1. Technical Field
Embodiments of the present disclosure relate generally to electrodes used in displays, such as liquid crystal displays.
2. Description of the Related Art
This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
Liquid crystal displays (LCDs) are commonly used as screens or displays for a wide variety of electronic devices, including such consumer electronics as televisions, computers, and handheld devices (e.g., cellular telephones, audio and video players, gaming systems, and so forth). Such LCD devices typically provide a flat display in a relatively thin package that is suitable for use in a variety of electronic goods. In addition, such LCD devices typically use less power than comparable display technologies, making them suitable for use in battery powered devices or in other contexts where it is desirable to minimize power usage.
The performance of an LCD may be measured with respect to a variety of factors. For example, the brightness of the display, the visibility of the display when viewed at an angle, the refresh rate of the display, and various other factors may all describe an LCD and/or determine whether a display will be useful in the context of a given device. For example, with respect to brightness, factors which may affect the brightness of a display include the area available to transmit light at each picture element (i.e., pixel) of the display. Likewise, another factor that may influence the brightness of an LCD may be the manner in which the liquid crystals forming the display are modulated. In particular, such modulation of the liquid crystals determines the amount of light transmitted by a pixel at a given time and artifacts, discontinuities, or irregularities in the fields affecting the liquid crystals may affect the perceived brightness of a pixel.
Certain aspects commensurate in scope with the originally claimed invention are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.
The present disclosure relates to increasing the light transmission of LCD pixels. In accordance with the present disclosure, portions of an electrode of a pixel may be formed or otherwise provided in a non-uniform manner. For example, a pixel electrode may include two or more extensions (e.g. fingers or slits) that span a portion of the pixel in one direction. In one embodiment, different extensions of the pixel electrode may be formed at different depths relative to an underlying layer. In another embodiment, different extensions of the pixel electrode may be formed having different widths and/or different intervening spacing such that some extensions are wider than others and/or are spaced apart by different amounts.
In such embodiments, the differential spacing, width, and/or depth of portions of the electrode (e.g., the extensions of the pixel electrode in these examples) may shape an electric field generated using the electrode such that a more uniform alignment response may be elicited in a layer of liquid crystals. In particular, such uniformity in the alignment of the layer of liquid crystals may allow better control of the amount of light passing through the pixel. Further, use of such differential spacing, width, and/or depth of portions of the electrode may allow the use of a lower driving voltage than might otherwise be used to achieve the desired degree of light transmission in the liquid crystal layer.
Advantages of the present disclosure may become apparent upon reading the following detailed description and upon reference to the drawings in which:
One or more specific embodiments will be described below. These described embodiments are provided only by way of example, and do not limit the scope of the present disclosure. Additionally, in an effort to provide a concise description of these exemplary embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
The application is generally directed to increasing light transmittance in LCD pixels. In certain embodiments, the increase in light transmittance may be accomplished by providing an electric field at the pixel which has suitable magnitudes at different points in a liquid crystal layer to achieve the desired degree of alignment of the liquid crystals at each respective point. That is, the magnitude of the electric field applied to the liquid crystal layer may be varied or adapted such that at different points in the liquid crystal layer experience the appropriate field strength (i.e., magnitude) to achieve uniform liquid crystal alignment. For example, liquid crystal near the edge of the pixel may not need the same field magnitude as liquid crystals in the center of the pixel to achieve the same alignment. In addition, a lower driving voltage may be employed in some instances to achieve the specified degree of light transmission.
In one embodiment, an electrode of the pixel may be configured or adapted to generate an electric field that yields a generally uniform liquid crystal response in a proximate liquid crystal layer. For example, a pixel may have portions or extensions at different depths relative to one another, of different widths relative to one another, and/or having different interval spacing relative to one another. Thus, one or more of these factors (e.g., depth, width, spacing) or other factors may be varied in the layout of the pixel to achieve the desired electric field characteristics in the liquid crystal layer. Obtaining the desired electric field in the liquid crystal layer may, in turn, provide better uniformity in the liquid crystal response and better resulting light transmittance by the pixel.
With these foregoing features in mind, a general description of suitable electronic devices using LCD displays having such increased light transmittance is provided below. In
An example of a suitable electronic device may include various internal and/or external components which contribute to the function of the device.
With regard to each of these components, the display 10 may be used to display various images generated by the device 8. In one embodiment, the display 10 may be a liquid crystal display (LCD). For example, the display 10 may be an LCD employing fringe field switching (FFS), in-plane switching (IPS), or other techniques useful in operating such LCD devices. Additionally, in certain embodiments of the electronic device 8, the display 10 may be provided in conjunction with touch-sensitive element, such as a touch screen, that may be used as part of the control interface for the device 8.
The I/O ports 12 may include ports configured to connect to a variety of external devices, such as a power source, headset or headphones, or other electronic devices (such as handheld devices and/or computers, printers, projectors, external displays, modems, docking stations, and so forth). The I/O ports 12 may support any interface type, such as a universal serial bus (USB) port, a video port, a serial connection port, a IEEE-1394 port, an Ethernet or modem port, and/or an AC/DC power connection port.
The input structures 14 may include the various devices, circuitry, and pathways by which user input or feedback is provided to the processor 16. Such input structures 14 may be configured to control a function of the device 8, applications running on the device 8, and/or any interfaces or devices connected to or used by the electronic device 8. For example, the input structures 14 may allow a user to navigate a displayed user interface or application interface. Examples of the input structures 14 may include buttons, sliders, switches, control pads, keys, knobs, scroll wheels, keyboards, mice, touchpads, and so forth.
In certain embodiments, an input structure 14 and display 10 may be provided together, such an in the case of a touchscreen where a touch sensitive mechanism is provided in conjunction with the display 10. In such embodiments, the user may select or interact with displayed interface elements via the touch sensitive mechanism. In this way, the displayed interface may provide interactive functionality, allowing a user to navigate the displayed interface by touching the display 10.
User interaction with the input structures 14, such as to interact with a user or application interface displayed on the display 10, may generate electrical signals indicative of the user input. These input signals may be routed via suitable pathways, such as an input hub or bus, to the processor(s) 16 for further processing.
The processor(s) 16 may provide the processing capability to execute the operating system, programs, user and application interfaces, and any other functions of the electronic device 8. The processor(s) 16 may include one or more microprocessors, such as one or more “general-purpose” microprocessors, one or more special-purpose microprocessors and/or ASICS, or some combination of such processing components. For example, the processor 16 may include one or more reduced instruction set (RISC) processors, as well as graphics processors, video processors, audio processors and/or related chip sets.
The instructions or data to be processed by the processor(s) 16 may be stored in a computer-readable medium, such as a memory 18. Such a memory 18 may be provided as a volatile memory, such as random access memory (RAM), and/or as a non-volatile memory, such as read-only memory (ROM). The memory 18 may store a variety of information and may be used for various purposes. For example, the memory 18 may store firmware for the electronic device 8 (such as a basic input/output instruction or operating system instructions), various programs, applications, or routines executed on the electronic device 8, user interface functions, processor functions, and so forth. In addition, the memory 18 may be used for buffering or caching during operation of the electronic device 8.
The components may further include other forms of computer-readable media, such as a non-volatile storage 20, for persistent storage of data and/or instructions. The non-volatile storage 20 may include flash memory, a hard drive, or any other optical, magnetic, and/or solid-state storage media. The non-volatile storage 20 may be used to store firmware, data files, software, wireless connection information, and any other suitable data.
The embodiment illustrated in
The components depicted in
Further, the components may also include a power source 26. In one embodiment, the power source 26 may be one or more batteries, such as a lithium-ion polymer battery or other type of suitable battery. The battery may be user-removable or may be secured within the housing of the electronic device 8, and may be rechargeable. Additionally, the power source 26 may include AC power, such as provided by an electrical outlet, and the electronic device 8 may be connected to the power source 26 via a power adapter. This power adapter may also be used to recharge one or more batteries if present.
With the foregoing in mind,
For example, in the depicted embodiment, the handheld device 30 is in the form of a cellular telephone that may provide various additional functionalities (such as the ability to take pictures, record audio and/or video, listen to music, play games, and so forth). As discussed with respect to the general electronic device of
In the depicted embodiment, the handheld device 30 includes an enclosure or body that protects the interior components from physical damage and shields them from electromagnetic interference. The enclosure may be formed from any suitable material such as plastic, metal or a composite material and may allow certain frequencies of electromagnetic radiation to pass through to wireless communication circuitry within the handheld device 30 to facilitate wireless communication.
In the depicted embodiment, the enclosure includes user input structures 14 through which a user may interface with the device. Each user input structure 14 may be configured to help control a device function when actuated. For example, in a cellular telephone implementation, one or more of the input structures 14 may be configured to invoke a “home” screen or menu to be displayed, to toggle between a sleep and a wake mode, to silence a ringer for a cell phone application, to increase or decrease a volume output, and so forth.
In the depicted embodiment, the handheld device 30 includes a display 10 in the form of an LCD 32. The LCD 32 may be used to display a graphical user interface (GUI) 34 that allows a user to interact with the handheld device 30. The GUI 34 may include various layers, windows, screens, templates, or other graphical elements that may be displayed in all, or a portion, of the LCD 32. Generally, the GUI 34 may include graphical elements that represent applications and functions of the electronic device. The graphical elements may include icons 36 and other images representing buttons, sliders, menu bars, and the like. The icons 36 may correspond to various applications of the electronic device that may open upon selection of a respective icon 36. Furthermore, selection of an icon 36 may lead to a hierarchical navigation process, such that selection of an icon 36 leads to a screen that includes one or more additional icons or other GUI elements. The icons 36 may be selected via a touch screen included in the display 10, or may be selected by a user input structure 14, such as a wheel or button.
The handheld electronic device 30 also may include various input and output (I/O) ports 12 that allow connection of the handheld device 30 to external devices. For example, one I/O port 12 may be a port that allows the transmission and reception of data or commands between the handheld electronic device 30 and another electronic device, such as a computer. Such an I/O port 12 may be a proprietary port from Apple Inc. or may be an open standard I/O port.
In addition to handheld devices 30, such as the depicted cellular telephone of
In one embodiment, the input structures 14 (such as a keyboard and/or touchpad) may be used to interact with the computer 50, such as to start, control, or operate a GUI or applications running on the computer 50. For example, a keyboard and/or touchpad may allow a user to navigate a user interface or application interface displayed on the LCD 32.
As depicted, the electronic device 8 in the form of computer 50 may also include various input and output ports 12 to allow connection of additional devices. For example, the computer 50 may include an I/O port 12, such as a USB port or other port, suitable for connecting to another electronic device, a projector, a supplemental display, and so forth. In addition, the computer 50 may include network connectivity, memory, and storage capabilities, as described with respect to
With the foregoing discussion in mind, it may be appreciated that an electronic device 8 in the form of either a handheld device 30 or a computer 50 may be provided with an LCD 32 as the display 10. Such an LCD 32 may be utilized to display the respective operating system and application interfaces running on the electronic device 8 and/or to display data, images, or other visual outputs associated with an operation of the electronic device 8.
In embodiments in which the electronic device 8 includes an LCD 32, the LCD 32 may include an array or matrix of picture elements (i.e., pixels). In operation, the LCD 32 generally operates to modulate the transmission of light through the pixels by controlling the orientation of liquid crystal disposed at each pixel. In general, the orientation of the liquid crystals is controlled by a varying an electric field associated with each respective pixel, with the liquid crystals being oriented at any given instant by the properties (strength, shape, and so forth) of the electric field.
Different types of LCDs may employ different techniques in manipulating these electrical fields and/or the liquid crystals. For example, certain LCDs employ transverse electric field modes in which the liquid crystals are oriented by applying an electrical field that is generally in-plane to a layer of the liquid crystals. Example of such techniques include in-plane switching (IPS) and fringe field switching (FFS) techniques, which differ in the electrode arrangement employed to generate the respective electrical fields.
While control of the orientation of the liquid crystals in such displays may be sufficient to modulate the amount of light emitted by a pixel, color filters may also be associated with the pixels to allow specific colors of light to be emitted by each pixel. For example, in embodiments where the LCD 32 is a color display, each pixel of a group of pixels may correspond to a different primary color. For example, in one embodiment, a group of pixels may include a red pixel, a green pixel, and a blue pixel, each associated with an appropriately colored filter. The intensity of light allowed to pass through each pixel (by modulation of the corresponding liquid crystals), and its combination with the light emitted from other adjacent pixels, determines what color(s) are perceived by a user viewing the display. As the viewable colors are formed from individual color components (e.g., red, green, and blue) provided by the colored pixels, the colored pixels may also be referred to as unit pixels.
With the foregoing in mind, and turning once again to the figures,
A thin film transistor (TFT) layer 72 is depicted as being disposed above the lower substrate 70. For simplicity, the TFT layer 72 is depicted as a generalized structure in
The liquid crystal layer 78 includes liquid crystal molecules in a fluid shape or suspended in a polymer matrix. The liquid crystal molecules may be oriented or aligned with respect to an electrical field generated by the TFT layer 72. The orientation of the liquid crystal particles in the liquid crystal layer 78 determines the amount of light transmission through the pixel 60. Thus, by modulation of the electrical field applied to the liquid crystal layer 78, the amount of light transmitted though the pixel 60 may be correspondingly modulated.
Disposed on the other side of the liquid crystal layer 78 from the TFT layer 72 may be one or more alignment and/or overcoating layers 82 interfacing between the liquid crystal layer 78 and an overlying color filter 86. The color filter 86, in certain embodiments, may be a red, green, or blue filter, such that each pixel 60 corresponds to a primary color when light is transmitted from the backlight assembly 68 through the liquid crystal layer 78 and the color filter 86.
The color filter 86 may be surrounded by a light-opaque mask or matrix, e.g., a black mask 88 which circumscribes the light-transmissive portion of the pixel 60. For example, in certain embodiments, the black mask 88 may be sized and shaped to define a light-transmissive aperture over the liquid crystal layer 78 and around the color filter 86 and to cover or mask portions of the pixel 60 that do not transmit light, such as the scanning line and data line driving circuitry, the TFT, and the periphery of the pixel 60. In the depicted embodiment, an upper substrate 92 may be disposed between the black mask 88 and color filter 86 and the polarizing layer 64. In such an embodiment, the upper substrate may be formed from light-transmissive glass, quartz, and/or plastic.
Referring now to
Each pixel 60 includes a pixel electrode 110 and thin film transistor (TFT) 112 for switching the pixel electrode 110. In the depicted embodiment, the source 114 of each TFT 112 is electrically connected to a data line 100, extending from respective data line driving circuitry 120. Similarly, in the depicted embodiment, the gate 122 of each TFT 112 is electrically connected to a scanning or gate line 102, extending from respective scanning line driving circuitry 124. In the depicted embodiment, the pixel electrode 110 is electrically connected to a drain 128 of the respective TFT 112.
In one embodiment, the data line driving circuitry 120 sends image signals to the pixels via the respective data lines 100. Such image signals may be applied by line-sequence, i.e., the data lines 100 may be sequentially activated during operation. The scanning lines 102 may apply scanning signals from the scanning line driving circuitry 124 to the gate 122 of each TFT 112 to which the respective scanning lines 102 connect. Such scanning signals may be applied by line-sequence with a predetermined timing and/or in a pulsed manner.
Each TFT 112 serves as a switching element which may be activated and deactivated (i.e., turned on and off) for a predetermined period based on the respective presence or absence of a scanning signal at the gate 122 of the TFT 112. When activated, a TFT 112 may store the image signals received via a respective data line 100 as a charge in the pixel electrode 110 with a predetermined timing.
The image signals stored at the pixel electrode 110 may be used to generate an electrical field between the respective pixel electrode 110 and a common electrode. Such an electrical field may align liquid crystals within the liquid crystal layer 78 (
Turning now to
In the depicted example, the pixel electrode 110 is formed over a passivation layer 160 which insulates the pixel electrode 110 from an underlying common electrode. In one embodiment, the passivation layer 160 may be formed of silicon nitride. In the depicted embodiment, the pixel electrode 110 is formed so as to have two or more spaced apart extensions 162 or projections, e.g., fingers or slits, that span the aperture 150 in the y-direction. In the depicted embodiment of
Turning now to
Turning now to
Though the sunken extension 170 and other electrode extensions may be formed at different depths relative to the passivation layer 160 and the common electrode 166, in one embodiment the extensions may be substantially the same thickness, such as between about 500 Å to about 600 Å. For example, all of the extensions 162, including the sunken extension 170, may be formed by the same deposition process and may, therefore, be substantially the same thickness despite being formed at different depths relative to the passivation layer 160.
In the depicted embodiment, the partially recessed configuration of the sunken extension 170 provides a different effective electric field to the liquid crystal layer 78 (
In another embodiment, referring now to
Turning to
Referring now to
In another embodiment, referring now to
Turning to
While the preceding examples describe configurations of pixels for use in a FFS LCD device, it should be understood that these examples are not intended to be limiting in scope and, indeed, the present teachings may also be applicable to other types of LCDs, such as in-plane switched (IPS) LCDs or others. Further, for simplicity the present examples describe circuitry in which the pixel electrode 110 is discontinuous (i.e., includes separated fingers or extensions 162) and the common electrode 166 is continuous. As will be appreciated, this arrangement may be reversed or otherwise varied. For example, in certain embodiments, the common electrode 166 may be discontinuous and the pixel electrode 110 may be continuous. In such embodiments, the extensions (strips, fingers, and so forth) of the common electrode may vary in width, depth, and/or interval spacing to achieve the benefits discussed herein. Likewise, in certain embodiments, the relative position of the pixel electrode 110 and the common electrode 166 may be reversed, i.e., the common electrode 166 may be proximate to the liquid crystal layer 78 while the pixel electrode 110 may be further away. In such embodiments, varying the spacing, width, and/or depth of the discontinuous electrode (whether pixel or common) may be performed as described herein to achieve the results described.
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4991115 | Guthrie et al. | Feb 1991 | A |
5396351 | Gessel | Mar 1995 | A |
5450222 | Sirkin | Sep 1995 | A |
5659378 | Gessel | Aug 1997 | A |
6072554 | Sato | Jun 2000 | A |
6157426 | Gu | Dec 2000 | A |
6285431 | Lyu | Sep 2001 | B2 |
6433933 | Gettemy | Aug 2002 | B1 |
6466285 | Ichikawa | Oct 2002 | B1 |
6466290 | Kim et al. | Oct 2002 | B2 |
6536933 | Gettemy et al. | Mar 2003 | B1 |
6545862 | Gettemy et al. | Apr 2003 | B1 |
6603469 | Gettemy et al. | Aug 2003 | B1 |
6618044 | Gettemy et al. | Sep 2003 | B1 |
6642985 | Kim | Nov 2003 | B2 |
6685328 | Hanson et al. | Feb 2004 | B1 |
6700560 | Sumiya | Mar 2004 | B2 |
6710754 | Oliver et al. | Mar 2004 | B2 |
6718115 | Gettemy et al. | Apr 2004 | B1 |
6741314 | Song | May 2004 | B2 |
6859244 | Kawase et al. | Feb 2005 | B2 |
6888532 | Wong et al. | May 2005 | B2 |
6919681 | Cok | Jul 2005 | B2 |
6924752 | Gettemy et al. | Aug 2005 | B2 |
6924863 | Nishida | Aug 2005 | B2 |
6947017 | Gettemy | Sep 2005 | B1 |
6965375 | Gettemy et al. | Nov 2005 | B1 |
6992659 | Gettemy | Jan 2006 | B2 |
7002569 | Gettemy et al. | Feb 2006 | B1 |
7006080 | Gettemy | Feb 2006 | B2 |
7034802 | Gettemy et al. | Apr 2006 | B1 |
7048401 | Lee et al. | May 2006 | B2 |
7057579 | Hanson et al. | Jun 2006 | B2 |
7057698 | Chung | Jun 2006 | B2 |
7068256 | Gettemy et al. | Jun 2006 | B1 |
7079119 | Hanson et al. | Jul 2006 | B2 |
7091964 | Wong et al. | Aug 2006 | B2 |
7095387 | Lee et al. | Aug 2006 | B2 |
7159194 | Wong et al. | Jan 2007 | B2 |
7167309 | Saxena | Jan 2007 | B2 |
7203075 | Terada | Apr 2007 | B2 |
7248271 | Credelle | Jul 2007 | B2 |
7248320 | Hirakata | Jul 2007 | B2 |
7256767 | Wong et al. | Aug 2007 | B2 |
7268775 | Gettemy | Sep 2007 | B1 |
7304707 | Son | Dec 2007 | B2 |
7324093 | Gettemy et al. | Jan 2008 | B1 |
7339639 | Nakano et al. | Mar 2008 | B2 |
7342571 | Fraser et al. | Mar 2008 | B2 |
7348964 | Gettemy et al. | Mar 2008 | B1 |
7349052 | Wu et al. | Mar 2008 | B2 |
7362338 | Gettemy et al. | Apr 2008 | B1 |
7379143 | Lyu | May 2008 | B2 |
7425970 | Gettemy et al. | Sep 2008 | B1 |
7466373 | Xu et al. | Dec 2008 | B2 |
7483016 | Gettemy et al. | Jan 2009 | B1 |
7522245 | Kim et al. | Apr 2009 | B2 |
20030098857 | Gettemy et al. | May 2003 | A1 |
20030160755 | Gettemy et al. | Aug 2003 | A1 |
20040046739 | Gettemy | Mar 2004 | A1 |
20040085503 | Kim | May 2004 | A1 |
20040109122 | Kumagawa et al. | Jun 2004 | A1 |
20050139837 | Lee | Jun 2005 | A1 |
20050184939 | Ueda et al. | Aug 2005 | A1 |
20050184974 | Gettemy et al. | Aug 2005 | A1 |
20050212999 | Yang | Sep 2005 | A1 |
20050269580 | D'Angelo | Dec 2005 | A1 |
20060018175 | Liljedahl | Jan 2006 | A1 |
20060066805 | Grunnet-Jepsen | Mar 2006 | A1 |
20060197740 | Xu et al. | Sep 2006 | A1 |
20060203169 | Ozawa | Sep 2006 | A1 |
20060232553 | Wong et al. | Oct 2006 | A1 |
20060256264 | Yang | Nov 2006 | A1 |
20060268560 | Wong et al. | Nov 2006 | A1 |
20060279557 | Gettemy | Dec 2006 | A1 |
20060284178 | Konno | Dec 2006 | A1 |
20060284895 | Marcu et al. | Dec 2006 | A1 |
20070024583 | Gettemy et al. | Feb 2007 | A1 |
20070052617 | Hanson et al. | Mar 2007 | A1 |
20070069975 | Gettemy et al. | Mar 2007 | A1 |
20070070272 | Gettemy et al. | Mar 2007 | A1 |
20070070282 | Shibahara | Mar 2007 | A1 |
20070115417 | Ge et al. | May 2007 | A1 |
20070139586 | Gu et al. | Jun 2007 | A1 |
20070152963 | Wong et al. | Jul 2007 | A1 |
20070222927 | Uehara | Sep 2007 | A1 |
20070229475 | Gettemy et al. | Oct 2007 | A1 |
20070229749 | Kaneko | Oct 2007 | A1 |
20070235635 | Arend et al. | Oct 2007 | A1 |
20070273714 | Hodge et al. | Nov 2007 | A1 |
20070290989 | Gettemy et al. | Dec 2007 | A1 |
20070296693 | Wong et al. | Dec 2007 | A1 |
20080032755 | Fraser et al. | Feb 2008 | A1 |
20080036948 | Zhong et al. | Feb 2008 | A1 |
20080062139 | Hotelling et al. | Mar 2008 | A1 |
20080062140 | Hotelling et al. | Mar 2008 | A1 |
20080062147 | Hotelling et al. | Mar 2008 | A1 |
20080062148 | Hotelling et al. | Mar 2008 | A1 |
20080068549 | Liao | Mar 2008 | A1 |
20080074400 | Gettemy et al. | Mar 2008 | A1 |
20080083569 | Gettemy et al. | Apr 2008 | A1 |
20080117184 | Gettemy | May 2008 | A1 |
20080121898 | Yin et al. | May 2008 | A1 |
20080137018 | Lin | Jun 2008 | A1 |
20080143946 | Wang | Jun 2008 | A1 |
20080164056 | Gettemy et al. | Jul 2008 | A1 |
20080180801 | Kobayashi | Jul 2008 | A1 |
20080186440 | Lim | Aug 2008 | A1 |
20080204431 | Chung et al. | Aug 2008 | A1 |
20080225217 | Wakabayashi | Sep 2008 | A1 |
20080231959 | Grip | Sep 2008 | A1 |
20080238813 | Gettemy et al. | Oct 2008 | A1 |
20080246726 | Gettemy | Oct 2008 | A1 |
20080259254 | Kikuchi | Oct 2008 | A1 |
20080303998 | Ohta | Dec 2008 | A1 |
20080309627 | Hotelling et al. | Dec 2008 | A1 |
20080309633 | Hotelling et al. | Dec 2008 | A1 |
20090009442 | Galbraith, Jr. et al. | Jan 2009 | A1 |
20100245749 | Kimura | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
2001092382 | Apr 2001 | JP |
2004061426 | Jul 2004 | KR |
2008077261 | Jul 2008 | WO |
Entry |
---|
Jung, Byunghoo, et al.; “Improved aperture Ration Through Assymetric Pixel Electrode Design”; Feb. 13, 1997. |
U.S. Appl. No. 12/371,284, filed Feb. 13, 2009, Chang et al. |
U.S. Appl. No. 12/371,316, filed Feb. 13, 2009, Chang et al. |
U.S. Appl. No. 12/371,342, filed Feb. 13, 2009, Chen et al. |
U.S. Appl. No. 12/371,360, filed Feb. 13, 2009, Gu et al. |
U.S. Appl. No. 12/371,368, filed Feb. 13, 2009, Chen et al. |
U.S. Appl. No. 12/371,380, filed Feb. 13, 2009, Chen et al. |
U.S. Appl. No. 12/371,409, filed Feb. 13, 2009, Chen et al. |
U.S. Appl. No. 12/371,452, filed Feb. 13, 2009, Chang et al. |
U.S. Appl. No. 12/415,848, filed Mar. 31, 2009, Chen et al. |
U.S. Appl. No. 12/236,066, filed Sep. 23, 2008, Gettemy et al. |
Number | Date | Country | |
---|---|---|---|
20100207854 A1 | Aug 2010 | US |