This application claims the benefit of Korean Application No. 2002-71904, filed Nov. 19, 2002, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
1. Field of the Invention
The present invention generally relates to a compact-size antenna and a personal computer using the same, and more particularly, to a compact-size planar antenna for a wireless communication device which provides high quality and performance by improving signal radiation and receptivity.
2. Description of the Related Art
Development of portable mobile communication terminals for a wireless communication service has been aimed for a wireless terminal (hereinafter a terminal) with more compactness and diversity, and lower power-consumption, and an antenna in such a terminal plays an important role that determines the quality of signal transmission and reception between the terminal and a base wireless station.
In the wireless communication terminal, which has to be compact-sized and at the same time guarantee smooth two-way communication, a non-directional and easy to keep antenna is demanded. Usually, such antennas include helical antennas, monopole antennas or a combined antenna having both the helical and monopole antennas. While the terminals with these antennas almost always have smooth communication without being constrained by the direction where the terminals are placed, the terminals also have the shortcoming of having an upper portion which is jutted out.
In order to solve the antenna jutting out shortcoming, for example a surface-mounted device (SMD) type antenna and a planar antenna have been proposed. These antennas have radiation patterns varying in accordance with design, and provide high portability as they are attachable inside the terminals.
The SMD type antenna is formed in a relatively small volume of space (i.e., micro-sized) by using a general multi-layer substrate and a dielectric fabrication method. In the initial development stage, the SMD type antennas were made in a manner that monopoles and small-size helical antennas are formed by using a high dielectric constant. Currently, however, various SMD type antennas are manufactured based on various pattern technologies. Currently available SMD type antennas mainly include, for example, chip antennas, stacked antennas, and pattern antennas. Being micro-sized, these SMD type antennas are mountable almost anywhere in the wireless communication device. In addition to high productivity, these SMD type antennas are quite advantageous, because they can be directly mounted on a circuit board instead of being built in the wireless communication device. However, these SMD type antennas are constrained by direction when mounted in the terminal body, thus they have bad signal receptivity and a poor radiation pattern.
Regarding a planar type antenna, a planar inverted F antenna (PIFA) is a representative example. The PIFA has a radiation pattern varying in accordance with the design, and also provides high portability because it can be attached to the upper or inner side of the wireless communication device. The PIFA antenna consists of a ground plane, a top-plate, and a feeder or a short-circuit plate. The ground plane is formed slightly larger than the top-plate, and is directly attached to a separate circuit board and inserted inside the side of the wireless communication device.
Accordingly, the present invention provides a compact-sized planar antenna having an improved radiation pattern and voltage standing wave ratio (VSWR).
Further, the present invention provides a portable computer with wireless communication capability, such as a wireless personal digital assistant (PDA), that includes the compact-sized planar antenna having an improved radiation pattern and VSWR.
Further, the present invention provides a portable computer with wireless communication capability that requires less number of parts, less maintenance, and a reduced manufacturing cost by improving (reducing) manufacturing assembly.
Additional aspects and/or advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
The present invention may be achieved by a compact-size planar antenna comprising a LCD-protective bracket, a top plate spaced apart from the bracket by a predetermined distance, and a short circuit plate connected to the top plate and the bracket with both ends.
According to an aspect of the invention, a power feed line is connected to the top plate and the LCD-protective bracket with both ends.
According to an aspect of the invention, the top plate comprises a first plate in a rectangular shape and a second plate larger than the first plate, the first and the second plates being integrally formed with each other.
According to an aspect of the invention, the power feed line is connected to a side of the first plate, while the short circuit plate is connected to the second plate of the top plate.
According to an aspect of the invention, a dielectric body having a high dielectric constant is arranged between the LCD-protective bracket and the top plate. The dielectric body comprises a ceramic material.
The present invention may also be achieved by a portable computer having a liquid crystal display (LCD) and a bracket protecting the LCD, the portable computer comprising a compact-size planar antenna having a top plate spaced from the LCD-protecting bracket by a predetermined distance, and a short circuit plate attached to the top plate and the LCD-protecting bracket with both ends, the planar antenna using the LCD-protecting bracket as a ground plane.
According to an aspect of the invention, the compact-size planar antenna further comprises a power feed line connected to the top plate and the LCD-protecting bracket with both ends.
According to an aspect of the invention, the top plate comprises a first plate in a rectangular shape and a second plate larger than the first plate, the first and the second plates integrally formed with each other.
According to an aspect of the invention, the power feed line is connected to a side of the first plate, while the short circuit plate is connected to the second plate of the top plate.
According to an aspect of the invention, the compact-size planar antenna is spaced apart from conductor parts of the portable computer by a predetermined distance, and formed at a left lower corner of the portable computer, when viewed from back of the portable computer.
The above aspects and/or other aspects and advantages of the present invention will become apparent and more readily appreciated from the following description of the embodiments taking in conjunction with the attached drawings, in which:
Reference will now be made in detail to the present embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below to explain the present invention by referring to the figures.
Configuration of the LCD-protective bracket 20 may vary in accordance with the type of the wireless communication device being in use. However, because any wireless communication device has the protective bracket if it employs the LCD, the bracket can be used as a ground plane. For example,
The top plate 21 is much smaller than the LCD-protective bracket 20 in size, and the top plate 21 provides a radiation patch/receiving function, which radiates and receives wireless frequency signals, via a coupling of the power feed line 26 and the short circuit plate 24. Typically, the top plate 21 comprises a first plate 22 and a second plate 23 integrally connected with each other, with the first plate 22 formed to have a larger surface area, typically, a slightly larger surface area (wider) than the second plate 23 as shown in
Typically, one end of the power feed line 26 is connected to one end of the first plate 22, while the other end is connected to the LCD-protective bracket 20. The power feed line 26 is used in transmitting/receiving the high frequency wireless signals. Typically, one end of the short circuit plate 24 is connected to one side of the second plate 23, while the other end is connected to the LCD-protective bracket 20. The short circuit plate 24 is at a predetermined distance from the power feed line 26, and accordingly can vary an impedance property of the antenna.
In the present embodiment, the top plate 21, the power feed line 26 and the short circuit plate 24 (i.e., the planar antenna connectable components according to the first embodiment of the present invention) are connected to a distal end of the LCD-protective bracket 20. However, the present invention is not limited to such a configuration and the planar antenna connectable components can be connected to anywhere on the LCD-protective bracket 20. In particular, the planar antenna connectable components can be placed in an appropriate position in accordance with a structure and a configuration of the wireless communication device being in use. Typically, the top plate 21, the power feed line 26 and the short circuit plate 24 are spaced apart from conductor parts (i.e., conductive elements of the PDA, such as interfaces, circuit boards, etc.) of the wireless communication device as much as possible. Therefore, according to the present invention, a compact-size planar antenna is constructed by connecting the top plate 21 and the short circuit plate 24 to the LCD-protective bracket 20.
Meanwhile, it is a well-known fact that the radiation pattern and the receptivity of the antenna are better when the ground plane is wider. Accordingly, in the present invention embodiments, sufficient surface area is ensured as the ground plane, because the LCD-protective bracket 20 of the wireless terminal is used as the ground plane. Accordingly, the present invention can provide improved VSWR and radiation pattern. Also, because there is no need to employ a separate structure as the ground plane, the number of parts and assembly for the compact-sized planar antenna is reduced, thereby reducing manufacturing costs.
There may be one or more printed circuit boards 34 according to the PDA design/structure, and because the structure of the printed circuit board 34, the battery 38 and the front and rear covers 32, 40 is the same as general PDAs, an additional description thereof will be omitted. Typically, as described above, the compact-size planar antenna connectable components comprises the top plate 21, the LCD-protective bracket 20, the power feed line 26 and the short circuit plate 24. The compact-size planar antenna 36 may be in communication with processing components of the PDA, such as the printed circuit boards 34, according to known techniques.
More particularly, the top plate 21 comprises the first plate 22 and the second plate 23 which are integrally connected with each other. The first plate 22 is formed to have a wider, typically slightly wider, surface area than the second plate 23. One end of the power feed line 26 is connected to a side of the first plate 22, while the other end is connected to the LCD-protective bracket 20. One end of the short circuit plate 24 is connected with a side of the second plate 23, and the other end is connected to the LCD-protective bracket 20. The radiation pattern and the VSWR of the PDA according to above-described planar antenna is greatly improved from a PDA with a conventional planar antenna (i.e., the conventional PDA), because the LCD-protective bracket 20 provides a sufficiently large ground area for the compact-size planar antenna.
As described above, the PDA according to the present invention has an improved radiation pattern and VSWR, also has a longer signal receiving length and is directionally not limited. According to the present invention, because a sufficient ground area (i.e., a substantially larger surface area, or a larger surface area than a slightly larger surface area, than the top plate) for the compact-size planar antenna is ensured using the LCD-protective bracket, which is a simple fixture support in any wireless terminal having the LCD, the planar antenna can have an improved VSWR and radiation pattern. Further, according to the present invention, because the already available LCD-protective bracket of the wireless terminal is used as the ground plane, there is no requirement for a separate structure, and as a result, the number of parts and assembly is reduced. Further, because the LCD-protective bracket is used as the ground plane, a jutted out terminal portion requirement can be avoided. Therefore, the present invention provides a portable wireless device (e.g., a wireless computing device, such as a PDA, a wireless telephone, etc.) having a liquid crystal display (LCD), the device comprising a compact-size planar antenna using, as an antenna ground plane, an LCD-protective bracket of the LCD. The antenna comprises a top plate spaced apart from the LCD-protective bracket by a predetermined distance, a short circuit plate connected to the top plate and the LCD-protective bracket with both ends, and a power feed line connected to the top plate and the bracket with both ends. More particularly, the antenna comprises a top plate having a first portion and a second portion smaller in surface area (narrower), typically, slightly narrower, than the first portion, the top plate spaced apart from the LCD-protective bracket by a predetermined distance. A short circuit plate is provided with one end connected to the second portion of the top plate and another end connected to the LCD-protective bracket, and a power feed line is provided with one end connected to the first portion of the top plate and another end connected to the LCD-protective bracket.
Although a few embodiments of the present invention has been described, it will be understood by those skilled in the art that the present invention is not be limited to the described embodiments, but various changes and modifications can be made within the spirit and scope of the present invention as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2002-0071904 | Nov 2002 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5138328 | Zibrik et al. | Aug 1992 | A |
5410749 | Siwiak et al. | Apr 1995 | A |
6339400 | Flint et al. | Jan 2002 | B1 |
6556812 | Pennanen et al. | Apr 2003 | B1 |
6795028 | Stutzman et al. | Sep 2004 | B2 |
20020037757 | Kaiponen et al. | Mar 2002 | A1 |
20020061775 | Iwai et al. | May 2002 | A1 |
20020149525 | Mitsui | Oct 2002 | A1 |
20020171588 | Fang | Nov 2002 | A1 |
20030050094 | Boyle et al. | Mar 2003 | A1 |
20030058177 | Nishikido et al. | Mar 2003 | A1 |
20030098812 | Ying et al. | May 2003 | A1 |
20030107518 | Li et al. | Jun 2003 | A1 |
20040125025 | Stutzman et al. | Jul 2004 | A1 |
20040171403 | Mikkola | Sep 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20040097270 A1 | May 2004 | US |