This invention relates to airborne flight and power generation systems, and more specifically to an airborne vehicle configured to maintain pitch control during tethered take-off and landing.
Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.
The invention can be implemented in numerous ways, including as a process; an apparatus; and a system. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention. Unless stated otherwise, a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.
A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.
A configuration of aerodynamic surfaces and actuators useful in the launch, hover, transition, and landing of a powered kite is disclosed. In some embodiments, the powered kite comprises a main wing, a tail wing, and may comprise a number of other wings. The kite is connected to a tether which is connected to the ground or some other object. The kite comprises a number of rotors, which are used to generate thrust with the input of power or generate power at the cost of drag. The tail wing of the powered kite is located behind and above the center of mass and tether attachment location on the powered kite in the aerodynamic frame of the crosswind or static modes of flight. The tail wing is partially or fully actuated such that the tail wing maintains primarily attached aerodynamic flow and augments the stability of the kite when the kite is transitioning to and from the hovering mode of flight and while the wing is in the hovering mode of flight. The placement and actuation of the tail foil in the manner described improves the aerodynamic stability and increases the aerodynamic control authority in some modes of flight over a range of environmental conditions including conditions associated with a range of wind magnitudes, a range of wind directions, and a range of other qualities of wind.
A powered kite which is flown both in the manner of a tethered aircraft and in the manner of a tethered helicopter can be designed to incorporate aerodynamic surfaces that improve the pitch-axis aerodynamic stability of the craft in both modes of flight while having no significant detrimental effects on the stability in other axes. When flying in the manner of an aircraft on a string, the kite must primarily control or passively attenuate tension on the tether through the pitch axis of the kite in order to increase fatigue life or decrease tether and wing structural size and mass. When hovering in the manner of a helicopter, the kite must have adequate control authority on the pitch axis to prevent uncontrollable excitation of the tether by gusts of wind. Control of the pitch axis in both modes of flight may be improved by an all-moving tail high above and behind the main wing. When flying as a tethered airplane, the tail wing acts in the manner of a normal tail. Additionally, in some embodiments, the tail may add a stabilizing effect through tailoring of the tail wing airfoil drag coefficient such that it produces higher drag at negative angles of attack and lower drag at positive angles of attack, in a manner which increases the stability of the powered kite. When hovering, the apparent wind on the kite is roughly perpendicular to the main wing of the kite. When rotated 90 degrees to the main wing such that it faces into the wind while hovering, the tail wing provides a restoring moment. While it is possible to build a powered kite without this particular configuration of the aerodynamic surfaces, such a kite necessarily requires faster and more accurate control signals, and is thus less robust against sensor noise and component failure. While a tail on an aircraft can be placed in a similar location relative to the main wing for the purpose of keeping the horizontal tail out of the wake of the main wing, it does not serve the same purpose of canceling the aerodynamic moment about either or both the center of mass and tether attachment point when the main wing of the kite is either roughly parallel or roughly perpendicular to the perceived wind. It additionally does not serve the purpose of reducing excitation of the tether from wind while hovering.
In some embodiments of the present invention, as seen in
In some embodiments, kite 101 takes off from the ground in the hovering mode of flight and transitions into the crosswind mode of flight, for the purpose of electrical power generation. In some embodiments, the ground unit may include aspects adapted to support the kite while on the ground. In some embodiments, the kite is a positioned in a vertical configuration such that the “front” of the kite faces upward while constrained in the ground unit. In some embodiments, the system is adapted to begin a power generation mode with the kite constrained in the ground unit in such a manner. The turbine driven generators may be adapted to also function as motor driven propellers. The kite may use the motor driven propellers to provide thrust vertically downward in order to take off from the ground and raise to a desired altitude. As the kite increases its altitude, the ground unit may extend the tether. In some embodiments, the tether tension is monitored during the take off portion of a flight of the kite. At a desired altitude, the kite may begin a transition from the substantially vertical take-off mode to a regular flight mode, as described below. At the end of a flight, the kite 101 may transition out of a regular mode of flight into the hover mode of flight to land.
In some embodiments, after transitioning from hovering mode the kite 101 may fly in a regular, stationary flight mode at the end of the tether 102. In some embodiments, the kite 101 may fly in crosswind flight patterns. In some embodiments, the crosswind flight pattern may be substantially circular. In some embodiments, other flight patterns may be flown. In the crosswind mode of flight, kite 101 flies on flightpath 104 at an inertial velocity of equal or greater order of magnitude to the wind velocity 105. In various embodiments, flightpath 104 comprises a path through space, a path through a parameter space including prescribed targets through the path for power generation, tether tension, or other measurable variable, or any other appropriate path. In various embodiments, parameters comprise one or more of the following: tension on tether 102, load on kite 101, angular rotation rate of kite 101, or any other appropriate parameter.
In the stationary mode of flight, kite 101 flies at a small inertial velocity compared to wind velocity 105. In this mode of flight, the majority of the lift holding kite 101 aloft comes from the flow of wind 105 over wings of kite 101.
When transitioning between modes of flight, kite 101 changes from one mode of flight to another mode of flight. In various embodiments, the transition modes of flight comprise highly dynamic maneuvers, slow maneuvers in nearly static balance, or any other appropriate maneuvers.
In various embodiments, object 203 comprises a base station attached to the ground, a ship, a cart, a payload not affixed to the ground, or any other appropriate object to which tether 202 is attached. In some embodiments, object 203 supplies power to kite 201 when thrust is being output by rotors on kite 201 and receives power from kite 201 when rotors are generating power at the expense of drag. In some embodiments, kite 201 uses on-board power such as batteries or a gas engine to provide power to rotors as needed.
Tether 202 comprises a high strength material to convey mechanical force from kite 201 to object 203. Tether 202 includes an electrical element to convey electrical power to kite 201 from object 203 or from object 203 to kite 201. In some embodiments, the electrical and mechanical elements of tether 202 are the same element. In some embodiments, tether 202 comprises elements to convey other forms of energy. In various embodiments, tether 202 comprises a fixed length tether, a variable length tether, or has any other appropriate characteristic or property for a tether. In some embodiments, tether 202 is able to be reeled in on a spool associated with object 203 or on a spool associated with kite 201.
In some embodiments of the present invention, as seen in
In the example shown, the kite 301 comprises a plurality of wings, for example, two wings 311 and 312. The main wing 311 comprises the main wing surface of the kite 301, and provides the majority of aerodynamic force in some modes of flight. In some embodiments, the main wing 311 comprises multiple wing sections. The tail wing 312 comprises the rearward wing surface of kite 301, and provides a smaller aerodynamic force primarily used to achieve stability and maintain a balance of forces and moments for the kite 301. In some embodiments, the tail wing 312 comprises many wing sections. In various embodiments, the kite 301 comprises other wings, such as wing 313, which are used for the generation of further lift, for further augmentation of the stability of the kite 301, to reduce the drag of some structural element of kite the 301, or for some other appropriate purpose. In some aspects, the wings 311, 312 and 313, and any other wings which the kite 301 comprises, and rotors 310 are connected by structural supports (e.g., spars).
In various embodiments, main wing 311, tail wing 312, the wings 313, and other wing surfaces on the kite 301 comprise rigid single element airfoils, flexible single element airfoils, airfoils with control surfaces, multiple element airfoils, or any other combination of airfoil types. In some embodiments, control surfaces on some wings on the kite 301 are deflected in the hover mode of flight in order to modify the aerodynamic properties or change the stability properties of the kite 301. In various embodiments, deflection of the trailing or leading element of a multi-element airfoil on a wing is used to induce stall for the desired portion of the transitions between flight modes, to change the center of aerodynamic pressure on that wing in the hovering mode of flight, or to stabilize the aerodynamic flow around the wing in a manner which reduces load variability on the wing in the hovering mode of flight.
Although illustrated herein with a single element airfoil, in some embodiments the airfoil may comprise a plurality of elements. In some embodiments, there may be stacked airfoils, or other airfoil configurations.
In various embodiments, tether 402 is attached to kite 401 at one location, at two locations (e.g., to one side of the wing and to the another side of the wing or toward the front of the kite and toward the back of the kite), at a number of points on the kite (e.g., four) and where the tether is attached to a number of other bridles that attach to the number of points, or any other number of appropriate locations either directly or indirectly using bridles and/or any other appropriate connectors. In various embodiments, tether 402 is attached rigidly at a single point on kite 401 through all modes of flight, is attached in a manner that the center of rotation changes depending on the direction of force from the tether or due to some other variable, or any other appropriate manner of attachment. In various embodiments, the center of rotation of tether 402 on kite 401 is controlled by a linkage, a configuration of ropes or cables or some other appropriate mechanism. In some embodiments, tether 402 is affixed directly to kite 401. In some embodiments, tether 402 is attached to kite 401 in a manner such that the center of rotation tether 402 is different on different axes. In various embodiments, tether 402 is attached so that it can be released from kite 401, is permanently affixed, or is attached in any other appropriate manner.
In some embodiments, the raised aspect of the tail wing relative to the main wing, as viewed with the kite in a horizontal configuration, allows for an additional method of pitch control of the kite while the kite is in hover mode. With the kite facing vertically upward, the center of the lift of the tail wing resides rearward of the kite in a manner that allows changes in lift of the tail wing to use the lever arm of the rearward distance (the amount that the tail wing was above the main wing in the horizontal configuration) to put a moment around the center of gravity of the hovering kite. This force generated with the change in lift, levered around the distance behind the center of mass of the kite, puts a torque into the system such that changes in pitch of the kite can be controlled. As the kite may oscillate in pitch during maneuvers and hovering, a further rearward position (“raised position” in horizontal flight mode) of the tail wing during hover mode allows for some pitching of the kite while still maintaining the rearward aspect relative to vertical from ground. In some embodiments, the kite may be expected to pitch backward 10 degrees due to dynamic changes in wind, wind gusting, and for other reasons. In more extreme cases, 20 degrees of pitch variation may be seen. With a 10 degree design margin designed in beyond that, a design may be desired such that the center of lift of the tail wing is at a higher point than a 30 degree line rising rearward through the center of gravity of the kite, as viewed in a horizontal configuration. Although the kite will rotate about a center of rotation which includes the tether in its determination in most aspects of tethered flight, in hover mode the tether tension may vary, and thus the center of rotation in pitch may also vary between the center of mass of the kite and a location towards the tether.
In some embodiments, the system is designed such that it maintains static aerodynamic balance at all moments of transition between the crosswind or static modes of flight and the hover mode of flight. For example, a kite which is able to transition between flight modes at an arbitrarily slow rate in high winds. The kite includes surfaces that engage wind with enough control authority (e.g., a sufficient area on a tail control surface that has a moment arm to change the attitude of the kite) to compensate for the time varying forces of buffeting the main wing (e.g., wind gusts on the wing)
In some embodiments, the system is designed such that the kite must undergo dynamic maneuvers to transition between flight modes. For example, the kite executes a maneuver, where the maneuver once started needs to finish. In other words, there is no way to control the kite in the middle of the maneuvers to stop the maneuver (or restart after stopping). So, a kite enters the hover mode by pitching up so that it heads straight up slowing down, and when close to stopping in a vertical position, the kite enters its hovering mode.
In some embodiments of the present invention, as seen in
In some embodiments of the present invention, the apparent wind of over the tail wing is a resultant of the actual wind and the propwash over the tail wing during flight in the hover mode. The tail wing may be used a lifting wing in the apparent wind and effect pitch control as described above.
In some embodiments of the present invention, as seen in
Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.
This application claims priority to U.S. Provisional Application No. 61/341,029 to Damon Vander Lind, filed Mar. 24, 2010, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4166596 | Mouton et al. | Sep 1979 | A |
D255469 | Deptula | Jun 1980 | S |
4486669 | Pugh | Dec 1984 | A |
4659940 | Shepard | Apr 1987 | A |
5056447 | Labrador | Oct 1991 | A |
5145129 | Gebhard | Sep 1992 | A |
5435259 | Labrador | Jul 1995 | A |
6523781 | Ragner | Feb 2003 | B2 |
6781254 | Roberts | Aug 2004 | B2 |
7093803 | Culp | Aug 2006 | B2 |
7183663 | Roberts et al. | Feb 2007 | B2 |
7188808 | Olson | Mar 2007 | B1 |
7317261 | Rolt | Jan 2008 | B2 |
7335000 | Ferguson | Feb 2008 | B2 |
7602077 | Ferguson | Oct 2009 | B2 |
7675189 | Grenier | Mar 2010 | B2 |
7775761 | Ferguson | Aug 2010 | B2 |
7859126 | Ferguson | Dec 2010 | B2 |
8109711 | Blumer et al. | Feb 2012 | B2 |
8148838 | Ferguson | Apr 2012 | B2 |
8350403 | Carroll | Jan 2013 | B2 |
20040075028 | Wang | Apr 2004 | A1 |
20090292407 | Minelli et al. | Nov 2009 | A1 |
20100013226 | Blumer et al. | Jan 2010 | A1 |
20100026007 | Bevirt | Feb 2010 | A1 |
20100032947 | Bevirt | Feb 2010 | A1 |
20100032948 | Bevirt | Feb 2010 | A1 |
20100221112 | Bevirt et al. | Sep 2010 | A1 |
20100230546 | Bevirt et al. | Sep 2010 | A1 |
20100230547 | Tayman | Sep 2010 | A1 |
20100283253 | Bevirt | Nov 2010 | A1 |
20100295320 | Bevirt et al. | Nov 2010 | A1 |
20100295321 | Bevirt | Nov 2010 | A1 |
20100308174 | Calverley | Dec 2010 | A1 |
20110042508 | Bevirt et al. | Feb 2011 | A1 |
20110042509 | Bevirt et al. | Feb 2011 | A1 |
20110042510 | Bevirt et al. | Feb 2011 | A1 |
20110121570 | Bevirt et al. | May 2011 | A1 |
20110127775 | Bevirt | Jun 2011 | A1 |
20110186687 | Elder | Aug 2011 | A1 |
20110260462 | Vander Lind | Oct 2011 | A1 |
20110266395 | Bevirt | Nov 2011 | A1 |
20110266809 | Calverley | Nov 2011 | A1 |
20110272527 | Larson | Nov 2011 | A1 |
20120104763 | Lind | May 2012 | A1 |
20120112008 | Holifield et al. | May 2012 | A1 |
Entry |
---|
International Search Report prepared by the U.S. Patent Office in International Application Serial No. PCT/US11/29855, mailed Jul. 20, 2011. |
Number | Date | Country | |
---|---|---|---|
20110260462 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
61341029 | Mar 2010 | US |