The present invention relates to a place-status management system that detects whether there is an object or a person in a predetermined place, such as a parking lot or a meeting place, to manage the status of the predetermined place, and a radio tag reader and a managing apparatus used for the place-status management system.
A parking lot management system is an example where a system that manages the number of objects present in a predetermined place is applied. In a parking lot management system, the number of vehicles that can enter the parking lot is managed by counting the number of vehicles entering through an entrance gate and the number of vehicles leaving through an exit gate. A control is provided so that vehicles of a number larger than the number of vehicles that can be park in the parking lot do not enter the parking lot. In this system, however, although the total number of vehicles in the parking lot can be managed, it cannot be ascertained which specific place is empty.
To ascertain the condition of parked vehicles, for example, in an indoor parking lot, a method of installing an infrared sensor on the ceiling is known. In this method, however, because a plurality of vehicles cannot be detected with one infrared sensor, due to the physical directional characteristics of infrared rays, many infrared sensors need to be installed, thereby increasing cost. If only a few sensors are installed to reduce the cost, all the parking places cannot be covered.
A conventional parking management system for solving these problems has been proposed (for example, see Patent Document 1). In this parking management system, a vehicle detector that detects presence or absence of vehicles in a parking area is movably fitted on a rail provided so as to span over a plurality of parking areas. Further, a barcode including position information of the parking area is attached to a predetermined position of the rail, so that the vehicle detector can detect the presence or absence of vehicles at predetermined positions of the parking area. In other words, when a barcode reader included in the vehicle detector reads the barcode, the vehicle detector stops and detects whether a vehicle is present or not at a position corresponding to the position of the vehicle sensor. The result is transmitted to a host computer connected to the vehicle detector, together with the position information of the parking area where the detection is performed.
Patent Document 1: Japanese Patent Application Laid-open No. H10-64000.
In the parking management system described in Patent Document 1, however, cost for installing the rail for moving the vehicle detector is required. Further, since the vehicle detector mechanically moves to positions where the barcode is attached to read the barcode, and detects the presence or absence of vehicles in the parking area by the vehicle sensor, time is required for detecting a vehicle, thereby deteriorating the efficiency. For example, the vehicle detector has to move to the positions of each of the parking areas to detect the presence or absence of vehicles. Therefore, considerable time is required to complete the detection of vehicles in all parking areas covered by one vehicle detector. Accordingly, the parking condition in the parking area cannot be detected in real time. On the contrary, if the parking condition in the parking area is to be obtained in real time, the coverage of one vehicle detector needs to be narrowed. The introduction cost of the parking management system then increases since many vehicle detectors are required in one parking lot.
The present invention has been made to solve the above problems, and an object of the invention is to provide a place-status management system that can quickly obtain the state of whether there is an object or a person in a predetermined place such as a parking lot at low cost, and a radio tag reader and a managing apparatus used for the place-status management system.
To achieve the above objects, a place-status management system according to an aspect of the present invention that detects presence or absence of a detection object in a management area to manage a use status of the management area, includes a radio tag installed on a floor of each of a plurality of radio tag areas obtained by dividing the management area of a predetermined range by a predetermined criterion; a radio tag reader that manages the radio tags present in a communication area in which radio communication can be performed by a radio communication unit; and a managing apparatus that manages all the radio tag readers present in the management area, wherein the radio tag reader includes a radio-tag-information storage unit that stores radio-tag registration information in which a radio tag present in the communication area is associated with a radio tag area in which the radio tag is installed; and a radio-tag read processor that accesses a radio tag registered in the radio-tag registration information, to determine the presence or absence of the detection object in a radio tag area corresponding to the radio tag, and the managing apparatus includes a place-status information generator that generates place status information indicating the presence or absence of the detection object in the radio tag area in the management area, based on a result of determination made by the radio tag reading unit in the radio tag reader.
According to the present invention, when there is an object or the like on a radio tag, the radio tag cannot receive a read request from a radio tag reader due to shadowing by the object, and therefore the presence or absence of an object in a radio tag area can be determined. The radio tag reader and the radio tag communicate with each other via radio, and a communication area can be optionally enlarged or narrowed by changing an output of a radio communication unit. Accordingly, the presence or absence of objects or the like on a plurality of radio tag areas can be obtained simultaneously and quickly. Since the radio tag reader need not be moved, a moving unit is not required, and the system can be configured at low cost. Further, the present invention can be introduced to an existing system, and even in this case, a wide range can be managed at low cost.
Exemplary embodiments of a place-status management system, a radio tag reader, and a managing apparatus according to the present invention will be explained in detail below with reference to the accompanying drawings.
The radio tag 10 includes, though not shown, a communication unit that performs radio communication with the radio tag reader 20, a storage unit that stores predetermined information relating to the radio tags 10, including identification information for identifying the radio tags 10, and a controller that performs predetermined processing in response to an instruction by a radio signal from the radio tag reader 20. The radio tags 10 are buried underground or on a floor at the predetermined position in the management area.
The radio tag reader 20 includes a radio communication unit 21 that communicates with the radio tags 10, a radio-tag-information storage unit 22 that stores information relating to the radio tags 10, a radio-tag registration processor 23 that registers radio tags 10 present in a communication area in which the radio communication unit 21 can perform radio communication, a radio-tag read processor 24 that reads the registered radio tags 10, a communication unit 25 that communicates with the managing apparatus 30, and a controller 26 that controls these respective processors. The communication area of the radio tag reader 20 need not be in one-to-one correspondence with the management area, in other words, a plurality of communication areas can be included in one management area. If there is a plurality of communication areas in the management area, a plurality of the radio tag readers 20 is provided.
The radio communication unit 21 performs the functions of converting a signal from the radio-tag registration processor 23 and the radio-tag read processor 24 to a radio signal and transmitting the radio signal, and converting the radio signal from the radio tags 10 to a signal processable in the radio-tag registration processor 23 and the radio-tag read processor 24. The range communicable by the radio communication unit 21 corresponds to the communication area of the radio tag reader 20.
The radio-tag-information storage unit 22 stores radio-tag arrangement information in which buried positions of the radio tags 10 present in the management area and identification information of the radio tags 10 are associated with each other, radio-tag registration information relating to the radio tags 10 present in the communication area, generated by the radio-tag registration processor 23 explained later, and radio-tag-area status information indicating a state of an area near the place where the radio tag 10 is buried, generated by the radio-tag read processor 24 explained later.
The radio-tag arrangement information is generated and set beforehand by a manager or the like of the place-status management system 1.
The radio-tag registration processor 23 detects radio tags 10 present in the communication area of the own radio tag reader 20 to generate the radio-tag registration information, and transmits the radio-tag registration information to the managing apparatus 30. Detection of the radio tags 10 is performed by transmitting a search command of a radio tag 10 including a return request of identification information of the radio tag 10 according to, for example, a slot aloha method, in a state where there is nothing interrupting the radio communication with the radio tag 10 in the management area 100, that is, in a state where an object or a person is not present on the management area 100. The identification information of the radio tag 10 present in the communication area 102 is obtained from a response to the search command, to generate the radio-tag registration information, which is information of the radio tag 10 managed by the own radio tag reader 20. The radio-tag registration information is stored in the radio-tag-information storage unit 22.
The radio-tag read processor 24 refers to the radio-tag registration information stored in the radio-tag-information storage unit 22, to issue a read request of the identification information to the radio tag 10 buried in the communication area every predetermined time interval, to determine whether there is an object or a person in the radio tag area where the radio tag 10 is buried, according to presence or absence of response to the read request, thereby generating the radio-tag-area status information. The generated radio-tag-area status information is stored in the radio-tag-information storage unit 22.
Thus, the radio-tag read processor 24 generates the radio-tag-area status information in which a determination result of each radio tag 10 in the communication area is associated with at least one of the radio tag 10 and the radio tag area 101, and stores the radio-tag-area status information in the radio-tag-information storage unit 22.
The communication unit 25 is connected to the managing apparatus 30 via the communication line 40 such as a network, and performs a function of communicating with the managing apparatus 30. In a first embodiment, the communication unit 25 receives an instruction from the managing apparatus 30, and performs processing such as transmitting the radio-tag registration information and the radio-tag-area status information to the managing apparatus 30.
The managing apparatus 30 includes a communication unit 31 that communicates with the radio tag reader 20, a radio-tag-information obtaining unit 32 that obtains information from the radio tag reader 20, a place-status information generator 33 that generates place status information from the obtained information, a place-status-information storage unit 34 that stores the place status information, and a controller 35 that controls these respective processors.
The communication unit 31 performs a function of transmitting and receiving data between the radio tag reader 20 and the communication unit 31 via the communication line 40 such as a network. In the first embodiment, the communication unit 31 performs a function of receiving the radio-tag registration information and the radio-tag-area status information from the radio tag reader 20. The radio-tag-information obtaining unit 32 performs a function of instructing the radio tag reader 20 managed by the managing apparatus 30 to transmit the radio-tag-area status information to the managing apparatus 30 every predetermined time interval.
The place-status information generator 33 performs a function of editing the radio-tag-area status information received from the radio tag reader 20 to generate the place status information. Specifically, when a plurality of radio tag readers 20 are present in the management area, the place-status information generator 33 removes duplicate data from the radio-tag-area status information obtained from the respective radio tag readers 20, to consolidate the place status information. The place status information generated here is stored in the place-status-information storage unit 34.
Respective processing performed by the radio tag reader 20, the radio tag 10, and the managing apparatus 30 in the place-status management system 1 having such a configuration is explained next. First, a radio tag registration process performed by the radio tag reader is explained, with reference to the flowchart shown in
Thereafter, the radio-tag registration processor 23 determines whether there is a response from the radio tag 10 within predetermined time after transmission of the radio-tag search command (step S12). When there is a response from the radio tag 10 within the predetermined time (step S12: Yes), the radio-tag registration processor 23 determines whether it is a normal response (step S13). The determination whether it is a normal response is performed by a check using a transmission error detection method such as a cyclic redundancy check (CRC) or a check whether there are responses from a plurality of radio tags 10 and a collision has occurred, with respect to reception data from the radio tag 10. As a result of determination, if it is a normal response (step S13: Yes), the radio-tag registration processor 23 obtains identification information of the radio tag 10 included in the reception data (step S14), and stores the identification information in the radio-tag-information storage unit 22 as radio-tag registration information, which is information of the radio tag 10 managed by the own radio tag reader 20. The radio-tag registration processor 23 then transmits a radio-tag registration-complete command to the responded radio tag 10 via the radio communication unit 21 (step S15), and returns to step S11. On the other hand, at step S13, if it is not a normal response, since an error has been detected by the transmission error detection method such as CRC, or a plurality of radio tags 10 have responded simultaneously, thereby causing a collision (step S13: No), the radio-tag registration processor 23 returns to step S11, without transmitting the radio-tag registration-complete command.
When there is no response from the radio tag 10 within the predetermined time at step S12 (step S12: No), the radio-tag registration processor 23 determines whether search has been performed for a predetermined number of times (step S16). That is, the radio-tag registration processor 23 determines whether registration of all the radio tags 10 present in the communication area has been made by performing sufficient search of the radio tags 10, or by performing search for a predetermined number of times. When search has not been performed for a predetermined number of times (step S16: No), the radio-tag registration processor 23 returns to step S11 again, to repeat the process until all the radio tags 10 present in the communication area are registered. On the other hand, when search has been performed for a predetermined number of times (step S16: Yes), the radio-tag registration processor 23 transmits the radio-tag registration information generated at this point in time to the managing apparatus 30, together with the information for identifying the own radio tag reader 20 (step S17), to finish the radio tag registration process. The managing apparatus 30 creates a table for ascertaining the radio tag area 101 (the radio tag 10) managed by the respective radio tag readers 20 from the radio-tag registration information received from the radio tag reader 20, and holds the table in the own apparatus 30.
A radio-tag read process performed by the radio tag reader 20 is explained next with reference to flowcharts shown in
With reference to
After the read request is issued to the radio tags 10 as explained above, with reference back to
Thereafter, the radio-tag read processor 24 determines whether the read request has been sent to all the radio tags 10 in the radio-tag registration information (step S28). If there is a radio tag 10 to which the read request has not been sent (step S28: No), the process returns to step S22 to execute the above process with respect to another the radio tag 10. When the read request has been sent to all the radio tags 10 (step S28: Yes), the radio-tag read processor 24 transmits the radio-tag-area status information together with the information for identifying the own radio tag reader 20 to the managing apparatus 30, via the communication unit 25 (step S29). Consequently, the read process of the radio tag 10 by the radio tag reader 20 is complete.
A place-status-information generation process performed by the managing apparatus is explained next with reference to a flowchart shown in
Upon reception of the radio-tag-area status information from the radio tag reader 20 (step S63), the place-status information generator 33 generates place status information from the received radio-tag-area status information (step S64), and stores the place status information in the place-status-information storage unit 34 to finish the place-status-information generation process. Thereafter, the managing apparatus 30 uses the place status information to perform predetermined processing for managing the management area.
A specific determination example of the state of the radio tag area by the radio tag reader is explained.
At first, as shown in
The radio tag reader 20 issues a read request including the identification information T1 first to the radio tag 10(1) (step S102). However, as shown in
The radio tag reader 20 then issues a read request including the identification information T2 to the radio tag 10(2). Also, in this case, as in the case of the radio tag 10(1), since there is no response from the radio tag 10(2) within predetermined time, the radio tag reader 20 recognizes that there is the object 110(2) in the radio tag area 101(2) (steps S104 and S105).
Further, the radio tag reader 20 issues a read request including the identification information T3 to the radio tag 10(3) (step S106). The radio tags 10(1) and 10(2) cannot receive the read request due to shadowing by the objects 110(1) and 110(2), respectively. On the other hand, since the radio tag 10(3) is not shadowed by an object, the radio tag 10(3) can receive the read request. Further, since the read request includes the identification information T3 of the own radio tag 10(3), the radio tag 10(3) transmits a read response including the identification information T3 of the own radio tag 10(3) (step S108). The radio tag reader 20 receives the read response from the radio tag 10(3) (step S109), thereby recognizing that there is no object in the radio tag area 101(3).
According to the above procedure, the radio tag reader 20 can ascertain whether there is an object in the radio tag areas 101(1) to 101(3) managed by the radio tag reader itself. Thereafter, the radio tag reader 20 returns the radio-tag-area status information to the managing apparatus 30 as a response of step S101 (step S110).
Thereafter, as shown in
As described above, the radio tag reader 20 issues a read request including the identification information T1 to the radio tag 10(1) (step S113). The radio tag 10(1) can receive the read request since it is not shadowed by a vehicle (step S114), and since the read request includes the identification information of the own radio tag 10(1), the radio tag 10(1) transmits a read response including the identification information T1 of the own radio tag 10 (step S116). Since the radio tag reader 20 receives the read response from the radio tag 10(1) (step S117), the radio tag reader 20 recognizes that there is no object in the radio tag area 101(1). The radio tag 10(2) cannot receive the read request from the radio tag reader 20 due to shadowing by the object 110(2). Although the radio tag 10(3) can receive the read request from the radio tag reader 20 (step S115) since it is not shadowed by an object, it is not a read request directed to the own radio tag 10(3), therefore, the radio tag 10(3) does not send a read response and ignores the request.
The radio tag reader 20 then issues a read request including the identification information T2 to the radio tag 10(2). Since there is no response from the radio tag 10(2) within predetermined time, the radio tag reader 20 recognizes that there is the object 110(2) in the radio tag area 101(2) (steps S118 and S119).
The radio tag reader 20 then issues a read request including the identification information T3 to the radio tag 10(3) (step S120). The radio tag 10(3) receives the read request including the identification information T3 of the own radio tag from the radio tag reader 20 (step S121), and sends a read response including the identification information T3 of the own radio tag 10 (step S123). The radio tag reader 20 receives the read response from the radio tag 10(3) (step S124), thereby recognizing that there is no object in the radio tag area 101(3). Although the radio tag 10(1) receives the read request from the radio tag reader 20 since it is not shadowed by an object, the read request is not directed to the own radio tag 10, therefore, the radio tag 10(1) does not send a read response and ignores the request (step S121). Further, since the radio tag 10(2) cannot receive the read request from the radio tag reader 20 due to shadowing by the object 110(2), the radio tag 10(2) cannot receive the read request from the radio tag reader 20.
By the above procedure, the radio tag reader 20 can ascertain whether there is an object in the radio tag areas 101(1) to 101(3) managed by the radio tag reader itself. Thereafter, the radio tag reader 20 returns the radio-tag-area status information to the managing apparatus 30 as a response of step S112 (step S125).
The above processing is performed every predetermined time interval, and the managing apparatus 30 generates the place status information, and performs predetermined processing based on the place status information. For example, the managing apparatus 30 can obtain statistical information such as use frequency of the radio tag area 101, to generate empty space information and congestion information of the radio tag area based on the statistical information. If the radio tag reader 20 stores the time at which the read process is performed in the radio-tag-area status information, the managing apparatus 30 can generate charge information with respect to a user of the radio tag area 101 according to the time used. Further, the managing apparatus 30 can ascertain replacement period of a structural object used in the place, according to the use frequency of the radio tag area 101.
In the above explanation, a radio tag can be fitted to an object placed in the radio tag area 101, and when there is no response request from the radio tag 10 fitted to a lower face of the radio tag area 101, and when another radio tag is detected by the radio tag reader 20, it can be determined that the object is placed in the radio tag area 101, from which a response request is not issued. In this case, the radio-tag read processor 24 generates the radio-tag-area status information in which the radio tag area 101 is associated with a place for placing the object. As a result, the correspondence between the radio tag area 101 and the place for placing the object becomes clear, thereby facilitating the management of objects.
In the above explanation, while generation of the radio-tag registration information in respective radio tag readers 20 is executed by the radio-tag registration processor 23, a manager or the like of the place-status management system can register beforehand which communication area of the radio tag reader 20 a buried radio tag 10 belongs to. Further, the managing apparatus 30 can be connected to a network, so that the place status information held by the managing apparatus 30 can be accessed from an information processing terminal such as a personal computer and a mobile phone. According to this configuration, the arrangement state of objects in the management area 100 can be easily recognized by an owner of the object at an optional place.
According to the first embodiment, the radio tag 10 is buried in the respective radio tag areas 101 in the management area 100, and the presence or absence of an object or a person in the radio tag area 101 is determined according to whether the radio tag reader 20 can communicate with the radio tag 10. In the communication area 102 of the radio communication unit 21 in the radio tag reader 20, a response to a signal transmitted to the radio tag 10 needs only to be obtained, and therefore the presence or absence of an object or a person can be determined instantaneously, and the place status of the management area 100 can be ascertained in real time.
The radio tag 10 is buried underground (the floor) in the management area, and the radio tag reader 20 is desirably provided at a higher position away from the ground to detect the presence or absence of an object on the radio tag 10. Accordingly, the radio tag reader 20 can be provided on an existing pole for supporting a lamp or the like installed in the management area, and therefore a special space for installing the radio tag reader 20 is not required. As a result, a wide range can be managed at low cost with respect to an existing system.
In the first embodiment, an outline of the place-status management system has been explained. In a second embodiment, an example in which the place-status management system is used for managing a parking lot is explained as a specific embodiment.
The radio tag 10 is buried in each of the radio tag areas (parking space) 101 in the parking lot 100a. As shown in
The radio tag reader 20 is fitted to near the top of a pole 120 standing at a predetermined position in the parking lot 100a. In an example shown in
The entrance and exit gates 51 and 52 are provided at positions of a gateway of the parking lot 100a, and manage vehicles entering or leaving the parking lot 100a.
The repeater 301 collects information from the radio tag readers 20(1) to 20(4) installed in the management area (the parking lot 100a) and the entrance and exit gates 51 and 52 at a predetermined cycle, and outputs the collected information to the parking-lot managing apparatus 302.
The parking-lot managing apparatus 302 manages the parking lot based on the information received from the repeater 301.
The parking-lot managing unit 38 performs a function of generating a signal for controlling the entrance and exit gates 51 and 52 and the radio tag readers 20, based on the place status information stored in the place-status-information storage unit 34 and the information of the number of vehicles stored in the vehicle-number-information storage unit 37. For example, when the number of vehicles reaches a number, which can be parked in the parking lot 100a, the parking-lot managing unit 38 transmits an instruction not to open the blocking unit 53 at the entrance gate 51, or when the number of vehicles decreases from the number, which can be parked in the parking lot 100a, transmits an instruction to open the blocking unit 53 at the entrance gate 51 to allow the vehicles to enter. Further, when a new vehicle enters from the entrance gate 51, the parking-lot managing unit 38 makes the display unit 27 of the radio tag reader 20, which manages the place including a currently empty parking space 101, light up, or makes the display unit 56 of the entrance gate 51 display the empty space. Since other constituent elements are the same as the respective processors constituting the managing apparatus 30 in the first embodiment, explanation thereof is omitted. The parking-lot managing unit 38 corresponds to a management-area managing unit in the claims.
In the place-status management system 1a having such a configuration, upon reception of a transmission request of the radio-tag-area status information transmitted from the repeater 301 at a predetermined cycle, the respective radio tag readers 20 generate the radio-tag-area status information based on the presence or absence of a response with respect to the read request of the radio tag 10 present in the respective communication areas 102, and transmit the radio-tag-area status information to the repeater 301. The entrance and exit gates 51 and 52 respectively calculate the number of vehicles entering into the parking lot 100a and the number of vehicles leaving the parking lot 100a, and transmit the result to the repeater 301. The repeater 301 transmits the place status information generated by collecting the radio-tag-area status information from all the radio tag readers 20(1) to 20(4) in the management area (parking lot 100a), and the information of the number of vehicles in the parking lot 100a calculated by the entrance and exit gates 51 and 52 to the parking-lot managing apparatus 302. The parking-lot managing apparatus 302 can ascertain the empty parking space 101 in the parking lot 100a in real time from the place status information and the information of the number of vehicles. By using the place status information and the information of the number of vehicles, the parking-lot managing apparatus 302 can display the position of the empty parking space 101 on the display unit 56 of the entrance gate 51 or the display unit 27 of the radio tag reader 20, thereby guiding the vehicle to the empty parking space 101.
In the above explanation, the radio tag 10 is buried in the parking space 101. However, by enclosing a radio tag also in a parking ticket issued at the entrance gate 51 and placing the parking ticket in the vehicle temporarily during parking, positions of the parked vehicles can be specified and stored in a database. For example, when there is no read response from the radio tag 10 in the parking space 101, which has heretofore returned the read response, and a radio tag enclosed in the parking ticket is newly detected, the parking space is associated with the enclosed radio tag and stored in the database. For example, a vehicle position guiding service can be provided by displaying the correspondence information of the parking ticket and the parking space stored in the database on a display apparatus installed in the parking lot. As a result, a user who holds the parking ticket can confirm the parking position of the own vehicle by comparing the held parking ticket with the display apparatus, when the user comes back to the parking lot. In this case, however, the radio tag reader 20 needs to perform the radio tag read request process by the radio-tag read processor 24 every predetermined time interval, and perform the radio tag registration process by the radio-tag registration processor 23 every predetermined time interval.
According to the second embodiment, by burying the radio tag 10 in the vehicle parking space 101 of the parking lot 100a, parking condition in the parking lot 100a can be ascertained in real time in a unit of parking space. By using this information, an empty parking space 101 can be provided to the vehicle entering the parking lot 10a, or the vehicle can be guided to the empty parking space 101.
In a third embodiment, the place-status management system explained in the first embodiment is applied to waiting time management of attractions such as in an amusement park.
The radio tags 10(1) to tag 10(4) are buried at predetermined positions of a path 131 for sequentially guiding people waiting to enter an attraction 130. In an example shown in
Because other constituent elements are the same as in the first embodiment, detailed explanation thereof is omitted. In the third embodiment, however, the radio-tag read processor 24 in the radio tag reader 20 determines whether there is a person on the radio tag 10, and when there is no response from the radio tag 10 with respect to the read request, determines that there is a person on the radio tag 10 at that position, and when there is a response from the radio tag 10 with respect to the read request, determines that there is no person on the radio tag 10.
In the above explanation, the number of people who are waiting in a queue on the path 131 can be obtained, for example, by collecting statistics on the number of people queuing from an entrance of the attraction 130 to the respective radio tags 10 beforehand, and taking the average thereof. The waiting-time calculating unit 39 holds information relating to the number of people to the respective radio tags 10, the number of people who can enter one attraction 130, and information relating to time required for one attraction 130.
In the above explanation, while an example in which the waiting time for one attraction 130 is managed by one managing apparatus 30a is explained, all attractions 130 provided in the amusement park or the like can be managed by one managing apparatus 30. In this case, as explained in the second embodiment, the repeater 301 that collects information from the radio tag readers 20 is provided in each attraction 130, and the managing apparatus 30 that collects information from these repeaters 301 is provided in a management center that manages the amusement park. Further, the congestion degree of the respective attractions 130 can be displayed on the display apparatus provided in the amusement park, and congestion information indicating the congestion degree of the respective attractions 130 stored in the managing apparatus 30 can be used as a database, so that mobile information terminals such as mobile phones held by people in the amusement park can access the database.
While the waiting time of people queuing for the attraction 130 in the amusement park has been explained as an example, the present invention is not limited thereto, and the present invention is applicable to a place where congestion is anticipated at all times. The position for installing the radio tag 10 can be optional.
According to the third embodiment, the radio tag 10 is buried on the path 131 where people queue, in a place where congestion (queue) is anticipated, so as to calculate the waiting time by grasping an approximate number of people queuing on the path 131 according to the presence or absence of a response with respect to the read request from the radio tag 10. By displaying the calculated time, the waiting people can easily know how long they should wait to attain their purpose, and people who are joining the queue can decide whether to wait according to the length of the waiting time.
As described above, the place-status management system according to the present invention is useful, for example, for managing an empty condition of a parking lot of a supermarket or an amusement park, or managing a queue of people on a path where people queue up in a place where congestion is anticipated.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2004/010843 | 7/29/2004 | WO | 00 | 12/6/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/011215 | 2/2/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4361202 | Minovitch | Nov 1982 | A |
5151684 | Johnsen | Sep 1992 | A |
5432508 | Jackson | Jul 1995 | A |
5883582 | Bowers et al. | Mar 1999 | A |
6232877 | Ashwin | May 2001 | B1 |
6272224 | Mazourenko et al. | Aug 2001 | B1 |
RE37467 | Brasch et al. | Dec 2001 | E |
6427913 | Maloney | Aug 2002 | B1 |
6885311 | Howard et al. | Apr 2005 | B2 |
7081818 | Eckstein et al. | Jul 2006 | B2 |
20030002674 | Nambu et al. | Jan 2003 | A1 |
20030201321 | Maloney | Oct 2003 | A1 |
20060187043 | Allen | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
39 04 826 | Sep 1990 | DE |
2-257400 | Oct 1990 | JP |
9-311998 | Dec 1997 | JP |
10-64000 | Mar 1998 | JP |
10-97697 | Apr 1998 | JP |
10-241099 | Sep 1998 | JP |
11-272998 | Oct 1999 | JP |
11-312297 | Nov 1999 | JP |
2001-351196 | Dec 2001 | JP |
2003-187397 | Jul 2003 | JP |
2003-256994 | Sep 2003 | JP |
2004-192513 | Jul 2004 | JP |
WO-9507584 | Mar 1995 | WO |
WO-0143105 | Jun 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20070247315 A1 | Oct 2007 | US |