected to the second driving power source ELVSS. The second driving power source ELVSS may be set to be lower than the first driving power source ELVDD and higher than the initialization voltage Vint. In various embodiments of the present disclosure, the second driving power source ELVSS may be set to −2.6 V, without being limited thereto.
The organic light emitting diode OLED may include an internal parasitic capacitor Coled (hereinafter, referred to as an organic capacitor). When the initialization voltage Vint is applied to the anode electrode of the organic light emitting diode OLED through the fourth transistor T4, the organic capacitor Coled is discharged, thereby improving the black representation ability of the pixel PX.
Specifically, the organic capacitor Coled is charged with a certain voltage corresponding to a current supplied for the previous frame period. Once the organic capacitor Coled is charged, the organic light emitting diode OLED may easily emit light even with a low current.
In the meantime, a black data signal may be supplied to the pixel PX for the current frame period. When the black data signal is supplied, ideally, a current should not flow through the organic light emitting diode OLED. However, in the pixel PX made up with transistors, a certain leakage current may be supplied to the organic light emitting diode OLED even though the black data signal is supplied. In this case, when the organic capacitor Coled is in a charged state, the organic light emitting diode OLED may emit infinitesimal light, thereby degrading the black representation ability.
On the other hand, as in the present disclosure, when the organic capacitor Coled is discharged by the initialization voltage Vint, the organic light emitting diode OLED is set into a non-emission state even though the leakage current is applied thereto. Accordingly, in the present disclosure, the initialization voltage Vint may be used to discharge the organic capacitor Coled, thereby improving the black representation ability.
In the embodiment as shown in
The oxide semiconductor thin film transistor includes a gate electrode, a source electrode, and a drain electrode. The oxide semiconductor thin film transistor has an active layer formed with an oxide semiconductor. The oxide semiconductor may be set as an amorphous or crystalline oxide semiconductor. The oxide semiconductor thin film transistor may be formed of an N-type transistor. The oxide semiconductor thin film transistor may be processed at a low temperature and has a lower charge mobility than the LTPS thin film transistor. The oxide semiconductor thin film transistor has good off-current characteristics.
The LTPS thin film transistor includes a gate electrode, a source electrode, and a drain electrode. The LTPS thin film transistor may have an active layer formed with poly-silicon. The LTPS thin film transistor may be formed of a P-type thin film transistor or an N-type thin film transistor. In an embodiment of the present disclosure, assume that the LTPS thin film transistor is formed of the P-type transistor. The LTPS thin film transistor has high electron mobility, and thus has fast driving characteristics.
In the embodiment of
In various embodiments of the present disclosure, the third transistor T3 is formed of a semiconductor thin film transistor having good off-current characteristics, i.e., an N-type transistor. Accordingly, when the first transistor T1 is driven to supply a current to the organic light emitting diode OLED from the first driving power source ELVDD via the sixth transistor T6, a leakage current may be efficiently prevented from being generated through the third transistor T3.
The present disclosure is not, however, limited thereto, and transistors of the pixel PX may be variously arranged and the signals supplied to the pixel PX may be changed accordingly.
When the display device is operated in a high-frequency driving method, the display device may be expressed to be in a first driving mode. Furthermore, when the display device is operated in a low-frequency driving method, the display device may be expressed to be in a second driving mode.
The first driving mode may be a normal driving mode. Specifically, when the user uses the display device, frames may be displayed at 20 Hz or higher, e.g., 60 Hz.
The second driving mode may be a low-power driving mode. For example, when the user is not using the display device, frames may be displayed at less than 20 Hz, e.g., 1 Hz. For example, an occasion when only a time and a date are displayed in the ‘always on mode’ of commercial modes may correspond to the second driving mode.
In the first driving mode, one cycle may include a plurality of frames. The one cycle is a period defined arbitrarily for comparison with the second driving mode. The one cycle may refer to the same time interval as in the first and second driving modes.
In the first driving mode, each frame may include a data write period WP and an emission period EP.
In the second driving mode, a first frame in the one cycle includes a data write period WP and an emission period EP, and the other frames in the one cycle each include an emission period EP only. The pixel PX may display the same image during the one cycle based on a data voltage applied during the data write period WP of the first frame in the one cycle.
Referring to
In
Furthermore, in
In various embodiments of the present disclosure, the data write period WP may include a first period P1, a second period P2, a third period P3 and a fourth period P4. In various embodiments, a voltage corresponding to the data signal and a voltage to compensate for the threshold voltage of the organic light emitting diode OLED may be written to the pixel PX for the first period P1. During the third period P3, a voltage of the anode of the organic light emitting diode OLED may be initialized. During the emission period EP, the organic light emitting diode OLED may emit light based on the data voltage and the threshold voltage compensation value for the organic light emitting diode OLED written in the data write period WP.
A driving method in the data write period WP and the emission period EP will now be described in detail.
Referring to
Furthermore, during the first period P1, a light emission signal of the high level is supplied through the light emission control line Ei to the fifth transistor T5 and the sixth transistor T6. The fifth transistor T5 and the sixth transistor T6 are turned off in response to the light emission signal.
During the first period P1, the first transistor T1 keeps in the turn-on state and is diode-connected, so a current is supplied to the fourth node N4 from the first driving power source ELVDD. The first node N1 is then set to have a voltage dropped by the threshold voltage Vth of the first transistor T1 from the voltage of the first driving power source ELVDD.
The second node N2 is set to have a voltage increased by a threshold voltage of the organic light emitting diode OLED Voled,th.
According to what are described above, during the first period P1, voltages VN1, VN2 and VN3 of the first to third nodes N1 to N3 may be expressed as in the following Equations 1 to 3:
VN1=ELVDD−Vth [Equation 1]
VN2=Voled,th [Equation 2]
VN3=Vdata [Equation 3]
Subsequently, referring to
Next, referring to
VN2=Vint [Equation 4]
ΔVN2=Voled,th−Vint [Equation 5]
As the voltage of the second node N2 changes, voltages at the first and third nodes N1 and N3 may be changed as well. Specifically, during the third period P3, the first node N1 and the third node N3 are in a floating state because the second transistor T2, the third transistor T3 and the fifth transistor T5 are turned off, so that, when the voltage at the second node N2 is changed, voltages at the first and third nodes N1 and N3 may also be changed as much as the variation of voltage at the second node N2 from the voltages maintained by the first capacitor C1 in the previous period. Accordingly, during the second period P2, voltages VN1 and VN3 of the first and third nodes N1 and N3 may be expressed as in the following Equations 6 and 7:
VN1=ELVDD−Vth−ΔVN2 [Equation 6]
VN3=Vdata−ΔVN2 [Equation 7]
In the meantime, when the initialization voltage Vint is applied to the second node N2, the organic capacitor Coled of the organic light emitting diode OLED may be discharged. The organic capacitor Coled is discharged during the data write period WP, thereby improving the black representation ability of the pixel PX in the subsequent emission period EP.
Subsequently, referring to
Subsequently, referring to
Furthermore, during the emission period EP, a light emission signal of the low level is applied through the light emission control line Ei. The fifth transistor T5 and the sixth transistor T6 are then turned on in response to the light emission signal.
VN3=Vref [Equation 8]
ΔVN3=Vdata−ΔVN2−Vref [Equation 9]
As the voltage of the third node N3 changes, voltages at the first and second nodes N1 and N2 may be changed as well. Specifically, since the first capacitor C1 and the second capacitor C2 are connected in series during the emission period EP, a variation of voltage at the third node N3 is distributed to the first and second capacitors C1 and C2, and the voltage at the first node N1 may be changed according to the variation of voltage distributed to the first capacitor C1. Accordingly, a voltage of the first node N1 during the emission period EP is expressed as in the following Equation 10:
where Cst denotes capacitance of the first capacitor C1 and Cself denotes capacitance of the second capacitor C2.
When such a voltage is applied to the first node N1, a current corresponding to a voltage difference between the first driving power source ELVDD and the first node N1, i.e., a gate-source voltage Vgs, may flow through the first transistor T1. The current flowing through the first transistor T1 is supplied to the organic light emitting diode OLED via the sixth transistor T6 in a turn-on state. The organic light emitting diode OLED may then emit light with a brightness corresponding to an amount of the supplied current.
When the voltage VN1 of the first node N1 is controlled as in Equation 10, a current Ioled flowing to the organic light emitting diode OLED is expressed as in the following Equation 11.
where μp denotes carrier mobility of the first transistor T1, Cox denotes gate oxide layer capacitance of the first transistor T1, and W/L denotes a ratio of width to length of the first transistor T1.
Referring to Equation 11, it may be seen that the current supplied to the organic light emitting diode OLED Ioled during the emission period EP is free of an effect of IR drop according to the first driving power source ELVDD and is increased by considering the threshold voltage of the organic light emitting diode OLED Voled,th.
In the meantime, the third transistor T3 remains in a turn-off state during the emission period EP. In various embodiments of the present disclosure, the third transistor T3 may be formed of the N-type transistor having good off-current characteristics. Accordingly, the driving current flowing through the first transistor T1 from the first driving power source ELVDD may be prevented from leaking through the third transistor T3 during the emission period EP.
Preventing the leakage of the driving current during the emission period EP may improve driving characteristics in the low-frequency driving mode, e.g., the “always on mode” of the display device 1. Furthermore, the prevention of the driving current leakage may lead to improvement in ability to express black gradation, color bleeding or crosstalk.
Although the data write period WP is shown as having the first to fourth periods P1 to P4 in the embodiment of
In
Referring to
In the second embodiment of the present disclosure, the fourth transistor T4_1 is connected between the second node N2 and the initialization voltage Vint. A gate electrode of the fourth transistor T4_1 is connected to a second scan line S2i_1. The fourth transistor T4_1 may be turned on in response to a second scan signal applied to the second scan line S2i_1. When the fourth transistor T4_1 is turned on, the initialization voltage Vint may be applied to the second node N2, i.e., an anode electrode of the organic light emitting diode OLED.
In this embodiment of the present disclosure, a scan signal with a first polarity may be supplied for the first scan line S1i and scan signals with a second polarity may be supplied to the second and third scan lines S2i_1 and S3i.
In
Furthermore, in
Referring to
In
Referring to
In the third embodiment of the present disclosure, the fourth transistor T4_2 is connected between the second node N2 and the initialization voltage Vint. The gate electrode of the fourth transistor T4_2 is connected to the (i+1)-th third scan line S3i+1. The fourth transistor T4_2 may be turned on in response to a third scan signal applied to the (i+1)-th third scan line S3i+1. When the fourth transistor T4_2 is turned on, the initialization voltage Vint may be applied to the second node N2, i.e., an anode electrode of the organic light emitting diode OLED.
In this embodiment, a scan signal with a first polarity may be supplied for the first scan line S1i and a scan signal with a second polarity may be supplied to the third scan line S3i and S3i+1.
In
Furthermore, in
Referring to
As shown in
In
Referring to
In the fourth embodiment of the present disclosure, the second transistor T2_1 is connected between the third node N3 and the data line Dj. A gate electrode of the second transistor T2_1 is connected to a third scan line S3i. The second transistor T2_1 may be turned on in response to a third scan signal applied to the third scan line S3i. When the second transistor T2_1 is turned on, a data signal applied to the data line Dj may be supplied to the third node N3.
In this embodiment, a scan signal with a second polarity may be supplied to the third scan line S3i and the second scan line S2i.
In
Furthermore, in
Referring to
Although the fourth transistor T4_1 formed of the N-type transistor is shown in the embodiment of
Although a gate electrode of the fourth transistor T4_1 is connected to the i-th second scan line S2i_1 in the embodiment of
In
Referring to
In the fifth embodiment of the present disclosure, the fourth transistor T4_3 is connected between the second node N2 and the initialization voltage Vint. The gate electrode of the fourth transistor T4_3 is connected to the (i+1)-th first scan line S1i+1. The fourth transistor T4_3 may be turned on in response to a first scan signal applied to the (i+1)-th first scan line S1i+1. When the fourth transistor T4_3 is turned on, the initialization voltage Vint may be applied to the second node N2, i.e., an anode electrode of the organic light emitting diode OLED.
In this embodiment, a scan signal with the first polarity may be supplied to the first scan line S1i and S1i+1 and a scan signal with the second polarity may be supplied to the third scan line S3i.
In
Furthermore, in
Referring to
In
Referring to
In other words, the pixel PX_5 according to the sixth embodiment of the present disclosure corresponds to the pixel PX show in
While various embodiments have been described above, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the present disclosure. Therefore, the embodiments disclosed in this specification are only for illustrative purposes rather than limiting the technical spirit of the present disclosure. The scope of the present disclosure must be defined by the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2019-0053918 | May 2019 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2019/015203 | 11/8/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/226246 | 11/12/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7173590 | Uchino et al. | Feb 2007 | B2 |
7893895 | Uchino et al. | Feb 2011 | B2 |
8823610 | Miyazawa | Sep 2014 | B2 |
8982017 | Lee et al. | Mar 2015 | B2 |
9570009 | Woo et al. | Feb 2017 | B2 |
10062321 | Na et al. | Aug 2018 | B2 |
10297656 | Cho et al. | May 2019 | B2 |
10381426 | Ka et al. | Aug 2019 | B2 |
10614758 | Kim et al. | Apr 2020 | B2 |
20090027310 | Kim | Jan 2009 | A1 |
20110018855 | Miyazawa | Jan 2011 | A1 |
20110115764 | Chung | May 2011 | A1 |
20140111490 | Lee | Apr 2014 | A1 |
20140168180 | Kim | Jun 2014 | A1 |
20160372037 | Lim | Dec 2016 | A1 |
20180006099 | Ka | Jan 2018 | A1 |
20180130411 | Zhou et al. | May 2018 | A1 |
20180144684 | Jeon | May 2018 | A1 |
Number | Date | Country |
---|---|---|
106023889 | Oct 2016 | CN |
2005-099715 | Apr 2005 | JP |
2006-038963 | Feb 2006 | JP |
4103851 | Jun 2008 | JP |
2008-191450 | Aug 2008 | JP |
10-2015-0068154 | Jun 2015 | KR |
10-2018-0004369 | Jan 2018 | KR |
10-1859474 | May 2018 | KR |
10-2018-0098442 | Sep 2018 | KR |
10-2018-0115205 | Oct 2018 | KR |
Entry |
---|
Kim Hyun et al. Pixel and Organic Light Emittng Display Device Including the Same Jan. 17, 2017 Samsung Display Co Ltd KR20170005945 (A) paragraphs 28-158 figures 1-4 English. |
Kim Hyun et al. Pixel and Organic Light Emittng Display Device Including the Same Jan. 17, 2017 Samsung Display Co Ltd KR20170005945 (A) paragraphs 28-158 figures 1-4 Korean. |
International Search Report for International Application No. PCT/KR2019/015203 dated Feb. 20, 2020, 11 pages with Written Opinion and English Translation thereof. |
Number | Date | Country | |
---|---|---|---|
20220230586 A1 | Jul 2022 | US |