1. Field of the Invention
The invention relates to planning devices and, more particularly, to a planning device for planning a technical installation, with the technical installation being formed from modules which each have mechanical and electrical components, and each module includes a desired functionality. The invention also relates to a corresponding method.
2. Description of the Invention
A method for an object-oriented plant design is described in the article “objektorientierte Fabrikplanung” [object-oriented plant design] by G. Schuh, Werkstatttechnik Online, volume 97 (2007), H.3. A comparison is made with software engineering. A hierarchical structure is proposed for the planning of a plant. Plant modules are configured in hierarchically consecutive planning stages from a rough schematic diagram to a fine, more detailed diagram. As in object-oriented programming, each module is embodied here in accordance with the principle of encapsulation such that the module can be easily replaced when the planning is changed. Interactions are only possible over interfaces which are made available explicitly.
The digital planning of technical installations is gaining increasing importance. Currently, virtual mapping of the technical installation allows investments to be protected at a very early stage by a simulation. In the case of production installations, product planning can be converted far more quickly into a finished product. Such digital planning requires a very large quantity of data. Aside from the purely digital mapping of the technical installation through geometry in the form of a 3D simulation, attempts are increasingly also being made to simulate the technical functionalities of the installation in the form of a virtual commissioning. Aside from the geometric and mechanical properties of the components of the technical installation, more and more electrical properties are thus also being included. In the case of a production installation, aside from the geometric properties of a manufacturing robot and the dimensions of a manufacturing cell for instance, properties of an electric motor for instance, such as electrical output power or torque, are also taken into account. All components generally interact with one another. To assess the suitability of a component for the task at hand, further components must already be selected to determine, by a simulation, whether the desired result will be achieved. The large variety of possible combinations thus resulting has led to a large planning outlay when determining an optimal configuration.
It is therefore an object of the invention to provide a planning device with which a technical installation can be planned with particularly minimal planning outlay. A further object of the invention is to specify a corresponding planning method.
This and other objects and advantages are achieved in accordance with the invention by providing a planning device for planning a technical installation. Here, the technical installation is formed from modules which each include mechanical and electrical components, where each module includes a desired functionality and a library of sets of electrical components that is provided with properties of these components. In accordance with the invention, a component set can be allocated to a module by an allocation function and the properties of this component set defined in component parameters can be used to deduce whether the module functionality resulting with from the component set corresponds to the desired functionality with a definable accuracy.
The invention is based on the knowledge that eligible electrical components can be grouped together, such as in a manufacturer-oriented grouping. Electrical components from one manufacturer generally exhibit a better compatibility with respect to one another than electrical components from different manufacturers. Furthermore, technical installations often have specifications relating to the choice of manufacturer for the electrical components. A further grouping option can exist in terms of the functionality. For instance, electrical components could be grouped based on their safety level.
A marked simplification of the planning process is now achieved by grouping the electrical components into a component set. The functionality of a module is described by a desired functionality. An entire component set is now used to realize this desired functionality. Here, a component set can, to some extent, be understood as a collection in the style of a clothing collection. Trying the collection on in a fitting room corresponds to a comparison of the functionality resulting from the collection with the desired functionality. The selection options of a planner are therefore restricted by the component set, thereby resulting on the one hand in a clear simplification of the planning process and on the other hand, when using proven collections, in other words component sets, also in a quality benefit. Component sets are stored in a library. Compared with previous planning approaches which, if need be, permitted a selection of individual electrical components from a collection of different components of the same type, different types of components are now grouped with one another to form a component set. As a result, the selection of a component set during the planning creates a series of components of a different functionality being determined. Here, the components of a component set are compatible with one another. A component set therefore already has an internal compatibility. The component set is preferably further developed over time such that its functionality corresponds with the desired functionality of as large a number of modules as possible.
The check for correspondence preferably occurs by simulating the module functionalities, with the component parameters underlying the simulation. A digital planning of a technical installation can be performed by simulating the processes on the technical installation. Such a simulation can determine whether the components used actually provide the desired functionality. For instance, the result of a real-time simulation could be that the components used do not lead to the method being processed at the desired speed. Here, the component set cannot therefore be used unchanged.
The check for correspondence is preferably performed by comparing the desired parameters that characterize the desired functionality with corresponding component parameters of the component set. The desired functionality is therefore mapped by parameters. A component set is described by parameters, which correspond at least partially in their type to the parameters of the desired functionality. If the parameters of the component set also correspond in terms of their value to the parameters of the desired functionality, and/or they are within a corresponding interval, the desired correspondence is present.
The electrical components are preferably implemented mechatronically with an additional mechanical functionality. Electrical and mechanical elements of a component are increasingly merged to form an integrated structure. For instance, piezoelectric modules can fulfill mechanical tasks. The integrated embodiment of a gripper arm together with its electrical drive may also be a mechatronic component. The use of mechatronic components results in a further simplification of the planning process.
The planning can preferably be implemented by a planning process which is structured in hierarchical levels and has consecutive planning stages, with the mechanical or electrical components of a lower planning stage of the at least second hierarchical level having the properties of the mechanical or electrical components of the upper planning stage from the hierarchical level arranged upstream of the lower planning stage and also a higher level of detail with respect to the properties of the mechanical or electrical components. Furthermore, the planning apparatus preferably comprises an object-oriented architecture, so that within the meaning of the rules of the object-oriented programming, a planning stage is described by classes, the objects with properties of the mechanical and electrical components as attributes and methods instantiate the module functionalities, and where a lower planning stage inheriting attributes and methods of the upper planning stage.
A greater degree of detail can be gradually set in consecutive planning stages by a planning process which is divided into hierarchical levels. An inheritance of properties allows planning of a preceding planning stage to easily be specified in greater detail. By a detailing now being available from a library by selecting a component set, the planning of a planning stage can be implemented particularly efficiently with a high degree of detail. Within the meaning of object-oriented programming, a component set is available as a set of classes.
The planning apparatus preferably comprises a visualization apparatus, in which graphical images of the modules can be shown, with the degree of detail of the graphical display increasing downwards hierarchically along the planning stages and with the lower planning stage being displayed by superimposing graphical elements from this lower planning stage over the elements of their upper planning stage. During the planning of a technical installation, a visualization is needed, which is generally undertaken by a 2D or 3D display on the computer. An increased level of detail of a planning stage is now expediently achieved by superimposing its elements over the abstract elements of the preceding planning stage. The use of whole component sets becomes clear in this visualization by a specific collection being wrapped like an envelope around the more abstract display. A deviation of the functionality produced by the selected collection, i.e. of the component set, from the desired functionality can be made visible by graphical displays. For instance, components of the component set which cause the deviation from the desired functionality can be shown flashing or in another color.
The technical installation is preferably a production line for manufacturing a product. The digital planning of a plant for producing a product is already reality in many areas. The planning of such a production line entails the highest complexity. The selection of the electrical components, in particular of automation components, is generally subject to boundary conditions of the plant developer and/or operator. In particular, a manufacturer-specific selection is often taken into consideration.
In another object a method is achieved in accordance with the invention by providing a method for planning a technical installation, in which the technical installation is formed from modules which each have mechanical and electrical components, with each module having a desired functionality and with a library of sets of electrical components being provided with properties of these components, from which a component set can be allocated to a module by an allocation function and the properties of the component set defined in component parameters can be used to deduce whether the module functionality resulting from the component set corresponds to the desired functionality with a definable accuracy.
The advantages of such a method emerge from the details given above relating to the advantages of the planning device.
The check for correspondence preferably occurs by comparing desired parameters that characterize the desired functionality with the component parameters.
The check for correspondence preferably occurs by simulating the module functionality using the parameters of the component set underlying the simulation.
Other objects and features of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims. It should be further understood that the drawings are not necessarily drawn to scale and that, unless otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein.
The invention is described in more detail with reference to the drawings, in which:
a-5c are illustrations of a visualization device in accordance of the invention.
The desired functionality of the module 9 is described in parameters F. For instance, a parameter F1 specifies a desired flow rate. This results in a specification relating to a quantity of desired parameters 12 for the electrical components 7, e.g., for a parameter SM1 of the motor M but also relating to a parameter SL1 for a resolution of the light barrier L or a parameter SG2 of the gripping speed of the gripper G. Other parameters F of the desired functionality of the module 9 thus also determine parameters of the electrical component 7.
This planning process is expediently implemented in an object-oriented architecture. A class 27 is allocated to a hierarchical level in each instance. The class 27 instantiates objects 29. A subordinate hierarchical level 23b inherits the attributes and methods of the preceding hierarchical level 23a, in other words the classes 27 of a subordinate hierarchical level 23b inherit the attributes and methods of the classes 27 of the upstream hierarchical level 23a.
a shows a visualization device 33 of a planning device 1. A first window 103 and a second window 105 are shown on a graphical user interface 101. The technical installation 3 is shown graphically in the second window 105. A specific component set for a module of the technical installation is selected in the first window 103 by an input dialog 111. A simulation of the production flow of the technical installation with the selected component set is implemented by a menu 113. If a deviation of the simulated functionality from the predetermined desired functionality is determined, an error message 107 is generated. An error description 109 for the error message 107 is output in the first window 103.
This is a U.S. national stage of International Application No. PCT/EP2008/000386, filed on 18 Jan. 2008.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP08/00386 | 1/18/2008 | WO | 00 | 7/19/2010 |