1. Field of the Disclosure
Embodiments disclosed herein relate generally to secondary cutting structures for use on drilling tool assemblies. More specifically, embodiments disclosed herein relate to secondary cutting structures having modified redundant cutting arrangements on adjacent blades. More specifically still, embodiments disclosed herein relate to secondary cutting structures having blades with modified redundant arrangements and a gage length between 30% and 45% of a total blade length.
2. Background Art
The drill string 16 includes several joints of drill pipe 16a connected end to end through tool joints 16b. The drill string 16 is used to transmit drilling fluid (through its hollow core) and to transmit rotational power from the drill rig 10 to the BHA 18. In some cases the drill string 16 further includes additional components such as subs, pup joints, etc.
The BHA 18 includes at least a drill bit 20. Typical BHA's may also include additional components attached between the drill string 16 and the drill bit 20. Examples of additional BHA components include drill collars, stabilizers, measurement-while-drilling (MAX) tools, logging-while-drilling (LWD) tools, subs, hole enlargement devices (e.g., hole openers and reamers), jars, accelerators, thrusters, downhole motors, and rotary steerable systems. In certain BHA designs, the BHA may include a drill bit 20 or at least one secondary cutting structure or both.
In general, drilling tool assemblies 12 may include other drilling components and accessories, such as special valves, kelly cocks, blowout preventers, and safety valves. Additional components included in a drilling tool assembly 12 may be considered a part of the drill string 16 or a part of the BHA 18 depending on their locations in the drilling tool assembly 12.
The drill bit 20 in the BHA 18 may be any type of drill bit suitable for drilling earth formation. Two common types of drill bits used for drilling earth formations are fixed-cutter (or fixed-head) bits and roller cone bits.
In the drilling of oil and gas wells, concentric casing strings are installed and cemented in the borehole as drilling progresses to increasing depths. Each new casing string is supported within the previously installed casing string, thereby limiting the annular area available for the cementing operation. Further, as successively smaller diameter casing strings are suspended, the flow area for the production of oil and gas is reduced. Therefore, to increase the annular space for the cementing operation, and to increase the production flow area, it is often desirable to enlarge the borehole below the terminal end of the previously cased borehole. By enlarging the borehole, a larger annular area is provided for subsequently installing and cementing a larger casing string than would have been possible otherwise. Accordingly, by enlarging the borehole below the previously cased borehole, the bottom of the formation can be reached with comparatively larger diameter casing, thereby providing more flow area for the production of oil and gas.
Various methods have been devised for passing a drilling assembly through an existing cased borehole and enlarging the borehole below the casing. One such method is the use of an underreamer, which has basically two operative states—a closed or collapsed state, where the diameter of the tool is sufficiently small to allow the tool to pass through the existing cased borehole, and an open or partly expanded state, where one or more arms with cutters on the ends thereof extend from the body of the tool. In this latter position, the underreamer enlarges the borehole diameter as the tool is rotated and lowered in the borehole.
A “drilling type” underreamer is typically used in conjunction with a conventional pilot drill bit positioned below or downstream of the underreamer. The pilot bit can drill the borehole at the same time as the underreamer enlarges the borehole formed by the bit. Underreamers of this type usually have hinged arms with roller cone cutters attached thereto. Most of the prior art underreamers utilize swing out cutter arms that are pivoted at an end opposite the cutting end of the cutting arms, and the cutter arms are actuated by mechanical or hydraulic forces acting on the arms to extend or retract them. Typical examples of these types of underreamers are found in U.S. Pat. Nos. 3,224,507; 3,425,500 and 4,055,226. In some designs, these pivoted arms tend to break during the drilling operation and must be removed or “fished” out of the borehole before the drilling operation can continue. The traditional underreamer tool typically has rotary cutter pocket recesses formed in the body for storing the retracted arms and roller cone cutters when the tool is in a closed state. The pocket recesses form large cavities in the underreamer body, which requires the removal of the structural metal forming the body, thereby compromising the strength and the hydraulic capacity of the underreamer. Accordingly, these prior art underreamers may not be capable of underreaming harder rock formations, or may have unacceptably slow rates of penetration, and they are not optimized for the high fluid flow rates required. The pocket recesses also tend to fill with debris from the drilling operation, which hinders collapsing of the arms. If the arms do not fully collapse, the drill string may easily hang up in the borehole when an attempt is made to remove the string from the borehole.
Recently, expandable underreamers having arms with blades that carry cutting elements have found increased use. Expandable underreamers allow a drilling operator to run the underreamer to a desired depth within a borehole, actuate the underreamer from a collapsed position to an expanded position, and enlarge a borehole to a desired diameter. Cutting elements of expandable underreamers may allow for underreaming, stabilizing, or backreaming, depending on the position and orientation of the cutting elements on the blades. Such underreaming may thereby enlarge a borehold by 15-40%, or greater, depending on the application and the specific underreamer design.
Typically, expandable underreamer design includes placing two blades in groups, referred to as blocks, around a tubular body of the tool. A first blade, referred to as a leading blade absorbs a majority of the load, the leading load, as the tool contacts formation. A second blade, referred to as a trailing blade, and positioned rotationally behind the leading blade on the tubular body then absorbs a trailing load, which is less than the leading load. Thus, the cutting elements of the leading blade traditionally bear a majority of the load, while cutting elements of the trailing blade only absorb a majority of the load after failure of the cutting elements of the leading blade. Such design principles, resulting in unbalanced load conditions on adjacent blades, often result in premature failure of cutting elements, blades, and subsequently, the underreamer.
Accordingly, there exists a need for apparatuses and methods of designing secondary cutting structures having unique cutting element, blade, and block design.
In one aspect, embodiments disclosed herein relate to a secondary cutting structure for sure in a drilling assembly, the secondary cutting structure including a tubular body and a block, extendable from the tubular body, the block including a first arrangement of cutting elements disposed on a first blade and a second arrangement of cutting elements disposed on a second blade, wherein the second arrangement is a modified redundant arrangement.
In another aspect, embodiments disclosed herein relate to a secondary cutting structure for use in a drilling assembly, the secondary cutting structure including a leading blade disposed on a first block and a trailing blade disposed on the first block adjacent the leading blade. Additionally, the secondary cutting structure includes a unique blade disposed on a second block, wherein a gage portion of at least one of the blades has a length between 30% and 45% of a total blade length.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
In one aspect, embodiments disclosed herein relate to secondary cutting structures for use on drilling tool assemblies. More specifically, embodiments disclosed herein relate to secondary cutting structures having modified redundant cutting arrangements on blades. More specifically still, embodiments disclosed herein relate to secondary cutting structures having blades with modified redundant arrangements and a gage length between 30% and 45% of a total blade length.
Secondary cutting structures, according to embodiments disclosed herein, may include reaming devices of a drilling tool assembly capable of drilling an earth formation. Such secondary cutting structures may be disposed on a drill string downhole tool and actuated to underream or backream a wellbore. Examples of secondary cutting structures include expandable reaming tools that are disposed in the wellbore in a collapsed position and then expanded upon actuation.
Referring now to
In the expanded position shown in
The drilling fluid flows along path 605, through ports 595 in the lower retainer 590, along path 610 into the piston chamber 535. The differential pressure between the fluid in the flowbore 508 and the fluid in the borehole annulus 22 surrounding tool 500 causes the piston 530 to move axially upwardly from the position shown in
The underreamer tool 500 may be designed to remain concentrically disposed within the borehole. In particular, the tool 500 in one embodiment preferably includes three extendable arms 520 spaced apart circumferentially at the same axial location on the tool 510. In one embodiment, the circumferential spacing would be approximately 120 degrees apart. This three-arm design provides a full gauge underreaming tool 500 that remains centralized in the borehole. Wile a three-arm design is illustrated, those of ordinary skill in the art will appreciate that in other embodiments, tool 510 may include different configurations of circumferentially spaced arms, for example, less than three-arms, four-arms, five-arms, or more than five-arm designs. Thus, in specific embodiments, the circumferential spacing of the arms may vary from the 120-degree spacing illustrated herein. For example, in alternate embodiments, the circumferential spacing may be 90 degrees, 60 degrees, or be spaced in non-equal increments. Accordingly, the secondary cutting structure designs disclosed herein may be used with any secondary cutting structure tools known in the art.
Referring to
An example of a cutting arrangement includes a single set arrangement, wherein each blade includes an arrangement of cutting elements 203 different from other blades on the cutting structure. An alternative cutting element arrangement includes a plural set arrangement, wherein each cutting element on trailing blade 202 is redundant to a corresponding cutting element 203 on a preceding (leading) blade 201. In still other embodiments, forward and reverse spiral arrangements may be used, wherein the cutting element arrangement for each blade is unique. Unique cutting element arrangements refer to an arrangement of cutting elements on a blade that is not repeated on another blade of the same secondary cutting structure. Similarly, unique blocks may include an arrangement of cutting elements on both blades that is not repeated in another block on the same secondary cutting structure.
Cutting Element Arrangement
To further explain the cutting element arrangements for secondary cutting structures disclosed herein, individual cutting element arrangements for individual blades and blocks will be discussed in detail below.
Referring to
Referring to
For example, in one embodiment cutting arrangement A may include twenty total cutting elements disposed in a particular pattern across the length of the blade, while cutting arrangement B includes twenty-one cutting elements, and cutting arrangement C includes twenty-two cutting elements. In other embodiments, design elements that may be varied for each cutting element arrangement include cutting element spacing, cutting element material type, number of cutting elements, blade profile design, and other design elements discussed above and known to those of skill in the art, Additionally, cutting elements may be arranged in single sets, plural sets, or spiral sets, and the arrangements may vary across blocks 2071 and/or blades 2070.
Block 2071A includes a leading blade cutting element arrangement A and a trailing blade cutting element arrangement A′. Cutting element arrangement A′ includes identical cutting element position on blades 2070A and 2070B, thereby providing for redundancy, such as in a plural set. However, in addition to providing redundancy through identical cutting element positioning, A′ has been modified. Modification may include, for example, changing the exposure of cutting elements of the leading blade 2070A or the trailing blade 2070B, while retaining cutting element positioning, and thus redundancy.
Referring to
Those of ordinary skill in the art will appreciate that the combinations of single and plural sets, as well as forward and reverse spiral sets used may vary according to the design requirements for a specific secondary cutting structure. Accordingly, a single secondary cutting structure may include one or more cutting arrangements, as discussed above. Along with variations in the cutting element arrangement, specific design elements for blocks, blades, and individual cutting elements may be modified to produce a desired arrangement. Specific examples of design variations that may be considered in designing cutting structures in accordance with the present disclosure are discussed in detail below.
Design Elements of Secondary Cutting Structure
Referring to
In one embodiment, gauge portion 405 is greater than 30% of the total blade length 402. By increasing the ratio of gauge portion 405 to total blade length 402, the net radial cutting forces imparted to blade 400 during drilling may be decreased. Decreasing the radial cutting force allows the dynamic radial imbalance force generated during longitudinal drilling to be decreased as well, thereby decreasing undesirable vibrations during drilling, and increasing stability. In certain embodiments, gauge portion 405 may be elongated to include between 30% and 45% of the total blade length 402. By further increasing gauge portion 405 length relative to total blade length 402, radial cutting forces may be further decreased, thereby resulting in increased drilling tool assembly stability. Those of ordinary skill in the art will appreciate that the specific ratio of gauge portion 405 to total blade length 402 may be varied according to the specific requirements of the drilling operation, such as formation properties (e.g., rock hardness) and drilling parameters (e.g., weight-on-bit, revolutions per minute, drilling fluid flow rate, etc.). Additionally, other design elements of the secondary cutting structure may be used to determine an optimal gauge portion 405 lengths. Examples of other design elements include cutting element back rake angle, cutting element side rake angle, cutting element type, cutting element material, blade-to-blade angle, blade position, cutting element arrangement, and cutting element exposure.
Still referring to
Referring to
In typical secondary cutting structure design, large back rake angles (i.e., back rake angles greater than 20°) have been used to reduce cutting element failure by decreasing impact loading. However, in accordance with embodiments disclosed herein, decreasing back rake angle to less than 20°, thereby increasing the aggressiveness of the cut, may increase the stability of the secondary cutting structure. Decreasing the back rake angle may actually decrease lateral vibrations experienced by the secondary cutting structure by, among other things, matching the aggressiveness of the secondary cutting structure to the aggressiveness of an associated drill bit or primary cutting structure. Allowing both the primary and the secondary cutting structure to cut formation with a similar aggressiveness may decrease vibrations of the entire drilling tool assembly, thereby increasing the stability of the drilling tool assembly.
Referring to
Referring to
In addition to individual cutting element exposure, the relative exposure of cutting elements on successive blades may be modified. Referring back to
In certain embodiments, the exposure of trailing blade 203 may be increased (over exposed), or the exposure of leading blade 202 may be decreased (under exposed), such that upon contact with formation, the load distribution of cutting elements of both leading blade 202 and trailing blade 203 is substantially balanced. Such a configuration may be referred to as a balanced exposure, because trailing blade 203 is exposed so as to balance the load on cutting elements of leading blade 202 and trailing blade 203 during use. Referring to
In other embodiments, leading blade 202 may be exposed less than trailing blade 203, such that the forces on trailing blades are increased relative to the forces on leading blades. Referring to
In still other embodiments, the placement of blades 202 and 203 on block 200 may be selected according to a desired blade-to-blade angle, or the relative angular orientation of two or more blades 202 and/or 203. Referring briefly to
Referring back to
Exemplary Secondary Cutting Structure Design
To further illustrate different cutting element arrangements and modifications to individual cutting elements, blades, and blocks, exemplary secondary cutting structures in accordance with embodiments disclosed herein are discussed in detail below.
Referring to
Blades 2020 also include a gauge portion 2080 that is passive 2081. In this embodiment, passive gage portion 2080 does not include cutting elements, however, in alternate embodiments, a passive gauge portion 2081 may include elements configured to protect blades 2020, while not actively cutting formation. For example, in certain embodiments, passive gauge portion 2081 may include one or more tungsten carbide inserts configured to prevent direct blade-to-formation contact, thereby protecting the blade from premature wear.
Additionally, in this embodiment, gauge portion 2080 includes a portion that is 45% of the total blade length. By increasing the gauge portion 2080 to include more of the total blade length, and by including a passive gauge portion 2081, the radial cutting force during normal longitudinal drilling is decreased. Decreasing the radial cutting force allows the dynamic radial imbalance force generated during longitudinal drilling to be decreased as well, thereby decreasing undesirable vibrations during drilling. In still other embodiments, gauge portion 2080 may be 30% to 45% of the total blade length depending on the formation being drilled, operating parameters used, and/or other design elements of the secondary cutting structure.
Still referring to
Redundant cutting elements 2022 may provide for increased durability of individual cutting elements 2022. Because each redundant cutting element 2022 follows essentially the same path as the corresponding cutting element 2022, the cutting element 2022 of the leading blade 2020A clears some formation for the redundant cutting element 2022, thereby subjecting the redundant cutting element 2022 to less resistance, and thus less wear. By decreasing the resistance placed on redundant cutting elements 2022, mechanical failure, such as cracking of the cutting elements 2022, may be decreased.
In addition to the selection of single or plural set profiles, another option for a secondary cutting structure design in accordance with embodiments disclosed herein is a modified plural set profile. In such a profile, trailing blade 2020B includes redundant cutting elements 2022 corresponding to cutting elements 2022 of leading blade 2020A, however, trailing blade 2020B may be modified to change, for example, an exposure of cutting elements 2022 of trailing blade 2020B.
Referring to
As illustrated, depth of cut limiters 2025 are disposed behind cutting elements 2026 on both leading blade 2023A and trailing blade 2023B. Depth of cut limiters 2025 may include inserts with cutting capacity, such as back up cutters or diamond impregnated inserts with less exposure than primary cutting elements 2026, or diamond enhanced inserts, tungsten carbide inserts, or other inserts that do not have a designated cutting capacity. While depth of cut limiters 2025 do not primarily engage formation during drilling, after wear of primary cutting elements 2026, depth of cut limiters 2025 may engage the formation to protect the primary cutting elements 2026 from increased loads as a result of worn primary cutting elements 2026. Depth of cut limiters 2025 are disposed behind primary cutting elements 2026 at a selected distance, such that depth of cut limiters 2025 may remain unengaged with formation until wear to primary cutting elements 2026 occurs.
After depth of cut limiters 2025 engage formation, due to wear of primary cutting elements 2026, the load that would normally be placed upon primary cutting elements 2026 is redistributed, and per cutter force may be reduced. Because the per cutter force may be reduced, primary cutting elements 2026 may resist premature fracturing, thereby increasing the life of the primary cutting elements 2026. Additionally, redistributing cutter forces may balance the overall weight distribution on the secondary cutting structure, thereby increasing the life of the tool. Furthermore, depth of cut limiters 2025 may provide dynamic support during wellbore enlargement, such that the per cutter load may be reduced during periods of high vibration, thereby protecting primary cutting elements 2026 and/or backup cutting elements (not illustrated). During period of increased drill string bending and off-centering, depth of cut limiters 2025 may contact the wellbore, thereby decreasing lateral vibrations, reducing individual cutter force, and balancing torsional variation, so as to increase durability of the secondary cutting structure and/or individual cutting elements 2026.
Advantageously, embodiments of the present disclosure may provide for cutting element arrangements for secondary cutting structures that result in a balanced load distribution between individual cutting elements and individual blades of a secondary cutting structure. Additionally, cutting element arrangements disclosed herein may advantageously provide for balanced forces along entire drilling tool assemblies by reducing lateral and torsional vibrations.
In still other embodiments, aspects of the present disclosure may advantageously provide for stabilized secondary cutting structures that provide for balanced forced during drilling. Additionally, secondary cutting structures may be adjusted to optimize individual design elements, thereby resulting in decreased failure rates and premature wear to cutting elements and/or secondary cutting structures. Furthermore, the secondary cutting structure design methods disclosed herein may allow for secondary cutting structure designs that are optimized relative to specific primary cutting structure designs. Thus, optimized drilling tool assemblies may be designed to have higher ROPs, increased life, and are less likely to experience premature wear.
While the present disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments may be devised which do not depart from the scope of the disclosure as described herein. Accordingly, the scope of the disclosure should be limited only by the attached claims.
Number | Name | Date | Kind |
---|---|---|---|
2846193 | Chadderdon | Aug 1958 | A |
2859943 | Chadderdon | Nov 1958 | A |
3224507 | Cordary et al. | Dec 1965 | A |
3425500 | Fuchs | Feb 1969 | A |
4055226 | Weber | Oct 1977 | A |
4190124 | Terry | Feb 1980 | A |
4589504 | Simpson | May 1986 | A |
5070952 | Neff | Dec 1991 | A |
5242017 | Hailey | Sep 1993 | A |
7401666 | Fanuel et al. | Jul 2008 | B2 |
7658241 | Lassoie et al. | Feb 2010 | B2 |
20040211597 | Cravatte | Oct 2004 | A1 |
20070089912 | Eddison et al. | Apr 2007 | A1 |
20080128175 | Radford et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
2423546 | Aug 2006 | GB |
2426269 | Nov 2006 | GB |
2453663 | Apr 2009 | GB |
2004097163 | Nov 2004 | WO |
2008070038 | Jun 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100018779 A1 | Jan 2010 | US |