The present disclosure generally relates to the field of semiconductors, and more particularly relates to complementary metal oxide semiconductor (CMOS) technology, and more specifically, to incorporating vacuum channels into vertical transistors.
CMOS technology is used to construct integrated circuits such as microprocessors, microcontrollers, static random access memory (RAM) and other digital logic circuits. A basic component of CMOS designs is metal oxide semiconductor field effect transistors (MOSFETs). As MOSFETs are scaled to smaller dimensions, various designs and techniques are employed to improve device performance.
New research presents a nanoscale vacuum tube or vacuum transistor fabricated entirely using current silicon integrated circuit manufacturing techniques. Vacuum is better for electron transport than any semiconductor since there is no electron scattering. In addition, vacuum devices are immune to radiation.
Nevertheless, vacuum devices lost out to silicon devices due to ease of large-scale manufacturing, robustness, versatility, and low cost. Here, the best of vacuum and silicon technologies are combined to produce nanoscale vacuum transistors that are amenable to large wafer fabrication and are inexpensive, while providing exceptional performance.
Disclosed is a novel vacuum structure with tip-shape SiGe source/drain region or sharp tip structure. More specifically disclosed is the use of current CMOS technology compatible process to create a planar gate-insulated vacuum channel semiconductor structure. In one example, the structure is created on highly doped silicon. In another example, the structure is created on silicon on insulator over a box oxide layer.
The planar gate-insulated vacuum channel semiconductor structure is formed by depositing a conformal hard mask liner over a planar complementary metal-oxide-semiconductor (CMOS) device with a gate stack and a tip-shaped SiGe source/drain region. Next, shallow trench isolation (STI) is used to form cavities on either side of the gate stack. Continuing further, the cavities are filled with dielectric material using oxide deposition. Chemical-mechanical planarization (CMP) is used to reach a height of the conformal hard mask liner. A first etching is performed using reactive-ion etching along a first direction cutting the gate stack from a top direction down to approximately the tip-shaped SiGe source/drain region. A second etching is performed using wet etching along a second direction perpendicular to the first direction to create a void in a channel in the tip-shaped SiGe source/drain region under the gate stack. A vacuum is created in the void using physical vapor deposition (PVD) in a region above the tip-shaped SiGe source/drain regions.
The accompanying figures where like reference numerals refer to identical or functionally similar elements throughout the separate views, and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and to explain various principles and advantages all in accordance with the present invention, in which:
Embodiments of the present invention are described herein with reference to the related drawings. Alternative embodiments can be devised without departing from the scope of this invention. It is noted that various connections and positional relationships (e.g., over, below, adjacent, etc.) are set forth between elements in the following description and in the drawings. These connections and/or positional relationships, unless specified otherwise, can be direct or indirect, and the present invention is not intended to be limiting in this respect. Accordingly, a coupling of entities can refer to either a direct or an indirect coupling, and a positional relationship between entities can be a direct or indirect positional relationship. As an example of an indirect positional relationship, references in the present description to forming layer “A” over layer “B” include situations in which one or more intermediate layers (e.g., layer “C”) is between layer “A” and layer “B” as long as the relevant characteristics and functionalities of layer “A” and layer “B” are not substantially changed by the intermediate layer(s).
The following definitions and abbreviations are to be used for the interpretation of the claims and the specification. As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having,” “contains” or “containing,” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a composition, a mixture, process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but can include other elements not expressly listed or inherent to such composition, mixture, process, method, article, or apparatus.
Additionally, the term “exemplary” is used herein to mean “serving as an example, instance or illustration.” Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs. The terms “at least one” and “one or more” are understood to include any integer number greater than or equal to one, i.e. one, two, three, four, etc. The terms “a plurality” are understood to include any integer number greater than or equal to two, i.e. two, three, four, five, etc. The term “connection” can include an indirect “connection” and a direct “connection.”
References in the specification to “one embodiment.” “an embodiment,” “an example embodiment,” etc., indicate that the embodiment described can include a particular feature, structure, or characteristic, but every embodiment may or may not include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
For purposes of the description hereinafter, the terms “upper,” “lower,” “right,” “left,” “vertical,” “horizontal,” “top,” “bottom,” and derivatives thereof shall relate to the described structures and methods, as oriented in the drawing figures. The terms “overlying,” “atop,” “on top,” “positioned on” or “positioned atop” mean that a first element, such as a first structure, is present on a second element, such as a second structure, wherein intervening elements such as an interface structure can be present between the first element and the second element. The term “direct contact” means that a first element, such as a first structure, and a second element, such as a second structure, are connected without any intermediary conducting, insulating or semiconductor layers at the interface of the two elements. It should be noted that the term “selective to,” such as, for example, “a first element selective to a second element,” means that the first element can be etched and the second element can act as an etch stop. s used herein, “thickness” refers to a size of an element (e.g., a layer, trench, hole, etc.) in the cross-sectional views measured from a bottom surface to a top surface, or a left side surface to a right side surface of the element, and/or measured with respect to a surface on which the element is directly on.
Unless otherwise specified, as used herein, “height” or “height above a substrate” refers to a vertical size of an element (e.g., a layer, trench, hole, etc.) in the cross-sectional views measured from a top surface of the substrate to a top surface of the element. A thickness of an element can be equal to a height of the element if the element is directly on the substrate. As used herein, “lateral”, “lateral side”, and “lateral surface” refer to a side surface of an element (e.g., a layer, opening, etc.), such as a left or right side surface in the cross-sectional views herein.
Semiconductor Fabrication Techniques
For the sake of brevity, conventional techniques related to semiconductor device and integrated circuit fabrication may or may not be described in detail herein. Moreover, the various tasks and process steps described herein can be incorporated into a more comprehensive procedure or process having additional steps or functionality not described in detail herein. In particular, various steps in the manufacture of semiconductor devices and semiconductor-based ICs are well known and so, in the interest of brevity, many conventional steps will only be mentioned briefly herein or will be omitted entirely without providing the well-known process details.
Vacuum Channel Transistors
Turning now to a description of technologies that are more specifically relevant to aspects of the present invention, vacuum channel transistors include an open channel region. A vacuum channel transistor can be fabricated by etching a cavity in doped silicon. The cavity is bordered by a source electrode, a gate electrode, and a drain electrode. The source and drain are separated by a space, and the gate is over the space. Electrons are emitted from the source due to a voltage applied across the source and the drain, and the gate controls the electron flow across the cavity. When the space between the source and drain is sufficiently large (e.g., about 150 nm) the electrons do not collide, which means that the mean free path of the electrons (i.e., the average length an electron can travel before hitting something) is more than 1 micrometer.
Vacuum channel transistors are advantageous for several reasons. Compared to other semiconductor transistors, vacuum channel transistors can function at speeds that are many orders of magnitude faster. Vacuum channel transistors can also operate at higher frequencies, for example, terahertz frequencies, which can be beyond the reach of solid-state devices. While electrons in a solid state transistor suffer from collisions with atoms, which is also called crystal-lattice scattering, electrons freely propagate in the open channel space of a vacuum transistor. Additionally, vacuums are not susceptible to radiation damage that can damage semiconductors. Vacuums also produce less noise and distortion than solid-state materials.
Although vacuum channels can be used in planar transistor devices, there are disadvantages compared to using vacuum channels in vertical transistors. For example, the large areas of the source/drain limit the ability to use the devices in integrated circuits. Also, the cathode/anode tips that are made of silicon processing for “electron” thermionic emission are not sharp enough to produce efficient field emissions to justify the power/performance needs for modern transistors.
Accordingly, various embodiments of the present invention provide transistors, and methods of making transistors, with a vertically integrated vacuum channel. Compared to planar devices, the vertical devices described herein have a smaller footprint, for example, of the nanometer scale. In embodiments, vertical vacuum devices also have channel areas that are formed by oxidation processes, which are reliable methods for generating angled channel tips for electron field emission. The described vacuum devices are also fully compatible with state-of-the art CMOS technology, which makes the devices ideal candidates for highly scaled transistor architecture.
It is to be understood that the present disclosure will be described in terms of a given illustrative architecture; however, other architectures, structures, substrate materials and process features and steps may be varied within the scope of the present disclosure.
Referring now to the drawings in which like numerals represent the same of similar elements,
It should be noted that the following process for forming the initial semiconductor structure (e.g., active areas, gate stack, gate spacer, source/drain regions, etc.) is only illustrative. Any process for forming these structures is applicable to embodiments of the present disclosure.
Referring now to
The substrate 102 can include one or more semiconductor materials. In an exemplary embodiment, the substrate 102 includes silicon. Other non-limiting examples of suitable substrate 102 materials include SiC (silicon carbide), Ge (germanium), SiGe (silicon germanium), SiGeC (silicon-germanium-carbon), Si alloys, Ge alloys, III-V materials (e.g., GaAs (gallium arsenide), InAs (indium arsenide), InP (indium phosphide), or aluminum arsenide (AlAs)), II-VI materials (e.g., CdSe (cadmium selenide), CdS (cadmium sulfide), CdTe (cadmium telluride), ZnO (zinc oxide), ZnSe (zinc selenide), ZnS (zinc sulfide), or ZnTe (zinc telluride)), or any combination thereof.
Doping the substrate 102 forms a doped region 104 and undoped region 106 in the substrate 102. The doped region 104 can form source regions and/or drain regions. In addition to doping the substrate 102 as shown, a source/drain can be formed on the substrate 102 by forming an epitaxial growth on the substrate 102 in some embodiments. When dopants are used, the substrate 102 can be heavily doped with one or more dopants. The dopants can be p-type dopants or n-type dopants. is a cross-sectional side view after doping the substrate 102 with a dopant. Doping the substrate 102 forms a doped region 104 in the substrate 102. The doped region 104 can form source regions and/or drain regions. In addition to doping the substrate 102 as shown, a source/drain can be formed on the substrate 102 by forming an epitaxial growth on the substrate 102 in some embodiments. When dopants are used, the substrate 102 can be heavily doped with one or more dopants. The dopants can be p-type dopants or n-type dopants.
Turning now to
The various components and structures of the device 200 may be formed using a variety of different materials and by performing a variety of known techniques. For example, the sacrificial gate insulation layer 122 may be comprised of silicon dioxide, and the sacrificial gate electrode 126 may be comprised of polysilicon. Of course, those skilled in the art will recognize that there are other features of the transistor 200 that are not depicted in the drawings for purposes of clarity. For example, so-called halo implant regions are not depicted in the drawings, as well as various layers or regions of silicon/germanium that are typically found in high performance PMOS transistors. At the point of fabrication depicted in
SiN Liner and STI Oxide Deposition
Referring now to
First Etching Steps to Cut the Gate Stack
This is the first of two etching steps to open up the middle of the SiGe layer of the source 220 and drain 222. Referring now to
Second Etching Step to Remove Inside Channel Underneath the Gate Stack
This is the second of two etching steps to open up the middle of the SiGe layer of the source 220 and drain 222. This cut is substantially perpendicular to the first cut of
This second cut using wet etching only etches to the top of the Si highly doped layer 104. There will be some damage to Si (undoped) layer 106 but does not matter since it is just used as substrate.
PVD Spacer Deposition
In order to create a vacuum in the void 502, physical vapor deposition (PVD) is used. Referring now to
Contact Formation
Referring
Process Flow for Forming Planar Gate-Insulated Vacuum Channel on Highly Doped Layer
Referring now to
After forming the SOI layer 910, pad oxidation and pad nitride layers are deposited and via lithographic techniques, the active areas for respective NFET device and PFET transistor device are defined. That is, a lithographic mask is patterned and formed over the top SOI layer 910 to expose regions for forming shallow trench isolation (STI) structures. This processing includes applying a photoresist to the surface of the SOI substrate 910, exposing the photoresist and developing the exposed photoresist using a conventional resist developer. These STI regions (not shown) can be formed using know techniques to isolate the NFET and PFET devices to be formed.
Continuing, further processing steps are performed for forming the NFET and PFET devices including: preparing a top-contact to back Si substrate formation. This may be achieved, for example, by the following steps: (i) blanket nitride deposition, (ii) lithographically defining contact areas on STI oxide regions, (iii) a thin nitride RIE followed by a deep oxide RIE to create a trench all the way down to the SOI layer 904, (iv) resist strip, (v) thick poly silicon deposition, and (vi) poly silicon CMP that stops on the thin nitride layer, performing an STI deglaze to strip the previously formed pad nitride and pad oxide layers (not shown) [pad nitride is stripped using hot phosphoric acid and then pad oxide is removed using hydrofluoric acid], forming a sacrificial oxidation (sacox) layer to screen well implants for each device, and performing an ion implantation step for forming CMOS wells. The CMOS well implant, which typically forms a well region within the SOI layer 904, is carried out using a conventional ion implantation process well known to those skilled in the art. P- or N-type dopants can be used in forming the well region.
The gate dielectric layers 910 for each of the respective NFET and PFET devices may comprise conventional dielectric materials such as oxides, nitrides and oxynitrides of silicon that have a dielectric constant from about 4 (i.e., typically a silicon oxide) to about 8 (i.e., typically a silicon nitride), measured in vacuum. Alternatively, the gate dielectric 910 may comprise generally higher dielectric constant dielectric materials having a dielectric constant from about 8 to at least about 100. Such higher dielectric constant dielectric materials may include, but are not limited to hafnium oxides, hafnium silicates, zirconium oxides, lanthanum oxides, titanium oxides, barium-strontium-titantates (BSTs) and lead-zirconate-titanates (PZTs). The gate dielectrics 910 for each of the respective NFET and PFET devices may be formed using any of several methods that are appropriate to its material of composition. Non-limiting examples include thermal or plasma oxidation or nitridation methods, chemical vapor deposition methods (including atomic layer deposition methods) and physical vapor deposition methods. Typically, the gate dielectric layers 910 for the gate stack 920 comprise a thermal silicon oxide dielectric material that has a thickness from about 10 to about 30 angstroms. A metal gate 912 is also formed as part of the gate stack 920.
Continuing, there is next formed the gate electrodes 914 for each respective NFET and PFET devices. The gate electrodes 914 may comprise materials including but not limited to certain metals, metal alloys, metal nitrides and metal silicides, as well as laminates thereof and composites thereof. The gate electrodes 914 may also comprise doped polysilicon and polysilicon-germanium alloy materials (i.e., having a dopant concentration from about 1e18 to about 1e22 dopant atoms per cubic centimeter) and polycide materials (doped polysilicon/metal silicide stack materials). Similarly, the foregoing materials may also be formed using any of several methods. Non-limiting examples include salicide methods, chemical vapor deposition methods and physical vapor deposition methods, such as, but not limited to evaporative methods and sputtering methods. Typically, the gate electrodes 914 each comprise a doped polysilicon material that has a thickness from about 500 to about 1500 angstroms. The NFET gate polysilicon is then doped with n-type dopants (As or P or Sb) and the PFET gate polysilicon with p-type dopants (B or BF2 or In). Selective doping is achieved using photolithography to cover one type of FETs while exposing the other to ion implants.
In a further processing step, capping layers 916 for respective gate stack 920 are formed that comprises a capping material that in turn typically comprises a hard mask material. This hard mask material is required for selective Si or SiGe epitaxy that is performed later. Without the hard mask, Si or SiGe also gets deposited on the gate polysilicon and causes a gate mushroom that could come in physical contact with the raised source/drain, thereby, causing gate-to-source and/or gate-to-drain shorts. Dielectric hard mask materials are most common but by no means limit the instant embodiment or the invention. Non-limiting examples of hard mask materials include oxides, nitrides and oxynitrides of silicon. Oxides, nitrides and oxynitrides of other elements are not excluded. The capping material may be formed using any of several methods that are conventional in the semiconductor fabrication art. Non-limiting examples include chemical vapor deposition methods and physical vapor deposition methods. Preferably, a silicon nitride (SiN) and high-temperature oxide (HTO) hard mask deposition is performed to cap the gate polysilicon for raised source/drain (RSD) integration. Using typical gate lithography and etch techniques, the gate stack 920 result having a respective SiN cap 916 formed on top. The SiN capping layers 916 have a thickness from about 100 to about 500 angstroms.
Insofar as the top Si-containing layer 904 of the SOI substrate 902 is concerned, that Si-containing layer may have a variable thickness, which is also dependent on the embodiment and conditions used in fabricating the SOI substrate. Typically, however, the top Si-containing layer 904 of the SOI substrate 902 has a thickness from about 10 to about 1000 Å, with a top Si-containing layer thickness from about 200 to about 700 Å being more typical. According to the invention, the SOI layer 902 is of a thickness ranging between 10 and 300 Å. The thickness of the bottom Si-containing layer 908 of the SOI substrate 902 is inconsequential to the present invention.
The substrate 902 of the present invention can be used in forming high-performance semiconductor devices or circuits. Examples of such devices or circuits that can contain the SOI substrate of the present invention include, but are not limited to: microprocessors, memory cells such as dynamic random access memory (DRAM) or static random access memory (SRAM), application specific integrated circuits (ASICs), optical electronic circuits, and larger and more complicated circuits. Since these devices or circuits are well known to those skilled in the art, it is not necessary to provide a detail description concerning the same herein. It is however emphasized that the active devices and/or circuits of such semiconductor devices and circuits are typically formed in the top Si-containing layer of the substrate 902. The invention is described hereinafter with respect to forming NFET and PFET formed in the top Si-containing layer of the SOI substrate 904.
The term “Si-containing” when used in conjunction with layers 908 and 904 denotes any semiconductor material that includes silicon therein. Illustrative examples of such Si-containing materials include but are not limited to: Si, SiGe, SiGeC, SiC, Si/Si, Si/SiGe, preformed SOI wafers, silicon germanium-on-insulators (SGOI) and other like semiconductor materials. The preformed SOI wafers and SGOI wafers, which can be patterned or unpatterned, may also include a single or multiple buried oxide regions formed therein. The Si-containing material can be undoped or doped (p or n-doped) depending on the future use of the SOI substrate.
SOI Recess and Epitaxy
As part of the conventional SOI processing, the SOI layer 910 may be thinned using oxidation and wet etch techniques. Referring now to
SiN Liner and STI Oxide Deposition
Referring now to
First Etching Steps to Cut the Gate
This is the first of two etching steps to open up the middle of the SiGe layer of the source 1020 and drain 1022.
Referring now to
Second Etching Step to Remove Inside Channel Underneath the Gate
This is the second of two etching steps to open up the middle of the SiGe layer of the source 1020 and drain 1022. Referring now to
The typical wet process used is used. A first example of a wet process is KOH-based etchant with different concentration and temperature. A second example is chemical etchant composed of hydrofluoric acid, hydrogen peroxide. A third example is acetic acid Formula (HF:H2O2:CH3COOH). 3. solution of NH4OH, H2O2, and H2O).
This second cut using wet etching only etches to the top of the SOI layer 904. There will be some damage to the box layer 906 but does not matter since it is just used as substrate.
Si Epitaxy
Referring now to
PVD Spacer Fill
Referring now to
Contact Formation
Turning now to
Process Flow for Forming Planar Gate-Insulated Vacuum Channel on SOI Layer
Design Process Flow
Design flow 1800 may vary depending on the type of representation being designed. For example, a design flow 1800 for building an application specific IC (ASIC) may differ from a design flow 1800 for designing a standard component or from a design flow 1800 for instantiating the design into a programmable array, for example a programmable gate array (PGA) or a field programmable gate array (FPGA) offered by Altera® Inc. or Xilinx® Inc.
Design process 1810 preferably employs and incorporates hardware and/or software modules for synthesizing, translating, or otherwise processing a design/simulation functional equivalent of the components, circuits, devices, or logic structures shown in
Design process 1810 may include hardware and software modules for processing a variety of input data structure types including Netlist 1880. Such data structure types may reside, for example, within library elements 1830 and include a set of commonly used elements, circuits, and devices, including models, layouts, and symbolic representations, for a given manufacturing technology (e.g., different technology nodes, 32 nm, 45 nm, 90 nm, etc.). The data structure types may further include design specifications 1840, characterization data 1850, verification data 1860, design rules 1870, and test data files 1885 which may include input test patterns, output test results, and other testing information. Design process 1810 may further include, for example, standard mechanical design processes such as stress analysis, thermal analysis, mechanical event simulation, process simulation for operations such as casting, molding, and die press forming, etc. One of ordinary skill in the art of mechanical design can appreciate the extent of possible mechanical design tools and applications used in design process 1810 without deviating from the scope and spirit of the invention. Design process 1810 may also include modules for performing standard circuit design processes such as timing analysis, verification, design rule checking, place and route operations, etc.
Design process 1810 employs and incorporates logic and physical design tools such as HDL compilers and simulation model build tools to process design structure 1820 together with some or all of the depicted supporting data structures along with any additional mechanical design or data (if applicable), to generate a second design structure 1890. Design structure 1890 resides on a storage medium or programmable gate array in a data format used for the exchange of data of mechanical devices and structures (e.g. information stored in a IGES, DXF, Parasolid XT, JT, DRG, or any other suitable format for storing or rendering such mechanical design structures). Similar to design structure 1820, design structure 1890 preferably comprises one or more files, data structures, or other computer-encoded data or instructions that reside on transmission or data storage media and that when processed by an ECAD system generate a logically or otherwise functionally equivalent form of one or more of the embodiments of the invention shown in
Design structure 1890 may also employ a data format used for the exchange of layout data of integrated circuits and/or symbolic data format (e.g. information stored in a GDSII (GDS2), GL1, OASIS, map files, or any other suitable format for storing such design data structures). Design structure 1890 may comprise information such as, for example, symbolic data, map files, test data files, design content files, manufacturing data, layout parameters, wires, levels of metal, vias, shapes, data for routing through the manufacturing line, and any other data required by a manufacturer or other designer/developer to produce a device or structure as described above and shown in
The method as described above is used in the fabrication of integrated circuit chips.
The resulting integrated circuit chips can be distributed by the fabricator in raw wafer form (that is, as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged form. In the latter case the chip is mounted in a single chip package (such as a plastic carrier, with leads that are affixed to a motherboard or other higher level carrier) or in a multichip package (such as a ceramic carrier that has either or both surface interconnections or buried interconnections). In any case the chip is then integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either (a) an intermediate product, such as a motherboard, or (b) an end product. The end product can be any product that includes integrated circuit chips, ranging from toys and other low-end applications to advanced computer products having a display, a keyboard or other input device, and a central processor.
The present invention may be a system, a method, and/or a computer program product. The computer program product may include a computer readable storage medium (or media) having computer readable program instructions thereon for causing a processor to carry out aspects of the present invention.
The computer readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device. The computer readable storage medium may be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.
Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.
Computer readable program instructions for carrying out operations of the present invention may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like, and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present invention.
Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.
These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks.
The computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.
Integrated Circuit
The present embodiments may include a design for an integrated circuit chip, which may be created in a graphical computer programming language, and stored in a computer storage medium (such as a disk, tape, physical hard drive, or virtual hard drive such as in a storage access network). If the designer does not fabricate chips or the photolithographic masks used to fabricate chips, the designer may transmit the resulting design by physical means (e.g., by providing a copy of the storage medium storing the design) or electronically (e.g., through the Internet) to such entities, directly or indirectly. The stored design is then converted into the appropriate format (e.g., GDSII) for the fabrication of photolithographic masks, which typically include multiple copies of the chip design in question that are to be formed on a wafer. The photolithographic masks are utilized to define areas of the wafer (and/or the layers thereon) to be etched or otherwise processed.
Methods as described herein may be used in the fabrication of integrated circuit chips. The resulting integrated circuit chips can be distributed by the fabricator in raw wafer form (that is, as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged form. In the latter case the chip is mounted in a single chip package (such as a plastic carrier, with leads that are affixed to a motherboard or other higher level carrier) or in a multichip package (such as a ceramic carrier that has either or both surface interconnections or buried interconnections). In any case the chip is then integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either (a) an intermediate product, such as a motherboard, or (b) an end product. The end product can be any product that includes integrated circuit chips, ranging from toys and other low-end applications to advanced computer products having a display, a keyboard or other input device, and a central processor.
Reference in the specification to “one embodiment” or “an embodiment” of the present principles, as well as other variations thereof, means that a particular feature, structure, characteristic, and so forth described in connection with the embodiment is included in at least one embodiment of the present principles. Thus, the appearances of the phrase “in one embodiment” or “in an embodiment”, as well any other variations, appearing in various places throughout the specification are not necessarily all referring to the same embodiment.
Although specific embodiments of the disclosure have been disclosed, those having ordinary skill in the art will understand that changes can be made to the specific embodiments without departing from the spirit and scope of the disclosure. The scope of the disclosure is not to be restricted, therefore, to the specific embodiments, and it is intended that the appended claims cover any and all such applications, modifications, and embodiments within the scope of the present disclosure.
It should be noted that some features of the present disclosure may be used in one embodiment thereof without use of other features of the present disclosure. As such, the foregoing description should be considered as merely illustrative of the principles, teachings, examples, and exemplary embodiments of the present disclosure, and not a limitation thereof. Also that these embodiments are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed disclosures. Moreover, some statements may apply to some inventive features but not to others.
Number | Name | Date | Kind |
---|---|---|---|
5247223 | Mori et al. | Sep 1993 | A |
5268649 | Calcatera | Dec 1993 | A |
5386172 | Komatsu | Jan 1995 | A |
7494858 | Bohr et al. | Feb 2009 | B2 |
9793395 | Liu | Oct 2017 | B1 |
9853163 | Zhang | Dec 2017 | B2 |
20020138813 | Teh | Sep 2002 | A1 |
20060057859 | Chen | Mar 2006 | A1 |
20060114628 | Fukuda | Jun 2006 | A1 |
20090140626 | Kim | Jun 2009 | A1 |
20130285155 | Glass | Oct 2013 | A1 |
20150214349 | Xiao | Jul 2015 | A1 |
20160043224 | Huang | Feb 2016 | A1 |
20170092778 | Zhang | Mar 2017 | A1 |
20170104079 | Xiao | Apr 2017 | A1 |
20170104101 | Cheng | Apr 2017 | A1 |
20180097118 | Zhang | Apr 2018 | A1 |
20180102433 | Liu et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
2016182080 | Nov 2016 | WO |
Entry |
---|
Packan et al., “High Performance 32nm Logic Technology Featuring 2nd Generation High-k + Metal Gate Transistors”, IEDM09 pp. 659-662 2009. |
Choi et al., “Layout Variation Effects in Advanced MOSFETs: STI-Induced Embedded SiGe Strain Relaxation and Dual-Stress-Liner Boundary Proximity Effect”, IEEE Transactions on Electron Devices, vol. 57, No. 11 Nov. 2010. |
Wang et al., “Correlation Between Random Telegraph Noise and 1/f Noise Parameters in 28-nm pMOSFETs With Tip-Shaped SiGe Source/Drain”, IEEE Electron Device Letters, vol. 33, No. 7 Jul. 2012. |
Dick James, “Intel Ivy Bridge Unveiled—The First Commercial Tri-Gate, High-k, Metal-Gate CPU”, 2012. |
Han et al., “Vacuum nanoelectronics: Back to the future?—Gate insulated nanoscale vacuum channel transistor”, Applied Physics Letters 100 2012. |
Number | Date | Country | |
---|---|---|---|
20190393012 A1 | Dec 2019 | US |