Not Applicable
The various exemplary embodiments relate generally to a mechanical lifting apparatus and more specifically to an apparatus for lifting planar objects from a first level to a second level.
Lifting planar objects such as plywood, glass, roofing panels and solar energy panels are subject to handling and environmental hazards. For example, attempting to hand carry a sheet of plywood up a ladder creates safety hazards for the handler and those working in the vicinity of the ladder. Moreover, planar objects are subject to wind influences which cause the planar objects to act as a sail, thus increasing the risk of damage and/or injuries from the movement of these objects. As such, a simple lifting apparatus which reduces the risks inherent in the physical handling of planar objects would be highly desirable in the relevant art.
The various exemplary embodiments disclosed herein address the deficiencies of the relevant art and provides a planar object lifting apparatus which is simple to use, minimizes handling and is less vulnerable to wind effects. In an exemplary embodiment, a rectilinear elongated frame is provided. The frame formed from two spaced U-beams aligned in opposition such that each U-shaped channel of the U-beam defines a longitudinal runway. A section below the middle of the frame includes an area removed from a forward face which defines an entranceway to the longitudinal runways for placement of the planar objects to be lifted. The entranceway is dimensioned to receive the planar object for placement on a transport carriage.
The carriage is dimensioned to laterally span the two spaced U-beams such that a portion of the carriage and a portion of the planar object are confined within each interior longitudinal runway during lifting. The carriage includes a skid perpendicularly joined to a forward face of the carriage at about a bottom edge. The skid provides support to the planar object during lifting. A pull cable is affixed at one end to the carriage at about a midpoint of its lateral dimension and in proximity to a top edge of the carriage. A first cross member is laterally joined to a top of the frame. The first cross member includes a pulley aligned such that the pull cable when in communication with the pulley and affixed to the carriage are aligned along a common longitudinal centerline between the two U-beams.
A second cross member is laterally joined to the frame in proximity to the entranceway. In an exemplary embodiment, the first and second cross members define an upper and lower length of travel for the carriage within the longitudinal runways. In an exemplary embodiment, the first and second cross members are laterally adjustable to accommodate planar objects of varying widths. A winch is coupled to an opposite end of the pull cable and configured to move the carriage and planar object through the longitudinal runways. The winch may be manually or electrically cranked.
The features and advantages of the various exemplary embodiments will become apparent from the following detailed description when considered in conjunction with the accompanying drawings. Where possible, the same reference numerals and characters are used to denote like features, elements, components or portions of the inventive embodiments. It is intended that changes and modifications can be made to the described exemplary embodiments without departing from the true scope and spirit of the inventive embodiments as is defined by the claims.
Planar objects, such as fiberglass roofing panels, roofing shingles, plywood, solar electric photovoltaic panels, window glass and other planar objects are difficult to handle and carry particularly under windy conditions. In the case of the solar electric photovoltaic panels, each panel is both fragile and expensive. Attempting to lift a solar panel under windy conditions could result in damage to the panel, property damage or personnel injury.
Referring to
In an exemplary embodiment, the cross members 30, 70, 80 may be constructed from telescoping rectangular, L-brackets or tube stock to allow the lateral dimensions of the lift to be adjusted. In this exemplary embodiment, the cross members 30, 70, 80 are constructed from two different diameters or cross sectional areas 30A,B, 70A,B, 80A,B.
In another exemplary embodiment, the cross members are constructed from aluminum L-beams which have overlapping sections. The overlapping sections are than bolted or welded together. The cross members 30, 70, 80 may be predrilled to allow common lateral adjustments and locked in place with a pin, bolt, or other mechanism at common junctions 35, 75, 85 between the telescoping sections 30A,B, 70A,B, 80A,B.
In an exemplary embodiment, additional cross braces 190A,B are longitudinally affixed periodically along the rear surfaces of the U-beams 10, 20. The cross braces 190A,B are intended to provide additional structural integrity to the frame. The cross braces may be aligned in an X configuration using thin strips of aluminum or other suitable materials or in zigzag configuration when using L-beams (not shown.)
The carriage 40 is raised and lowered through the longitudinal runways 330, 340 (
In this exemplary embodiment, the second pulley 120 allows the winch 140 to be mounted on a side of the lift. The attachment point 125 of the pull cable 130 may utilize an eye-bolt affixed at or near the top edge of carriage 40, a hole bored through the carriage 40 or any common means of attaching a cable for pulling an object. One skilled in the art will appreciate that there are many common ways of attaching the pull cable 130 to the carriage 40.
To allow placement of a planar object on the carriage 40, parallel elongated sections 90, 100 of the U-beams are removed from their forward faces. The removed sections 90, 100 define an aperture 160, 180 to allow loading of planar objects onto the carriage 40. As an alternative to removal of the parallel sections 90, 100, L-beams may be affixed and longitudinally aligned to the lower ends of the U-beams 10, 20 to form the aperture 160, 180.
The carriage 40 is disposed within the longitudinal runways 330, 340 and dimensioned to longitudinally extend from the lower end of travel defined by a cross member 70 slightly beyond the longitudinal dimension of the aperture 180 to prevent the carriage from becoming dislodged from the longitudinal runways 330, 340 during loading. In an exemplary embodiment, the lateral dimensions 180 of the carriage 40 are slightly smaller than the lateral extent 360 (
In an exemplary embodiment, the lateral dimensions of the carriage 40 may be configured with the telescoping stock arrangement described for the cross members 30, 70, 80 above. In this exemplary embodiment, the carriage 40 is constructed of telescoping sections 40A,B, 50A,B, 60A,B which allows for changes in the lateral extent of the carriage to accommodate varying lateral dimensions of planar objects to be lifted. As previously described, the telescoping sections 40A,B, 50A,B, 60A,B may be predrilled to allow common lateral adjustments and locked in place with a pin, bolt or other mechanism at common junctions 45, 55, 65 between the telescoping sections 40A,B, 50A,B, 60A,B.
In an exemplary embodiment, one or more skids 110 are affixed perpendicularly to a forward face of the carriage 40 at or near a bottom edge of the carriage 40. The skid 110 may be constructed from aluminum L or U beam stock.
The 30A,B, 70A,B, 80A,B provide support for the planar objects being lifted. The 30A,B, 70A,B, 80A,B are dimensioned to provide a sufficient cross sectional area to support the weight of the planar objects to be lifted. The skid 110 may be affixed to the carriage 40 so as to travel in the void space 170 between the U-beams 10, 20 during lifting. Configuring the skid 110 to extend forward beyond the traverse cross sectional extent of the U-beams 10, 20 provide greater flexibility in load distribution when lifting irregularly shaped planar objects.
The lift is envisioned to be constructed of aircraft grade aluminum of at least 6061-T6 for longitudinal dimensions of up to 10 feet or 2024-T3 or 7075-T6 where longitudinal dimensions of greater than 10 feet are anticipated. The carriage 40 including the skid 110 may be constructed from equivalent aluminum materials. Alternately, the U-beams 10, 20, cross members 30, 70, 80 and the carriage 40 may constructed from pulltruded fiberglass, other grades of aluminum or composite carbon fiber materials to reduce weight. Typical dimensions of the U-beams when constructed from aluminum stock are approximately 13 feet in length each, aligned in parallel and spaced approximately 46 inches apart. The U-beams are constructed from standard 5¾ inch U-beam stock. To obtain the 13 foot length, two or more U-beams may be longitudinally connected by wielding or overlapping the sections with a larger U-beam section which provides at least 10 inches of overlap. The larger U-beam section used to join the U-beams should provide a snug fit around the two U-beam sections to ensure structural integrity of the lift. U-beam sections may be added or removed to accommodate a specific implementation.
The pull cable should preferably be constructed of nylon coated stainless steel type 304 having at least an eighth of an inch in diameter for loads up to 900 pounds. The winch 140 may be either electrically or manually powered. Common boat type winches are satisfactory for use with the lift. An optional base 5 may be provided to prevent the lift from becoming embedded or unbalanced in soft soils or turfs.
As previously discussed, the carriage 40 may be constructed to allow changes to the lateral dimension by fabricating sections 40A,B, 50A,B, 60A,B from telescoping tube or angle stock. The telescoping sections 40A,B, 50A,B, 60A,B allows for changes in the lateral extent of the carriage 40 to accommodate varying lateral dimensions of planar objects to be lifted. The telescoping sections 40A,B, 50A,B, 60A,B may be predrilled to allow common lateral adjustments and locked in place with a pin or other mechanism at the common junctions 45, 55, 65 between the telescoping sections 40A,B, 50A,B, 60A,B.
The planar object 320, for example a solar electric panel, is then inserted at a slight angle into the aperture defined by the removed elongated sections 90, 100 such that a portion of the planar object is encompassed within the U-beams 10, 20 and then set upon the skid 110. Once positioned on the skid 110 and carriage 40, the winch 140 is then turned to raise the planar object 320 and carriage 40 until the carriage 40 reaches the upper end of travel defined by the first cross member 30 or sufficient gripping surface 320A of the planar object 320 projects beyond the first cross member 30 for safe removal as is depicted in
The various exemplary inventive embodiments described herein are intended to be merely illustrative of the principles underlying the inventive concept. It is therefore contemplated that various modifications of the disclosed embodiments will, without departing from the inventive spirit and scope, be apparent to persons of ordinary skill in the art. They are not intended to limit the inventive embodiments to any precise form described. In particular, it is contemplated that the lift and related components may be constructed from any suitable No specific limitation is intended to a particular construction material or units of measure are intended or implied. Other variations and inventive embodiments are possible in light of above teachings, and it is not intended that this Detailed Description limit the inventive scope, but rather by the Claims following herein.
Number | Name | Date | Kind |
---|---|---|---|
118468 | Macomb | Aug 1871 | A |
261880 | Stevens | Aug 1882 | A |
286116 | Clapp et al. | Oct 1883 | A |
298933 | Barcus | May 1884 | A |
302855 | Lutz | Jul 1884 | A |
328571 | Dawes | Oct 1885 | A |
487791 | Stone | Dec 1892 | A |
573630 | Williams | Dec 1896 | A |
593392 | Fitch | Nov 1897 | A |
1794175 | Honig | Feb 1931 | A |
1808954 | Hallenbeck | Jun 1931 | A |
1946982 | Mepeak | Feb 1934 | A |
2405505 | Kleidon | Aug 1946 | A |
2626683 | Eppink | Jan 1953 | A |
2702095 | Kelly | Feb 1955 | A |
3055523 | Wurn | Sep 1962 | A |
3089599 | Casella | May 1963 | A |
3115211 | Ostrander, Jr. | Dec 1963 | A |
3223199 | Schwehr | Dec 1965 | A |
3666054 | Ellings et al. | May 1972 | A |
3770133 | Kolker | Nov 1973 | A |
3891062 | Geneste | Jun 1975 | A |
3902700 | Cox | Sep 1975 | A |
4312328 | Leyman, III | Jan 1982 | A |
4458786 | Lebre | Jul 1984 | A |
4487308 | Focke et al. | Dec 1984 | A |
4491196 | Bocker | Jan 1985 | A |
4550806 | Bocker | Nov 1985 | A |
4607574 | Richards | Aug 1986 | A |
5706798 | Steinorth | Jan 1998 | A |
20080093176 | Rosenthal | Apr 2008 | A1 |