1. Field of Invention
The present invention relates to a planar integrated ion sensor, and more particularly to a planar integrated ion sensor with a planar structure having a working electrode and a reference electrode both attached to a planar substrate, such that the planar integrated ion sensor has a decreased size and is easy and convenient to operate.
2. Description of the Related Art
Voltage analysis method is used to measure a potential generated by dissociative ions in liquid sample for determining ion concentration in the liquid sample and further for evaluating pH value in the liquid sample. Voltage analysis method requires two electrodes including a reference electrode and a working electrode (i.e. indicator electrode). The reference electrode has a stable, constant and known electrode potential, so it is used as a reference. The reference electrode conducts a reversible reaction to rapidly achieve thermal equilibrium state, so it provides a stable potential that can be detected. Generally, the reference electrode comprises calomel electrode and a Ag/AgCl electrode. The Ag/AgCl electrode can be used at higher than 60° C., so it is more beneficial than the calomel electrode and is preferred. The reference electrode, the working electrode and dissociative ions in liquid sample become a circuit. A potential difference can be measured and pH value can be evaluated according to the potential difference.
With reference to
However, the conventional ion sensor with glass electrode is large and the glass bubble (422) of the working electrode (42) is fragile. Furthermore, an operator has to prevent a surface of the glass bubble (422) from being contaminated by oil or dirt and from being scratched, such that a sensibility of the glass bubble (422) and accuracy of measured value can be reliably retained. Therefore, the conventional ion sensor with glass electrode is inconvenient.
With reference to
However, such ion detector cannot be put into a liquid sample directly and an operator has to drop some liquid sample on the reference electrode (53) and the working electrode (54). Therefore, some liquid sample is consumed during detection. Furthermore, the body (51) of the sensing casing (50) is required to receive the liquid sample, so the body (51) has a specific size limit to prevent the body (51) from receiving insufficient amount of liquid sample, which results in inaccurate measured value.
With reference to
However, it is only a reference electrode. An additional working electrode is required during detection. Furthermore, the electrolyte (75) is only filled in the spherical protecting membrane (74), so the electrolyte (75) may be insufficient, which also results in inaccurate measured value.
To overcome the shortcomings, the present invention provides a planar integrated ion sensor to mitigate or obviate the aforementioned.
The primary objective of the present invention is to provide a planar integrated ion sensor having a planar structure with a decreased size so is easy and convenient user to operate.
To achieve the objective, the planar integrated ion sensor in accordance with the present invention comprises a planar substrate, a working electrode assembly, a reference electrode assembly and an exchange junction. The working electrode assembly is mounted on one surface of the planar substrate and has an ion selective electrode, a working conductor and a working barrier. The working conductor is electrically coupled with the ion selective electrode. The working barrier partially covers the ion selective electrode and the working conductor. The reference electrode assembly has a reference electrode, a reference conductor, a reference barrier and a hood. The reference conductor is electrically coupled with the reference electrode. The reference barrier partially covers the reference electrode and the reference conductor. The hood covers the reference electrode, the reference conductor and the reference barrier and has an inner space filled with electrolyte. The exchange junction communicates with the inner space in the hood containing electrolyte.
The present invention has a decreased volume, is easily portable and is convenient for an operator to determine ion concentration in the liquid sample without incorporating another device.
Other objectives, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
With reference to
The planar substrate (10) has a first surface and a second surface opposite to the first surface.
With further reference to
The reference electrode assembly (30) is mounted on one surface of the planar substrate (10) and has a reference electrode (31), a reference conductor (32), a reference barrier (33) and a hood (34). The reference electrode (31) may be a AgCl electrode and is mounted on the surface of the planar substrate (10). The reference conductor (32) is mounted on the surface of the planar substrate (10), is electrically coupled with the reference electrode (31), can be detected by the detector and has a proximal end (321) and a distal end (322). The proximal end (321) of the reference conductor (32) directly abuts the reference electrode (31). The reference conductor (32) is made of conductive metal such as silver, copper, gold, aluminum or an alloy thereof or semiconductive material such as polycrystalline silicon, carbon, indium tin oxide (ITO) or the like. The reference barrier (33) partially covers the reference electrode (31) and the reference conductor (32) to protect the reference electrode (31) and the reference conductor (32), which allows the reference electrode (31) to be partially exposed to contact with a liquid sample when used and also allows the distal end (322) of the reference conductor (32) to correspond to the distal end (222) of the working conductor (22) and to be detected by the detector. The reference barrier (33) is made of non-conductive material such as epoxy or UV-cured adhesive or semiconductive material such as silicon dioxide (SiO2) or silicon nitride (SiN). The hood (34) is mounted on the surface of the planar substrate (10), covers the reference electrode (31), the reference conductor (32) and the reference barrier (33) and has an inner space. The inner space is filled with KCl or HCl electrolyte or gel (342) such as agar gel containing KCl or HCl. The hood (34) may be formed integrally with the reference barrier (33). The hood (34) may be made of non-conductive material such as polymer, such as polycarbonate (PC), poly(ethylene) (PE), poly(acrylonitrile, butadiene, styrene) (ABS) or the like, or ceramic.
The exchange junction (341, 343) is made of porous material, allows the liquid sample to communicates with the electrolyte or gel in the hood (34) contacting the reference electrode (31). A preferred porous material has uniform pores and excellent hydrophilic property and may be porous polymer such as poly(vinyl chloride), porous ceramic such as molecular sieve, porous metal such as aluminum, porous microelectromechanical material, fiber or the like. In one aspect, the exchange junction (341) is formed through the hood (34). In another aspect, with reference to
In one embodiment, the working electrode assembly (20) and the reference electrode assembly (30) are respectively mounted on the first surface and the second surface of the planar substrate (10).
With reference to
In the present invention, the working electrode assembly (20) and the reference electrode assembly (30) are integrated on the same planar substrate (10), so the planar integrated ion sensor of the present invention has a decreased volume, is easily portable and is convenient for an operator to determine ion concentration in the liquid sample without incorporating another device.
Even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only. Changes may be made in detail, especially in matters of shape, size and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
| Number | Date | Country | Kind |
|---|---|---|---|
| 097133693 | Sep 2008 | TW | national |