This application is the national stage of PCT/EP2004/008015 filed on Jul. 17, 2004 and also claims Paris Convention priority of DE 103 43 618.9 filed on Sep. 20, 2003.
The invention concerns a plain bearing composite material comprising a carrier layer made from steel and a sliding layer which is disposed thereon in such a manner that it cannot be removed, the sliding layer being made from an aluminium bearing alloy.
Plain bearing composite materials of this type are conventionally known and are used, in particular, for producing plain bearing shells for connecting rod bearings and for crankshaft bearings in the crankcase of a combustion engine of a vehicle. The use of such a plain bearing composite material for producing rolled bearing bushings, e.g. connecting rod bearing bushings or piston pin bushings which bear the piston pin in the piston, is also known in the art.
DE 198 00 433 C2 does not describe plain bearing composite materials comprising a carrier layer made from steel, but deals with a continuous casting method for casting an aluminium plain bearing alloy comprising 3 to 6 weight % of zinc, 0.3 to 2.0 weight % of copper, 0.2 to 1.0 weight % of magnesium, 0.3 to 2.0 weight % of silicon and 2 to 4.5 weight % of lead. Finely distributed drop-shaped lead precipitations are thereby formed in the continuous casting piece with the drops having dimensions of less than 10 μm. When this aluminium alloy is used as a plain bearing alloy, the lead acts as finely and homogeneously distributed lubricant.
EP 0 440 275 B1 also relates to casting of monotectic aluminium bearing alloys. This document discusses aluminium bearing alloys for producing plain bearing materials comprising one or more of the components: 1 to 50 weight %, preferably 5 to 30 weight % of lead, 3 to 50 weight %, preferably 5 to 30 weight % of bismuth, and 15 to 50 weight % indium and additionally one or more of the following components: 0.1 to 20 weight % of silicon, 0.1 to 20 weight % of tin, 0.1 to 10 weight % of zinc, 0.1 to 5 weight % of magnesium, 0.1 to 5 weight % of copper, 0.05 to 3 weight % of iron, 0.05 to 3 weight % of manganese, 0.05 to 3 weight % of nickel and 0.001 to 0.30 weight % of titanium. This document does not give any further information about the exact composition of an aluminium alloy.
EP 0 190 691 A1 discloses a plain bearing composite material comprising a carrier layer made from steel and a sliding layer which is disposed thereon in such a manner that it cannot be removed and consists of an aluminium bearing alloy composed substantially of 4 to 9 weight % of bismuth, 1 to 4.5 weight % of silicon, 0 to 1.7 weight % of copper, 0 to 2.5 weight % of lead, the rest being aluminium, in accordance with claim 1 of this document. Claim 3 of this document mentions one or more of the materials selected from the group consisting of nickel, manganese, chromium, tin, antimony and zinc as further additives, wherein the portion of zinc may amount to up to 5 weight %. The compositions of the aluminium bearing alloy precisely disclosed in this document suggest that the combined use of bismuth and lead is advantageous.
A plain bearing composite material comprising a carrier layer of steel and a sliding layer disposed thereon in an irremovable fashion and consisting of AlZn5Pb4Si1.5Cu1Mg has been disclosed under the trade name KS R41.
It is the object of the present invention to provide an environment-friendly plain bearing composite material of the above-mentioned type, comprising an aluminium bearing alloy which is easy to cast and shape and at the same time has excellent tribological properties.
This object is achieved in accordance with the invention by a plain bearing composite material comprising the features of the independent claim.
It has turned out in accordance with the invention that lead can be omitted by adding bismuth in an amount of 2.5 to 6 weight %, in particular between 2.5 to 4.5 weight % and by providing a zinc content of between 4.4 and 6 weight %, preferably at least 5 weight %. It is assumed that bismuth of an amount within the above-mentioned weight % range interacts with the fine zinc precipitations in the aluminium mixed crystal, which is oversaturated with zinc, the bismuth yielding, as an additive, friction reducing properties which are substantially identical to those of the lubricant lead, i.e. it acts as a lubricant. This finding is by no means obvious, since, up to now and as mentioned above, aluminium bearing alloys containing bismuth attained their excellent features especially through the addition of lead.
Zinc precipitations of a particle size of less than 10 μm are preferably obtained by solution annealing directly followed by chilling.
A preferred composition of a lead-free aluminium bearing alloy is provided by AlZn5Bi4Si1.5Cu1Mg.
The further components silicon, copper and mainly magnesium, which are provided in addition to zinc and bismuth, are essential for obtaining the satisfying and advantageous properties of the inventive plain bearing composite material. Magnesium has a solidifying effect. Together with aluminium, it forms the intermetallic phase Al3Mg2. Copper advantageously forms the intermetallic phase Al2Cu. This increases the strength of the aluminium mixed crystal, since these components load the crystal thereby stabilizing and hardening it.
Number | Date | Country | Kind |
---|---|---|---|
103 43 618 | Sep 2003 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2004/008015 | 7/17/2004 | WO | 00 | 3/15/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/038278 | 4/28/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4170469 | Mori | Oct 1979 | A |
6273972 | Andler | Aug 2001 | B1 |
Number | Date | Country |
---|---|---|
32 47 873 | Jul 1983 | DE |
42 01 793 | Oct 1992 | DE |
0 440 275 | Aug 1991 | EP |
0 908 539 | Apr 1999 | EP |
0 982 410 | Mar 2000 | EP |
1 222 262 | Feb 1971 | GB |
WO 9625527 | Aug 1996 | WO |
WO 2006074805 | Jul 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20070026255 A1 | Feb 2007 | US |