1. Field of the Invention
This invention generally relates to solar cells and, more particularly, to a planar structure solar cell, using an inorganic hole-transport material.
2. Description of the Related Art
As evolved from dye-sensitized solar cells (DSSCs), perovskite-sensitized solar-cells have recently attracted a great deal attention with a record high efficiency breakthrough (>17%) based upon low cost organometal trihalide perovskite absorbers. It has been suggested that with the optimization of the cell structure, light absorber, and hole conducting material, this technology could advance to an efficiency that surpasses that of copper indium gallium (di)selenide (CIGS) (20%) and approaches crystalline silicon (25%). Conventional perovskite based solar cells use two common types of architecture: flat and mesoscopic. With the flat architecture, one absorber layer is deposited directly on a flat titanium oxide (TiO2) surface forming a thin film, in a fashion similar to thin film solar cells. Such a planar heterojunction-type device comprises a planar wide bandgap n-type semiconductor material, such as TiO2, zinc oxide (ZnO2) etc., on a fluorine-doped tin oxide (SnO2:F, FTO) glass substrate; a directly deposited perovskite material on the planar n-type semiconductor as the light absorber layer; an organic hole-transport material (HTM) on top of the absorber layer, and a counter electrode layer. The second approach adopts a configuration similar to solid dye-sensitized solar cells with a mesoporous semiconducting metal oxide; a perovskite material; an organic hole transporting redox material (HTM) to transport positive charges (holes) from the perovskite to the counter electrode; and a gold (Au) or platinum (Pt) counter electrode. Overall, the organic/inorganic perovskite material based solar cell combines the technical merits of solid-state dye-sensitized solar cells (ssDSCs) with thin film solar cell (TFSC) and represents the trend of solar cells development.
The mesoporous TiO2 electrode 106 has long been the most commonly used electron transporter material since the advent of liquid DSCs. This porous TiO2 structure provides a sufficient internal surface area to which dye molecules can attach, and, therefore maximize light harvesting efficiency. The electron transfer from selected dyes to the porous TiO2 electrode is not only a favored process but also is much faster than other recombination processes, making porous TiO2 an indispensable photo anode for DSCs.
In addition to its relatively high cost, the formulation and deposition of the spiro-OMeTAD is also very complicated. In particular, the formulation and deposition method are directly related to the proper functionality of this HTM. Besides, the HTM itself and components of the formulation are extremely moisture sensitive, which restricts the environmental during formation, handling, and deposition of the spiro-OMeTAD. This also leads to moisture-sensitive final devices. On the other hand, the functionality (i.e. conductivity) of HTM arises from the selective oxidation of the tertiary amine nitrogen atoms. In the presence of oxygen, such oxidation would naturally occur over time resulting over-oxidation of the HTM that diminishes the conductivity, thus affecting the device performance over time. The moisture sensitivity and over-oxidation in an oxygen ambient environment significantly limit the application of this HTM in the present technology.
To replace the spiro-OMeTAD HTM with other types of HTM will not only lower the cost of such a perovskite cell by simplifying the device architecture, as depicted in
It would be advantageous if a planar structure perovskite solar cell could be fabricated using an inorganic HTM material different from spiro-OMeTAD.
To address the problems with the use of spiro-OMeTAD as a hole-transport material (HTM), an inorganic HTM layer is provided that serves as electron blocking layer between a solar cell perovskite layer and counter electrode. In particular, the primary function of the HTM material in solid-state dye-sensitized solar cells (ssDSC), or solar cells originating from the sensitized architecture, is either to provide conductivity of the positive charges to the counter electrode, or when necessary, to provide a barrier between the absorber layer and counter electrode to avoid recombination of the charges on the metal/absorber interface. In the case of perovskite based solar cells, the recombination of charges at the interface between the absorber and counter electrode results in a non-performing cell. Therefore, such a blocking layer is indispensable to a planar perovskite architecture. However, this new inorganic HTM layer is not an insulator, but more like a p-type wide bandgap semiconductor that can transport holes from the perovskite to the counter electrode. Such materials include molybdenum, copper, nickel, or vanadium oxides, and they can be either sputtered or solution processed onto the top of perovskite. In addition, the deposition technique may include thermal evaporation, reactive sputtering, or the oxidation of the appropriate metal layer. The thickness of such an inorganic HTM is in the range of 1-150 nanometers.
Accordingly, a method is provided for forming a planar structure solar cell. Generally, the method forms a transparent conductive electrode, with a planar layer of a first metal oxide adjacent to the transparent conductive electrode. For example, the first metal oxide may be an n-type metal oxide. A semiconductor absorber layer is formed adjacent to the first metal oxide, comprising organic and inorganic materials. A p-type semiconductor HTM layer is formed adjacent to the semiconductor absorber layer, and a metal electrode is formed adjacent to the HTM layer. In one aspect, the HTM layer is an inorganic material. such as a p-type metal oxide.
More explicitly, the transparent conductive electrode is formed overlying a transparent substrate, with the planar layer of the first metal oxide formed overlying the transparent conductive electrode, the semiconductor absorber layer formed overlying the first metal oxide, the HTM layer formed overlying the semiconductor absorber layer, and the metal electrode formed overlying the HTM layer. Alternatively, the metal electrode is formed overlying a substrate, with the HTM layer formed overlying the metal electrode, the semiconductor absorber layer formed overlying the HTM layer, the planar layer of the first metal oxide formed overlying the semiconductor absorber layer, and the transparent conductive electrode formed overlying the first metal oxide. The architectures described above may include additional layers with different functionalities, such as might be useful for the purposes of charge separation and the prevention of recombination.
The planar layer of first metal oxide may be titanium oxide (TiO2), tin oxide (SnO2), zinc oxide (ZnO), niobium oxide (Nb2O5), tantalum oxide (Ta2O5), barium titanate (BaTiO3), strontium titanate (SrTiO3), zinc titanate (ZnTiO3), or copper titanate (CuTiO3).
Some explicit examples of HTM materials include stoichiometric and non-stoichiometric molybdenum (VI) oxide, stoichiometric and non-stoichiometric vanadium (V) oxide, stoichiometric and non-stoichiometric nickel (II) oxide, stoichiometric and non-stoichiometric tungsten (VI) oxide, stoichiometric and non-stoichiometric chromium (VI) oxide, and stoichiometric and non-stoichiometric copper (I) oxide.
Additional details of the above-described method and a planar structure solar cell are presented below.
As used herein, an n-type material is an extrinsic semiconductor with a larger electron concentration than hole concentration. The phrase ‘n-type’ comes from the negative charge of the electron. In n-type semiconductors, electrons are the majority carriers and holes are the minority carriers. As opposed to n-type semiconductors, p-type semiconductors have a larger hole concentration than electron concentration. The phrase ‘p-type’ refers to the positive charge of the hole. In p-type semiconductors, holes are the majority carriers and electrons are the minority carriers.
A semiconductor absorber layer 408 overlies the first metal oxide 406, comprising organic and inorganic materials. The semiconductor absorber layer 408 has the general formula of ABXzY3-z;
where “A” is an organic monocation;
where B is a transition metal dication;
where X and Y are inorganic monoanions; and,
where z is in a range of 0 to 1.5.
The organic monocation “A” is typically a substituted ammonium cation with the general formula of R1R2R3R4N;
where R is hydrogen, or a compound derived from linear alkanes, branched alkanes, cycloalkanes, (poly)cycloalkanes, cis- and trans-linear alkenes, cis- and trans-branched alkenes, linear alkynes, branched alkynes, (poly)alkynes, aromatic hydrocarbons, (poly)aromatic hydrocarbons, heteroarenes, (poly)heteroarenes, thiophenes, (poly)thiophenes. (poly)anilines, or combination of above-mentioned elements.
The dication B may be Pb2+, Sn2+, Cu2+, Ge2+, Zn2+, Ni2+, Fe2+, Mn2+, Eu2+, or Co2+. The monoanions X and Y are independently selected (may be the same or different materials), and may be halogenides of F-, Cl-, Br-, and I-, cyanides, or thiocyanides. The absorber material may also be a mixture or combination of the above-listed materials. In one aspect, the semiconductor absorber layer may be a perovskite material such as CH3NH3Pbl3-XClX.
A p-type semiconductor hole-transport material (HTM) layer 410 overlies the semiconductor absorber layer 408, and a metal electrode 412 overlies the HTM layer 410. The metal electrode may be a highly conductive metal such as silver, aluminum, copper, molybdenum, nickel, gold, or platinum. Typically, the HTM layer 410 is an inorganic material, having a thickness 414 in the range of 1 to 150 nanometers. Note: the figure is not drawn to scale. In one aspect, the HTM layer material has a bandgap greater than 3 electron volts (eV). As is well known in the art, a bandgap is the range between the valence band and the conduction band, in which electron states cannot exist. More explicitly, the bandgap can be defined as the difference in energy, as expressed in electron volts, between. the top of the valence band and the bottom of the conduction band of insulator and semiconductor materials. This is equivalent to the energy required to free an outer shell electron from its orbit about the nucleus to become a mobile charge carrier, able to move freely within a solid material. Substances with large band gaps are generally insulators, those with smaller hand gaps are semiconductors, while conductors either have very small band gaps or none, because the valence and conduction hands overlap.
Some explicit examples of HTM layer materials include stoichiometric and non-stoichiometric molybdenum (VI) oxide, stoichiometric and non-stoichiometric vanadium (V) oxide, stoichiometric and non-stoichiometric nickel (II) oxide, stoichiometric and non-stoichiometric tungsten (VI) oxide, stoichiometric and non-stoichiometric chromium (VI) oxide, and stoichiometric and non-stoichiometric copper (I) oxide. This is not an exhaustive list of possible HTM materials, as metal oxides with similar characteristics may also enable the solar cell 400.
The solar cell of
As described above, a relatively thin layer of the p-type semiconductor oxide (e.g., 1 to 100 nanometers) with a large handgap may be used as the HTM material between an absorber layer comprised of hybrid organic/inorganic perovskite material and the metal counter electrode. The insertion, of such an oxide semiconductor layer into the flat heterojunction-type architecture replaces conventional organic hole transporting materials such as spiro-OMeTAD. The deposition of such a semiconductor oxide film over perovskite may be carried out though physical deposition process such as sputtering or evaporation.
Step 802 forms a transparent conductive electrode. Step 804 forms a planar layer of a first metal oxide adjacent to the transparent conductive electrode. Step 806 forms a semiconductor absorber layer adjacent to the first metal oxide, comprising organic and inorganic materials. Step 808 forms a p-type semiconductor HTM layer adjacent to the semiconductor absorber layer. Step 810 forms a metal electrode adjacent to the HTM layer.
In one aspect, as described above in
Alternatively, as described above in
The HTM layer formed in Step 808 is a inorganic material and may be a p-type metal oxide, some examples of which include stoichiometric and non-stoichiometric molybdenum (VI) oxide, stoichiometric and non-stoichiometric vanadium (V) oxide, stoichiometric and non-stoichiometric nickel (II) oxide, stoichiometric and non-stoichiometric tungsten (VI) oxide, stoichiometric and non-stoichiometric chromium (VI) oxide, and stoichiometric and non-stoichiometric copper (I) oxide. In one aspect, the HTM layer is formed to a thickness in the range of 1 to 150 nanometers.
The planar layer of first metal oxide formed in Step 804 may be an n-type metal oxide, some examples of which include titanium oxide (TiO2), tin oxide (SnO2), zinc oxide (ZnO), niobium oxide (Nb2O5), tantalum oxide (Ta2O5), barium titanate (BaTiO3), strontium titanate (SrTiO3), zinc titanate (ZnTiO3), and copper titanate (CuTiO3).
A planar structure solar call and associated fabrication processes have been provided. Examples of particular materials and process steps have been presented to illustrate the invention. However, the invention is not limited to merely these examples. Other variations and embodiments of the invention will occur to those skilled in the art.