This application claims priority to German patent application no. 102022206539.5 filed on Jun. 28, 2022, the entire contents of which are incorporated.
The present invention relates to bearings, and more particularly to plain bearings.
Plain bearings are known and generally include an inner sliding-surface element disposed within an outer sliding-surface element. Often, the outer sliding-surface element is divided along an essentially flat surface that includes the main axis of the plain bearing, for example, produced by a breaking or a forced rupture. Typically, at least one radially encircling groove is provided on the outer surface and a metal snap ring is inserted in the groove to hold the divided outer sliding-surface element together.
However, such a metal snap ring may not ensure secure cohesion or retention of the two halves of the outer sliding-surface element in certain applications, such that subsequent installation of the plain bearing is made significantly more difficult. Furthermore, when removal forces are applied to the inner sliding-surface element during removal of the plain bearing, for example in applications where a removal force cannot be applied to the outer sliding-surface element due to the mounting environment, particularly with spherical sliding surfaces, the two halves of the outer sliding-surface element can be forced apart in a wedge-like manner, thus jamming the outer sliding-surface element in its mounting environment and impeding or preventing the removal of the plain bearing.
An object of the present invention is to provide an improved plain bearing that avoids the problems described above. This object is achieved by a plain bearing comprising an outer sliding-surface element having two end sides and at least one radially encircling groove at one of the end sides, the outer sliding-surface element being divided along a substantially flat surface that includes a main axis of the plain bearing. An inner sliding-surface element is enclosed by the outer sliding-surface element and a ring is disposed within the at least one groove of the outer sliding-surface element and is configured to fixedly hold together the divided outer sliding-surface element.
According to the present invention, at least at the axial end of the plain bearing that lies on the side which a removal force engaging with the inner sliding-surface element is transmitted to the outer sliding-surface element, instead of a metal snap ring, a solid or enclosed ring holding the halves tightly together is used, for example, a gauge ring, that is inserted in an end-side groove or a shoulder at the transition region of the end side toward the outer surface of the outer sliding-surface element. This arrangement sufficiently secures the two halves of the outer sliding-surface element so as to prevent the above-mentioned separation of the halves and thereby ensures a problem free removal of the plain bearing. The present solution ensures a significantly improved cohesion or retention of the two halves of the outer sliding-surface element so that installation problems are also prevented.
Further advantages, features, and details of the invention arise from the following exemplary embodiment of the invention described based on the drawing FIGURE. In other embodiments modifications arise, of course of this one exemplary embodiment, inter alia in the context of what is outlined in the patent claims:
As discussed above,
The inner sliding-surface element 10 is enclosed by an outer sliding-surface element 20. The outer sliding-surface element 20 has an inner sliding surface 22 adapted to the inner sliding-surface element 10. Specifically, the sliding surface 22 also corresponds to the curved surface of a spherical disc and is configured to slidingly mate with the sliding surface 12 of the inner sliding-surface element 10. In other words, the two sliding surfaces 12, 22 are mutually adapted. Preferably, the outer sliding-surface element 20 is also formed from a rolling-element bearing steel, most preferably hardened to at least 50 HRC and phosphated. The sliding surface 22 is also preferably treated during transport/delivery with a running-in lubricant. The alternative embodiments described above for the inner sliding-surface element 10 correspondingly apply to the outer sliding-surface element 20. Furthermore, the outer sliding-surface element 20 preferably further includes two lubrication bores 23 radially penetrating the outer sliding-surface element 20.
The outer sliding-surface element 20 is preferably formed divided, for example, by a breaking or cutting of an initially one-piece ring, or a forced rupture, along an essentially flat surface that includes a main axis 5 of the plain bearing. The dividing of the outer sliding-surface element 20 enables the inner sliding-surface element 10 to be assembled within the outer element 20. However, due to such a divided or two-piece structure, the two halves of the outer sliding-surface element 20 must be held together during use.
For this purpose, at least one radially encircling open-ended groove or shoulder 24 is provided, preferably at least at the right axial end of the outer sliding-surface element 20 as shown, within which a closed or solid fitted ring 28 is disposed. The fitted ring 28 is configured to fixedly hold or retain together the two halves of the outer sliding-surface element 20. Preferably, the ring 28 is formed as a fitted, solid ring or as a “closed” ring and is preferably formed of a metallic material, most preferably steel.
The fitted ring 28 may be installed about the shoulder or groove 24 by pushing or displacing the ring 28 axially toward the outer sliding-surface element 20 such that the solid fitted ring 28 enters the open end of the groove/shoulder 24 and slides onto and about the annular shoulder 24. Alternatively, the ring 28 may be initially open and “wrapped around” the groove or shoulder 24 and then enclosed by connecting two circumferential ends (not depicted) to form a solid, fitted ring 28. In either case, such a closed, fitted ring 28 is formed of a rigid material (e.g., a metal or rigid polymer) and prevents any relative movement between the halves of the outer sliding-surface element 20, unlike a snap ring or an elastic ring which each are radially expandable or deflectable and thereby allows relative movement of the two portions of the divided element 20.
Preferably, the shoulder or groove 24 is sized relative to the outer sliding-surface element 20 such that when the outer sliding-surface element 20 has an outer diameter of, for example, one hundred twenty-five millimeters (125 mm), the shoulder 24 is formed with an approximately square cross-section of three millimeters by three millimeters (3 mm×3 mm). Further, the shoulder or “open” groove 24 has generally rounded corners and/or edge regions. The fitted ring 28 is disposed within or about the shoulder/groove 24 and preferably has approximately square cross sections and is sized so the ring 28 does not protrude beyond the outer surface or the axial end side of the outer sliding-surface element 20.
On the left axial end of
In other embodiments, the “holding-together” or “retention” ring 28 may be formed from or comprise any other appropriate materials. Further, the cross-sectional area of the fitted ring 28 and the shoulder 24 may have any other shape other than square-like, for example, the cross-sectional area may be rectangular in shape. Also, in other embodiments, a groove 24 may be incorporated in the end side of the outer sliding-surface element 20 may be provided instead of the shoulder 24. Furthermore, the width and height of the shoulder or groove 24, as well as the associated ring 28, preferably has a value that generally corresponds to approximately one percent (1%) to five percent (5%) of the value of the outer diameter of the outer sliding-surface element 20.
Representative, non-limiting examples of the present invention were described above in detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention.
Moreover, combinations of features and steps disclosed in the above detailed description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe representative examples of the invention. Furthermore, various features of the above-described representative examples, as well as the various independent and dependent claims below, may be combined in ways that are not specifically and explicitly enumerated in order to provide additional useful embodiments of the present teachings.
All features disclosed in the description and/or the claims are intended to be disclosed separately and independently from each other for the purpose of original written disclosure, as well as for the purpose of restricting the claimed subject matter, independent of the compositions of the features in the embodiments and/or the claims. In addition, all value ranges or indications of groups of entities are intended to disclose every possible intermediate value or intermediate entity for the purpose of original written disclosure, as well as for the purpose of restricting the claimed subject matter. The invention is not restricted to the above-described embodiments, and may be varied within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
102022206539.5 | Jun 2022 | DE | national |