Plane commutator with metal base plate and carbon compound segments having projections

Information

  • Patent Grant
  • 6657355
  • Patent Number
    6,657,355
  • Date Filed
    Wednesday, March 7, 2001
    23 years ago
  • Date Issued
    Tuesday, December 2, 2003
    20 years ago
Abstract
A plane commutator includes a plurality of commutator segments made of carbon compound, a resinous boss member and a plurality of metal base plates. The plurality of the commutator segments forms a disk-like commutator surface at an end thereof and a base portion at the other end. The resinous base member is disposed in contact with the base portion to support the plurality of commutator segments. Each commutator segment has a projection extending from the base portion, and each base plate has an expansible through hole fitted to the projection. Each projection includes metal powder at portion in contact with the through hole to provide good electrical connection.
Description




CROSS REFERENCE TO RELATED APPLICATION




The present application is based on and claims priority from Japanese Patent Application 2000-81406 filed Mar. 23, 2000, the contents of which are incorporated herein by reference.




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a plane commutator that has a disk-like commutator surface and a method of manufacturing such a commutator.




2. Description of the Related Art




A plane commutator that has a disk-like flat commutator surface is installed in a motor such as a motor of a motor-integrated fuel-pump unit. The plane commutator is fitted to a rotary shaft of the motor. The plane commutator is comprised of a plurality of commutator segments (generally made of a burnt carbon) insulated by slits from each other, a plurality of metal base plates, and a resinous boss member. The plurality of the commutator surface forms the flat commutator surface. Each of the commutator segments is connected to one of the metal base plates.




There are two types of the plane commutator: the first type has the metal base plate connected to an end of the commutator and the commutator surface formed at the other end of the commutator; and the second type has the metal base plate connected to portions around the same end of the commutator as the commutator surface.




In the first type, it is difficult to mechanically fix the base plates to the commutator due to spring-back force of the base plate. Therefore it is necessary to weld or solder the base plates to the commutator segments while pressing the base plate in the axial direction thereof.




U.S. Pat. No. 5,925,961 or its corresponding Japanese Application, JP-A-10-4653, discloses a method of fixing the base plate to commutator segments of the first type commutator. Each commutator segment has a projection extending in the axial direction from the surface of the commutator opposite the commutator surface. The metal base plate has holes to which the projections are inserted. The holes are thereafter crimped or pressed at the circumference thereof to mechanically fix the base plate to the commutator segments.




However, it is difficult to control the pressing force to provide a desired strength in the disclosed method. If the pressing force is not controlled as desired, the projection may be broken. This is an obstacle to mass-production of the above type of the motors.




SUMMARY OF THE INVENTION




A main object of the invention is to provide an improved motor and a method of manufacturing such a motor.




In a plane commutator according to a preferred embodiment of the invention, a disk-like commutator surface is formed of a plurality of commutator segments at an end thereof and a base portion is formed at the other end, and each commutator segment has a tapering projection. A plurality of metal base plates is respectively connected to the plurality of commutator segments at the base portion. Each base plate has an expansible through hole force-fitted to the tapering projection, and each projection includes metal powder at portion in contact with the through hole.




Therefore, it is easy to control the elastic binding force without using any specific tool, and the projection can be prevented from being broken or damaged.




Preferably, each metal base plate has a tapering sleeve extending from the through hole to be in contact with the projection. The sleeve may have a plurality of slits for providing more suitable elastic contact with the projection.











BRIEF DESCRIPTION OF THE DRAWINGS




Other objects, features and characteristics of the present invention as well as the functions of related parts of the present invention will become clear from a study of the following detailed description, the appended claims and the drawings. In the drawings:





FIG. 1

is a partially cross-sectional view in the axial direction of a commutator according to a first embodiment of the invention;





FIG. 2

is an exploded fragmentary cross-sectional view of a commutator according to a second embodiment of the invention;





FIG. 3

is a fragmentary cross-sectional view in the axial direction of a commutator according to a third embodiment of the invention;





FIG. 4

is a fragmentary cross-sectional view in the radial direction of a commutator according to a fourth embodiment of the invention; and





FIG. 5

is a fragmentary cross-sectional view in the axial direction of the commutator according to the fourth embodiment.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




A plane commutator to be installed into a fuel pump motor according to a first embodiment of the invention is described with reference to FIG.


1


.




The plane commutator is comprised of a plurality of radially extending commutator segments


1


, a plurality of metal base plates


2


and a boss member


3


. The plurality of commutator segments


1


is made of sintered carbon compound and spaced apart from each other to form a disk-like commutator surface at an end thereof.




Each of the base plates


2


has an engagement portion


21


, a wall portion


23


and a terminal portion


24


. The engagement portion


21


engages a corresponding part of the surface (hereinafter referred to as the back surface) formed at the other end of the plurality of commutator segments


1


behind the commutator surface. The wall portion


23


extends from the engagement portion


21


in the axial direction away from the commutator surface along the outer periphery of the boss member


3


. The terminal portion


24


extends aslant to radially outside from the wall portion


23


to connect an end of armature coil by fusion welding or the like.




The boss member


3


is made of a generally disk-like resinous member that has a center shaft hole


30


. The boss member


3


closely covers the engagement portions


21


of the base plates


2


except the portions in contact with the commutator segments


1


. The boss member


3


also covers the plurality of commutator segments


1


except the commutator surface and side surfaces thereof.




Each of the commutator segments


1


has a projection


4


formed at the back surface to extend downward as shown in FIG.


1


. Each of the base plate


2


has an engagement sleeve


210


, to which one of the projections


4


is force fitted. The engagement sleeve


210


can be substituted by a through hole. The projections


4


and the inner periphery of the sleeves


210


are slightly tapered off so that the projections


4


can be easily force-fitted to the sleeves


210


and securely held under a uniform compressive force of the sleeve


210


. Therefore, the projections


4


are not damaged when they are fitted to the sleeve


210


.




The upper surface of the engagement portion


21


is in close contact with the back surface of the commutator segments


1


, thereby providing a good electrical contact between the plurality of commutator segments


1


and the plurality of base plates


2


. If desired, the plurality of commutator segments


1


and the plurality of base plates


2


are thereafter welded together by heating or pressuring to reduce the electrical resistance. In assembling, each projection of the plurality of commutator segments


1


is fitted to one of sleeves


210


of the plurality of the base plates


2


. The plurality of base plates


2


can be formed from a unitary cylindrical member. The plurality of the base plates


2


are separated by a cutter when commutator slits are formed after all the projections are fitted to the sleeves


210


.




The plurality of commutators


1


and the plurality of base plates


2


in a unit are set in a metal die to mold with resin. Thus, a unitary member, which is comprised of the boss member


3


covering the engagement portion


21


and the wall portions


23


extending along the outer periphery of the boss member


3


, is formed.




Then, a plurality of radial slits is formed in the disk to provide the plurality of commutator segments


1


. Finally, lead wires are connected to the terminal portion


24


by fusion welding. The engagement portion


21


is dispersed with a suitable amount of metal powder to prevent the projections from cracking and to reduce the electrical resistance thereof.




A plane commutator according to a second embodiment of the invention is described with reference to FIG.


2


. In the following figures, the same reference numeral corresponds to the same part or component shown in FIG.


1


.




A plurality of longitudinal slits


211


is formed in the sleeves


210


at equal intervals. When each projection


4


is inserted to one of the tapered sleeves


210


, the sleeve


210


expands elastically so that the projection


4


and the sleeve


4


are closely in contact with each other. This prevents the metal base plates


2


from falling off the commutator segments


1


.




A plane commutator according to a third embodiment of the invention is described with reference to FIG.


3


.




Each commutator segment


1


has two or more projections


4


, and each base plate


2


has the corresponding number of shallow sleeves


210


. This arrangement can shorten the axial length of the plane commutator.




A plane commutator according to a fourth embodiment of the invention is described with reference to

FIGS. 4 and 5

.




The commutator segment


1


has a generally rectangular parallelepiped projection


6


instead of the cylindrical projections


4


, and the metal base plate


2


has a pair of parallel walls


7


that sandwiches the projection


6


instead of the sleeve


210


. The projection


6


tapers off, and the inside space of the pair of walls


7


also tapers off correspondingly. Therefore, the projection


6


and the pair of walls


7


are securely fitted to each other without concentration of stresses on the projection


6


.




In the foregoing description of the present invention, the invention has been disclosed with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made to the specific embodiments of the present invention without departing from the broader scope of the invention as set forth in the appended claims. Accordingly, the description of the present invention is to be regarded in an illustrative, rather than a restrictive, sense.



Claims
  • 1. A plane commutator comprising:a plurality of commutator segments made of carbon compound spaced apart from each other having a disk-like commutator surface at an end thereof and a base portion at the other end, each said commutator segments having a projection extending from said base portion; a resinous boss member disposed in contact with said base portion to support said plurality of commutator segments; and a plurality of metal base plates, each said base plate having an engagement portion in contact with one of said commutator segments, and a terminal portion extending along an outer periphery of said boss member; wherein said engagement portion has an expansible sleeve extending along said projection of one of said commutator segments over a length which is greater than the thickness of said base plate to provide a surface for receiving said projection under pressure, and each of said projections includes metal powder at a portion in contact with one of said through holes.
  • 2. The plane commutator as claimed in claim 1, wherein each of said sleeves has a plurality of slits.
  • 3. The plane commutator as claimed in claim 1, wherein said sleeve includes a portion which tapers off.
  • 4. A plane commutator comprising:a plurality of commutator segments made of carbon compound spaced apart from each other having a disk-like commutator surface at an end thereof and a base portion at the other end, each said commutator segment having a projection extending from said base portion; a resinous boss member disposed in contact with said base portion to support said plurality of commutator segments; and a plurality of metal base plates having a thickness, each said base plate having an expansible sleeve extending along said projection of one of said commutators over a length which is greater than the thickness of said base plate to provide a cylindrical surface to be fitted to said projection of one of said commutators and a terminal portion extending along an outer periphery of said boss member; wherein each of said projections includes metal powder at a portion in contact with one of said sleeves.
  • 5. The commutator as claimed in claim 4, whereineach of said sleeves has a plurality of slits.
  • 6. The plane commutator as claimed in claim 4, wherein said sleeve includes a portion which tapers off.
  • 7. A plane commutator comprising:a plurality of commutator segments made of sintered carbon compound disposed to provide a disk-like commutator surface at an end thereof and a base portion at the other end, each said commutator segments having a projection extending from said base portion; a resinous boss member disposed in contact with said base portion to support said plurality of commutator segments together at equal intervals; and a plurality of metal base plates, each said base plate having an expansible hollow member extending along said projection over a length which is greater than the thickness of said base plate to be fitted to said projection of one of said commutator segments under pressure and a terminal portion extending along an outer periphery of said boss member; wherein each of said projections includes metal powder at a portion in contact with one of said recess member.
  • 8. The plane commutator as claimed in claim 7, wherein each said expansible hollow member comprises a sleeve.
  • 9. The plane commutator as claimed in claim 8, wherein each said expansible hollow member has a plurality of slits.
  • 10. The plane commutator as claimed in claim 7, wherein each said expansible hollow member comprised a pair of parallel walls.
  • 11. The plane commutator as claimed in claim 7, wherein each said expansible hollow member includes a portion which tapers off.
  • 12. A plane commutator comprising:a plurality of commutator segments made of carbon compound spaced apart from each other having a disk-like commutator surface at an end thereof and a base portion at the other end, each said commutator segments having a projection extending from said base portion; a resinous boss member disposed in contact with said base portion to support said plurality of commutator segments; and a plurality of metal base plates, each said base plate having an engagement portion in contact with one of said commutator segments, and a terminal portion extending along an outer periphery of said boss member; wherein said engagement portion has an expansible sleeve extending along said projection of one of said commutator segments over a length which is greater than the thickness of said base plate to provide a surface for receiving said projection under pressure.
  • 13. A plane commutator comprising:a plurality of commutator segments made of carbon compound spaced apart from each other having a disk-like commutator surface at an end thereof and a base portion at the other end, each said commutator segment having a projection extending from said base portion; a resinous boss member disposed in contact with said base portion to support said plurality of commutator segments; and a plurality of metal base plates having a thickness, each said base plate having an expansible sleeve extending along said projection of one of said commutators over a length which is greater than the thickness of said base plate to provide a cylindrical surface to be fitted to said projection of one of said commutators and a terminal portion extending along an outer periphery of said boss member.
Priority Claims (1)
Number Date Country Kind
2000-081406 Mar 2000 JP
US Referenced Citations (16)
Number Name Date Kind
5157299 Gerlach Oct 1992 A
5189329 Strobl Feb 1993 A
5422528 Prahl Jun 1995 A
5629576 Shimoyama May 1997 A
5637944 Shimoyama Jun 1997 A
5679996 Strobl Oct 1997 A
5898989 Strobl May 1999 A
5912523 Ziegler et al. Jun 1999 A
5925961 Sugiyanma Jul 1999 A
5932949 Ziegler et al. Aug 1999 A
5955812 Warner Sep 1999 A
6222298 Saito et al. Apr 2001 B1
6242838 Kiyose et al. Jun 2001 B1
6259183 Hotta et al. Jul 2001 B1
6359362 Schmidt Mar 2002 B1
20020180300 Inukai et al. Dec 2002 A1
Foreign Referenced Citations (8)
Number Date Country
31220885 Dec 1982 DE
59103545 Jun 1984 JP
08065967 Mar 1996 JP
08308183 Dec 1996 JP
2001268854 Mar 2000 JP
2000150100 May 2000 JP
2001268855 Sep 2001 JP
WO 9957797 Nov 1999 WO