Planar ferromagnetic coated surgical tip and method for making

Information

  • Patent Grant
  • 11701160
  • Patent Number
    11,701,160
  • Date Filed
    Tuesday, July 9, 2019
    4 years ago
  • Date Issued
    Tuesday, July 18, 2023
    10 months ago
Abstract
The present invention relates to surgical dissection tips comprising a substrate comprising beryllium copper and a ferromagnetic layer coating at least a portion of the substrate, and methods of making such surgical dissection tips.
Description
BACKGROUND OF THE INVENTION
1. The Field of the Invention

The present invention relates to surgical tools. More specifically, the present invention relates to an improved ferromagnetic surgical tips and method of making such surgical tips.


2. State of the Art

Surgery generally involves cutting or dissection of tissue or other materials. These applications are generally performed by cutting tissue, fusing tissue, or tissue destruction. Current electrosurgery modalities used for cutting, coagulating, desiccating, ablating, or fulgurating tissue, have undesirable side effects and drawbacks. Although recent innovations have provided ferromagnetic coated tungsten cutting instruments, such instruments have some limitations. For example, surgical tips having tungsten wire substrates have limited malleability because the tungsten substrate is very stiff. In addition, tungsten wire can be difficult to plate with other materials, requiring special plating processes and attention to quality control. Differences in the coefficient of thermal expansion between tungsten and ferromagnetic coatings may also cause cumulative stresses over time between the layers when the parts heat up and cool down. Furthermore, the stiffness of tungsten wire limits its malleability when forming customized shapes. Tungsten is also a relatively rare and expensive metal. The high cost, combined with the difficulty and cost associated with bending and plating it, make such tungsten wire heating elements comparatively expensive and difficult to use.


SUMMARY OF THE INVENTION

The present invention relates to improved structures for manufacturing surgical tips. In one aspect, the present invention provides a metal sheet comprising a plurality of surgical dissection tip substrates connected at the base of the surgical dissection tip substrate by a tab, wherein each surgical dissection tip substrate comprises two substantially parallel planar extension strips connected to a tip.


In some embodiments, the surgical dissention tip may be configured in a planar spatula shape having a greater cross sectional area than the thickness of the substrate.


The present invention also provides improved surgical tips having ferromagnetic coatings and methods for manufacturing such surgical tips.


In some embodiments, the present invention provides a surgical dissection tip, comprising a substrate comprising beryllium copper; and a ferromagnetic layer coating at least a portion of the substrate. In other embodiments, the substrate may comprise other alloys of copper, tungsten alloys, cobalt-based alloys, or nickel-based alloys. It is also contemplated that the substrate of the present invention may comprise clad materials, such as copper clad beryllium copper, copper clad stainless steel, copper clad titanium, and copper clad Haynes 25.


In some embodiments, the beryllium copper may comprise greater than 1 percent by weight beryllium. In other embodiments, the beryllium copper comprises greater than 1.5 percent by weight beryllium. In yet other embodiments, the beryllium copper comprises about 2 percent by weight beryllium.


In other embodiments, the substrate comprises beryllium copper laminated to one or more layer of copper. In other embodiments, the substrate comprises beryllium copper laminated between two layers of copper. In these cases, the sandwich can be optimized with a wide variety of materials to achieve the appropriate balance of thermal conductivity, stiffness and electrical conductivity.


In some embodiments, the ferromagnetic coating is a ferromagnetic alloy. In some embodiments, the ferromagnetic coating comprises a material selected from the group consisting of a nickel/iron alloy and a nickel/chromium alloy. In some embodiments, the ferromagnetic coating may comprise a nickel iron alloy having about 50-80% by weight nickel and 50-20% by weight iron.


In another aspect, the present invention provides a surgical dissection tip, comprising: a substrate comprising beryllium copper, wherein the substrate comprises a planar tip having two planar extension strips, wherein the planar tip and the planar extension strips are within the same plane; and a ferromagnetic layer coating at least a portion of the planar tip.


In some embodiments, the two planar extension strips are substantially parallel.


In other embodiments, the planar extension strips have a width in the plane of the extension strips and a thickness in a plane perpendicular to the plane of the extension strips, wherein the width of each extension strip is greater than the thickness of the extension strip.


In another aspect, the present invention provides a method for manufacturing a surgical dissection tip, comprising: forming a substrate comprising beryllium copper, wherein the substrate comprises a planar tip having two planar strips extending from the tip, wherein the tip and the planar extension strips are within the same plane; and coating at least a portion of the tip of the substrate with a ferromagnetic layer.


In some embodiments, the two planar extension strips are substantially parallel.


In some embodiments, the substrate comprising beryllium copper is formed by a process comprising electrodeposition.


In some embodiments, the thickness of the planar sheet is from about 0.3 mm to about 1.5 mm.


In another aspect, the present invention provides a method for manufacturing a surgical dissection tip, comprising: providing a planar sheet of substrate material comprising beryllium copper; removing material from the sheet of substrate to provide a planar tip having two planar strips extending from the tip, wherein the tip and the planar extension strips are within the same plane; and coating at least a portion of the tip of the substrate with a ferromagnetic layer.


In some embodiments, the two planar extension strips are substantially parallel.


In some embodiments, the material from the sheet of substrate is removed by a process comprising etching.


In some embodiments, the material from the sheet of substrate is removed by a process comprising cutting. Alternatively, the material from the sheet of substrate may be removed by such processes as stamping, laser etching, laser cutting, and the like.


In other embodiments, the planar tip has a central region and an edge and the thickness of the central region is greater than the thickness at the edge to provide a sharper edge for cutting.


In yet other embodiments, the thickness of the planar sheet is from about 0.3 mm to about 1.5 mm.


These and other aspects of the present invention are realized in a thermally adjustable surgical tool as shown and described in the following figures and related description.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present invention are shown and described in reference to the numbered drawings wherein:



FIG. 1A shows a flat thermal surgical heating element;



FIG. 1B shows a flat thermal surgical heating element with a wider tip;



FIG. 1C shows a flat thermal surgical heating element having a pointed tip;



FIG. 1D shows a flat thermal surgical heating element having a tip coated with a ferromagnetic material;



FIG. 1E shows a surgical instrument having an exemplary surgical tip;



FIG. 2A shows a perspective view of multiple thermal surgical heating elements that are manufactured from a single sheet of material;



FIG. 2B shows a top view of multiple thermal surgical heating elements that are manufactured from a single sheet of material;



FIG. 3A shows a side view of a bent surgical tip;



FIG. 3B shows a perspective view of a bent surgical tip;



FIG. 4A shows shears, with a detail view of the shears tip;



FIG. 4B shows a perspective view of a shears heating element;



FIG. 4C shows a side view of a shears heating element;



FIG. 5A shows forceps, with a detail view of the forceps blade; and



FIG. 5B shoes a forceps heating element.





It will be appreciated that the drawings are illustrative and not limiting of the scope of the invention which is defined by the appended claims. The embodiments shown accomplish various aspects and objects of the invention. It is appreciated that it is not possible to clearly show each element and aspect of the invention in a single figure, and as such, multiple figures are presented to separately illustrate the various details of the invention in greater clarity.


Similarly, not every embodiment need accomplish all advantages of the present invention.


DETAILED DESCRIPTION

The invention and accompanying drawings will now be discussed in reference to the numerals provided therein so as to enable one skilled in the art to practice the present invention. The drawings and descriptions are exemplary of various aspects of the invention and are not intended to narrow the scope of the appended claims.


As used herein, the term “ferromagnetic,” “ferromagnet,” and “ferromagnetism” refers to any ferromagnetic-like material that is capable of producing heat via magnetic induction, including but not limited to ferromagnets and ferrimagnets.



FIGS. 1A, 1B, 1C and 1C, show perspective views of several embodiments of the surgical tip of the present invention. FIGS. 1A, 1B, 1C each show a surgical tip substrate 10 comprising a planar tip 11 having two substantially parallel planar strips 12 and 13 extending from the tip 11, wherein the tip 11 and the planar extension strips 12 and 13 are within the same plane. FIGS. 1A, 1B and 1C further show the shape of a spatula area wherein the width of the spatula is greater than the thickness of the substrate. FIG. 1D shows a surgical tip substrate 10 having a coating 14 on at least a portion of the tip 11 of the substrate, wherein the coating comprises a ferromagnetic layer. FIG. 1E shows a surgical tool 19 having exemplary surgical tip 10.


Turning to FIGS. 2A and 2B, there is shown a series of surgical tip substrates 10a, 10b and 10c, manufactured together as a single unit and connected via a tab 21 from which each of the individual surgical tip substrates 10a, 10b, and 10c extend. The surgical tip substrates 10a,10b, and 10c are eventually separated from the tab 21 to form individual surgical tips that will be installed in a thermal surgical tool.



FIGS. 3A and 3B illustrate an embodiment in which the flat surgical tip substrate is bent, so as to provide a surgical tip configuration that can be used to dissect tissue in locations or at angles that may be too difficult for a straight surgical tip.


As shown in FIGS. 3A and 3B, one particular embodiment of the invention is shown, wherein a surgical tip substrate 30 has surgical tip 31 with planar extensions 32 and 33, each of which have a bend 35. The bend 35 can be made either as part of the manufacturing process (after the flat surgical tip structure has been created) or by the end user. The location of the bend is selected at a location along the extensions that facilitates a bent tip size suitable for the particular surgical technique being employed by the surgeon.



FIGS. 4A, 4B and 4C provide various views of a set of surgical shears (FIG. 4A) and the heating elements (FIGS. 4B and 4C) used in such shears. The surgical shears shown in FIG. 4A include surgical tip substrate 40 on at least one of the opposing blades 49a and 49b.


As shown in more detail in FIGS. 4B and 4C, in one particular embodiment of the invention the surgical tip substrate 40 used in such surgical shears comprises extensions 42 and 43 extending from the proximal end where bends 45a and 45b are located. In this particular example, the surgical tip may be manufactured by creating a long planar strip. The location of the bends 45a and 45b may be pre-determined by manufacturing the strip with score marks, peforations, thinner material, stamped depressions, or the like, at the location of the bends, so as to facilitate customized bending the substrate by the end user surgeon. The long planar strip is then bent at the location of the score marks or, in the absence of score marks, at any location where a bend is desired. The surgical tip is coated with a ferromagnetic material, either prior to the bending step or following the bending step. Coating the surgical tip with a ferromagnetic material following the bending step would, of course, have the advantage of avoid possible stress fractures in the ferromagnetic material during the bending process.


As further shown in FIGS. 4A, 4B and 4C, the surgical tip may further include a raised portion 44 so as to create an area of greater pressure at the apex of the raised portion 44 when the shears are clamped down on tissue, thereby cutting the tissue. The raised portion 44 can be created either by depositing additional beryllium copper material or other metal alloy material to the planar substrate, or by depositing a larger quantity of ferromagnetic material on the flat beryllium copper substrate, or other metal alloy substrate, when the ferromagnetic coating is applied.



FIGS. 5A and 5B illustrate another embodiment of the invention, wherein the surgical tip 50 is applied to forceps comprising forcep tips 59a and 59b. The surgical tip 50 may be used on one or both sides of the forcep ends 59a and 59b. The construction of the surgical tip 50. In this particular example, the surgical tip may be manufactured by creating a long planar strip have two extensions 52 and 53 that extend from the top portion 51. The location of the bends 55a and 55b may be pre-determined by manufacturing the strip with score marks at the location of the bends. The long planar strip is then bent at the location of the score marks or, in the absence of score marks, at any location where a bend is desired so as to conform to the shape of the forcep tip. The surgical tip is coated with a ferromagnetic material, either prior to the bending step or following the bending step. Coating the surgical tip with a ferromagnetic material following the bending step would, of course, have the advantage of avoid possible stress fractures in the ferromagnetic material during the bending process.


As will be discussed in additional detail below, the surgical tip preferably uses a ferromagnetic coated conductor to treat or destroy tissue (i.e. endothelial tissue welding, homeostasis, ablation, etc). It will be appreciated that the surgical tip may use heat to incise tissue and not cut tissue in the sense of a sharp edge being drawn across the tissue as with a conventional scalpel. While the embodiments of the present invention could be made with a relatively sharp edge so as to form a cutting blade, such is not necessary as the heated coating discussed herein will separate tissue without the need for a cutting blade or sharp edge. However, for convenience, the term cutting is used when discussing separating or dissecting tissue.


In the various embodiments of the surgical tips described herein, a control mechanism, such as a foot pedal may be used to control output energy produced by a power subsystem. The energy from the power subsystem may be sent via radio frequency (RF) or oscillating electrical energy along a cable to a handheld surgical tool, which contains substrate 10 having at least a section thereof circumferentially coated with a ferromagnetic coating 14. The ferromagnetic coating 14 may convert the electrical energy into available thermal energy via induction and corresponding hysteresis losses in the ferromagnetic material disposed around the conductor substrate 10.


Application of a magnetic field (or magnetizing) to the ferromagnetic coating may produce an open loop B-H curve (also known as an open hysteresis loop), resulting in hysteresis losses and the resultant thermal energy. Electrodeposited films, such as a nickel-iron coating like PERMALLOY™, may form an array of randomly aligned microcrystals, resulting in randomly aligned domains, which together may have an open loop hysteresis curve when a high frequency current is passed through the conductor. The alternating RF current in the conductor's surface produces an alternating magnetic field, which may excite the domains in the ferromagnetic coating 14. As the domains realign with each oscillation of the current, hysteresis losses in the coating may cause inductive heating. Thus, heating occurs due to a combination of hysteresis losses and resistive heating due to the skin effect.


The RF energy may travel along the conductor's surface in a manner known as the “skin effect”. The current is forced through the narrow cross-sectional area of the ferromagnetic plating resulting in a high current density and therefore joule heating.


The RF conductor from the signal source up to and including the tip, may form a resonant circuit at a specific frequency (also known as a tuned circuit). Changes in the tip “detune” the circuit. Thus, should the ferromagnetic coating 14 or the conductor substrate 10 become damaged, the circuit may likely become detuned. This detuning may reduce the efficiency of the heating of the ferromagnetic coating 14 such that the temperature will be substantially reduced. The reduced temperature may ensure little or no tissue damage after breakage.


It should be understood that the handheld surgical tool may include indicia of the power being applied and may even include a mechanism for controlling the power. Thus, for example, a series of lights could be used to indicate power level, or the handheld surgical tool could include a switch, rotary dial, set of buttons, touchpad or slide that communicates with the power source to regulate power and thereby affect the temperature at the ferromagnetic coating 14 to having varying effects on tissue. Examples of such surgical tools are shown in U.S. Pat. No. 8,425,503. While the controls may be present on the foot pedal or the handheld surgical tool, they may also be included in the power subsystem or even a separate control instrument. Safety features such as a button or touchpad that must be contacted to power the handheld surgical tool may be employed, and may include a dead man's switch.


While the ferromagnetic coating 14 heats through the mechanisms of skin effect and joule heating, it also provides a temperature cap due to its Curie temperature, which causes the temperature of the ferromagnetic material to stabilize around the Curie temperature if sufficient power is provided to reach the Curie temperature. Once the temperature has dropped below the Curie temperature, the material again heats up to the Curie temperature. Thus, the temperature in the ferromagnetic coating may reach the Curie temperature with the application of sufficient power, but will not likely exceed the Curie temperature.


The surgical tip 10 allows the power output to be adjustable in order to adjust the temperature of the tool and its effect on tissue. This adjustability gives the surgeon precise control over the effects that may be achieved by the handheld surgical tool. Tissue effects such as cutting, hemostasis, tissue welding, tissue vaporization and tissue carbonization occur at different temperatures. By using a foot pedal (or some other user control) to adjust the power output, the surgeon (or other physician, etc.) can adjust the power delivered to the ferromagnetic coating 14 and consequently control the tissue effects to achieve a desired result.


Thermal power delivery can be controlled by varying the amplitude, frequency or duty cycle of the alternating current waveform, or alteration of the circuit to effect the standing wave driving the ferromagnetic coated conductor, which may be achieved by input received by the foot pedal, the power subsystem, or the controls on the handheld surgical tool.


One additional advantage achieved by the use of a ferromagnetic material is that the ferromagnetic material can be heated to a cutting temperature in a brief interval of time (typically as short one quarter of a second). Additionally, because of the relatively low mass of the coating, the small thermal mass of the conductor, and the localization of the heating to a small region due to construction of the handheld surgical tool, the material will also cool extremely rapidly. This provides a surgeon with a precise thermal tool while reducing accidental tissue damage caused by touching tissue when the thermal tool is not activated.


It will be appreciated that the time period required to heat and cool the handheld surgical tool will depend, in part, on the relative dimensions of the conductor substrate 10 and the ferromagnetic coating 14 and the heat capacity of the structure of the surgical tool, as well as its heat capacity and thermal conductivity. For example, the desired time periods for heating and cooling of the handheld surgical tool can be minimized with a beryllium copper conductor substrate having a thickness of from about 0.2 to about 0.5 mm, e.g. about 0.375 mm, and a ferromagnetic coating of a Nickel Iron alloy (such as NIRON™ available from Enthone, Inc. of West Haven, Conn.) about the conductor substrate. In some embodiments, the thickness of the ferromagnetic coating may be between about 0.05 pm and about 500 pm. In some embodiments, the thickness of the ferromagnetic coating may be between about 1 pm and about 50 pm. Different lengths of the conductor substrate may be coated depending on desired use, such as two centimeter long coating when used as a cutting tool.


One advantage of the present invention is that a sharp edge is not needed. When power is not being supplied to the surgical tool, the tool will not inadvertently cut tissue of the patient or of the surgeon if it is dropped or mishandled. If power is not being supplied to the conductor substrate 10 and coating 14, the “cutting” portion of the tool may be touched without risk of injury. This is in sharp contrast to a cutting blade which may injure the patient or the surgeon if mishandled.


Other additions may also be placed on the handpiece in various locations. This may include a sensor to report temperature or a light to illuminate the surgical area.


This surgical tips described herein may provide advantages over monopolar and bipolar electrical systems currently available because the thermal damage may remain very close to the ferromagnetic surface of the coated region, whereas monopolar and bipolar electrical tissue ablation may frequently cause tissue damage for a distance away from the point of contact. This method may also overcome disadvantages of other thermal devices based upon resistive heating, which may require more time to heat and cool, and thus present greater patient risk.


Furthermore, the thin ferromagnetic coating 14, disposed along a small segment of the conductor, may reduce the heating of other non-target material in the body, such as blood when working within the heart in atrial ablation—which can lead to complications if a clot is formed. The small thermal mass of the conductor substrate 10, and localization of the heating to a small region provided by the construction of the tool (i.e. ferromagnetic coating 14 and adjacent structures) provides a reduced thermal path for heat transfer in directions away from the location of the ferromagnetic coating 14. This reduced thermal path may result in the precise application of heat at only the point desired. As this technology alone does not employ a spark or an arc like monopolar or bipolar technology, risks of ignition, such as by anesthetic gasses within or around the patient by sparks, are also reduced.


The thermal surgical tip 10 may be used for a variety of therapeutic means—including sealing, “cutting” or separating tissue, coagulation, or vaporization of tissue. In one configuration, the thermal surgical tip 10 may be used like a knife or sealer, wherein the surgeon is actively “cutting” or sealing tissue by movement of the ferromagnetic coating 14 through tissue. The thermal action of the embodiments disclosed here may have distinct advantages including substantial reduction, if not elimination, of deep tissue effects compared with those associated with monopolar and bipolar RF energy devices.


In another configuration, the ferromagnetic coated substrate 10 may be inserted into a lesion and set to a specific power delivery or variable power delivery based on monitored temperature. The thermal effects on the lesion and surrounding tissue may be monitored until the desired thermal effect is achieved or undesired effects are noticed. One advantage of the application of the ferromagnetic coated conductor is that it may be cost-effective compared to microwave or thermal laser modalities and avoids the undesired tissue effects of microwave lesion destruction. Thus, for example, a surgeon can insert the ferromagnetic coated conductor into a tumor or other tissue to be destroyed and precisely control the tissue damage that is created by activating the handheld surgical tool.


Dynamic load issues can be caused by the interaction of the ferromagnetic coated substrate 10 with various tissues. These issues may be minimized by the standing current wave being maximized at the load location. Multiple different frequencies can be used, including frequencies from 4 megahertz to 24 gigahertz, or between 12 MHz and 200 MHz. In some regulated countries it may be preferable choose frequencies in the ISM bands such as bands with the center frequencies of 6.78 MHz, 13.56 MHz, 27.12 MHz, 40.68 MHz, 433.92 MHz, 915 MHz, 2.45 GHz, 5.80 GHz, 24.125 GHz, 61.25 GHz, 122.5 GHz, 245 GHz. In one embodiment, the oscillator uses an ISM Band frequency of 40.68 MHz, a class E amplifier, and a length of coaxial cable, all of which may be optimized for power delivery to a ferromagnetic coated substrate 10 with a ferromagnetic coating 14 consisting of a thickness of between 0.05 micrometer and 500 micrometers, and preferably between 1 micrometer and 50 micrometers, with the optimal plating thickness being five skin depths at the excitation frequency. A useful estimate may be to start the ferromagnetic coating thickness at 10% of the conductor diameter or thickness, and up to 5 mm long. However, the ferromagnetic coating may be disposed as far along the length or along multiple regions of the conductor as where heating may be desired. (The ferromagnetic coating 14 may be formed from a Nickel Iron (NiFe) alloy, such as NIRON™ from Enthone, Inc. of West Haven, Conn., or other ferromagnetic coatings, including Co, Fe, FeOFe2O3, NiOFe2O3, CuOFe2O3, MgOFe2O3, MnBi, Ni, MnSb, MnOFe2O3, Y3Fe5O12, CrO2, MnAs, EuO, magnetite, yttrium iron garnet, and PERMALLOY™.) The size of the conductor, size of the ferromagnetic coating, associated thicknesses, shape, primary geometry, composition, power supply and other attributes may be selected based on the type of procedure and surgeon preferences. For example, a brain surgeon may desire a small instrument in light handheld package designed for quick application within the brain, while an orthopedic surgeon may require a larger device with more available power for operation on muscle.


Copper Beryllium Alloys


The conductor substrate 10 may be formed from any one of various copper beryllium alloys, or combinations of copper beryllium alloy with additional layers of copper. Copper beryllium alloys generally fall into two categories: alloys having high strength, and alloys having high conductivity. In some embodiments of the present invention, the copper beryllium alloys are selected from the group of alloys having high strength, such as Alloys 25, 190, 290, M25 and 165. Such alloys generally comprise a beryllium content ranging from about 1.5 to about 2.0 percent by weight, with the balance comprising copper. For example. Alloys 25, 190 and 290 (designated as Copper Alloy UNS No. C17200) comprise beryllium ranging from 1.8 to 2.0% by weight, a minimum of 0.2 percent by weight cobalt+nickel, a maximum of 0.6 percent cobalt+nickel+iron and a maximum of 0.02 percent lead. Suitable beryllium copper alloys may be obtained from numerous commercially available sources, such as Materion Corporation (Elmore Ohio).


In one aspect of the present invention, the beryllium copper alloy contemplated is Alloy 25, which attains a high strength and hardness, with a tensile strength exceeding 200 ksi, and a hardness approaching Rockwell C45. Alloy 25 also exhibits exceptional resistance to stress relaxation at elevated temperatures, making it particularly useful in thermal surgical applications.


In other embodiments, the substrate may comprise other alloys of copper, such as brass or phosphor bronze.


In other embodiments, the substrate may comprise titanium. In other embodiments, the substrate may comprise tungsten alloys, such as Tungsten molybdenum or tungsten rhenium. In yet other embodiments, the substrate may comprise such as cobalt-based alloys, for example, Haynes 25/L605 or Haynes 188. In yet other embodiments, the substrate may comprise nickel-based alloys, such as Inconel, Hastelloy, Nimonic, or Rene41. It is also contemplated that the substrate of the present invention may comprise clad materials, such as copper clad berrylium copper, copper clad stainless steel, copper clad titanium, and copper clad Haynes 25.


Alternative Substrate Configurations


In addition, the conductor substrate 10 may also comprise a multi-layered laminate comprising beryllium copper or other metal or metal alloy laminated with one or more layers of copper. In some embodiments, the present invention contemplates a conductor substrate comprising a core layer of beryllium copper laminated between two layers of copper.


In other embodiments, the present invention contemplates a conductor substrate 10 comprising a layer of stainless steel or Haynes 25 laminated with one or more layers of copper. In some embodiments, the present invention contemplates a conductor substrate comprising a core layer of stainless steel or Haynes 25 laminated between two layers of copper.


Geometry of Surgical Tips


In one aspect, the present invention provides improved surgical tip geometries that provide improved tissue compression area and hence improved hemostatis. In some aspects, the present invention provides a surgical tip having a planar spatula shape, for example, having a greater cross sectional area than the thickness of the substrate.


It should be appreciated that while the figures show a surgical tip having a simple rounded shape (FIG. 1A), wide rounded shape (FIG. 1B) and pointed shape (FIG. 1C), the conductor tip may have any other geometry suitable for its intended purpose. For instance, the conductor may also be shaped such that it has an oval, triangular, square or rectangular cross-section. Various tip configurations are shown, for example, in FIGS. 1 A, 1B and 1C.


The ferromagnetic coating may be between a first section (or proximal portion) and a second section (or distal portion) of the conductor. This may provide the advantage of limiting the active heating to a small area, instead of the entire conductor. A power supply may also connect to the first and second section to include the ferromagnetic coating within a circuit providing power.


In addition, the present invention also contemplates geometries that may be used in a shearing tool, such as scissors, a sealing/cutting clamp, and the like.


Manufacturing Methods


In accordance with the present invention, a flat surgical tip tool heating element of any shape desired can be manufactured by any one of various suitable methods, including chemical etching, stamping, machining, or by electro-deposition from a metal sheet. This provides flexibility to optimize the tool geometry to provide a broader hemostatic surface(s). While beryllium copper (BeCu) is the preferred material, given its ease of plating, electrical and thermal properties, good formability, and low cost, other materials may also be used, including beryllium copper laminates with copper. Tungsten is an alternative material if significantly greater stiffness is required.


Multiple heating elements can be etched from single sheet. They can be arranged to maximize part density. Multiple units can be manufactured from a single sheet of material to improve plating productivity, as shown in FIGS. 2A and 2B. All of these factors reduce cost. Cleaning and plating these heating elements is also much easier with a BeCu substrate. Once plated, the parts may be coated either with TiAlN for the dissection tools or with a non-stick coating like PTFE, for the cutting and sealing heating elements.


Sheet stock for BeCu is readily available in many thicknesses, including a standard 0.5 mm (0.020 in). The desired element shape is created by commercially available processes like photo etching, stamping and EDM. This allows manufacture of heating elements for dissection or vessel sealing of any shape desired. A typical new dissection tip shape, with a hemostatic pad is shown, for example, in FIGS. 1A, 1B and 1C.


BeCu and many other substrate sheet stock materials are ductile. Consequently the tips made from it, are bendable, particularly between the plated area and the end of the tip extension, as shown in FIGS. 3A and 3B.


The thermal expansion coefficient of BeCu is 16.7 μm/m/° C. Similarly, Niron has a thermal expansion coefficient of 13.3 μm/m/° C. These values are similar and will result in less stress between the layers when the parts heat up and cool down. This will reduce the risk of the plating material flaking off of the BeCu substrate.


BeCu has an electrical resistivity of 6.8 μΩ-cm versus 5.6 for tungsten. This is a slight increase and has an insignificant impact on the joule heating of the non-plated sections compared to tips of similar geometry made of tungsten.


Sheet material of BeCu is easily plated, requiring less cleaning and preparation and plate more reliably than other materials, such as tungsten wire. In addition, etched parts are easily organized into multi element combs which can be plated as a single entity, as shown in FIGS. 2A and 2B. This may improve the consistency of plating depth and reduce the time and labor involved in the plating process.


Etching the parts may also provide a sharper leading edge compared to a round wire, where, for example, the edge is only partially or gradually etched away. This may reduce drag when the tool is pulled through tissue. Additional surface contact area may also play a part.


The cost of etching parts from BeCu is significantly less than the cost of bending tungsten wire and virtually eliminates the potential for the material to break due to bending. This combined with the simplicity of plating, make these heating elements less expensive than plated tungsten wire.


In some embodiments, suitable for sealing and dividing tissue, the shape of a heating element is a broad 1-2 mm wide part with a formed convex surface. This is easily accomplished by etching and then forming the parts.


Stiffness is advantageous when the user wants to use the heating element's structure to pry or blunt dissect tissue. BeCu has a modulus of elasticity of 130 GPa versus 400 GPa for tungsten. As deflection of a beam is inversely proportion to the modulus of elasticity, a piece formed from BeCu would be expected to be ⅓ as stiff as Tungsten at the same dimensions. This can be overcome somewhat by thickening the material, increasing the leg width, shortening the legs, or using carefully designed cross-sectional geometries.


The higher the material's thermal conductivity, the faster it will drain off heat when it is deactivated. In practice moderately good conduction is desirable, as cooling by convection into the air is fairly slow process. The thermal conductivity of BeCu is 120 W/m K which is 31% less than tungsten at 174 W/mK. This difference may slow the conduction of heat out of the heating element assuming the same cross sectional dimensions as a 0.5 mm wire. Since heat flow is proportional to the cross-sectional area and the thermal conductivity, simply increasing the cross-sectional area to compensate for the loss in conductivity would alleviate this concern. Since it is advantageous to go well beyond the cross sectional area of the tungsten wire for structural reasons, thermal conductivity may not be an issue. An alternative substrate material is titanium, which has a lower thermal conductivity at 121 W/mK but has good stiffness. A coating layer of copper, which has a thermal conductivity of 400 W/m K, could be used to improve the thermal bleed off back into the tool's structure.


The higher the heat capacity by volume of the heating element, the more heat needs to be drained from the part. Tungsten has a volumetric heat capacity of 2.5×103 KJ/M3 K. Titanium has a similar volumetric heat capacity of 2.4×103 KJ/m3 K. BeCu has a volumetric heat capacity of 3.47×103 KJ/m3 K. This is 39% greater than tungsten and the part will store more heat energy and cool off slower unless a better conduction path is provided. Combined with the lower thermal conductivity of the material we would need legs with 1.8× the cross sectional area for the BeCu substrate than the 0.5 mm diameter tungsten wire to attain the same thermal drainage rate and cool down time.


Suitable photo chemical etching or photo chemical milling processes are well known in the industry. Such processes are similar to printed circuit board fabrication processes. Examples of suitable process include processes utilized by such companies as Tech-Etch, FotoFab, United Western Enterprises, Kem-Mil-Co, and Elcon Precision.


Generally, such processes include the step of creating a design for the etched part, which is sent to an etching supplier in the form of a 2D line drawing computer file. The file shows the outline of the part, any holes, and bend or score lines, if any. The sheet material to be used is also specified, including thickness, temper or heat treatments, and any special instructions. The company creates a photo stencil or photo tool from the computer file. There are usually two stencils—a front and a back. The metal sheet that will make the finished parts is cleaned and a photoresistive layer is laminated to both front and back surfaces of the metal sheet. This photoresist is sensitive to light. The stencils are placed on the front and back of the metal sheet over the photoresist. A light is shined through the stencils on to the photoresist. The photoresist hardens into an acid resistant film where the light strikes the photoresist. The unexposed photoresist areas are washed away. The metal sheet with the photoresist laminates on both sides is sprayed or immersed in an acid bath that eats away any of the bare metal areas, leaving metal intact where the photoresist was applied. The remaining photoresist is cleaned from the etched sheet. The finished parts are broken out of the surrounding frame, and bent or formed into a final shape if that was specified for the particular part.


The etched parts are cleaned and then plated with a ferromagnetic alloy where heat is to be generated. This plated component is then over coated with a protective layer such as TiAlN, TiN, gold plating, PTFE or other materials, provided by outside processors. The plated product is then assembled into a finished dissection tip or a shear tool.


In some embodiments, the etching process produces a semi-circular cavity on the upper and lower sides of the substrate that connect to form a sharpened edge in the middle, similar to the shape of a curved bracket “}”.


There is thus disclosed an improved thermally adjustable surgical tool. It will be appreciated that numerous changes may be made to the present invention without departing from the scope of the claims.

Claims
  • 1. A method of manufacturing a surgical tip, the method comprising: removing a portion of a sheet of substrate material to form a planar strip having a first extension, a second extension, and a proximal end between the first extension and the second extension along a length of the planar strip, the planar strip extends from the first extension to the proximal end such that: 1) a distal portion of a planar substrate of the first extension is elongate along a first direction, and 2) the planar substrate is normal to a second direction, which is perpendicular to the first direction;forming a raised portion that extends out from a proximal portion of the planar substrate in the second direction, wherein the proximal portion is curved and coplanar with the distal portion;plating the first extension such that the raised portion is coated with a ferromagnetic layer; andbending the planar strip such that the proximal end is out of plane with respect to the distal portion and the proximal portion of the planar substrate.
  • 2. The method of claim 1 wherein the bending of the planar strip takes place where the first extension meets the proximal end.
  • 3. The method of claim 2, further comprising: bending the planar strip a second time such that a planar substrate of the second extension is parallel to the planar substrate of the first extension, wherein bending the planar strip the second time delineates the proximal end between the first extension and the second extension, and the proximal end is perpendicular to the planar substrate of the first extension.
  • 4. The method of claim 3 wherein, subsequent to plating the first extension, sections of the first extension and the second extension remain non-plated and devoid of a ferromagnetic layer.
  • 5. The method of claim 1 wherein the bending of the planar strip is performed subsequent the plating.
  • 6. The method of claim 1, further comprising: subsequent to plating the first extension, coating the raised portion with a non-stick material.
  • 7. The method of claim 1 wherein removing the portion of the sheet of substrate forms a plurality of planar strips.
  • 8. The method of claim 7, further comprising: forming a plurality of raised portions in the plurality of planar strips, such that a respective one of the plurality of raised portions extends out from a respective planar substrate of each of the plurality of planar strips.
  • 9. The method of claim 8, further comprising: plating the raised portion of each of the plurality of planar strips with a respective ferromagnetic coating.
  • 10. The method of claim 9, further comprising: subsequent to plating the raised portion of each of the plurality of planar strips, coating the raised portion of each of the plurality of planar strips with a non-stick material.
  • 11. A surgical tip comprising: a strip of material having a proximal end and a first extension and a second extension that each extend from the proximal end, the strip of material including:a planar substrate of the first extension that extends to the proximal end through a distal portion of the first extension that is straight, and that further extends through a proximal portion of the first extension that curves away from the first distal portion and toward the proximal end;a first bend at a location, that joins the first extension and the proximal end;a second bend at a location spaced apart from the first bend, and that joins the second extension to the proximal end; anda raised portion that extends out from the planar substrate in a first direction normal to the planar substrate, the raised portion extending from the proximal portion such that the raised portion follows the curved proximal portion,wherein the raised portion is plated with a ferromagnetic layer, the distal portion and the proximal portion are coplanar, and the proximal end is out of plane with respect to both the distal portion and the proximal portion.
  • 12. The surgical tip of claim 11 wherein the raised portion terminates at the first bend.
  • 13. The surgical tip of claim 11 wherein the second extension includes a planar substrate parallel to the planar substrate of the first extension, and the proximal end is perpendicular to both the planar substrate of the first extension and the planar substrate of the second extension.
  • 14. The surgical tip of claim 11 wherein the raised portion that is plated with the ferromagnetic layer is further coated with a non-stick material.
  • 15. The surgical tip of claim 11 wherein neither the first extension nor the second extension is entirely plated with a ferromagnetic layer.
US Referenced Citations (439)
Number Name Date Kind
300155 Starr Jun 1884 A
770368 Heath Sep 1904 A
1104053 Lea Jul 1914 A
1280052 Lidberg Sep 1918 A
1335987 Reid Apr 1920 A
1366231 Winter et al. Jan 1921 A
1401104 Kruesheld Dec 1921 A
1794296 Hyams Feb 1931 A
2027854 Breth et al. Jan 1936 A
2050904 Trice Aug 1936 A
2120598 Beuoy Jun 1938 A
2250602 Pierce Jul 1941 A
2278633 Bagnall Apr 1942 A
2375154 Voterra May 1945 A
2412977 Eskin Dec 1946 A
2501499 Crowley Mar 1950 A
2670425 Stone Dec 1954 A
2735797 Schjeldahl Feb 1956 A
2782290 Lannan et al. Feb 1957 A
2831242 Kieffer et al. Apr 1958 A
2846560 Jacoby et al. Aug 1958 A
2863036 Mitchell et al. Dec 1958 A
2947345 Schjeldahl Aug 1960 A
2960592 Pierce Nov 1960 A
3084242 Vogler et al. Apr 1963 A
3213259 Bennet et al. Oct 1965 A
3350544 Lennox Oct 1967 A
3352011 Alexander et al. Nov 1967 A
3400252 Hayakawa Sep 1968 A
3404202 Carlson et al. Oct 1968 A
3413442 Buiting et al. Nov 1968 A
3414705 Marcoux Dec 1968 A
3434476 Shaw et al. Mar 1969 A
3501619 Buiting et al. Mar 1970 A
3515837 Ando Jun 1970 A
3520043 Darling Jul 1970 A
3556953 Schulz Jan 1971 A
3768482 Shaw Oct 1973 A
3825004 Durden, III Jul 1974 A
3826263 Cage et al. Jul 1974 A
3834392 Lampman et al. Sep 1974 A
3978312 Barton et al. Aug 1976 A
RE29088 Shaw Dec 1976 E
4089336 Cage et al. May 1978 A
4091813 Shaw et al. May 1978 A
RE30190 Shaw Jan 1980 E
4185632 Shaw Jan 1980 A
4196734 Harris Apr 1980 A
4198957 Cage et al. Apr 1980 A
4206759 Shaw Jun 1980 A
4207896 Shaw Jun 1980 A
4209017 Shaw Jun 1980 A
4256945 Carter et al. Mar 1981 A
4359052 Staub Nov 1982 A
4364390 Shaw Dec 1982 A
4371861 Abdelrahman et al. Feb 1983 A
4374517 Hagiwara Feb 1983 A
RE31723 Shaw Nov 1984 E
4481057 Beard Nov 1984 A
4485810 Beard Dec 1984 A
4493320 Treat Jan 1985 A
4523084 Tamura et al. Jun 1985 A
4549073 Tamura et al. Oct 1985 A
4492231 Auth Dec 1985 A
4600018 James et al. Jul 1986 A
4622966 Beard Nov 1986 A
4658819 Harris et al. Apr 1987 A
4658820 Klicek Apr 1987 A
4701587 Carter et al. Oct 1987 A
4752673 Krumme Jun 1988 A
4807620 Strul Feb 1989 A
4839501 Cowell Jun 1989 A
4848337 Shaw et al. Jul 1989 A
4860745 Farin et al. Aug 1989 A
4877944 Cowell et al. Oct 1989 A
4914267 Derbyshire Apr 1990 A
4915100 Green Apr 1990 A
4927413 Hess May 1990 A
4938761 Ensslin Jul 1990 A
5003991 Takayama et al. Apr 1991 A
5047025 Taylor et al. Sep 1991 A
5053595 Derbyshire Oct 1991 A
5057106 Kasevich et al. Oct 1991 A
5071419 Rydell et al. Dec 1991 A
5087256 Taylor et al. Feb 1992 A
5087804 McGaffigan Feb 1992 A
5098429 Sterzer Mar 1992 A
5107095 Derbyshire Apr 1992 A
5125927 Belanger Jun 1992 A
5182427 McGaffigan Jan 1993 A
5189271 Derbyshire Feb 1993 A
5197649 Bessler et al. Mar 1993 A
5203782 Gudov et al. Apr 1993 A
5209725 Roth May 1993 A
5211646 Alperovich et al. May 1993 A
5217460 Knoepfler Sep 1993 A
5300068 Rosar et al. Apr 1994 A
5300750 Carter, Jr. et al. Apr 1994 A
5308311 Eggers et al. May 1994 A
5318564 Eggers Jun 1994 A
5364392 Warner et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5370675 Edwards et al. Dec 1994 A
5376094 Kline Dec 1994 A
5382247 Cimino et al. Jan 1995 A
5400267 Denen et al. Mar 1995 A
5411508 Bessler et al. May 1995 A
5423808 Edwards et al. Jun 1995 A
5425731 Daniel et al. Jun 1995 A
5445635 Denen et al. Aug 1995 A
5472443 Cordis et al. Dec 1995 A
5475203 McGaffigan Dec 1995 A
5480397 Eggers Jan 1996 A
5480398 Eggers Jan 1996 A
5496312 Klicek Mar 1996 A
5496314 Eggers Mar 1996 A
5507743 Edwards et al. Apr 1996 A
5540679 Fram et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5571153 Wallsten Nov 1996 A
5573533 Strul Nov 1996 A
5593406 Eggers et al. Jan 1997 A
5595565 Treat et al. Jan 1997 A
5611798 Eggers Mar 1997 A
5628771 Mizukawa et al. May 1997 A
5674219 Monson et al. Oct 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5707402 Heim Jan 1998 A
5807392 Eggers Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5827269 Saadat Oct 1998 A
5836874 Swanson et al. Nov 1998 A
5836943 Miller, III Nov 1998 A
5843019 Eggers et al. Dec 1998 A
5855061 Malis et al. Jan 1999 A
5911719 Eggers Jun 1999 A
5951546 Lorentzen Sep 1999 A
5964759 Yamanashi et al. Oct 1999 A
6004316 Laufer Dec 1999 A
6006755 Edwards Dec 1999 A
6015415 Avellanet Jan 2000 A
6030381 Jones et al. Feb 2000 A
6035238 Ingle et al. Mar 2000 A
6038017 Pinsukanjana et al. Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6066138 Sheffer et al. May 2000 A
6161048 Sluijter et al. Dec 2000 A
6190382 Ormsby et al. Feb 2001 B1
6210403 Klicek Apr 2001 B1
6228084 Kirwan, Jr. May 2001 B1
6241723 Heim et al. Jun 2001 B1
6287305 Heim et al. Sep 2001 B1
6290697 Tu et al. Sep 2001 B1
6350262 Ashley Feb 2002 B1
6358273 Strul et al. Mar 2002 B1
6454781 Witt et al. Sep 2002 B1
6533781 Heim et al. Mar 2003 B2
6602252 Mollenauer Aug 2003 B2
6604003 Fredricks et al. Aug 2003 B2
6626901 Treat et al. Sep 2003 B1
6632182 Treat Oct 2003 B1
6692489 Heim et al. Feb 2004 B1
6723094 DeSinger Apr 2004 B1
6726683 Shaw Apr 2004 B1
6821273 Mollenauer Nov 2004 B2
6860880 Treat et al. Mar 2005 B2
6908463 Treat et al. Jun 2005 B2
6911026 Hall et al. Jun 2005 B1
6912911 Oh et al. Jul 2005 B2
6980862 Fredricks et al. Dec 2005 B2
6980865 Wang et al. Dec 2005 B1
7011656 McGaffigan Mar 2006 B2
7025065 McGaffigan et al. Apr 2006 B2
7083613 Treat Aug 2006 B2
7112201 Truckai et al. Sep 2006 B2
7122030 Flores et al. Oct 2006 B2
7164968 Treat et al. Jan 2007 B2
7175621 Heim et al. Feb 2007 B2
7211079 Treat May 2007 B2
7211080 Treat et al. May 2007 B2
7235073 Levine et al. Jun 2007 B2
7300452 Gleich Nov 2007 B2
7317275 Treat Jan 2008 B2
7326202 McGaffigan Feb 2008 B2
7329255 McGaffigan Feb 2008 B2
7377919 Heim et al. May 2008 B2
7396356 Mollenauer Jul 2008 B2
7435249 Buysse et al. Oct 2008 B2
7473250 Makin et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7494492 Da Silva et al. Feb 2009 B2
7528663 Naletov et al. May 2009 B2
7533719 Hinson May 2009 B2
7540324 de Rouffignac Jun 2009 B2
7549470 Vinegar Jun 2009 B2
7553309 Buysse et al. Jun 2009 B2
7556095 Vinegar Jul 2009 B2
7556096 Vinegar Jul 2009 B2
7559367 Vinegar Jul 2009 B2
7559368 Vinegar Jul 2009 B2
7562706 Li et al. Jul 2009 B2
7562707 Miller Jul 2009 B2
7578815 Howell Aug 2009 B2
7581589 Roes et al. Sep 2009 B2
7584789 Mo et al. Sep 2009 B2
7588565 Marchitto et al. Sep 2009 B2
7588566 Treat et al. Sep 2009 B2
7591310 Minderhoud Sep 2009 B2
7597147 Vitek Oct 2009 B2
7604052 Roes Oct 2009 B2
7610962 Fowler Nov 2009 B2
7613523 Eggers et al. Nov 2009 B2
7631689 Vinegar Dec 2009 B2
7631690 Vinegar Dec 2009 B2
7632295 Flores Dec 2009 B2
7635023 Goldberg Dec 2009 B2
7635024 Karanikas Dec 2009 B2
7635025 Vinegar Dec 2009 B2
7678105 McGreevy et al. Mar 2010 B2
7699842 Buysse et al. Apr 2010 B2
7702397 Fredricks et al. Apr 2010 B2
7776035 Rick et al. Aug 2010 B2
7828798 Buysse et al. Nov 2010 B2
7871406 Nields et al. Jan 2011 B2
7879033 Sartor et al. Feb 2011 B2
7887535 Lands et al. Feb 2011 B2
7922713 Geisei Apr 2011 B2
7931649 Couture et al. Apr 2011 B2
7938779 Sakurai et al. May 2011 B2
7951149 Carlton May 2011 B2
7951150 Johnson et al. May 2011 B2
7959633 Sartor et al. Jun 2011 B2
7963965 Buysse et al. Jun 2011 B2
7972334 McGreevy et al. Jul 2011 B2
7972335 McGreevy et al. Jul 2011 B2
7981113 Truckai et al. Jul 2011 B2
8062290 Buysse et al. Nov 2011 B2
8100896 Rodhajsky Jan 2012 B2
8100908 McGaffigan et al. Jan 2012 B2
8104956 Blaha Jan 2012 B2
8105323 Buysse et al. Jan 2012 B2
8211105 Buysse et al. Jul 2012 B2
8241284 Dycus et al. Aug 2012 B2
8287528 Wham et al. Oct 2012 B2
8292879 Manwaring et al. Oct 2012 B2
8372066 Manwaring et al. Feb 2013 B2
8377052 Manwaring et al. Feb 2013 B2
8377057 Rick et al. Feb 2013 B2
8414569 Manwaring et al. Apr 2013 B2
8419724 Manwaring et al. Apr 2013 B2
8425503 Manwaring et al. Apr 2013 B2
8430870 Manwaring et al. Apr 2013 B2
8460870 Zocchi Jun 2013 B2
8480666 Buysse et al. Jul 2013 B2
8491578 Manwaring et al. Jul 2013 B2
8506561 Manwaring et al. Aug 2013 B2
8523850 Manwaring et al. Sep 2013 B2
8523851 Manwaring et al. Sep 2013 B2
8568402 Buysse et al. Oct 2013 B2
8617151 Manwaring et al. Dec 2013 B2
8667674 Buysse Mar 2014 B2
8672938 Buysse et al. Mar 2014 B2
20010014804 Goble et al. Aug 2001 A1
20020019627 Maguire et al. Feb 2002 A1
20020019644 Hastings et al. Feb 2002 A1
20020026188 Balbierz et al. Feb 2002 A1
20020029037 Kim Mar 2002 A1
20020029062 Satake Mar 2002 A1
20020068931 Wong et al. Jun 2002 A1
20020087156 Maguire et al. Jul 2002 A1
20020120261 Balbierz et al. Aug 2002 A1
20020133148 Daniel et al. Sep 2002 A1
20020165529 Danek Nov 2002 A1
20020173787 Buysse et al. Nov 2002 A1
20030055417 Truckai et al. Mar 2003 A1
20030055424 Ciarrocca Mar 2003 A1
20030060818 Kannenberg et al. Mar 2003 A1
20030073987 Sakurai et al. Apr 2003 A1
20030073989 Hoey et al. Apr 2003 A1
20030109871 Johnson et al. Jun 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030144660 Mollenauer Jul 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030176873 Chernenko et al. Sep 2003 A1
20030195499 Prakash et al. Oct 2003 A1
20030199755 Halperin Oct 2003 A1
20030208199 Keane Nov 2003 A1
20030212389 Durgin et al. Nov 2003 A1
20040006335 Garrison Jan 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040034349 Kirwan, Jr. et al. Feb 2004 A1
20040049185 Latterell et al. Mar 2004 A1
20040059345 Nakao et al. Mar 2004 A1
20040073256 Marchitto Apr 2004 A1
20040167506 Chen Aug 2004 A1
20040176756 McGaffigan Sep 2004 A1
20040187875 He et al. Sep 2004 A1
20040243120 Orszulak et al. Dec 2004 A1
20050021016 Malecki et al. Jan 2005 A1
20050033338 Ferree Feb 2005 A1
20050072827 Mollenauer Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050107776 Mcgaffigan et al. May 2005 A1
20050113824 Sartor et al. May 2005 A1
20050197661 Carrison et al. Sep 2005 A1
20050245919 Van der Welde Nov 2005 A1
20050273111 Ferree et al. Dec 2005 A1
20050283067 Sobe Dec 2005 A1
20050283149 Thome et al. Dec 2005 A1
20050288659 Kimura et al. Dec 2005 A1
20060127706 Goebel et al. Jun 2006 A1
20060142824 Zikorus et al. Jun 2006 A1
20060161149 Privitera et al. Jul 2006 A1
20060167450 Johnson et al. Jul 2006 A1
20060212030 McGaffigan Sep 2006 A1
20060212031 McGaffigan et al. Sep 2006 A1
20060217700 Garito et al. Sep 2006 A1
20060217706 Lau et al. Sep 2006 A1
20060241587 Heim et al. Oct 2006 A1
20060241588 Heim et al. Oct 2006 A1
20060241589 Heim et al. Oct 2006 A1
20060271037 Maroney et al. Nov 2006 A1
20060287649 Ormsby et al. Dec 2006 A1
20070005054 Heim et al. Jan 2007 A1
20070005055 Heim et al. Jan 2007 A1
20070005056 Heim et al. Jan 2007 A1
20070005057 Heim et al. Jan 2007 A1
20070005058 Heim et al. Jan 2007 A1
20070005059 Heim et al. Jan 2007 A1
20070005060 Heim et al. Jan 2007 A1
20070016181 van der Weide et al. Jan 2007 A1
20070016272 Thompson et al. Jan 2007 A1
20070060920 Weitzner Mar 2007 A1
20070073282 McGaffigan et al. Mar 2007 A1
20070100336 McFarlin et al. May 2007 A1
20070100405 Thompson et al. May 2007 A1
20070106294 Nesbitt May 2007 A1
20070127897 John et al. Jun 2007 A1
20070131428 Boestert Jun 2007 A1
20070173811 Couture et al. Jul 2007 A1
20070208339 Arts et al. Sep 2007 A1
20070219544 Gowda Sep 2007 A1
20070239151 Atalar et al. Oct 2007 A1
20070270924 McCann et al. Nov 2007 A1
20080017380 Vinegar Jan 2008 A1
20080033419 Nields et al. Feb 2008 A1
20080035346 Nair et al. Feb 2008 A1
20080035347 Brady Feb 2008 A1
20080035705 Menotti Feb 2008 A1
20080038144 Maziasz Feb 2008 A1
20080077129 Van Wyk et al. Mar 2008 A1
20080119841 Geisel May 2008 A1
20080128134 Mudunuri et al. Jun 2008 A1
20080135253 Vinegar Jun 2008 A1
20080135254 Vinegar Jun 2008 A1
20080142216 Vinegar Jun 2008 A1
20080142217 Pieterson Jun 2008 A1
20080161800 Wang et al. Jul 2008 A1
20080173444 Stone et al. Jul 2008 A1
20080174115 Lambirth Jul 2008 A1
20080185147 Vinegar Aug 2008 A1
20080187989 McGreevy et al. Aug 2008 A1
20080217003 Kuhlman Sep 2008 A1
20080217016 Stegemeier Sep 2008 A1
20080228135 Snoderly Sep 2008 A1
20080236831 Hsu Oct 2008 A1
20080255642 Zarins et al. Oct 2008 A1
20080277113 Stegemeier Nov 2008 A1
20080281310 Dunning et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080281386 Herbette et al. Nov 2008 A1
20080319438 DeCarlo Dec 2008 A1
20090014180 Stegemeier Jan 2009 A1
20090014181 Vinegar Jan 2009 A1
20090093811 Koblish et al. Apr 2009 A1
20090112200 Eggers Apr 2009 A1
20090118729 Auth et al. May 2009 A1
20090118730 Mollenauer May 2009 A1
20090198224 McGafiigan Aug 2009 A1
20090248002 Takashino et al. Oct 2009 A1
20090292347 Asmus et al. Nov 2009 A1
20090306644 Mayse et al. Dec 2009 A1
20090312753 Shadduck Dec 2009 A1
20100082022 Haley et al. Apr 2010 A1
20100152725 Pearson et al. Jun 2010 A1
20100198216 Palanker Aug 2010 A1
20100228244 Hancock et al. Sep 2010 A1
20100268205 Manwaring et al. Oct 2010 A1
20100268206 Manwaring et al. Oct 2010 A1
20100268207 Manwaring et al. Oct 2010 A1
20100268208 Manwaring et al. Oct 2010 A1
20100268209 Manwaring et al. Oct 2010 A1
20100268210 Manwaring et al. Oct 2010 A1
20100268211 Manwaring et al. Oct 2010 A1
20100268212 Manwaring et al. Oct 2010 A1
20100268213 Manwaring et al. Oct 2010 A1
20100268214 Manwaring et al. Oct 2010 A1
20100268215 Manwaring et al. Oct 2010 A1
20100268216 Manwaring et al. Oct 2010 A1
20100268218 Ormsby et al. Oct 2010 A1
20110054456 Thompson et al. Mar 2011 A1
20110092971 Sartor et al. Apr 2011 A1
20110152857 Ingle Jun 2011 A1
20120059367 Buysse et al. Mar 2012 A1
20120071712 Manwaring et al. Mar 2012 A1
20120071870 Salahieh et al. Mar 2012 A1
20120130256 Buysse et al. May 2012 A1
20120150170 Buysse et al. Jun 2012 A1
20120226270 Manwaring et al. Sep 2012 A1
20120259323 Manwaring et al. Oct 2012 A1
20120296326 Manwaring et al. Nov 2012 A1
20120303026 Dycus et al. Nov 2012 A1
20120330295 Manwaring et al. Dec 2012 A1
20130006240 McNally et al. Jan 2013 A1
20130012934 Manwaring et al. Jan 2013 A1
20130023866 Stringham Jan 2013 A1
20130041367 Wham et al. Feb 2013 A1
20130066310 Manwaring et al. Mar 2013 A1
20130197502 Manwaring et al. Aug 2013 A1
20130218152 Manwaring et al. Aug 2013 A1
20130226165 Manwaring et al. Aug 2013 A1
20130296838 Manwaring et al. Nov 2013 A1
20140052119 Stewart et al. Feb 2014 A1
20140058381 Wham et al. Feb 2014 A1
20140058384 Buysse et al. Feb 2014 A1
20140058385 Wham et al. Feb 2014 A1
20140074082 Denis et al. Mar 2014 A1
20140100559 Wham et al. Apr 2014 A1
20140180266 Buysse et al. Jun 2014 A1
20160030102 Manwaring et al. Feb 2016 A1
20160030103 Manwaring et al. Feb 2016 A1
20160058499 Brooke Mar 2016 A1
20160192977 Manwaring et al. Jul 2016 A1
20160249971 Manwaring et al. Sep 2016 A1
20170189094 Manwaring et al. Jul 2017 A9
20170196617 Denis et al. Jul 2017 A1
20170209200 Manwaring et al. Jul 2017 A1
20200129222 Stringham Apr 2020 A1
Foreign Referenced Citations (23)
Number Date Country
0033958 Aug 1981 EP
0130671 Jan 1985 EP
2036512 Mar 2009 EP
2070486 Jun 2009 EP
2022974 Dec 1978 GB
1546624 May 1979 GB
3-51179 Aug 1991 JP
2558584 Nov 1996 JP
10-277050 Oct 1998 JP
2072118 Jan 1997 RU
8200746 Mar 1982 WO
92017121 Oct 1992 WO
93021839 Nov 1993 WO
9408524 Apr 1994 WO
96026677 Sep 1996 WO
9937227 Jul 1999 WO
01006943 Feb 2001 WO
04014217 Feb 2004 WO
04076146 Sep 2004 WO
06017517 Feb 2006 WO
06029649 Mar 2006 WO
07080578 Jul 2007 WO
08060668 May 2008 WO
Non-Patent Literature Citations (34)
Entry
Center for Research in Scientific Computation. A Domain Wall Theory for Ferroelectric Hysteresis, Jan. 1999.
Denis et al., “System and Method of Controlling Power Delivery to an Etectrosurgical Instrument,” U.S. Appl. No. 61/669,671, filed Jul. 10, 2012, 59 pages.
Denis et al., “Thermal Surgical Tool,” U.S. Appl. No. 61/567,603, filed Dec. 6, 2011, 33 pages.
European Search Report from European Application No. 12865504.0-1652, dated Nov. 28, 2014.
Extended European Search Report, dated Nov. 10, 2016, for European Application No. 10765134.1-1659, 8 pages.
“High Temp Metals.” Nl2001201 Technical Data. High Temp Metals, Inc., n.d. Web. Jul. 13, 2012. <http://www.hightempmetals.com/techdatafnitempNi200data.php.
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2010/031114, dated Nov. 1, 2011.
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2010/031114, dated Jan. 21, 2011.
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2011 /050417, dated Apr. 12, 2012.
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2012/032656, dated Oct. 23, 2012.
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2012/032659, dated Nov. 23, 2012.
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2012/038005, dated Nov. 23, 2012.
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2012/055229, dated Feb. 1, 2013.
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2012/068027, dated Feb. 25, 2013.
International Preliminary Report on Patentability from related PCT Application US2012/038005, dated Nov. 19, 2013.
International Preliminary Report on Patentability from related PCT Application US2012/068027, dated Jun. 19, 2014.
International Preliminary Report on Patentability, dated Oct. 8, 2013, for International Application No. PCT/US2012/032661, 8 pages.
International Search Report and Written Opinion from related PCT Application US2012/032661, dated Aug. 19, 2013.
International Search Report and Written Opinion from related PCT Application US2012/032659, dated Oct. 8, 2013.
International Search Report and Written Opinion from related PCT Application US2012/032565, dated Oct. 8, 2013.
International Search Report and Written Opinion, dated Feb. 1, 2013, for International Application No. PCT/US2012/055229, 11 pages.
International Search Report and Written Opinion, dated Feb. 15, 2013, for International Application No. PCT/US2012/068027, 8 pages.
International Search Report and Written Opinion, dated Jan. 21, 2011, for International Application No. PCT/US2010/031114, 12 pages.
International Search Report and Written Opinion, dated Nov. 23, 2012, for International Application No. PCT/US2012/038005, 9 pages.
International Search Report and Written Opinion, dated Oct. 23, 2012, for International Application No. PCT/US2012/032656, 13 pages.
Manwaring et al., “Adjustable Ferromagnetic Coated Conductor Thermal Surgical Tool,” U.S. Appl. No. 61/170,203, filed Apr. 17, 2009, 36 pages.
Manwaring et al., “Surgical Multi-Mode Tool With Ferromagnetic Coated Conductor for Adjustable Thermal Energy Delivery,” U.S. Appl. No. 61/170,207, filed Apr. 17, 2009, 43 pages.
Manwaring et al., “Thermally Adjustable Surgical or Therapeutic Tool and Method of Use,” U.S. Appl. No. 61/170,220, filed Apr. 17, 2009, 41 pages.
Metcal Soldering Iron Catalog—2006.
Supplemental European Search Report from European Patent Application No. EP 12767 458 dated Jan. 30, 2015.
Translation of Office Action from related Japanese Patent Application No. 2012-506188, PCT US2010-031114.
URSI EMTS 2004, pp. 489-491, Electromagnetic Probes for Living Tissue Cauterization.
Visioli, Antonio. Practice PIO Control: London: Springer-Verlag, 2006.1-18. Print.
Written Opinion of the International Preliminary Examining Authority from related PCT Patent Application No. PCT/US2011/050417, dated Feb. 6, 2013.
Related Publications (1)
Number Date Country
20190328442 A1 Oct 2019 US
Provisional Applications (1)
Number Date Country
61996741 May 2014 US
Continuations (1)
Number Date Country
Parent 14711662 May 2015 US
Child 16506869 US