1. Field of the Invention
The present invention relates generally to an antenna, and more particularly to a planar inverted-F antenna (PIFA) used in a portable electronic device.
2. Description of the Prior Art
With the development of wireless communication, more and more portable electronic devices, for example note book, install an antenna system for working in a Wireless Local-area Network (WLAN). Transmitting and receiving signals plays an important role in wireless communication process. In recent years, a majority of WLAN bases on Bluetooth technical standard or 802.11 technical standard. Antenna in Bluetooth technical standard bases on 2.4 GHz frequency band, and in 802.11 technical standard bases on 2.4 GHz and 5 GHz. So, antenna in notebook mostly works in the above frequency bands at the present time.
However, user would not satisfy a portable wireless communication devices only working in WLAN in the future. It's desired to make portable wireless communication device working in Wireless Wide-area Network (WWAN). The portable wireless communication device working in WWAN can work and entertain in more broad area. WWAN adopts two techniques, GSM and CDMA at present. However, a portable wireless communication device can work in GSM unless it has an antenna working in the frequency band of GSM. Antennas in notebook and other portable wireless communication device mostly work in 2.4 GHz frequency and 5 GHz frequency now. However, antennas of the mobile phone working in GSM mostly cannot be set in notebook or other portable wireless communication device because of size or power.
For example, China Patent No. 2689482Y discloses a PIFA capable of working on three frequency bands. The antenna includes three radiating elements, respectively operating at 1800 GHz, 900 MHz, and 2450 MHz. So, the antenna can be set in notebook or other portable wireless communication device for working in GSM. However, this antenna adopts solid structure, that is, the radiating elements, connection element, and grounding element respectively locate in different planes. Complex configuration and taking up more space result in the antenna going against industrialization manufacture, wasting cost and breaching trend of miniaturization development of antenna.
Hence, in this art, a planar inverted-F antenna to overcome the above-mentioned disadvantages of the prior art will be described in detail in the following embodiment.
A primary object, therefore, of the present invention is to provide a planar inverted-F antenna with simplified structure and reduced size.
A second object, therefore, of the present invention is to provide a method of manufacturing the antenna above.
In order to implement the above object and overcomes the above-identified deficiencies in the prior art, the planar inverted F antenna forming in a metal patch, comprises a first radiating element and extending in a first direction, a second radiating element and extending in a second direction different from the first direction, a grounding portion and spacing with the first radiating element and the second radiating element, an connecting portion connecting the first and the second radiating elements and the grounding portion, and a feeder line comprising a inner conductor for attaching to the connecting portion and a outer conductor for attaching to the grounding portion. The first radiating element has a first radiating portion and a second radiating portion being perpendicular to the first radiating portion. The connecting portion comprises a first portion, a second portion paralleling the first portion and s third portion connecting the first portion and the second portion.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description of a preferred embodiment when taken in conjunction with the accompanying drawings.
Reference will now be made in detail to a preferred embodiment of the present invention.
Referring to
The radiating portion 2 comprises a first radiating element 21 operating at a lower frequency and a second radiating element 22 operating at a higher frequency and extending along a first direction. The first radiating element 21 is of L-shape and comprises a first part 210 extending along the first direction and parallel to the second radiating element 22 and a second part 211 extending along a second direction from left end of the first part 210 toward the grounding portion 4. The L-shape design of the first radiating element 21 is capable of avoiding adding the lateral size of the planar inverted-F antenna 1. The connecting portion 3 comprises a first side section 31 parallel to the second part 211 of the first radiating element 21 and connecting the first radiating element 21 and the second radiating element 22, a second side section 32 extending along the first direction from a lower end of the first side section 31 toward the second part 211, and a third side section 33 extending along the second direction from left end of the second side section 32 to terminate the second side section 32 with the grounding portion 4, respectively. The grounding portion 4 is a rectangular piece connecting the third side section 33 and parallel to the second side section 32. A feeding point 5 locates on the second side section 32 near the third side section 33. A feeding line 6 extends from feeding point 5 and connects the grounding portion 4. The feeding line 6 comprises an inner conductor 61 soldered to the feeding point 5, an inner insulating layer 63 enclosing the inner conductor 61, a metal braiding layer 62 soldered to the grounding portion 4 and an outer insolating layer (not labeled).
The second, third side sections 32, 33 of the connecting portion 3 and a longer edge of the grounding portion 4 together form a slot 7 with width equal to the length of the third side section 33. High frequency of the second radiating portion 22 can arrive at a more wider frequency band and a more better radiation impression by changing the width of the slot 7 i.e. the length of the third side section 33 and location of the feeding point 5.
The first radiating element 21, the connecting portion 3, and the grounding portion 4 together form a first planar inverted-F antenna receiving and transmitting lower frequency signal. The second radiating portion 22, the connecting portion 3, and the grounding portion 4 form a second planar inverted F antenna receiving and transmitting higher frequency signal.
Referring to
The method of making the same of the planar inverted-F antenna 1 of the present invention comprises following steps. Firstly, selecting a rectangle metal piece. Secondly, calculating a required length of the radiating portion 2 according to the bands of 900 MHz and 1800 MHz. Thirdly, calculating a length and shape of the connecting portion 3 according to required impendence matching. Fourth, achieving the radiating portion 2, the connecting portion 3, and the grounding portion 4 by digging slots in the rectangle metal piece according to the calculations. Fifth, calculating the location of the feeding point 5 and providing the feeding line 6 connecting to the feeding point 5 according to impendence matching.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2005 1 0041153 | Jul 2005 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6600448 | Ikegaya | Jul 2003 | B2 |
6844853 | Tai et al. | Jan 2005 | B2 |
6847329 | Ikegaya | Jan 2005 | B2 |
6891504 | Cheng | May 2005 | B2 |
6897810 | Dai et al. | May 2005 | B2 |
20040178957 | Chang et al. | Sep 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20070018892 A1 | Jan 2007 | US |