The present application claims priority from German Patent Application No. 10 2016 118 706.2 filed on Oct. 4, 2016, the disclosure of which is incorporated herein by reference in its entirety.
It is noted that citation or identification of any document in this application is not an admission that such document is available as prior art to the present invention.
The invention concerns a planar dynamic transducer, in particular a planar dynamic sound transducer.
A number of different operating principles are known for sound transducers. The moving coil principle is frequently used, in which a force is exerted on a cylindrical coil which is fixed to a diaphragm and through which current flows, in the magnetic field of a round permanent magnet. In contrast thereto, sound transducers operating on the planar dynamic principle have flat permanent magnets and a flat coil which generally comprises conductor tracks fixed directly on the diaphragm.
Sound transducers of the planar dynamic type (also referred to as planar magnetic, orthodynamic, isodynamic or magnetostatic) belong to the family of dynamic and electromagnetic sound transducers. The principle is shown in
Disposed beneath the magnet arrangement 100 or between the two magnet arrangements 100, 106 is a flat diaphragm 110 which often comprises thin plastic film or polyester film. Applied thereto is an electrical conductor 120 in the form of a thin wire or a for example vapor-deposited conductor track which functions as a coil and the position and direction of which correspond to the magnetic zones. Normally therefore the conductor follows a meander shape. In many cases it is then taken back a number of times at the edge or outside the moveable diaphragm portion in order once again to follow the same meander path with a small displacement. That results in the production of conductor track bundles which are directed in the same direction and which represent additional turns of the coil. These multiply the conductor length and, with the total electrical resistance being kept the same, also multiply the drive power and the sound pressure. In the case of the concentric variant the conductor is correspondingly arranged in a spiral configuration and generally has a plurality of turns per magnetic zone 102, the center point of the diaphragm generally being fixed for contacting purposes.
In all those cases the magnetic field lines 103 in the magnetic zones 102 extend through the plane of the diaphragm and perpendicularly to the flow of current in the conductor 120. As a result, in all portions of the conductor, that extend through the magnetic zones 102, there is a force which is in the same direction and which is normal in relation to the diaphragm surface and which deflects the diaphragm and thus generates sound pressure.
With that principle basically compromises have to be accepted in regard to the conductor mass, the magnet mass and the sound pressure which can be produced. A reduction in the conductor mass by virtue of a shorter conductor length or a smaller conductor cross-section admittedly provides for a lower degree of mass damping in respect of higher frequencies, but, because of the lesser current flow, it also reduces the drive power and thus the sound pressure produced. A smaller mass in respect of the magnet arrangements reduces not only the thickness and weight of the sound transducer but also the acoustic damping, reflection phenomena and other acoustic influences, but because of the correspondingly lower magnetic flux density it also reduces the drive power and the sound pressure.
Conventional configurations as in
The electrical conductor 120 is disposed in the region of the magnetic zones 102 on the diaphragm 110 which is fixed on a carrier frame 130. Accordingly the drive power also acts only in those regions of the diaphragm. In many configurations the conductor is very wide or a plurality of conductors which are positioned in parallel are used. However the magnetic field falls off greatly towards the edge of those wide conductors as a change in polarity with a zero crossing occurs at the transition between the magnetic zones. As shown in the cross-section in
At the same time the magnets 100a, 100b inevitably represent a locally changing acoustic load in regard to the diaphragm. In the horizontal air gaps 101 the local volume of air which is relevant at medium and high frequencies, or the column of air, is greater than in the region under the magnets which there delimit the volume or the column of air. Upon deflection of the diaphragm that smaller volume is more greatly compressed and decompressed respectively and therefore generates an increased counteracting force or damping action 210 which locally retards the movement of the diaphragm.
Those two effects in themselves can already result in measurable and audible impairments which however can be partially mastered with suitable acoustic and/or mechanical measures. It will be noted however that both effects spatially coincide in the configuration which is most frequently used: the driven diaphragm regions, due to the principle involved, are in the horizontal air gaps 101 where there is even less acoustic damping while the non-driven regions are subject to a higher level of damping. This can therefore entail unwanted strip-shaped or ring-shaped vibration modes of the diaphragm, and therefore deviations from the desired even and in-phase movement of the diaphragm. These can reduce or in the extreme case extinguish the desired emission of sound. Those vibration modes can also locally result in very severe deflections, whereby the diaphragm material can be stretched beyond the linear range so that a non-linear characteristic and thus harmonic distortions of the sound signal occur. Such behaviour can also arise due to other influences. If however the magnet and conductor track geometry extend parallel, as is usual in many configurations, those two influences are added and increase the problem. In that case stronger counteracting measures are required, which can have unwanted side effects. For example an acoustic damping element reduces the vibration mode, but also decreases the sound pressure which can be achieved in a wider frequency range.
U.S. Pat. No. 3,674,946 discloses a planar dynamic sound transducer having a flat perforated multipole magnet. That arrangement avoids the above-described accumulation of influences which occur in parallel as basically the openings which permit the flow of sound and thus the acoustic loads or volumes can be distributed spatially as desired and independently of the drive system, by the perforation holes being appropriately positioned. The one-sided multipole magnetization described in U.S. Pat. No. 3,674,946, for example in FIG. 29, is also known as a Halbach magnet array and is basically advantageous as it produces almost no magnetic stray fields. The magnetic flux however is interrupted by the perforations required for the flow of sound and corresponding stray fields and losses occur. These are correspondingly greater, the larger or more numerous that the perforations are. Smaller or fewer perforations however more greatly impede the flow of sound.
AU 2014 201 937 A1 shows a modular-structure planar dynamic transducer with a plurality of permanent magnet cubes which are arranged in the form of a linear Halbach array and which are held together by a holding means. Insertion of the magnet elements into the holding means is difficult and accordingly costly and also susceptible to error. In addition the resulting magnetic field includes abrupt changes and bent field lines. The same applies to US No 2016/0212546 A1 which also discloses a planar dynamic transducer with a Halbach array consisting of a plurality of individual elements.
In consideration of the above-described limitations and disadvantages in the state of the art an object of the present invention is to provide an improved planar dynamic transducer. In particular the invention aims to resolve the above-mentioned problems by means of an improved magnet arrangement.
According to the invention a planar dynamic transducer includes at least one permanently magnetized magnet plate and at least one diaphragm with a substantially flat coil fixed thereto or thereon. The magnet plate is magnetized in one-sided multipole fashion, a plurality of magnetic poles being disposed on a side towards the diaphragm. The magnet plate includes at least two elongate air gaps which extend substantially parallel and at least one limb respectively remaining between two air gaps (magnet limb). A plurality of magnetic poles, namely at least one North pole and one South pole respectively, are respectively disposed on the magnetized side of the magnet plate at both sides along the air gap or the air gaps. The coil extends transversely relative to the air gaps and the at least one magnet limb, for example in a meander configuration, wherein the conductor tracks of the coil are between the North and South poles of the magnet limb. Then, when there is a flow of current through the coil, forces in the same direction are exerted on the conductor tracks of the coil directly under the magnet limb, and they deflect the coil and thus the diaphragm. For a higher level of efficiency the coil can in known manner comprise a plurality of conductor tracks which are directed in the same direction and which form conductor track bundles. In addition, for a higher level of efficiency, it is possible to increase the number of air gaps and the magnet limbs. In that case a plurality of similar or identical limbs are arranged in mutually juxtaposed and substantially mutually parallel relationship. In that case, between the limbs there remains a gap which here is also referred to as a horizontal air gap. When there are more than two horizontal air gaps, they can be of equal width. The horizontal air gaps however can also be of differing width, for example one air gap can be wider than the others. That has the advantage that the transmissibility for higher frequencies is improved by the wider air gap.
An advantage of the invention is that the forces acting on the diaphragm are at the greatest precisely where the acoustic load is at its greatest, namely directly under the limb of the magnet plate or—in the case of magnet arrangements on both sides of the diaphragm—between the mutually opposite magnet limbs. A further advantage of the invention is that, when using an arrangement of a plurality of magnet limbs, the number thereof and the width of the horizontal air gaps, that is to say the spacings between the magnet limbs, is independent of the number or width of the conductor tracks or the conductor track bundles directed in the same direction, because they extend transversely relative to the magnet limbs. In that way the drive power of the diaphragm is uncoupled from the acoustic load because the two can be adjusted independently of each other. In particular the outlet of sound can be simplified by the increased width of the horizontal air gap. Yet a further advantage of the invention is that the magnet plate can be produced in one piece so that there is no need for elementary magnets to be assembled. In addition the arrangement according to the invention of multipole magnet limbs which are perpendicular to the conductors is optimum in order to utilize as far as possible the concentration of the magnetic flux in the useful range, that occurs in the case of single-sided multipole magnetization.
Further details and embodiments by way of example of the invention are shown in the drawings. The components shown in the drawings are not always shown true to scale in order better to illustrate the details of the invention. In the drawings:
It is to be understood that the figures and descriptions of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the present invention, while eliminating, for purposes of clarity, many other elements which are conventional in this art. Those of ordinary skill in the art will recognize that other elements are desirable for implementing the present invention. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements is not provided herein.
The present invention will now be described in detail on the basis of exemplary embodiments.
In contrast to the conventional magnet bars or rings having respectively precisely one North and one South pole which each extend over an entire outside surface of the magnet, as shown in
The one-sided multipole magnetization as shown in
The use according to the invention of one-sided multipole magnet bars has advantages here, for no bent field lines occur, the magnetic fields are more homogeneous and magnetic stray losses are further reduced.
In contrast to known arrangements the arcuate field lines which indicate the connection of the magnet poles extend uniformly and are nowhere interrupted. In addition, an operative magnetic flux is also present in the horizontal air gap 101 between adjacent limbs, depending on the respective spacing involved.
One effect of the multipole magnetization is concentration of the magnetic flux directly under the magnet bar, both in front of and behind same. The arrangement according to the invention of the magnet bars utilizes that effect as far as possible by virtue of the useful region being arranged there.
In an embodiment the invention concerns a planar dynamic transducer having a magnet arrangement with at least one permanently magnetized magnet plate and a diaphragm with a flat coil fixed thereto, wherein the magnet plate is one-sided multipole magnetized so that there are a plurality of magnetic poles on a side towards the diaphragm. In the case of the magnetic poles North and South poles alternate and the total number of poles per side can be even or odd (at least two). The magnet plate 300 has at least two elongate air gaps 310 extending transversely relative to conductor tracks. For example, in the case of meander-shaped conductor tracks, the air gaps can extend in substantially mutually parallel relationship, as shown in
In an embodiment the magnet arrangement includes at least three air gaps, wherein a plurality of magnetic poles having at least one North and one South pole respectively are disposed on the magnetized side of the magnet plate at both sides along each air gap. In that arrangement the air gaps can be of differing widths or of the same width.
In an embodiment a magnet arrangement of an identical mirror-symmetrical configuration is disposed on the other side of the diaphragm, as shown in
In an embodiment the invention concerns a microphone having a planar dynamic transducer as described above. In another embodiment the invention concerns a headphone, an earphone or a loudspeaker having at least one of the above-described planar dynamic transducers.
An advantage of the invention is that the magnet plates with elongate air gaps produce a homogeneous magnetic field, in contrast to disk-shaped perforated magnets. That provides for more uniform deflection of the diaphragm and thus a better sound. A further advantage of the invention is that, in production or magnetization of the magnet plate, the spacing between magnetic poles on the useful side can be adjusted. It can therefore be adapted to the width of the conductor tracks used and is independent of the width or the horizontal air gaps. In that way at least one air gap can be wider than usual, which provides for improved sound emission, in particular at higher frequencies.
As a further advantage the invention permits decoupling of the drive power and the acoustic load as they extend spatially not in parallel but in mutually perpendicular relationship. The two influences cancel each other out and even at critical frequencies endangered by vibration modes, lead to effective deflection which is more uniform over the entire diaphragm area. Thus the invention improves even and in-phase movement of the diaphragm and reduces unwanted vibration modes and distortion. That results in improved sound quality in operation of the sound transducer as a sound generating device and improved signal quality in operation of the sound transducer as a sound pickup.
It is also advantageous that the maximum of the magnetic field is not as conventionally in the region of the horizontal air gap, equidistant in relation to the four closest magnet bars. Instead the maximum of the magnetic field and thus the greatest deflection force is directly beneath the magnet plate or, in the case of a mirror-symmetrical arrangement, between two mutually opposite magnet plates where acoustic damping is also at its maximum. As a result such damping is reduced most effectively.
The invention can be used generally for planar dynamic transducers, for example in sound transducers, vibration sensors and so forth.
Although the embodiments only mention one-sided magnet arrangements or magnet arrangements which are symmetrical relative to the diaphragm, which have a mirrored second magnet arrangement on the opposite side of the diaphragm, the invention can also be used with magnet arrangements which are asymmetrical relative to the diaphragm and with any desired hybrid forms. For example another magnet arrangement according to the invention or even a conventional magnet arrangement can be disposed on the other side of the diaphragm. The magnet plate can also be in the form of a magnet grid.
When a transducer is referred to in the description this means a sound transducer or vibration sensor. The embodiments by way of example are set forth in relation to a sound transducer functioning as a sound generator (loudspeaker or headphone for electro-acoustic conversion). They also correspondingly apply however in regard to another use of the transducer, for example as a sound receiver (microphone for acoustic-electrical conversion).
While this invention has been described in conjunction with the specific embodiments outlined above, it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art. Accordingly, the preferred embodiments of the invention as set forth above are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the inventions as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2016 118 706 | Oct 2016 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3013905 | Gamzon et al. | Dec 1961 | A |
3674946 | Winey | Jul 1972 | A |
3898598 | Asahi | Aug 1975 | A |
4210786 | Winey | Jul 1980 | A |
4384173 | Briefer | May 1983 | A |
4468530 | Torgeson | Aug 1984 | A |
4471173 | Winey | Sep 1984 | A |
4837838 | Thigpen | Jun 1989 | A |
5003609 | Muraoka | Mar 1991 | A |
5901235 | Thigpen | May 1999 | A |
6934402 | Croft, III | Aug 2005 | B2 |
7929725 | Sugiura | Apr 2011 | B2 |
9736576 | Shinotsuka | Aug 2017 | B2 |
20030068054 | Sotme | Apr 2003 | A1 |
20100214047 | Sakai | Aug 2010 | A1 |
20160173989 | Jacques | Jun 2016 | A1 |
20160212544 | Jacques | Jul 2016 | A1 |
20160212546 | Salvatti | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
2014 201 937 | Oct 2014 | AU |
Number | Date | Country | |
---|---|---|---|
20180098156 A1 | Apr 2018 | US |