Plant cell signaling genes

Information

  • Patent Grant
  • 7723110
  • Patent Number
    7,723,110
  • Date Filed
    Friday, June 16, 2006
    18 years ago
  • Date Issued
    Tuesday, May 25, 2010
    14 years ago
Abstract
Novel plant cell signaling genes and gene products are provided. These gene, polypeptide and oligonucleotide sequences are useful in regulating plant phenotype. Moreover, these genes and gene products are useful for expression profiling of plant cell signaling genes. The invention specifically provides polynucleotide and polypeptide sequences isolated from Eucalyptus and Pinus species.
Description
BACKGROUND

1. Field of the Invention


Sequence Listing


The instant application contains a Sequence Listing which has been submitted via EFS-Web and is hereby incorporated by reference in its entirety.


The present invention relates generally to the field of plant cell signaling genes and polypeptides encoded by such genes, and the use of such polynucleotide and polypeptide sequences for controlling plant phenotype. The invention specifically provides cell signaling polynucleotide and polypeptide sequences isolated from Eucalyptus and Pinus and sequences related thereto.


2. Background


A. Cell Signaling Genes and Gene Products


Plants progress through set developmental programs throughout the course of their lifetimes. This is particularly evident in embryogenesis and floral development. There are a variety of signal molecules produced by certain cells in the plant to which other cells, particularly in the meristematic regions, are poised to respond. These signal molecules trigger distinct sets of developmental programs at specific times that lead to the formation of, for example, flowers or cotyledons. In addition to the programmed developmental pathways, plants are exposed to a variety of environmental stimuli such as changes in temperature and amount of sunlight, availability of water, wounding from mechanical injury and attack by pathogens. Environmental factors, such as exposure to light, heat, cold, drought, etc., activate the expression of genes and synthesis of proteins and other compounds essential for an appropriate response to the environmental signal and thereby, the healthy development of the plant. These responses, like the developmental pathways, are mediated by signal molecules.


To respond to these signal molecules, plant cells produce surface receptor proteins that serve as sensors, regulators and/or transducers of cell signals. The intracellular transduction of a signal is often transmitted via a phosphorylation cascade of molecules that culminates in the transcription of genes to elicit the appropriate cellular response either for normal development or against environmental challenge.


One major class of receptor proteins is the single-transmembrane family, of which there are several subclasses. These proteins are characterized by three domains: an extracellular signal molecule (or ligand) recognition/binding domain, a single cell membrane-spanning domain and an intracellular signal transduction domain which is usually a protein kinase. Many, but not all, plant single transmembrane proteins belong to the subclass known as receptor-like kinases (RLKs). The intracellular kinase domains of plant RLKs are all serine/threonine protein kinases, while the extracellular domains of RLKs are of different types. One type of RLK is characterized by the presence of the extracellular S-domain, originally described in self-incompatibility-locus glycoproteins that inhibit self-pollination. The S-domain is recognized by an array of ten cysteine residues in combination with other conserved residues. Another class of RLKs has an extracellular domain distinguished by leucine rich repeats (LRR) that are involved in protein-protein interactions. Binding of ligands to the extracellular domain is followed by receptor dimerization, autophosphorylation and the activation of a series of intracellular proteins which serve to transduce the signal to the nucleus. The structure of plant RLKs is very similar to receptors found in cell signaling pathways in animal systems.


One example of a plant RLK is the Xa21 gene, which confers resistance to the plant pathogen Xanthomonas oryzae pv. oryzae race 6. This gene was cloned using genetic means comparing Xanthomonas-sensitive and resistant strains of rice (Song et al., Science 270:1804-1806 (1995)), and has been subsequently been shown to confer resistance to Xanthomonas in Arabidopsis. The 1025 amino acid protein possesses a number of features with similarity to known protein domains including a NH2-terminal 23 amino acid residue signal peptide, indicating that the protein is directed to the plasma membrane. Amino acids 81 to 634 contain 23 imperfect copies of a 24-amino acid LRR. Amino acids 651 to 676 encode a 26-amino acid hydrophobic segment that is likely to form a membrane-spanning domain. The C-terminal amino acids contain a putative intracellular serine threonine kinase domain carrying 11 subdomains with all 15 invariant amino acids that are typical of protein kinases. Subdomains VI and VIII are indicative of serine-threonine phosphorylation specificity. Xa21 has strong similarities to other RLKs, such as the Arabidopsis receptor-like kinase proteins RLK5 and TMK1, showing conservation of both the LRR and protein kinase domains. It is not yet known to what protein Xa21 transduces its pathogen recognition signal.


Another kind of membrane receptor molecule expressed by plant cells is histidine kinases (HKs). HKs have been known for some time in bacterial signal transduction systems, where they form one half of a two-component signaling system. The bacterial HK serves as a sensor molecule for extracellular signals, such as changes in osmoticum, nutrients and toxins. The HK autophosphorylates on a histidine residue in response to ligand binding. This phosphohistidine donates its phosphate group to an aspartate residue of the second member of the two component system, known as the response regulator (RR). The phosphorylated RR then binds DNA in a sequence-specific manner, serving to directly activate specific genes which code for proteins that mediate the response to the extracellular stimulus.


Like bacteria, plant cells have a two-component signaling system which consists of a sensor element HK and a RR. The two components may be separate molecules or may exist as a hybrid molecule (hereinafter referred to as hybrid HK/RR proteins). The HK proteins are distinguished by well-conserved amino acid motifs that occur in a specific order. From the amino terminus, the conserved regions are identified as the H, N, G1, F and G2 boxes. These motifs are usually found within a 200-250 amino acid span of the protein. The G1, F and G2 boxes are thought to be involved in nucleotide binding. As in bacteria, upon receiving the extracellular signal, the HK is autophosphorylated on the histidine residue contained in the H box. The phosphate group is subsequently transferred to the RR. All HKs are believed to phosphorylate a RR, as an obligate part of signal transduction. RRs are characterized by the absolute conservation of an aspartate which is phosphorylated by the phosphohistidine of the HK, and a conserved lysine residue. Unlike bacteria, RRs in plants have not been shown to bind DNA directly. Rather, the plant RRs characterized to date appear to transduce the signal into protein kinase cascades, which eventually phosphorylate and activate or inactivate transcription factors, and thereby affect gene expression.


The ethylene receptor (ETR1; Chang et al. Science 262:539-544) is the best known two-component signaling system in plants. Ethylene is a well known signal molecule that is involved in the regulation of plant development as well as the coordination of fertilization, senescence, skoto/photomorphogenesis and responses to pathogens and mechanical injury. The ethylene receptor is a hybrid HK/RR protein. The signal is transduced through a Raf-like protein kinase named CTR1. CTR1 is a negative regulator of downstream steps in the signaling pathway. While the details of this pathway remain unclear, it appears that the HK is constitutively active in the absence of ethylene, thereby constantly phosphorylating CTR1, which in turn represses other genes in the ethylene response pathway. Binding of ethylene to ETR1 inhibits the HK function of the receptor, resulting in the inhibition of the negative regulator CTR1, thereby allowing the activation of downstream proteins in the ethylene signal transduction cascade. This culminates in activation of ethylene response genes.


More recently, two RR genes, IBC6 and IBC7, which are induced in response to the plant growth regulator cytokinin, have been cloned from Arabidopsis thaliana and characterized (Brandstatter and Kieber, The Plant Cell 10:1009-1019 (1998)). It is likely that IBC6 and IBC7 are involved in the transduction of the cytokinin signal in plants. This is particularly interesting in light of the fact that a gene encoding the hybrid HK/RR protein CKI1 (Kakimoto, Science 274:982-985, 1996) causes cytokinin-like effects when it is ectopically expressed in transgenic plants. Thus it appears likely that a two-component HK/RR system is involved in cytokinin signal transduction. Cytokinin is known to regulate plant growth and development, including such physiological events as nutrient metabolism, expansion and senescence of leaves, and lateral branching.


While polynucleotides encoding proteins involved in plant cell signaling have been isolated for certain species of plants, genes encoding many such proteins have not yet been identified in a wide range of plant species. Thus, there remains a need in the art for materials which may be usefully employed in the modification of cell signaling in plants.


Proper plant growth and development requires the ability to react to environmental and developmental factors. Throughout its life, a plant is subject to changes in light, temperature, water and nutrient availability. Plants are also subject to attack by pathogens, such as viruses, nematodes, mites, and insects. Reacting to developmental and environmental cues requires complex interactions between environmental signals and factors internal to the plant. Such reaction is typically effected by changes in gene expression. Various internal signals are required for coordinating gene expression during development and in response to environmental factors. These internal signals are communicated throughout by signal transduction pathways that allow propagation of the original signal. This ultimately results in the activation or suppression of gene expression.


Plant development is also affected by cell environmental factors such as temperature, nutrient availability, light, etc. See Gastal and Nelon, Plant Physiol. 105:191-7 (1994), Ben-Haj-Sahal and Tardieu, Plant Physiol. 109:861-7 (1995), and Sacks et al., Plant Physiol. 114:519-27 (1997). Plant development and phenotype are affected by cell signaling, and altering expression of the genes involved in the cell signaling can be a useful method of modifying plant development and altering plant phenotype.


The ability to alter expression of cell signaling genes is extremely powerful because cell signaling drives plant development, including growth rates, responses to environmental cues, and resulting plant phenotype. Control of plant cell signaling and phenotypes associated with alteration of cell signaling gene expression has, among others, applications for alteration of wood properties and, in particular, lumber and wood pulp properties. For example, improvements to wood pulp that can be effected by altering cell signaling gene expression include increased or decreased lignin content, increased accessibility of lignin to chemical treatments, improved reactivity of lignin, and increased or decreased cellulose or hemi content. Manipulating the plant signal transduction pathways can also engineer better lumber having increased dimensional stability, increased tensile strength, increased shear strength, increased compression strength, increased shock resistance, increased stiffness, increased or decreased hardness, decreased spirality, decreased shrinkage, and desirable characteristics with respect to weight, density, and specific gravity.


B. Expression Profiling and Microarray Analysis in Plants


The multigenic control of plant phenotype presents difficulties in determining the genes responsible for phenotypic determination. One major obstacle to identifying genes and gene expression differences that contribute to phenotype in plants is the difficulty with which the expression of more than a handful of genes can be studied concurrently. Another difficulty in identifying and understanding gene expression and the interrelationship of the genes that contribute to plant phenotype is the high degree of sensitivity to the environmental factors that plants demonstrate.


There have been recent advances using genome-wide expression profiling. In particular, the use of DNA microarrays has been useful to examine the expression of a large number of genes in a single experiment. Several studies of plant gene responses to developmental and environmental stimuli have been conducted using expression profiling. For example, microarray analysis was employed to study gene expression during fruit ripening in strawberry, Aharoni et al., Plant Physiol. 129:1019-1031 (2002), wound response in Arabidopsis, Cheong et al., Plant Physiol. 129:661-7 (2002), pathogen response in Arabidopsis, Schenk et al., Proc. Nat'l Acad. Sci. 97:11655-60 (2000), and auxin response in soybean, Thibaud-Nissen et al., Plant Physiol. 132:118. Whetten et al., Plant Mol. Biol. 47:275-91 (2001) discloses expression profiling of cell wall biosynthetic genes in Pinus taeda L. using cDNA probes. Whetten et al. examined genes which were differentially expressed between differentiating juvenile and mature secondary xylem. Additionally, to determine the effect of certain environmental stimuli on gene expression, gene expression in compression wood was compared to normal wood. 156 of the 2300 elements examined showed differential expression. Whetten, supra at 285. Comparison of juvenile wood to mature wood showed 188 elements as differentially expressed. Id. at 286.


Although expression profiling and, in particular, DNA microarrays provide a convenient tool for genome-wide expression analysis, their use has been limited to organisms for which the complete genome sequence or a large cDNA collection is available. See Hertzberg et al., Proc. Nat'l Acad. Sci. 98:14732-7 (2001 a), Hertzberg et al., Plant J. 25:585 (2001b). For example, Whetten, supra, states, “A more complete analysis of this interesting question awaits the completion of a larger set of both pine and poplar ESTs.” Whetten et al. at 286. Furthermore, microarrays comprising cDNA or EST probes may not be able to distinguish genes of the same family because of sequence similarities among the genes. That is, cDNAs or ESTs, when used as microarray probes, may bind to more than one gene of the same family.


Methods of manipulating gene expression to yield a plant with a more desirable phenotype would be facilitated by a better understanding of cell signaling gene expression in various types of plant tissue, at different stages of plant development, and upon stimulation by different environmental cues. The ability to control plant architecture and agronomically important traits would be improved by a better understanding of how cell signaling gene expression effects formation of plant tissues, how cell signaling gene expression protects plants from pathogens and adverse environmental conditions, and how plant growth and the cell signaling are connected. Among the large number of genes, the expression of which can change during development of a plant, only a fraction are likely to effect phenotypic changes of agronomic significance.


SUMMARY

Accordingly, there is a need for tools and methods useful in determining the changes in the expression of cell signaling genes that result in desirable plant phenotypes. There is also a need for polynucleotides useful in such methods. There is a further need for methods which can correlate changes in cell signaling gene expression to a phenotype. There is a further need for methods of identifying cell signaling genes and gene products that impact plant phenotype and that can be manipulated to obtain a desired phenotype.


In one embodiment, an isolated polynucleotide is provided comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1-197 or a conservative variant thereof. In one aspect, the polynucleotide has a sequence comprised in a gene expressed in a wild-type plant of a species of Eucalyptus or Pinus. In another aspect, the variant has a sequence identity that is greater than or equal to 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 79%, 78%, 77%, 76%, 75%, 74%, 73%, 72%, 71%, 70%, 69%, 68%, 67%, 66%, 65%, 64%, 63%, 62%, 61%, or 60%, to any one of SEQ ID NO: 1-197.


In one aspect, the polynucleotide encodes a protein such as a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, synaptobrevin-like protein or a catalytic domain thereof, or a protein having the same function. In another aspect, the polynucleotide comprises a variant having a sequence identity that is greater than 60%, 65%, 70%, 75%, 80%, 85% or 90% to any one of SEQ ID NO: 1-197 and the protein encoded by the polynucleotide possesses the activity of the protein encoded by the SEQ ID NO: 198-394.


In one embodiment, a plant cell is provided which is transformed with an isolated polynucleotide of SEQ ID NO: 1-197. In another embodiment, a transgenic plant is provided comprising an isolated polynucleotide of SEQ ID NO: 1-197.


In one embodiment, a DNA construct is provided comprising at least one polynucleotide having the sequence of any one of SEQ ID NO: 1-197 or a conservative variants thereof. In one aspect, the DNA construct comprises a promoter operably linked to the polynucleotide. In another aspect, the promoter is selected from any one of a constitutive promoter, a strong promoter, an inducible promoter, a regulatable promoter, a temporally regulated promoter or a tissue-preferred promoter. In another aspect, the DNA construct comprises a polynucleotide encoding an RNA transcript. In yet another aspect, the polynucleotide is positioned along the DNA construct in a sense or antisense orientation relative to the promoter. In one aspect, the RNA transcript induces RNA interference of a polynucleotide having a nucleic acid sequence of any one of SEQ ID NO: 1-197.


In one embodiment, a method of making a transformed plant is provided comprising transforming a plant cell with a DNA construct and culturing the transformed plant cell under conditions that promote growth of a plant.


In another embodiment, a plant cell is provided transformed with a DNA construct. In yet another aspect, a transgenic plant is provided comprising a transformed plant cell. In one aspect, the transformed plant is a woody plant. In another aspect, the woody plant is a tree. In yet another aspect, the plant is of a species of Eucalyptus or Pinus. In one aspect, the transgenic plants have a phenotype which is different from a phenotype of a plant of the same species that has not been transformed with the DNA construct. In another aspect, the transgenic plant has a different phenotypic characteristic such as lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, proportion of rays, proportion of vessel elements, other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, proportion of nonlignin cell wall phenolics, rate of wood formation, aesthetic appearance of wood, formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation, ratio of root to branch vegetative development, leaf area index, and leaf shape. In yet another aspect, the transgenic plant exhibits one or more traits, such as, increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, increased or decreased cellulose content, increased or decreased lignin content, increased or decreased nonlignin cell wall phenolics and production of novel proteins or peptides, as compared to a plant of the same species that has not been transformed with the DNA construct. In another aspect, the transgenic plant exhibits one or more traits such as reduced period of juvenility, an increased period of juvenility, propensity to form reaction wood, self-abscising branches, accelerated reproductive development or delayed reproductive development, and accelerated regeneration, as compared to a plant of the same species that has not been transformed with the DNA construct.


In one embodiment, an isolated polynucleotide is provided comprising a nucleic acid sequence encoding the catalytic or substrate-binding domain of a polypeptide selected from of any one of SEQ ID NOs: 198-394 and in which the polynucleotide encodes a polypeptide having the activity of the polypeptide of SEQ ID NOs: 198-394.


In one embodiment, a method of making a transformed plant is provided comprising transforming a plant cell with a DNA construct comprising at least one polynucleotide encoding the catalytic or substrate-binding domain of a polypeptide selected from of any one of SEQ ID NOs: 198-394 and culturing the transformed plant cell under conditions that promote growth of a plant. In one aspect, the method used a DNA construct comprises a promoter operably linked to the polynucleotide. In another aspect, the polypeptide is selected from 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, or synaptobrevin-like protein. In one aspect, the method uses a plant cell located within plant explant tissue. In another aspect, the method produces a transgenic plant which exhibits a phenotype different from a plant of the same species that has not been transformed with the DNA construct. In another aspect, the transgenic plant has a different phenotypic characteristic such as lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, proportion of rays, proportion of vessel elements, other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, proportion of nonlignin cell wall phenolics, rate of wood formation, aesthetic appearance of wood, formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape. In yet another aspect, the transgenic plant exhibits one or more traits, such as, increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, increased or decreased cellulose content, increased or decreased lignin content, increased or decreased nonlignin cell wall phenolics and production of novel proteins or peptides, as compared to a plant of the same species that has not been transformed with the DNA construct. In another aspect, the transgenic plant exhibits one or more traits such as reduced period of juvenility, an increased period of juvenility, propensity to form reaction wood, self-abscising branches, accelerated reproductive development or delayed reproductive development, and accelerated regeneration, as compared to a plant of the same species that has not been transformed with the DNA construct.


In one embodiment, wood obtained from a transgenic plant transformed by a DNA construct is provided. In another embodiment, wood pulp obtained from a transgenic plant transformed by a DNA construct is provided.


In another embodiment, a method of making wood is provided comprising transforming a plant with a DNA construct comprising a polynucleotide having a nucleic acid sequence selected from SEQ ID NO: 1-197 and conservative variants thereof, culturing the transformed plants under conditions that promote growth of the plant, and obtaining wood from the plant.


In yet another embodiment, a method of making wood pulp is provided comprising transforming a plant with a DNA construct comprising a polynucleotide having a nucleic acid sequence selected from SEQ ID NO: 1-197 and conservative variants thereof, culturing the transformed plants under conditions that promote growth of the plant, and obtaining wood pulp from the plant.


In one embodiment, an isolated polypeptide is provided comprising an amino acid sequence encoded by a polynucleotide selected from SEQ ID NO: 1-197. In another embodiment, an isolated polynucleotide is provided comprising an amino acid selected from SEQ ID NO: 198-394.


In one embodiment, a method of altering a plant phenotype is provided comprising altering expression in the plant of a polypeptide encoded by any one of SEQ ID NO: 1-197. In one aspect, the expression of the polypeptide can be up-regulated, down-regulated, silenced, or developmentally regulated. In another aspect, the plant phenotype is selected from lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, proportion of rays, proportion of vessel elements, other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, proportion of nonlignin cell wall phenolics, rate of wood formation, aesthetic appearance of wood, formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape. In yet another aspect, the plant exhibits one or more traits, such as, increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, increased or decreased cellulose content, increased or decreased lignin content, increased or decreased nonlignin cell wall phenolics and production of novel proteins or peptides, as compared to a plant of the same species that has not been transformed with the DNA construct. In another aspect, the transgenic plant exhibits one or more traits suach as reduced period of juvenility, an increased period of juvenility, propensity to form reaction wood, self-abscising branches, accelerated reproductive development or delayed reproductive development, and accelerated regeneration, as compared to a plant of the same species that has not been transformed with the DNA construct.


In one embodiment, a polynucleotide is provided comprising a nucleic acid selected from SEQ ID NO: 395-583. In one aspect, the polynucleotide comprises less than about 100 nucleotide bases.


In another embodiment, a method of correlating gene expression in two different samples is provided comprising detecting a level of expression of one or more genes encoding a product encoded by a nucleic acid sequence selected from SEQ ID NOs: 1-197 and conservative variants thereof in a first sample, detecting a level of expression of the one or more genes in a second sample, comparing the level of expression of the one or more genes in the first sample to the level of expression of the one or more genes in the second sample, and correlating a difference in expression level of the one or more genes between the first and second samples. In one aspect, the first sample and the second sample are each from a different type of plant tissue. In another aspect, the first sample and the second sample are from the same tissue, and each sample is harvested during a different season of the year. In yet another aspect, the first sample and the second sample are obtained from plants in different stages of development. In one aspect, the first sample is obtained from a plant not exposed to an environmental stimulus, and the second sample is obtained from a plant exposed to an environmental stimulus. In another aspect, the environmental stimulus is selected from the group consisting of change in temperature, change in amount of light, change in availability of water, change in availability of nutrients, change in availability of atmospheric gases, frost, wounding from mechanical injury, and wounding from attack by an insect, fungus, bacteria or virus.


In one embodiment, a method of correlating the possession of a plant phenotype to the level of gene expression in the plant of one or more genes is provided comprising detecting a level of expression of one or more genes encoding a product encoded by a nucleic acid sequence selected from SEQ ID NOs: 1-197 and conservative variants thereof in a first plant possessing a phenotype, detecting a level of expression of the one or more genes in a second plant lacking the phenotype, comparing the level of expression of the one or more genes in the first plant to the level of expression of the one or more genes in the second plant, and correlating a difference in expression level of the one or more genes between the first and second plants to possession of the phenotype.


In another embodiment, a method of correlating gene expression to a response to an external stimulus or environmental condition is provided comprising detecting a level of expression of one or more genes encoding a product encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197 and conservative variants thereof in a first plant cell in the absence of the external stimulus or environmental condition, detecting a level of expression of the one or more genes in a second plant cell in the presence of the external stimulus or environmental condition, comparing the level of the expression of the one or more genes in the first plant cells to the level of expression of the one or more genes in the second plants cells; and correlating a difference in expression level of the one or more genes between the first and second samples to presence of the external stimulus or environmental condition. In one aspect, the first and second samples are both obtained from a plant tissue such as vascular tissue, apical meristem, vascular cambium, xylem, phloem, root, flower, cone, fruit, or seed. In another aspect, the plant tissue of the first sample and second samples are each obtained from a different type of tissues. In yet another aspect, the first and second samples are each obtained from a plant tissue in a different stage of development. In one aspect, the external stimulus is selected from the group consisting of change in temperature, change in amount of light, change in availability of water, change in availability of nutrients, wounding from mechanical injury, and wounding from attack by pathogens.


In one embodiment, there are methods provided in which the first and second plants or plant cells are of a species selected from Eucalyptus and Pinus species. In one aspect, the first and second plants or plant cells are of a species selected from Eucalyptus grandis or Pinus radiata.


In one embodiment, there are methods provided in which the step of detecting is effected using one or more polynucleotides capable of hybridizing to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197 under standard hybridization conditions. In one aspect, the step of detecting is effected using one or more polynucleotides capable of hybridizing to a nucleic acid sequence encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197 under standard hybridization conditions. In another aspect, the step of detecting is effected by hybridization to a labeled nucleic acid. In yet another aspect, the one or more polynucleotides are labeled with a detectable label. In one aspect, at least one of the one or more polynucleotides hybridizes to a 3′ untranslated region of one of the one or more genes. In another aspect, at least one of the one or more polynucleotides hybridizes to the 3′ untranslated region of one of the one or more genes. In one aspect, the one or more polynucleotides comprise a nucleic acid sequence selected from SEQ ID NOs: 395-583. In another aspect, the one or more polynucleotides comprise a nucleic acid sequence selected from SEQ ID NOs: 395-583. In yet another aspect, the one or more polynucleotides is selected from DNA or RNA. In one aspect, the methods further comprise, prior to the detecting steps, the step of amplifying the one or more genes in the first and second plant or plant cells. In another aspect, the methods further comprise, prior to the detecting steps, the step of labeling the one or more genes in the first and second plant or plant cells with a detectable label.


In one embodiment, a combination for detecting expression of one or more genes is provided comprising two or more oligonucleotides. In one aspect, each oligonucleotide is capable of hybridizing to a nucleic acid sequence selected from SEQ ID NOs: 1-197. In one aspect, each of the two or more oligonucleotides hybridizes to a nucleotide sequence encoded by a different one of the nucleic acid sequences selected from SEQ ID NOs: 1-197. In another aspect, at least one of the two or more oligonucleotides hybridizes to a 3′ untranslated region of a nucleic acid sequence selected from SEQ ID NOs: 1-197. In one aspect, each of the two or more oligonucleotides are comprised of fewer than about 100 nucleotide bases. In another aspect, at least one of the two or more oligonucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 395-583. In one aspect, each of the two or more oligonucleotides hybridizes to a gene encoding a protein selected from a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein. In another aspect, each of the two or more oligonucleotides hybridizes to a gene encoding a different one of the proteins. In one aspect, each of the two or more oligonucleotides hybridizes to a different gene. In yet another aspect, the combination comprises from about 2 to about 5000 of the two or more oligonucleotides. In one embodiment, each of the two or more oligonucleotides is labeled with a detectable label.


In another embodiment, a combination for detecting expression of one or more genes is provided comprising two or more oligonucleotides. In one aspect, each oligonucleotide is capable of hybridizing to a nucleic acid sequence encoded by a nucleic acid sequence selected from SEQ ID NOs: 1-197. In another aspect, each of the two or more oligonucleotides hybridizes to a different one of the nucleic acid sequences selected from SEQ ID NOs: 1-197. In yet another aspect, at least one of the two or more oligonucleotides hybridizes to a 3′ untranslated region of a nucleic acid sequence selected from SEQ ID NOs: 1-197. In one aspect, each of the two or more oligonucleotides are comprised of fewer than about 100 nucleotide bases. In another aspect, at least one of the two or more oligonucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs 395-583. In another aspect, each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene encoding a protein selected from a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein. In one aspect, each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene encoding a different one of the proteins. In another aspect, each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a different gene. In yet another aspect, the combination comprises from about 2 to about 5000 of the two or more oligonucleotides. In one embodiment, each of the two or more oligonucleotides is labeled with a detectable label.


In one embodiment, a microarray is provided comprising a combination described above provided on a solid support, wherein each of said two or more oligonucleotides occupies a unique location on said solid support.


In another embodiment, a method for detecting one or more genes in a sample is provided comprising contacting the sample with two or more oligonucleotides, and detecting the one or more genes of interest which are hybridized to the one or more oligonucleotides. In one aspect, each oligonucleotide is capable of hybridizing to a gene comprising a nucleic acid sequence selected from SEQ ID NOs: 1-197 under standard hybridization conditions. In another aspect, each of the two or more oligonucleotides hybridizes to a gene comprising a different one of the nucleic acid sequences selected from SEQ ID NOs: 1-197. In one aspect, at least one of the two or more oligonucleotides hybridizes to a 3′ untranslated region of a gene comprising a nucleic acid sequence selected from SEQ ID NOs: 1-197. In another aspect, each of the two or more oligonucleotides are comprised of fewer than about 100 nucleotide bases. In one aspect, at least one of the two or more oligonucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs 395-583. In another aspect, each of the two or more oligonucleotides hybridizes to a gene encoding a protein selected from the group consisting of a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein. In a further aspect, each of the two or more oligonucleotides hybridizes to a gene encoding a different one of the proteins. In another aspect, the two or more oligonucleotides are provided on a solid support, wherein each of the two of more oligonucleotides occupy a unique location on the solid support. In yet another aspect, the solid support comprises from about 2 to about 5000 of the two or more oligonucleotides. In one aspect, the method further comprises prior to the contacting step, the step of amplifying the one or more genes or nucleic acid sequences in the sample. In another aspect, the methods further comprises, prior to the contacting step, the step of labeling the one or more genes or nucleic acid sequences in the sample with a detectable label.


In yet another embodiment, a method for detecting one or more nucleic acid sequences encoded by one or more genes in a sample is provided comprising contacting the sample with two or more oligonucleotides and detecting the one or more nucleic acid sequences which are hybridized to the one or more oligonucleotides. In one aspect, each oligonucleotide is capable of hybridizing to a nucleic acid sequence encoded by a gene comprising a nucleic acid sequence selected from SEQ ID NOs: 1-197 under standard hybridization conditions. In another aspect, each of the two or more oligonucleotides hybridizes to a gene comprising a different one of the nucleic acid sequences selected from SEQ ID NOs: 1-197. In yet another aspect, each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene comprising a different one of the nucleic acid sequences selected from SEQ ID NOs: 1-197. In one aspect, at least one of the two or more oligonucleotides hybridizes to a nucleic acid sequence that is complementary to a 3′ untranslated region of a gene comprising a nucleic acid sequence selected from SEQ ID NOs: 1-197. In another aspect, each of the two or more oligonucleotides are comprised of fewer than about 100 nucleotide bases. In one aspect, at least one of the two or more oligonucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs 395-583. In another aspect, each of the two or more oligonucleotides hybridizes to a gene encoding a protein selected from the group consisting of a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein. In a further aspect, each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene encoding a different one of the proteins. In another aspect, the two or more oligonucleotides are provided on a solid support, wherein each of the two of more oligonucleotides occupy a unique location on the solid support. In yet another aspect, the solid support comprises from about 2 to about 5000 of the two or more oligonucleotides. In one aspect, the method further comprises prior to the contacting step, the step of amplifying the one or more genes or nucleic acid sequences in the sample. In another aspect, the methods further comprises, prior to the contacting step, the step of labeling the one or more genes or nucleic acid sequences in the sample with a detectable label.


In one embodiment, a kit for detecting gene expression is provided comprising the microarray described above together with one or more buffers or reagents for a nucleotide hybridization reaction.


Other features, objects, and advantages of the present invention are apparent from the detailed description that follows. It should be understood, however, that the detailed description, while indicating preferred embodiments of the invention, are given by way of illustration only, not limitation. Various changes and modifications within the spirit and scope of the invention will be apparent to those skilled in the art from the detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the annotated amino acid sequence of SEQ ID NO: 198.



FIG. 2 shows the annotated amino acid sequence of SEQ ID NO: 199.



FIG. 3 shows the annotated amino acid sequence of SEQ ID NO: 200.



FIG. 4 shows the annotated amino acid sequence of SEQ ID NO: 201.



FIG. 5 shows the annotated amino acid sequence of SEQ ID NO: 206.



FIG. 6 shows the annotated amino acid sequence of SEQ ID NO: 207.



FIG. 7 shows the annotated amino acid sequence of SEQ ID NO: 208.



FIG. 8 shows the annotated amino acid sequence of SEQ ID NO: 227.



FIG. 9 shows the annotated amino acid sequence of SEQ ID NO: 283.



FIG. 10 shows the annotated amino acid sequence of SEQ ID NO: 290.



FIG. 11 shows the annotated amino acid sequence of SEQ ID NO: 296.



FIG. 12 shows the annotated amino acid sequence of SEQ ID NO: 307.



FIG. 13 shows the annotated amino acid sequence of SEQ ID NO: 308.



FIG. 14 shows the annotated amino acid sequence of SEQ ID NO: 309.



FIG. 15 shows the annotated amino acid sequence of SEQ ID NO: 320.



FIG. 16 shows the annotated amino acid sequence of SEQ ID NO: 377.



FIG. 17 shows the annotated amino acid sequence of SEQ ID NO: 382.



FIG. 18 shows the annotated amino acid sequence of SEQ ID NO: 388.



FIG. 19 shows the annotated amino acid sequence of SEQ ID NO: 389.



FIG. 20 shows the annotated amino acid sequence of SEQ ID NO: 392.



FIG. 21 shows the annotated amino acid sequence of SEQ ID NO: 230.



FIG. 22 shows the annotated amino acid sequence of SEQ ID NO: 231.



FIG. 23 shows the annotated amino acid sequence of SEQ ID NO: 265.



FIG. 24 shows the annotated amino acid sequence of SEQ ID NO: 269.



FIG. 25 shows the annotated amino acid sequence of SEQ ID NO: 273.



FIG. 26 shows the annotated amino acid sequence of SEQ ID NO: 278.



FIG. 27 shows the annotated amino acid sequence of SEQ ID NO: 316.



FIG. 28 shows the annotated amino acid sequence of SEQ ID NO: 317.



FIG. 29 shows the annotated amino acid sequence of SEQ ID NO: 355.



FIG. 30 shows the annotated amino acid sequence of SEQ ID NO: 372.



FIG. 31 shows the annotated amino acid sequence of SEQ ID NO: 390.



FIG. 32 shows the annotated amino acid sequence of SEQ ID NO: 247.



FIG. 33 shows the annotated amino acid sequence of SEQ ID NO: 346.



FIG. 34 shows the annotated amino acid sequence of SEQ ID NO: 368.



FIG. 35 shows the annotated amino acid sequence of SEQ ID NO: 214.



FIG. 36 shows the annotated amino acid sequence of SEQ ID NO: 274.



FIG. 37 shows the annotated amino acid sequence of SEQ ID NO: 349.



FIG. 38 shows the annotated amino acid sequence of SEQ ID NO: 314.



FIG. 39 shows the annotated amino acid sequence of SEQ ID NO: 213.



FIG. 40 shows the annotated amino acid sequence of SEQ ID NO: 222.



FIG. 41 shows the annotated amino acid sequence of SEQ ID NO: 224.



FIG. 42 shows the annotated amino acid sequence of SEQ ID NO: 228.



FIG. 43 shows the annotated amino acid sequence of SEQ ID NO: 232.



FIG. 44 shows the annotated amino acid sequence of SEQ ID NO: 236.



FIG. 45 shows the annotated amino acid sequence of SEQ ID NO: 237.



FIG. 46 shows the annotated amino acid sequence of SEQ ID NO: 252.



FIG. 47 shows the annotated amino acid sequence of SEQ ID NO: 253.



FIG. 48 shows the annotated amino acid sequence of SEQ ID NO: 256.



FIG. 49 shows the annotated amino acid sequence of SEQ ID NO: 259.



FIG. 50 shows the annotated amino acid sequence of SEQ ID NO: 263.



FIG. 51 shows the annotated amino acid sequence of SEQ ID NO: 268.



FIG. 52 shows the annotated amino acid sequence of SEQ ID NO: 271.



FIG. 53 shows the annotated amino acid sequence of SEQ ID NO: 284.



FIG. 54 shows the annotated amino acid sequence of SEQ ID NO: 286.



FIG. 55 shows the annotated amino acid sequence of SEQ ID NO: 293.



FIG. 56 shows the annotated amino acid sequence of SEQ ID NO: 294.



FIG. 57 shows the annotated amino acid sequence of SEQ ID NO: 305.



FIG. 58 shows the annotated amino acid sequence of SEQ ID NO: 323.



FIG. 59 shows the annotated amino acid sequence of SEQ ID NO: 336.



FIG. 60 shows the annotated amino acid sequence of SEQ ID NO: 343.



FIG. 61 shows the annotated amino acid sequence of SEQ ID NO: 351.



FIG. 62 shows the annotated amino acid sequence of SEQ ID NO: 360.



FIG. 63 shows the annotated amino acid sequence of SEQ ID NO: 363.



FIG. 64 shows the annotated amino acid sequence of SEQ ID NO: 366.



FIG. 65 shows the annotated amino acid sequence of SEQ ID NO: 369.



FIG. 66 shows the annotated amino acid sequence of SEQ ID NO: 373.



FIG. 67 shows the annotated amino acid sequence of SEQ ID NO: 380.



FIG. 68 shows the annotated amino acid sequence of SEQ ID NO: 385.



FIG. 69 shows the annotated amino acid sequence of SEQ ID NO: 394.



FIG. 70 shows the annotated amino acid sequence of SEQ ID NO: 262.



FIG. 71 shows the annotated amino acid sequence of SEQ ID NO: 272.



FIG. 72 shows the annotated amino acid sequence of SEQ ID NO: 347.



FIG. 73 shows the annotated amino acid sequence of SEQ ID NO: 240.



FIG. 74 shows the annotated amino acid sequence of SEQ ID NO: 223.



FIG. 75 shows the annotated amino acid sequence of SEQ ID NO: 313.



FIG. 76 shows the annotated amino acid sequence of SEQ ID NO: 374.



FIG. 77 shows the annotated amino acid sequence of SEQ ID NO: 279.



FIG. 78 shows the annotated amino acid sequence of SEQ ID NO: 288.



FIG. 79 shows the annotated amino acid sequence of SEQ ID NO: 370.



FIG. 80 shows the annotated amino acid sequence of SEQ ID NO: 202.



FIG. 81 shows the annotated amino acid sequence of SEQ ID NO: 203.



FIG. 82 shows the annotated amino acid sequence of SEQ ID NO: 204.



FIG. 83 shows the annotated amino acid sequence of SEQ ID NO: 258.



FIG. 84 shows the annotated amino acid sequence of SEQ ID NO: 311.



FIG. 85 shows the annotated amino acid sequence of SEQ ID NO: 312.



FIG. 86 shows the annotated amino acid sequence of SEQ ID NO: 364.



FIG. 87 shows the annotated amino acid sequence of SEQ ID NO: 212.



FIG. 88 shows the annotated amino acid sequence of SEQ ID NO: 353.



FIG. 89 shows the annotated amino acid sequence of SEQ ID NO: 238.



FIG. 90 shows the annotated amino acid sequence of SEQ ID NO: 325.



FIG. 91 shows the annotated amino acid sequence of SEQ ID NO: 326.



FIG. 92 shows the annotated amino acid sequence of SEQ ID NO: 220.



FIG. 93 shows the annotated amino acid sequence of SEQ ID NO: 221.



FIG. 94 shows the annotated amino acid sequence of SEQ ID NO: 234.



FIG. 95 shows the annotated amino acid sequence of SEQ ID NO: 235.



FIG. 96 shows the annotated amino acid sequence of SEQ ID NO: 248.



FIG. 97 shows the annotated amino acid sequence of SEQ ID NO: 299.



FIG. 98 shows the annotated amino acid sequence of SEQ ID NO: 315.



FIG. 99 shows the annotated amino acid sequence of SEQ ID NO: 324.



FIG. 100 shows the annotated amino acid sequence of SEQ ID NO: 334.



FIG. 101 shows the annotated amino acid sequence of SEQ ID NO: 342.



FIG. 102 shows the annotated amino acid sequence of SEQ ID NO: 344.



FIG. 103 shows the annotated amino acid sequence of SEQ ID NO: 356.



FIG. 104 shows the annotated amino acid sequence of SEQ ID NO: 359.



FIG. 105 shows the annotated amino acid sequence of SEQ ID NO: 367.



FIG. 106 shows the annotated amino acid sequence of SEQ ID NO: 209.



FIG. 107 shows the annotated amino acid sequence of SEQ ID NO: 244.



FIG. 108 shows the annotated amino acid sequence of SEQ ID NO: 261.



FIG. 109 shows the annotated amino acid sequence of SEQ ID NO: 297.



FIG. 110 shows the annotated amino acid sequence of SEQ ID NO: 341.



FIG. 111 shows the annotated amino acid sequence of SEQ ID NO: 358.



FIG. 112 shows the annotated amino acid sequence of SEQ ID NO: 365.



FIG. 113 shows the annotated amino acid sequence of SEQ ID NO: 250.



FIG. 114 shows the annotated amino acid sequence of SEQ ID NO: 280.



FIG. 115 shows the annotated amino acid sequence of SEQ ID NO: 330.



FIG. 116 shows the annotated amino acid sequence of SEQ ID NO: 331.



FIG. 117 shows the annotated amino acid sequence of SEQ ID NO: 357.



FIG. 118 shows the annotated amino acid sequence of SEQ ID NO: 375.



FIG. 119 shows the annotated amino acid sequence of SEQ ID NO: 266.



FIG. 120 shows the annotated amino acid sequence of SEQ ID NO: 327.



FIG. 121 shows the annotated amino acid sequence of SEQ ID NO: 257.



FIG. 122 shows the annotated amino acid sequence of SEQ ID NO: 319.



FIG. 123 shows the annotated amino acid sequence of SEQ ID NO: 329.



FIG. 124 shows the annotated amino acid sequence of SEQ ID NO: 361.



FIG. 125 shows the annotated amino acid sequence of SEQ ID NO: 210.



FIG. 126 shows the annotated amino acid sequence of SEQ ID NO: 211.



FIG. 127 shows the annotated amino acid sequence of SEQ ID NO: 354.



FIG. 128 shows the annotated amino acid sequence of SEQ ID NO: 362.



FIG. 129 shows the annotated amino acid sequence of SEQ ID NO: 300.



FIG. 130 shows the annotated amino acid sequence of SEQ ID NO: 301.



FIG. 131 shows the annotated amino acid sequence of SEQ ID NO: 233.



FIG. 132 shows the annotated amino acid sequence of SEQ ID NO: 264.



FIG. 133 shows the annotated amino acid sequence of SEQ ID NO: 267.



FIG. 134 shows the annotated amino acid sequence of SEQ ID NO: 298.



FIG. 135 shows the annotated amino acid sequence of SEQ ID NO: 376.



FIG. 136 shows the annotated amino acid sequence of SEQ ID NO: 205.



FIG. 137 shows the annotated amino acid sequence of SEQ ID NO: 215.



FIG. 138 shows the annotated amino acid sequence of SEQ ID NO: 241.



FIG. 139 shows the annotated amino acid sequence of SEQ ID NO: 285.



FIG. 140 shows the annotated amino acid sequence of SEQ ID NO: 291.



FIG. 141 shows the annotated amino acid sequence of SEQ ID NO: 292.



FIG. 142 shows the annotated amino acid sequence of SEQ ID NO: 302.



FIG. 143 shows the annotated amino acid sequence of SEQ ID NO: 303.



FIG. 144 shows the annotated amino acid sequence of SEQ ID NO: 304.



FIG. 145 shows the annotated amino acid sequence of SEQ ID NO: 350.



FIG. 146 shows the annotated amino acid sequence of SEQ ID NO: 245.



FIG. 147 shows the annotated amino acid sequence of SEQ ID NO: 260.



FIG. 148 shows the annotated amino acid sequence of SEQ ID NO: 381.



FIG. 149 shows the annotated amino acid sequence of SEQ ID NO: 216.



FIG. 150 shows the annotated amino acid sequence of SEQ ID NO: 217.



FIG. 151 shows the annotated amino acid sequence of SEQ ID NO: 218.



FIG. 152 shows the annotated amino acid sequence of SEQ ID NO: 219.



FIG. 153 shows the annotated amino acid sequence of SEQ ID NO: 226.



FIG. 154 shows the annotated amino acid sequence of SEQ ID NO: 229.



FIG. 155 shows the annotated amino acid sequence of SEQ ID NO: 239.



FIG. 156 shows the annotated amino acid sequence of SEQ ID NO: 255.



FIG. 157 shows the annotated amino acid sequence of SEQ ID NO: 275.



FIG. 158 shows the annotated amino acid sequence of SEQ ID NO: 306.



FIG. 159 shows the annotated amino acid sequence of SEQ ID NO: 318.



FIG. 160 shows the annotated amino acid sequence of SEQ ID NO: 322.



FIG. 161 shows the annotated amino acid sequence of SEQ ID NO: 335.



FIG. 162 shows the annotated amino acid sequence of SEQ ID NO: 348.



FIG. 163 shows the annotated amino acid sequence of SEQ ID NO: 383.



FIG. 164 shows the annotated amino acid sequence of SEQ ID NO: 387.



FIG. 165 shows the annotated amino acid sequence of SEQ ID NO: 393.



FIG. 166 shows the annotated amino acid sequence of SEQ ID NO: 225.



FIG. 167 shows the annotated amino acid sequence of SEQ ID NO: 310.



FIG. 168 shows the annotated amino acid sequence of SEQ ID NO: 242.



FIG. 169 shows the annotated amino acid sequence of SEQ ID NO: 243.



FIG. 170 shows the annotated amino acid sequence of SEQ ID NO: 281.



FIG. 171 shows the annotated amino acid sequence of SEQ ID NO: 287.



FIG. 172 shows the annotated amino acid sequence of SEQ ID NO: 289.



FIG. 173 shows the annotated amino acid sequence of SEQ ID NO: 328.



FIG. 174 shows the annotated amino acid sequence of SEQ ID NO: 332.



FIG. 175 shows the annotated amino acid sequence of SEQ ID NO: 333.



FIG. 176 shows the annotated amino acid sequence of SEQ ID NO: 345.



FIG. 177 shows the annotated amino acid sequence of SEQ ID NO: 378.



FIG. 178 shows the annotated amino acid sequence of SEQ ID NO: 384.



FIG. 179 shows the annotated amino acid sequence of SEQ ID NO: 386.



FIG. 180 shows the annotated amino acid sequence of SEQ ID NO: 270.



FIG. 181 shows the annotated amino acid sequence of SEQ ID NO: 276.



FIG. 182 shows the annotated amino acid sequence of SEQ ID NO: 282.



FIG. 183 shows the annotated amino acid sequence of SEQ ID NO: 339.



FIG. 184 shows the annotated amino acid sequence of SEQ ID NO: 246.



FIG. 185 shows the annotated amino acid sequence of SEQ ID NO: 249.



FIG. 186 shows the annotated amino acid sequence of SEQ ID NO: 251.



FIG. 187 shows the annotated amino acid sequence of SEQ ID NO: 254.



FIG. 188 shows the annotated amino acid sequence of SEQ ID NO: 277.



FIG. 189 shows the annotated amino acid sequence of SEQ ID NO: 295.



FIG. 190 shows the annotated amino acid sequence of SEQ ID NO: 321.



FIG. 191 shows the annotated amino acid sequence of SEQ ID NO: 337.



FIG. 192 shows the annotated amino acid sequence of SEQ ID NO: 338.



FIG. 193 shows the annotated amino acid sequence of SEQ ID NO: 340.



FIG. 194 shows the annotated amino acid sequence of SEQ ID NO: 352.



FIG. 195 shows the annotated amino acid sequence of SEQ ID NO: 379.



FIG. 196 shows the annotated amino acid sequence of SEQ ID NO: 391.



FIG. 197 shows the annotated amino acid sequence of SEQ ID NO: 371.



FIG. 198 shows a graphic representation of the DNA construct pWVR202.



FIG. 199 shows a graphic representation of the DNA construct pGrowth1.



FIG. 200 shows a graphic representation of the DNA construct pGrowth2.



FIG. 201 shows a graphic representation of the DNA construct pGrowth 11.



FIG. 202 shows a graphic representation of the DNA construct pGrowth21.



FIG. 203 shows a graphic representation of the DNA construct pGrowth22.



FIG. 204 shows a graphic representation of the DNA construct pGrowth23.



FIG. 205 shows a graphic representation of the DNA construct pGrowth24.



FIG. 206 shows a graphic representation of the DNA construct pGrowth25.



FIG. 207 shows a graphic representation of the DNA construct pGrowth26.



FIG. 208 shows a graphic representation of the DNA construct pGrowth27.



FIG. 209 shows a graphic representation of the DNA construct pGrowth28.



FIG. 210 shows a graphic representation of the DNA construct pGrowth30.



FIG. 211 shows a graph of the percentage of shoot lines from each line of plants transformed in Example 16.



FIG. 212 shows a graphic representation of the DNA construct pGrowth3.



FIG. 213 shows a graphic representation of the DNA construct pGrowth29.



FIG. 214 shows a graphic representation of the DNA construct pGrowth49.



FIG. 215 shows a graphic representation of the DNA construct pGrowth51.





DETAILED DESCRIPTION

Novel isolated cell signaling genes and polynucleotides useful for identifying the multigenic factors that contribute to a phenotype and for manipulating gene expression to effect a plant phenotype are provided. These genes, which are derived from plants of commercially important forestry genera, pine and eucalyptus, are involved in the plant signal transduction and are, at least in part, responsible for expression of phenotypic characteristics important in commercial wood, such as stiffness, strength, density, fiber dimensions, coarseness, cellulose and lignin content, and extractives content. Generally, the genes and polynucleotides encode a protein which can be a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, synaptobrevin-like protein or a catalytic domain thereof, or a polypeptide having the same function, the invention further includes such proteins and polypeptides.


The methods of the present invention for selecting cell signaling gene sequences to target for manipulation permit better design and control of transgenic plants with more highly engineered phenotypes. The ability to control plant architecture and agronomically important traits in commercially important forestry species is improved by the information obtained from the methods, such as which genes affect which phenotypes, which genes affect signal transduction, which genes are active in which stage of plant development, and which genes are expressed in which tissue at a given point in the cell cycle or plant development.


Unless indicated otherwise, all technical and scientific terms are used herein in a manner that conforms to common technical usage. Generally, the nomenclature of this description and the described laboratory procedures, including cell culture, molecular genetics, and nucleic acid chemistry and hybridization, respectively, are well known and commonly employed in the art. Standard techniques are used for recombinant nucleic acid methods, oligonucleotide synthesis, cell culture, tissue culture, transformation, transfection, transduction, analytical chemistry, organic synthetic chemistry, chemical syntheses, chemical analysis, and pharmaceutical formulation and delivery. Generally, enzymatic reactions and purification and/or isolation steps are performed according to the manufacturers' specifications. Absent an indication to the contrary, the techniques and procedures in question are performed according to conventional methodology disclosed, for example, in Sambrook et al., Molecular Cloning A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), and F. M. Ausubel et al. (Ed.), Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y. (2002). Specific scientific methods relevant to the present invention are discussed in more detail below. However, this discussion is provided as an example only, and does not limit the manner in which the methods of the invention can be carried out.


I. Plant Cell Signaling Genes and Gene Products


A. Cell Signaling Genes, Polynucleotide and Polypeptide Sequences


One aspect of the present invention relates to novel cell signaling genes and polypeptides encoded by such genes.


The present invention provides novel plant cell signaling genes and polynucleotides and novel cell signaling proteins and polypeptides. The SEQ ID NOs of exemplary cell signaling genes and their corresponding gene products, i.e. oliogonucleotides and proteins, are set forth in TABLE 1. In accordance with one embodiment of the invention, the cell signaling genes are the same as those expressed in a wild-type plant of a species of Pinus or Eucalyptus. Specific exemplary novel plant cell signaling gene sequences of the invention are set forth in TABLE 2, which comprises Eucalyptus grandis and Pinus radiata sequences. Corresponding gene products, i.e., proteins and oligonucleotides, are listed in TABLE 3 and TABLE 4.


Cell Signaling genes and gene products affect plant growth and development by a number of disparate mechanisms and biological pathways. Exemplary categories for some of these mechanisms and biological pathways include growth, development and phytohormone response genes, cellular receptor and related genes and intracellular transduction genes are provided. Exemplary genes and gene products for members of these categories are also provided.


1. Growth, Development and Phytohormone Response Genes and Gene Products


Ethylene Response Genes and Gene Products. Ethylene is an important phyotohormone, or plant hormone, because it is involved in virtually all stages of plant growth and development, effecting environmental and developmental responses. Ethylene participates in the regulation of processes such as germination of seeds, senescence, abscission, fruit ripening, responses to environmental stresses such as wounding, flooding, and changes in temperatures or light.


Ethylene is produced from methionine via the formation of S-adenosylmethionine (SAM), which in turn forms the non-protein amino acid, 1-aminocyclopropane-1-carboxylic acid (ACC). ACC is subsequently oxidized to the 2-carbon olefin, ethylene. Two enzymes are unique to the plant ethylene biosynthetic pathway.


One phytormone synthesis gene is 1-aminocyclopropane-1-carboxylate synthase. It is a pyridoxal phosphate dependent enzyme that converts SAM to ACC. Another phytormone synthesis gene is 1-aminocyclopropane-1-carboxylate oxidase. It catalyzes the oxidation of ACC to the 2-carbon olefin, ethylene. Adams and Yang, Proc. Natl. Acad. Sci. USA 76:170-174 (1979).


Ethylene production is tightly controlled by regulation of enzyme expression and modulation of enzyme activity dependent upon the availability of cofactors required for catalysis. ACC synthase and ACC oxidase are constituatively present in most plant tissues because small amounts of ethylene are necessary for virtually all stages of development. However, ethylene biosynthesis is increased significantly during fruit ripening. ACC synthase is considered to be the primary, though not exclusive, rate-limiting enzyme in the ethylene biosynthetic pathway, while the regulation of ethylene production via control of ACCO expression and ACCO activity are through to fine-tune the system.


Ethylene signal transduction initiates with ethylene binding at a family of ethylene receptors and terminates in a transcription cascade involving the EIN3/EIL and ERF families of plant-specific transcription factors. Two Arabidopsis F box proteins, called EBF1 and EBF2, have been identified that interact physically with EIN3/EIL transcription factors. See Potuschak et al., Cell. 115(6):679-89 (2003). EBF1 overexpression results in plants insensitive to ethylene.


During fruit ripening, and through this mechanism, ethylene induces the expression of a number of genes and gene products. Yang & Hoffman, Annu. Rev. Plant Physiol. 35:155-189 (1984); Abeles et al., Ethylene In Plant Biology, Academic Press, San Diego (1992). For example, the ethylene-responsive elongation factor (EF-TS) is a mitochondrial elongation factor which promotes guanine nucleotide exchange during polypeptide synthesis. See Benichou et al., Plant Mol. Biol. 53(3):411-22 (2003).


Gibberellin Response Genes and Gene Products. Another major class of phytohormone is tetracyclic diterpenoids, called Gibberellins (GA). GAs are involved in many processes during plant growth and development, including seed germination, stem elongation, flowering, and fruit development. See Hedden and Kamiya, Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:431-60 (1997). Bioactive GAs are perceived at the plasma membrane of the plant cell. See Lovegrove et al., Plant J. 15:311-320 (1998). A number of potential components of the GA signaling pathway have been identified using cell biological, pharmacological, and genetic approaches. See Thornton et al., Trends Plant Sci. 4:424-428 (1999); Lovegrove and Hooley, Trends Plant Sci. 5:102-110 (2000).


It is thought that de novo biosynthesis is the main source of bioactive GA in growing tissues and, as such, the enzymes are likely to be the regulators of GA-related growth. See Huang et al., Plant Physiol. 118(3):773-81 (1998). In Arabidopsis, there are at least five loci involved in GA biosynthesis: GA1, GA2, GA3, GA4, and GA5. See Koornneef and van der Veen, Theor. Appl. Genet. 58:257-263 (1980). For a complete review of the proposed biosynthetic pathway see Finkelstein and Zeevaart, Gibberellins and abscisic acid In Arabidopsis (CR Somerville, EM Meyerowitz, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp 523-553 (1984). Briefly, the first reaction of the GA biosynthesis pathway is the cyclization of geranylgeranyl pyrophosphate to ent-kaurene, a two-step conversion. Copalyl diphosphate synthase, formerly ent-kaurene synthetase A, the enzyme responsible for the first part of the reaction, is encoded by the GA1 locus and has been cloned. See Sun et al., Plant Cell 4:119-128 (1992). The GA2 locus encodes ent-kaurene synthase, which completes the conversion of geranylgeranyl pyrophosphate to ent-kaurene. It is thought that the GA3 locus encodes a Cyt P450 monooxygenase which catalyzes the oxidation of ent-kaurene to ent-kaurenoic acid. It is also thought that GA5 and GA4 encode GA20-oxidase and GA3-hydroxylase, respectively. Both genes have been cloned, and GA5 protein produced in vitro exhibits GA20-oxidase activity. See Chiang et al., Plant Cell 7:195-201 (1995); Xu et al., Proc. Natl. Acad. Sci. U.S.A. 92:6640-6644 (1995).


GA20-oxidase catalyzes what is thought to be an important aspect of the regulation of the GA biosynthetic pathway—the oxidation of GA at carbon-20. In spinach, enhanced oxidation activity is associated with the bolting response. See Gilmour et al., Plant Physiol. 82:190-195 (1986). In maize seedlings, GA20-oxidase activity is down-regulated as a result of feedback control. See Karssen et al. (eds), Progress in Plant Growth Regulation, pp 534-544, Kluwer Academic Publishers, Dordrecht, The Netherlands (1992). In Arabidopsis, GA20-oxidase is up-regulated when plants are transferred from short-day to long-day conditions. Likewise, it is down-regulated when plants are treated with bioactive GA. Accordingly, it is thought that the developmental and environmental regulation of 20-oxidase gene expression influences plant growth by affecting the level of endogenous gibberellic acid. See Huang et al., Plant Physiol. 118(3):773-81 (1998).


As such, catabolism of GAs is an important regulator of the endogenous levels of bioactive gibberellins. In many plant species, bioactive GA are 2-hydroxylated to produce biologically inactive proteins. This step is catalyzed by GA 2-oxidase. This enzyme also inactivates immediate precursors of bioactive GAs. See Ross et al., Plant J. 7:513-523 (1995). The expression levels of GA 2-oxidase have been correlated to the presence of bioactive GA. In total, both GA biosynthesis genes and gene products and GA catabolism genes and gene products are regulated through feedback to maintain endogenous levels of bioactive GAs. See Sakamoto et al., Plant Physiol. 125(3):1508-16 (2001).



Arabidopsis mutants that are GA-deficient display characteristic phenotypes, including dark green leaves and a dwarf growth habit attributable to reduced stem elongation. See Peng and Harberd, Plant Physiol. 113:1051-1058 (1997). A semidominant mutation of Arabidopsis, gibberellic acid insensitive (GAI), also confers a dark green, dwarf phenotype. It is thought that the gai mutation affects either GA perception or subsequent signal transduction. Likewise, it is thought that GAI, and its known suppressors, modulate a signal-transduction pathway that represses growth and is opposed by gibberellic acid. See Peng et al., Genes Dev. 11(23):3194-205 (1997).


Brassinosteroid Response Genes and Gene Products. Brassinosteroids (BRs) are widely distributed throughout the plant kingdom and elicit unique growth promoting activity when applied exogenously. Mandava, Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:23-52 (1988). In many species, BR-deficient mutants show strong dwarfism with dark-green rugose leaves, reduced apical dominance and reduced male fertility. Also, Arabidopsis BR-deficient mutants have a prolonged vegetative phase and delayed leaf and chloroplast senescence. See Chory and Li, Plant Cell Environ. 20:801-806 (1997).


One Arabidopsis BR-deficiency causing mutation, det2, has been cloned and shown to encode a protein analogous to mammalian steroid 5α-reductases. See Li et al., Science 272:398-401 (1996). In mammals, steroid hormones are synthesized from cholesterol via pregnenolone through a series of reactions that modify the ring structure and the side chain of the sterol. Similarly, BRs are thought to be derived from several major phytosterols (e.g., campesterol, sitosterol, and stigmasterol) via multiple oxidation steps. In many mammalian steroid hormones, the reduction of a 4,5 double bond, as catalyzed by 5α-reductase, serves to modulate the biological activity of the steroid hormone. In contrast, known naturally occurring and biologically active BRs lack double bonds in the A and B rings and contain a 5-reduced stereochemistry. Accordingly, it is thought that a steroid 5-reductase must be required for the formation of the trans A/B ring junction that is essential for the biological activity of BRs. See Li et al., Proc. Natl. Acad. Sci. U.S.A. 94(8):3554-59 (1997).


Likewise, another Arabidopsis BR-deficiency causing mutation, cpd, has been cloned and characterized. See Szekeres et al., Cell 85:171-182 (1996). The CPD protein shares sequence homology with several mammalian cytochrome P450 proteins, including several steroid hydroxylases. Mutations in CPD cause phenotypic defects that are similar to those of det2 mutations. Moreover, brassinolide treatment restores a wild-type phenotype to cpd mutants. Accordingly, these and other studies suggest that CPD may encode a steroid 23-hydroxylase.


Much like the control of mammalian steroid biological activity, it is thought that BRs are modulated through a mechanism of hormone inactivation by sulfonation. In this regard, a plant enzyme that catalyzes the O-sulfonation of brassinosteroids and of mammalian estrogenic steroids has been cloned and characterized. See Rouleau et al., J. Biol. Chem. 274(30):20925-30 (1999). This steroid sulfotransferase catalyzes a reaction which abolishes BRs biological activity in the bean second internode bioassay. Moreover, the expression of the steroid sulfotransferase genes in some species was found to be induced by salicylic acid, a well-known signal molecule in the plant defense response. This pattern of expression suggests that, in addition to an increased synthesis of proteins having antimicrobial properties, plants respond to pathogen infection by modulating steroid-dependent growth and developmental processes.


Additionally, a large number of Arabidopsis BR-insensitive mutants have been characterized and shown to possess a mutation of the same gene. See Li and Chory, Cell 90:929-938 (1997). This gene was cloned and shown to possess homology to LRR receptor kinases. As such, it is thought that the BR steroid receptor is a LRR receptor in the plasma membrane.


Cytokinin Response Genes and Gene Products. The phytohormone cytokinin plays a major role in many developmental processes and environmental responses of plants, including leaf senescence, apical dominance, chloroplast development, anthocyanin production, and the regulation of cell division and sink/source relationships. See Hutchison and Kieber, Plant Cell. 14:S47-59 (2002). Cytokinins first were identified by their ability to promote cell division in cultured cells in combination with another phytohormone, auxin. See Skoog and Miller, Symp. Soc. Exp. Biol. 11:118-131 (1957). It is thought that the influence of cytokinins on morphogenesis is primarily achieved through cell cycle regulation. See Werner et al., Proc. Natl. Acad. Sci. USA 98(18):10487-92 (2001). The hormone is required for S-phase entry in leaf mesophyll protoplasts and tobacco pith explants. See Cooke and Meyer, Planta 152:1-7 (1991); Mok and Mok (eds.), Cytokinins: Chemistry, Activity and Function, CRC, Boca Raton, Fla. (1994). Additionally, several cell cycle genes are regulated by cytokinins, including, cdc2, CycD3, and others. See, e.g., Hemerlyet al., Plant Cell 5:1711-1723 (1993); Riou-Khamlichiet al., Science 283,1541-1544(1999).


Similar to other phytohormones, the existence of pathways for the degradation and conjugation of cytokinins suggests that the level of these compounds are tightly regulated. For example, Cytokinin oxidase catalyzes the irreversible degradation of in a single enzymatic step by oxidative side chain cleavage. See Schmulling et al., J. Plant Res. 116(3):241-52 (2003).


Several of the enzymes encoding the proteins that catalyze these metabolic reactions have been cloned (see, for example, Houba-Hérin et al., Plant J. 17:615-626 (1999); Martin et al., Plant Physiol. 120:553-557 (1999), Martin et al., Proc. Natl. Acad. Sci. USA 96:284-289 (1999); Martin et al., Proc. Natl. Acad. Sci. USA 98:5922-5926 (2001); and Morris et al., Biochem. Biophys. Res. Commun. 255:328-333 (1999)), as have the genes encoding a key enzyme in cytokinin biosynthesis, isopentyl transferase (see Kakimoto, Science 274:982-985 (2001); Takei et al., J. Biol. Chem. 276:26405-410 (2001)). Cytokinin biosynthesis and catabolism have been reviewed in depth, for example, in Haberer and Kieber, Plant Physiol. 128:354-362 (2001) and Mok and Mok, Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:89-118 (2001).


The cytokinin cell signal transduction pathway has also been partially elucidated. See, e.g., Hutchison and Kieber, Plant Cell 14:S47-59 (2002). Briefly, cytokinins bind to cytokinin response 1 (CRE1) histidine kinase at the cell membrane, and most likely also to the histidine kinases AHK2 and AHK3. Binding induces autophosphorylation on a Histidine residue within the receptor's transmitter domain. Subsequently, the phosphate is transferred to an Asparagine residue within the fused receiver domain. Then, this phosphate is transferred to a Histidine residue on a phosphotransfer protein (AHP). The AHP translocates to the nucleus, where it activates a response regulator (ARR). The activated ARR then binds to elements within the promoter of other ARRs to increase their rate of transcription. Some ARRs feed back to inhibit their own expression and, possibly, cytokinin signaling in general.


Auxin Response Genes and Gene Products. Further, the first phytohormone discovered, Auxin, also may dramatically affect plant phenotype, growth and development. Auxin has been shown to impact a wide variety of developmental processes, such a stem elongation, apical dominance, root initiation and fruit development. Auxin was first identified as the chemical agent responsible for the phototropism of coleoptile tips. See Thiamann and Skoog, Vica faba. Proc. R. Soc. Lond. [Biol.] 114:317-339 (1934). Thiamann and Skoog, among others, discovered that auxin in higher plants is actually indole-3-acetic acid (IAA). It has been recommended that auxins, as a class of hormones, can be defined as any compound that has a biological activity similar to, but not necessarily identical with IAA. See Salisbury (Ed.), Units, Symbols and Terminology for Plant Physiology, Oxford University Press, New York, N.Y. (1996). These activities include, for example, the induction of cell elongation in isolated coleoptile or stem sections; the induction of cell division in callus tissues in the presence of a cytokinin; the promotion of lateral root formation at the cut surfaces of stems; the induction of parthenocarpic fruit growth; and the induction of ethylene formation.


Multiple IAA biosynthetic pathways exist in plants, both tryptophan-dependent and tryptophan-independent. In one pathway, called the indole-3-pyruvic acid (IPA) pathway, is thought to be the most common tryptophan-dependent biosynthetic pathway. The IPA pathway involves the deanimation of tryptophan to form IPA, followed by a decarboxylation reaction to form indole-3-acetaldehyde (IAid). IAid is then oxidized to form IAA. Alternatively, in the indole-3-acetonitrile (IAN) pathway, tryptophan is converted to indole-3-acetaldoxime and subsequently converted to IAN. A nitrilase then catalyzes the conversion of IAN to IAA.


Likewise, Auxin degradation may occur through may different pathways. In one, it is thought that peroxidase enzymes catalyze the oxidation of IAA to 3-methyleneoxindole. However, the physiological significance of the peroxidase pathway is unclear. See Normanly et al., Plant Physiol. 107:323-329 (1995). Two other oxidation pathways have been proposed for the degradation of IAA. In both, the final product is oxindole-3-acetic acid. See Davies (Ed.), Plant Hormones and Their Role in Plant Growth Development (2nd ed.), Kluwer, Dordrecht, Netherlands (1995).


Absicisic Acid Response Genes and Gene Products. Absicisic acid (ABA) functions in initiation and maintenance of seed and bud dormancy and response to stress. ABA exerts long-term and short-term control over plant development. Long term effects are mediated by ABA induced gene expression. ABA stimulates synthesis of RAB. ABA also is involved in plant development by interacting, typically as an antagonist, with auxin, cytokinin, and gibberellin. ABA also affects plant tolerance to water stress by preventing desiccation. Proteins which are responsive to ABA, “RAB proteins” are water soluble, rich in glycine and lysine, and low in hydrophobic residues. Rab regulates transport of proteins and RNA across nuclear envelope. Vernoud et al., supra. RAB proteins are discussed in more detail below.


2. Cellular Receptor and Related Genes and Gene Products


Likewise, cell surface receptors communicate outside stimuli and serve as initiation sites for intracellular signaling cascades. For example, a family of cellular receptor genes, including ETR1, ETR2, EIN4, ERS1, and ERS2, has been implicated in ethylene perception in Arabidopsis thaliana. See Hua et al., Cell 94:261-271 (1998). The ETR1 gene encodes an ethylene receptor, as indicated by the ethylene-binding activity of its amino-terminal domain. See Schalleret al., Science 270:1809-1811 (1995). The ETR2 gene products are cellular receptors involved in the development of different plant tissues. See Sakai et al., Proc. Natl. Acad. Sci. U.S.A. 95(10):5812-17 (1998).


G-Receptor Coupled Genes and Gene Products. G-receptor coupled receptors (GPCR) constitute another large superfamily of proteins that communicate signals across cell membrane. On the exterior side, they bind to a ligand (which could be a photon, hormone, antigen, growth factor or a neurotransmitter) and at the cytosolic side, they activate a GTP binding protein (G-protein). All GPCRs share one characteristic in that they consist of a single protein chain that crosses the cell membrane seven times. Loops that occur between the cell wall and the cell membrane take part in ligand recognition, while the second and third cytosolic loop and part of the C-terminal end of the receptors are implicated in G-protein recognition.


G proteins are characterized by three subunits: α, β and γ. The α subunit has two domains. Of the two, the function of only one, namely, the ras domain is known in somewhat detail. It contains a GDP/GTP binding site. A covalently attached lipid attaches this subunit to the lipid cell membrane bilayer. After the formation of the ligand-receptor complex, GNRP (guanine nucleotide release protein) catalyzes the removal of GDP and replaces it with GTP. Simultaneously, a subunit is dissociated from the β and γ subunits. Both the GTP-bound subunit and free subunits can activate downstream effectors. Such effectors include adenyl cyclase and ion channels. The cycle returns by the intrinsic GTPase activity of the α-subunit. It hydrolyzes GTP into GDP concomitant with reassociation of the α-subunit with the β and γ subunits.


GPCR is highly expressed in meristemic tissues. See Colucci et al., Proc. Nat'l Acad. Sci. U.S.A. 99:4736-41 (2002). GPCR overexpression in Arabidopsis results in loss of seed dormancy and shortening of time to flower and fruit set. Overexpression has been shown to lead to excessive cell division in meristem and initiation of additional meristems.


Antisense suppression of GCR1 in Arabidopsis results in a phenotype suggestive of a role in cytokinin signaling. See Hooley et al., Lond. B. Biol. Sci. 353:1425-30 (1998). Furthermore, transgenic Arabidopsis expression antisense GDR1 under the control of constitutive cauliflower mosaic virus 35S promoter show reduced sensitivity to cytokinins in roots and shoots, but respond normally to other plant hormones. This suggests a role for GCR1 in cytokinin signal transduction. Plakidou-Dymock et al., Curr. Biol. 12:315-24 (1998).


3. Intracellular Transducer Genes and Gene Products


Cell signaling genes and gene products also can be intracellular transducers along the signaling cascade. One intracellular transducer, the Mago nashi protein, has been studied extensively in Drosophila. See Newmark et al., Development 124(16):3197-207 (1997). Mago nashi gene products mediate the polarity of the developing Drosophila ooctye. A mago nashi gene analog has been found in rice. See Swidzinski et al., Genome 44(3):394-400 (2001). Mago nashi gene products were found to be expressed in root, leaf and developing seed tissue as determined by RNA and protein gel blot analysis.


Receptor kinases are also important cell signaling genes. The Ras superfamily of monomeric GTPases comprises Ras, Rab, and Rho/Rac. Ras and Rac relay signals from surface receptors to actin cytoskeleton. Members of Rab are involved in regulating intracellular membrane vesicle traffic. Ras proteins, which are located on inner surface of the membrane, are involved in initiating the kinase cascade that communicates signals from the receptor to the nucleus.


RAB exhibits high degree of functional and structural conservation in all eukaryotic cells studied. Haizel et al., Plant Physiol. 108:59-67 (1995). Rab GTPases are a large family of the small GTP-binding protein superfamily. Vernoud, et al., Plant Physiol. 131:1191 (2003). Rab has been shown to have a role in intracellular membrane trafficking and to be involved in membrane fusion events. Rab is also thought to be involved in intracellular transport from the ER to Golgi apparatus. Bown and Gatehouse, Plant Mol. Biol. 21:1195-99 (1993).


Rab GTPases cycle between inactive GDP-bound form located in cytosol and active GTP-bound form which is membrane associate. Upon binding to target membrane, the RAB GTPase is converted from GDP-bound form the GTP bound form through activation by RABGEF proteins. The intrinsic activity of monomeric GTP-binding proteins is very low. GAPs can modulate the cellular activity of these proteins by several orders of magnitude. Haizel. GAPs bind at specific effector-binding domains.


Most GTP-binding mRNAs are constitutively expressed in similar amounts, RAB1, RAB2, RAB5, RAB7 have elevated levels in root nodules, while certain RAB7, RAB8, and RAB11 are enriched in aerial parts of the plant suggesting that most small GTPases have housekeeping functions whereas a few are required for specialized activities that are important to specialized cells. See Borg et al., Plant J. 11:237-50 (1997).


The RAB11 protein is known to also possess regions which participate in GTP binding and hydrolysis. A c-terminal CCXX motif, essential for membrane attachment, is conserved in RAB11. Haizel et al., Plant Physiol. 108:59-67 (1995).


RAB5 is associated with early endosomes. See Haizel et al., supra. In vitro assays demonstrated that RAB5 controls early endosome fusion and plays a critical role in trafficking soluble cargoes from prevacuolar compartment to central vacuole during early endocytosis. See Gorvel et al. Cell 64:915-25; Sohn et al., Plant Cell 15:1057 (2003); Daitoku et al., Int. J. Mol. Med. 8:397 (2001).


RAB7 affects the transport of cargo from early endosomes to late endosomes and lysosomes. See Feng et al., J. Cell Biol. 131:1435-52 (1995); Mukhopadhyay et al., J. Biol. Chem. 272:13055-59 (1997). In plants, RAB7 is localized in late endosomes. Additionally, RAB7 has a conserved effector domain, YKATIGADF. RAB7 has a c-terminal motif that differs from RAB11 (CXC motif). Haizel et al., supra.


Ras-related nuclear protein (RAN) is a 25 kDa nuclear GTP-binding protein with a highly conserved amino acid sequence among plants, animals and fungi. Ach and Gruissem, Proc. Nat'l Acad. Sci. U.S.A. 91:5863-7 (1994). Ran complexes with chromatin-associated protein RCC1, a negative regulator of mitosis. Ran is thought to function in a GTPase switch involved in the coupling of the completion of DNA replication to onset of M phase. The role of Ran is thought to be broader, however, than regulation of mitosis only. For example, in tomato, Ran has been shown to be constitutively expressed in all tissues, regardless of the stage of cell cycle. Furthermore, the levels of tomato Ran mRNA do not change during fruit development. In interphase cells, RAN GTPases direct nucleocytoplasmic transport. Like other GTPases, RAN cycles between GDP and GTP bound states. However for RAN, GTP binding and hydrolysis is linked to transport into or out of the nucleus. Unlike other GTPases, RAN is not post-translationally lipid modified and does not associate with cellular membranes. Vernoud et al., supra at 1203.


Ras GTPases are shown to regulate cell proliferation in yeast and mammalian systems. Vernoud, et al., Plant Physiol. 131:1191 (2003). This group includes the Rho GTPases. The Rho GTPases are involved in assembly of actin cytoskeleton. Haizel et al., supra. Ras, however, has not yet been identified in plants. Instead, the Ras homologs RAB and RHO have been characterized. Functionally, Ras is activated by the release of GDP. The binding of GTP begins a cascade event. Ras recruits and then binds Raf. The binding of Ras to Raf initiates a phosphorylation cascade called the MAPK cascade. The ethylene receptor ETR1, is thought to pass its signal to CTR1, a protein kinase of the Raf family. In the context of the phosphorylation cascade, Raf is referred to as MAP kinase kinase kinase (MAPKKK). MAPKKK phosphorylates MAPKK which phosphorylates MAPK. MAPK enters the nucleus where it activates other protein kinases, transcription factors, and regulatory proteins.


Three types of receptor-like kinases are known in plants. S receptor kinases have an S domain which consists of 10 cysteins in a particular arrangement with other amino acids. SRK genes are expressed predominantly in pistols. Leucine rich repeat receptors possess a beta-sheet with an exposed face that participates in protein-protein interactions. These proteins are involved in disease resistance by recognition of ligands produced by pathogens and the subsequent activation of intracellular defense response. See Bent et al., Plant Cell 8:1757:71 (1996)). S receptor kinases are also involved in the normal development of plants.


At least one class of intracellular transducers, 14-3-3 proteins, function as regulators of a wide range of biological processes. One feature of 14-3-3 proteins is their ability to bind a multitude of functionally diverse signaling proteins, including kinases, phosphatases, and transmembrane receptors. 14-3-3 proteins interact directly with different target proteins. Typically the target protein is phosphorylated, enabling binding of 14-3-3 to the target protein, altering its activity. 14-3-3 binding can is known to directly alter protein activity (either positively or negatively), control nuclear-cytoplasmic shuttling, mediate protein import into mitochondria and chloroplasts, and form a scaffold to permit interactions between two different binding proteins. 14-3-3 proteins are also known to be involved in cell signaling. For example, response to plant pathogens involve 14-3-3 proteins and calmodulin-domain protein kinases (CDPK), MAP kinase pathways, lipoxygenases and ion channels have been identified as potential targets for 14-3-3 proteins important in defense.


The sequences of the invention encode proteins involved in cell signaling. These proteins include 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein. As discussed in more detail below, manipulation of the expression of the cell signaling genes and polynucleotides, or manipulation of the activity of the encoded proteins and polypeptides, can result in a transgenic plant with a desired phenotype that differs from the phenotype of a wild-type plant of the same species.


Throughout this description, reference is made to cell signaling gene products. As used herein, a “cell signaling gene product” is a product encoded by a cell signaling gene, and includes both nucleotide products, such as RNA, and amino acid products, such as proteins and polypeptides. Examples of specific cell signaling genes of the invention include SEQ ID NOs: 1-197. Examples of specific cell signaling gene products of the invention include products encoded by any one of SEQ ID NOs: 198-583. Reference also is made herein to cell signaling proteins and cell signaling polypeptides. Examples of specific cell signaling proteins and polypeptides of the invention include polypeptides encoded by any of SEQ ID NOs: 1-197 or polypeptides comprising the amino acid sequence of any of SEQ ID NOs: 198-394.


The present invention also includes sequences that are complements, reverse sequences, or reverse complements to the nucleotide sequences disclosed herein.


The present invention also includes conservative variants of the sequences disclosed herein. The term “variant,” as used herein, refers to a nucleotide or amino acid sequence that differs in one or more nucleotide bases or amino acid residues from the reference sequence of which it is a variant.


Thus, in one aspect, the invention includes conservative variant polynucleotides. As used herein, the term “conservative variant polynucleotide” refers to a polynucleotide that hybridizes under stringent conditions to an oligonucleotide probe that, under comparable conditions, binds to the reference gene the conservative variant is a variant of. Thus, for example, a conservative variant of SEQ ID NO: 1 hybridizes under stringent conditions to an oligonucleotide probe that, under comparable conditions, binds to SEQ ID NO: 1. For example, sequences are considered to hybridize when they form a double-stranded complex in a hybridization solution of 6×SSC, 0.5% SDS, 5× Denhardt's solution and 100 μg of non-specific carrier DNA. See F. M. Ausubel et al. (Eds.), Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y. (2002). “Moderate stringency” is defined as a temperature of 60° C. in a hybridization solution of 6×SSC, 0.5% SDS, 5× Denhardt's solution and 100 μg of non-specific carrier DNA. Id. “High stringency” hybridization conditions are, for example, 68° C. in a hybridization solution of 6×SSC, 0.5% SDS, 5× Denhardt's solution and 100 μg of non-specific carrier DNA. Id. Following the moderate stringency hybridization reaction, the nucleotides are washed in a solution of 2×SSC plus 0.05% SDS for five times at room temperature, with subsequent washes with 0.1×SSC plus 0.1% SDS at 60° C. for 1 h.


One aspect of the invention provides conservative variant polynucleotides that exhibit at least about 75% sequence identity to their respective reference sequences. “Sequence identity” has an art-recognized meaning and can be calculated using published techniques. See Computational Molecular Biology, Lesk, ed. (Oxford University Press, 1988), Biocomputing: Informatics And Genome Projects, Smith, ed. (Academic Press, 1993), Computer Analysis Of Sequence Data, Part I, Griffin & Griffin, eds., (Humana Press, 1994), Sequence Analysis In Molecular Biology, Von Heinje ed., Academic Press (1987), Sequence Analysis Primer, Gribskov & Devereux, eds. (Macmillan Stockton Press, 1991), Gish et al., J. Mol. Biol. 215: 403 (1990); Gish and States, Nature Genet. 3: 266 (1993); Madden et al., Meth. Enzymol. 266:131 (1996); Altschul et al., Nucleic Acids Res. 25: 3389 (1997); and Zhang and Madden, Genome Res. 7: 649-656 (1997), and Carillo and Lipton, SIAM J. Applied Math. 48: 1073 (1988). Methods commonly employed to determine identity or similarity between two sequences include but are not limited to those disclosed in Guide To Huge Computers, Bishop, ed., (Academic Press, 1994) and Carillo & Lipton, supra.


Methods to determine identity and similarity are codified in computer programs. Preferred computer program methods to determine identity and similarity between two sequences include but are not limited to the GCG program package (Devereux et al., Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul et al., J. Mol. Biol. 215: 403 (1990)), and FASTDB (Brutlag et al., Comp. App. Biosci. 6: 237 (1990)).


The invention includes conservative variant polynucleotides having a sequence identity that is greater than or equal to 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 79%, 78%, 77%, 76%, 75%, 74%, 73%, 72%, 71%, 70%, 69%, 68%, 67%, 66%, 65%, 64%, 63%, 62%, 61%, or 60% to any one of 1-29. In such variants, differences between the variant and the reference sequence can occur at the 5′ or 3′ terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.


Additional conservative variant polynucleotides contemplated by and encompassed within the present invention include polynucleotides comprising sequences that differ from the polynucleotide sequences of SEQ ID NOs: 1-197 or complements, reverse complements or reverse sequences thereof, as a result of deletions and/or insertions totaling less than 30% of the total sequence length. In one embodiment, deletions and/or insertions total less than 20% or less than 10% of the total length.


The invention also includes conservative variant polynucleotides that, in addition to sharing a high degree of similarity in their primary structure (sequence) to SEQ ID NOs have at least one of the following features: (i) they contain an open reading frame or partial open reading frame encoding a polypeptide having substantially the same functional properties in polynucleotide synthesis as the polypeptide encoded by the reference polynucleotide, or (ii) they have nucleotide domains or encoded protein domains in common. The invention includes conservative variants of SEQ ID NOs: 1-197 that encode proteins having the enzyme or biological activity or binding properties of the protein encoded by the reference polynucleotide. Such conservative variants are functional variants, in that they have the enzymatic or binding activity of the protein encoded by the reference polynucleotide.


In accordance with the invention, polynucleotide variants can include a “shuffled gene” such as those described in e.g. U.S. Pat. Nos. 6,500,639, 6,500,617, 6,436,675, 6,379,964, 6,352,859, 6,335,198, 6,326,204 and 6,287,862. A variant of a nucleotide sequence of the present invention also can be a polynucleotide modified as disclosed in U.S. Pat. No. 6,132,970, which is incorporated herein by reference.


In accordance with one embodiment, the invention provides a polynucleotide that encodes a cell signaling protein such as 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein. SEQ ID NOs: 1-197 provide examples of such polynucleotides.


In accordance with another embodiment, a polynucleotide of the invention encodes the catalytic or protein binding domain of a polypeptide encoded by any of SEQ ID NOs: 1-197 or of a polypeptide comprising any of SEQ ID NOs: 198-394. The catalytic and protein binding domains of the polysaccharide synthesis proteins of the invention are known in the art. The conserved sequences of these proteins are shown in FIGS. 1-197 as underlined text.


The invention also encompasses as conservative variant polynucleotides that differ from the sequences discussed above but that, as a consequence of the degeneracy of the genetic code, encode a polypeptide which is the same as that encoded by a polynucleotide of the present invention. The invention also includes as conservative variants polynucleotides comprising sequences that differ from the polynucleotide sequences discussed above as a result of substitutions that do not affect the amino acid sequence of the encoded polypeptide sequence, or that result in conservative substitutions in the encoded polypeptide sequence.


The present invention also includes an isolated polypeptide encoded by a polynucleotide comprising any of SEQ ID NOs: 1-197 or any of the conservative variants thereof discussed above. The invention also includes polypeptides comprising SEQ ID NOs: 198-394 and conservative variants of these polypeptides.


In accordance with the invention, a variant polypeptide or protein refers to an amino acid sequence that is altered by the addition, deletion or substitution of one or more amino acids.


The invention includes conservative variant polypeptides. As used herein, the term “conservative variant polypeptide” refers to a polypeptide that has similar structural, chemical or biological properties to the protein it is a conservative variant of. Guidance in determining which amino acid residues can be substituted, inserted, or deleted can be found using computer programs well known in the art such as Vector NTI Suite (InforMax, MD) software. In one embodiment of the invention, conservative variant polypeptides that exhibit at least about 75% sequence identity to their respective reference sequences.


Conservative variant protein includes an “isoform” or “analog” of the polypeptide. Polypeptide isoforms and analogs refers to proteins having the same physical and physiological properties and the same biological function, but whose amino acid sequences differs by one or more amino acids or whose sequence includes a non-natural amino acid.


Polypeptides comprising sequences that differ from the polypeptide sequences of SEQ ID NO: 198-394 as a result of amino acid substitutions, insertions, and/or deletions totaling less than 10% of the total sequence length are contemplated by and encompassed within the present invention.


One aspect of the invention provides conservative variant polypeptides function in cell signaling, as determined by one or more appropriate assays, such as those described below. The invention includes variant polypeptides which are cell signaling or cell signaling-like proteins, such as those participating in the regulation of ethylene synthesis or those genes that encode a peptide having the biological activity of a receptor kinase. As discussed above, the invention includes variant polynucleotides that encode polypeptides that function as cell signaling proteins.


In one embodiment, an isolated polynucleotide comprise a sequence encoding the catalytic or substrate-binding domain from a polypeptide selected from any one of SEQ ID NO: 198-394. In one aspect, the polynucleotide encodes a polypeptide having the same or similar activity of a polypeptide selected from any one of SEQ ID NO: 198-394.


The activities and physical properties of cell signaling proteins can be examined using any method known in the art. The following examples of assay methods are not exhaustive and are included to provide some guidance in examining the activity and distinguishing protein characteristics of cell signaling protein variants. In any case, any and all biological, chemical, enzymatic or radiologic assay method can be used to determine whether a polypeptide has the same or similar activity of another polypeptide.


One such assay monitors DNA synthesis by thymidine incorporation. DNA synthesis correlated, in most cases, with cellular growth. It is monitored in, for example, tissue samples from transformed and control plants by pulse labeling with about 1 μCi of [methyl-3H]thymidine (Ambersham Pharmacia Biotech, Benelux, Roosendaal, The Netherlands) for about 30 minutes at about 28° C. on a rotary shaker. Labeled cells can be collected by centrifugation and immediately frozen in liquid nitrogen. Total DNA and protein can be extracted by grinding and precipitated by standard techniques. Once collected, protein content can be measured using, for example, Bradford reagent (Bio-Rad Laboratories, Hercules, Calif.) or other techniques. Likewise, a protein sample can by hydrolyzed and incorporated radioactivity measured by scintillation counting. Upon quenching correction, total DNA synthesis can be expressed as Bq per μg of protein in the sample. DNA synthesis can also be measured, for example, using the flow cytometrical analysis of nuclei. See, e.g., Porceddu et al., J. Biol. Chem. 276(39):36354-360 (2001).


Biological assays using transgenic plants can indicate whether a putative cell signaling gene possesses a specific activity. For example, gibberellin-mutants tend to possess striking phenotypes. See Pend and Harberd, Plant Physiol. 113:1051-1058 (1997). Transgenic plants transformed with DNA constructs expressing a putative gibberellic acid insensitive (GAI) gene product, therefore, would be expected exhibit a distinctive GAI phenotype.


Phytohormone concentrations can also be measured. For example, gibberellin and abscisic acid content of transgenic and control plants can be measured using the technique of Green et al., Plant Physiol. 114(1):203-212 (1997). Briefly, tissue samples are extracted, purified and analyzed by GC-MS for gibberellins and abscisic acid. GC-MS permits the monitoring of characteristic ions corresponding to biologically gibberellins and biologically inactive gibberellins.


GA20-oxidase activity can be measured in protein extracts by the technique of Xu et al., Proc. Natl. Acad. Sci. USA 92(14):6640-6644 (1995). Briefly, extracts are concentrated and used to assay the oxidation of the substrates [14C]GA53 and [14C]GA19. The products of the assay are separated using HPLC, collected and again purified by reverse-phase HPLC. The samples are then analyzed by GC-MS.


Likewise, the inactivation of bioactive GA by GA 2-oxidase can be monitored by the technique of Ross et al., Plant J. 7:513-523 (1995).


In addition to biological assays using transgenic plants, brassionosteriods response genes and gene products can be measured. For example, a putative steroid sulfotransferase can be assayed using the technique of Rouleau et al., J. Biol. Chem. 274(30):20925-30 (1999). Briefly, a purified, recombinant gene product is tested for the ability to transfer the 35S-labeled sulfonate group from the cosubstrate PAPS (NEN Life Science Products) to brassionosteriods.


Additionally, a functional assay measuring steroid 5α-reductase activity has been described. See Li et al., Proc. Natl. Acad. Sci. USA 94:3554-3559 (1997). Briefly, the activity of recombinantly expressed steroid 5α-reductase proteins is measured by the reduction of radiolabeled progesterone to 4,5-dihydroprogesterone. Alternative radiolabeled substrates can be used.


Cytokinins can be measured directly by extraction from plant tissue and purification by HPLC. See Smart et al., Plant Cell 3:647-656 (1991). Cytokinin oxidases/dehydrogenases can be measured by the degradation of the cytokinins isopentenyladenine, zeatin, and their ribosides by oxidative side chain cleavage (for a review see Schmulling et al., J. Plant Res. 116(3):241-52 (2003). Likewise, activity can be inferred from interation of proteins with the cyclases/histidine kinases associated sensory extracellular domain of the CRE1/WOL/AHK4, AHK2, and AHK3 cellular receptors.


In the case of auxin response gene products, the activity of putative nitrolases can be determined by the technique of Nagasawa et al., Eur. J. Biochem. 194:765-772 (1990), using either thiophene-2-acetonitrile or indole-3-acetonitrile as a substrate.


Protein kinase activity can, for example, be measured by quantifying the amount of ATP remaining in solution following a kinase reaction. The kinase gene product is purified using standard techniques and combined with its substrate to form a kinase reaction. A non-radioactive assay is performed in a single well of a 96- or 384-well plate by adding a volume of luciferase reagent (Kinase-Glo™ Reagent, Promega Corporation, Madison Wis.) equal to the volume of solution in the well of a completed kinase reaction. Subsequently, luminescence is measured by a luminomiter. The luminescent signal is correlated with the amount of ATP and inversely correlated with the amount of kinase activity. This assay can be performed with virtually any kinase and substrate combination. The kinase substrate can be a peptide, protein or lipid. Additionally, radiologic methods for detecting kinase reactions are well known.


Likewise, putative SNF1-related protein kinases can, for example, be assayed using the methods of Huang and Huber, Plant Cell Physiol. 42(10):1079-87 (2001).


Putative G-coupled proteins can be verified by their ability to bind G-proteins. Briefly, putative G-coupled proteins are expressed as glutathione S-transferase fusion proteins and purified using glutathione-agarose beads. G protein subunits (Gi3, Gi2, and Go) from the desired plant species are recombinantly generated and labeled with [35S]methionine by in vitro translation. Glutathione S-transferase or recombinant G-coupled proteins proteins are incubated separately with G-proteins which are preincubated with necessary cofactors. The total input of each of the labeled G-protein can be resolved on SDS-PAGE gels stained with Coomassie Brilliant Blue, together with protein samples eluted from the binding assays. Some G-coupled protein activity can also be monitored, for example, through the activation of phospholipase C. See, e.g., Ghosh and Smrcka, Methods Mol. Biol. 237:67-75 (2004). Phospholipase C activity can also be measured on microsomal membrane preparations, according to the method described by Zhang et al., Planta 215:312-318 (2002)


Small GTP-binding proteins encoded by the Rab and Ran gene families can be monitored using GTP-binding assays or GAP assays. Briefly, GAP assays, filter-binding assays, and the loading small GTP-binding proteins with 5′-[γ32P]GTP can be done according to the method of Strom et al., Nature 361:736-739 (1993). For the analysis of reaction products by TLC, small GTP-binding proteins can be loaded with 5′-[α32P]GTP and purified by passage through Bio-Spin 6 chromatography columns (Bio-Rad). A GAP assay mixture can be analyzed by TLC. Aliquots can be spotted onto polyethyleneimine cellulose foils, and the chromatogram developed. The reaction products or the applied GTP and GDP standard can be visualized by autoradiography or by UV light, respectively.


B. Methods of using Cell Signaling Genes, Polynucleotide and Polypeptide Sequences


The present invention provides methods of using cell signaling genes and conservative variants thereof. The invention includes methods and constructs for altering expression of cell signaling or cell signaling-like genes and/or gene products for purposes including, but not limited to (i) investigating the gene or gene product role in a cell signaling pathway and its ultimate effect on plant phenotype and (ii) to effect a change in plant phenotype. For example, the invention includes methods and tools for modifying wood quality, fiber development, wood lignin and polysaccharide content, fruit ripening, and plant growth and yield by altering expression of one or more cell signaling genes.


The invention comprises methods of altering the expression of any of the polysaccharide synthesis genes and variants discussed above. Thus, for example, the invention comprises altering expression of a cell signaling gene present in the genome of a wild-type plant of a species of Eucalyptus or Pinus. In one embodiment, the cell signaling gene comprises a nucleotide sequence selected from SEQ ID NOs: 1-197 sequences or the conservative variants thereof, as discussed above.


1. Techniques to Alter Gene Expression


Techniques which can be employed in accordance with the present invention to alter gene expression, include, but are not limited to: (i) over-expressing a gene product, (ii) disrupting a gene's transcript, such as disrupting a gene's mRNA transcript; (iii) disrupting the function of a polypeptide encoded by a gene, or (iv) disrupting the gene itself. Over-expression of a gene product, the use of antisense RNAs, ribozymes, and the use of double-stranded RNA interference (dsRNAi) are valuable techniques for discovering the functional effects of a gene and for generating plants with a phenotype that is different from a wild-type plant of the same species.


Over-expression of a target gene often is accomplished by cloning the gene or cDNA into an expression vector and introducing the vector into recipient cells. Alternatively, over-expression can be accomplished by introducing exogenous promoters into cells to drive expression of genes residing in the genome. The effect of over-expression of a given gene on cell function, biochemical and/or physiological properties can then be evaluated by comparing plants transformed to over-express the gene to plants that have not been transformed to over-express the gene.


Antisense RNA, ribozyme, and dsRNAi technologies typically target RNA transcripts of genes, usually mRNA. Antisense RNA technology involves expressing in, or introducing into, a cell an RNA molecule (or RNA derivative) that is complementary to, or antisense to, sequences found in a particular mRNA in a cell. By associating with the mRNA, the antisense RNA can inhibit translation of the encoded gene product. The use of antisense technology to reduce or inhibit the expression of specific plant genes has been described, for example in European Patent Publication No. 271988, Smith et al., Nature, 334:724-726 (1988); Smith et. al., Plant Mol. Biol., 14:369-379 (1990)).


A ribozyme is an RNA that has both a catalytic domain and a sequence that is complementary to a particular mRNA. The ribozyme functions by associating with the mRNA (through the complementary domain of the ribozyme) and then cleaving (degrading) the message using the catalytic domain.


RNA interference (RNAi) involves a post-transcriptional gene silencing (PTGS) regulatory process, in which the steady-state level of a specific mRNA is reduced by sequence-specific degradation of the transcribed, usually fully processed mRNA without an alteration in the rate of de novo transcription of the target gene itself. The RNAi technique is discussed, for example, in Elibashir, et al., Methods Enzymol. 26:199 (2002); McManus & Sharp, Nature Rev. Genetics 3:737 (2002); PCT application WO 01/75164; Martinez et al., Cell 110:563 (2002); Elbashir et al., supra; Lagos-Quintana et al., Curr. Biol. 12:735 (2002); Tuschl et al., Nature Biotechnol. 20:446 (2002); Tuschl, Chembiochem. 2:239 (2001); Harborth et al., J. Cell Sci. 114:4557 (2001); et al., EMBO J. 20:6877 (2001); Lagos-Quintana et al., Science 294:8538 (2001); Hutvagner et al., loc cit, 834; Elbashir et al., Nature 411:494 (2001).


2. DNA Constructs


The present invention provides a DNA construct comprising at least one polynucleotide of SEQ ID NOs: 1-197 or conservative variants thereof, such as the conservative variants discussed above. Any method known in the art can be used to generate the DNA constructs of the present invention. See, e.g., Sambrook et al., supra.


The invention includes DNA constructs that optionally comprise a promoter. Any suitable promoter known in the art can be used. A promoter is a nucleic acid, preferably DNA, that binds RNA polymerase and/or other transcription regulatory elements. As with any promoter, the promoters of the invention facilitate or control the transcription of DNA or RNA to generate an mRNA molecule from a nucleic acid molecule that is operably linked to the promoter. The RNA can encode a protein or polypeptide or can encode an antisense RNA molecule or a molecule useful in RNAi. Promoters useful in the invention include constitutive promoters, inducible promoters, temporally regulated promoters and tissue-preferred promoters.


Examples of useful constitutive plant promoters include: the cauliflower mosaic virus (CaMV) 35S promoter, which confers constitutive, high-level expression in most plant tissues (Odel et al., Nature 313:810(1985)); the nopaline synthase promoter (An et al., Plant Physiol. 88:547 (1988)); and the octopine synthase promoter (Fromm et al., Plant Cell 1:977 (1989)). It should be noted that, although the CaMV 35S promoter is commonly referred to as a constitutive promoter, some tissue preference can be seen. The use of CaMV 35S is envisioned by the present invention, regardless of any tissue preference which may be exhibited during use in the present invention.


Inducible promoters regulate gene expression in response to environmental, hormonal, or chemical signals. Examples of hormone inducible promoters include auxin-inducible promoters (Baumann et al., Plant Cell 11:323-334(1999)), cytokinin-inducible promoters (Guevara-Garcia, Plant Mol. Biol. 38:743-753(1998)), and gibberellin-responsive promoters (Shi et al. Plant Mol. Biol. 38:1053-1060(1998)). Additionally, promoters responsive to heat, light, wounding, pathogen resistance, and chemicals such as methyl jasmonate or salicylic acid, can be used in the DNA constructs and methods of the present invention.


Tissue-preferred promoters allow for preferred expression of polynucleotides of the invention in certain plant tissue. Tissue-preferred promoters are also useful for directing the expression of antisense RNA or iRNA in certain plant tissues, which can be useful for inhibiting or completely blocking the expression of targeted genes as discussed above. As used herein, vascular plant tissue refers to xylem, phloem or vascular cambium tissue. Other preferred tissue includes apical meristem, root, seed, and flower. In one aspect, the tissue-preferred promoters of the invention are either “xylem-preferred,” “cambium-preferred” or “phloem-preferred,” and preferentially direct expression of an operably linked nucleic acid sequence in the xylem, cambium or phloem, respectively. In another aspect, the DNA constructs of the invention comprise promoters that are tissue-specific for xylem, cambium or phloem, wherein the promoters are only active in the xylem, cambium or phloem.


A vascular-preferred promoter is preferentially active in any of the xylem, phloem or cambium tissues, or in at least two of the three tissue types. A vascular-specific promoter is specifically active in any of the xylem, phloem or cambium, or in at least two of the three. In other words, the promoters are only active in the xylem, cambium or phloem tissue of plants. Note, however, that because of solute transport in plants, a product that is specifically or preferentially expressed in a tissue may be found elsewhere in the plant after expression has occurred.


Additionally, the promoters of particular cell signaling genes may be expressed only within the cambium in developing secondary vasculature. Within the cambium, particular polysaccharide synthesis gene promoters may be expressed exclusively in the stem or in the root. Moreover, the cell signaling promoters may be expressed only in the spring or only in the summer, fall or winter.


A promoter may be operably linked to the polynucleotide. As used in this context, operably linked refers to linking a polynucleotide encoding a structural gene to a promoter such that the promoter controls transcription of the structural gene. If the desired polynucleotide comprises a sequence encoding a protein product, the coding region can be operably linked to regulatory elements, such as to a promoter and a terminator, that bring about expression of an associated messenger RNA transcript and/or a protein product encoded by the desired polynucleotide. In this instance, the polynucleotide is operably linked in the 5′- to 3′-orientation to a promoter and, optionally, a terminator sequence.


Alternatively, the invention provides DNA constructs comprising a polynucleotide in an “antisense” orientation, the transcription of which produces nucleic acids that can form secondary structures that affect expression of an endogenous cell signaling gene in the plant cell. In another variation, the DNA construct may comprise a polynucleotide that yields a double-stranded RNA product upon transcription that initiates RNA interference of a cell signaling gene with which the polynucleotide is associated. A polynucleotide of the present invention can be positioned within a t-DNA, such that the left and right t-DNA border sequences flank or are on either side of the polynucleotide.


It should be understood that the invention includes DNA constructs comprising one or more of any of the polynucleotides discussed above. Thus, for example, a construct may comprise a t-DNA comprising one, two, three, four, five, six, seven, eight, nine, ten, or more polynucleotides.


The invention also includes DNA constructs comprising a promoter that includes one or more regulatory elements. Alternatively, the invention includes DNA constructs comprising a regulatory element that is separate from a promoter. Regulatory elements confer a number of important characteristics upon a promoter region. Some elements bind transcription factors that enhance the rate of transcription of the operably linked nucleic acid. Other elements bind repressors that inhibit transcription activity. The effect of transcription factors on promoter activity can determine whether the promoter activity is high or low, i.e. whether the promoter is “strong” or “weak.”


A DNA construct of the invention can include a nucleotide sequence that serves as a selectable marker useful in identifying and selecting transformed plant cells or plants. Examples of such markers include, but are not limited to, a neomycin phosphotransferase (nptII) gene (Potrykus et al., Mol. Gen. Genet. 199:183-188 (1985)), which confers kanamycin resistance. Cells expressing the nptII gene can be selected using an appropriate antibiotic such as kanamycin or G418. Other commonly used selectable markers include a mutant EPSP synthase gene (Hinchee et al., BioTechnology 6:915-922 (1988)), which confers glyphosate resistance; and a mutant acetolactate synthase gene (ALS), which confers imidazolinone or sulphonylurea resistance (European Patent Application No. 154,204).


The present invention also includes vectors comprising the DNA constructs discussed above. The vectors can include an origin of replication (replicons) for a particular host cell. Various prokaryotic replicons are known to those skilled in the art, and function to direct autonomous replication and maintenance of a recombinant molecule in a prokaryotic host cell.


For example, pMON530 is an Agrobacterium-based plant transformation vector for use in transformation of dicotyledonous plants is plasmid vector (Rogers et al., Improved vectors for plant transformation: expression cassette vectors and new selectable markers, in Recombinant DNA Methodology, Wu et al. (Ed.), Academic Press, San Diego, Calif. (1989). Another useful plasmid is pMON530, a derivative of pMON505, prepared by transferring the 2.3 kb Stul-HindlII fragment of pMON316 into pMON526. Plasmid pMON526 is a simple derivative of pMON505 in which the Smal site is removed by digestion with Xmal, treatment with Klenow polymerase and ligation. Plasmid pMON530 retains all the properties of pMON505 and the CaMV35S-NOS expression cassette, but contains a unique cleavage site for Smal between the promoter and polyadenylation signal.


Binary vector pMON505 is a derivative of pMON200 (Rogers et al., supra) in which the Ti plasmid homology region, LIH, is replaced with a 3.8 kb HindIII to Smal segment of the mini RK2 plasmid, pTJS75 (Schmidhauser and Helinski, J. Bacteriol. 164(1):446-55 (1985)). This segment contains the RK2 origin of replication, oriV, and the origin of transfer, oriT, for conjugation into Agrobacterium using the tri-parental mating procedure. Horsch and Klee., Proc. Natl. Acad. Sci. U.S.A. 83:4428 (1986). Plasmid pMON505 retains all the important features of pMON200 including the synthetic multi-linker for insertion of desired DNA fragments, the chimeric NOS/NPTII′/NOS gene for kanamycin resistance in plant cells, the spectinomycin/streptomycin resistance determinant for selection in E. coli and A. tumefaciens, an intact nopaline synthase gene for facile scoring of transformants and inheritance in progeny, and a pBR322 origin of replication for ease in making large amounts of the vector in E. coli. Plasmid pMON505 contains a single T-DNA border derived from the right end of the pTiT37 nopaline-type T-DNA. Southern blot analyses demonstrate that plasmid pMON505 and any DNA that it carries are integrated into the plant genome, that is, the entire plasmid is the T-DNA that is inserted into the plant genome. One end of the integrated DNA is located between the right border sequence and the nopaline synthase gene and the other end is between the border sequence and the pBR322 sequences.


A particularly useful Ti plasmid cassette vector is pMON17227. This vector is described in WO 92/04449 and contains a gene encoding an enzyme conferring glyphosate resistance (denominated CP4), which is an excellent selection marker gene for many plants, including potato and tomato. The gene is fused to the Arabidopsis EPSPS chloroplast transit peptide (CTP2), and expression is driven by the promoter of choice.


In one embodiment, the DNA constructs comprise the polynucleotides pWVR8 or pART27 as described in Gleave, Plant Mol. Biol. 20:1203-27 (1992), or a fragment thereof. In another embodiment, the DNA constructs comprise any suitably modified Ti plasmid or a fragment thereof.


In one embodiment, the DNA constructs comprise at least one polynucleotide having any one of the sequences of SEQ ID NO: 1-197 and conservative variants thereof. In a further embodiment, the DNA constructs comprise a promoter such that the promoter is operably linked to the one or more polynuceotides. In another aspect, the promoter can be a constitutive promoter, a strong promoter, an inducible promoter, a regulatable promoter, a temporally regulated promoter, or a tissue-preferred promoter.


3. Transformed Host Cells, Plant Tissue and Plants


The invention also provides host cells which are transformed with the DNA constructs of the invention. As used herein, a host cell refers to the cell in which a polynucleotide of the invention is expressed. Accordingly, a host cell can be an individual cell, a cell culture or cells that are part of an organism. The host cell can also be a portion of an embryo, endosperm, sperm or egg cell, or a fertilized egg. In one aspect, the host cell is a plant cell. In another aspect, the plant cell is transformed with at least one polynucleotide selected from SEQ ID NO: 1-197.


The present invention further provides transgenic plants comprising the DNA constructs of the invention. The invention includes transgenic plants that are angiosperms or gymnosperms. The DNA constructs of the present invention can be used to transform a variety of plants, both monocotyledonous (e.g. grasses, corn, grains, oat, wheat and barley), dicotyledonous (e.g., Arabidopsis, tobacco, legumes, alfalfa, oaks, eucalyptus, maple), and Gymnosperms (e.g., Scots pine disclosed in Aronen et al., Tree Physiol. 15(1):65-70 (1995), white spruce disclosed in Ellis et al., Plant Mol. Biol. 17(1):19-27(1991)), and larch (Huang et al., In Vitro Cell 27:201-207 (1991)).


The plants also include turfgrass, wheat, maize, rice, sugar beet, potato, tomato, lettuce, carrot, strawberry, cassava, sweet potato, geranium, soybean, and various types of woody plants. Woody plants include trees such as palm oak, pine, maple, fir, apple, fig, plum and acacia. Woody plants also include rose and grape vines.


In one embodiment, a transgenic plant is provided comprising at least one polynucleotide selected from SEQ ID NO: 1-197.


In one embodiment, the DNA constructs of the invention are used to transform woody plants, i.e., trees or shrubs whose stems live for a number of years and increase in diameter each year by the addition of woody tissue. The invention includes methods of transforming plants including eucalyptus and pine species of significance in the commercial forestry industry such as plants selected from the group consisting of Eucalyptus grandis and its hybrids, and Pinus taeda, as well as the transformed plants and wood and wood pulp derived therefrom. Other examples of suitable plants include those selected from the group consisting of Pinus banksiana, Pinus brutia, Pinus caribaea, Pinus clausa, Pinus contorta, Pinus coulteri, Pinus echinata, Pinus eldarica, Pinus ellioti, Pinus jeffreyi, Pinus lambertiana, Pinus massoniana, Pinus monticola, Pinus nigra, Pinus palustris, Pinus pinaster, Pinus ponderosa, Pinus radiata, Pinus resinosa, Pinus rigida, Pinus serotina, Pinus strobis, Pinus sylvestris, Pinus taeda, Pinus virginiana, Abies amabilis, Abies balsamea, Abies concolor, Abies grandis, Abies lasiocarpa, Abies magnifica, Abies procera, Chamaecyparis lawsoniona, Chamaecyparis nootkatensis, Chamaecyparis thyoides, Juniperus virginiana, Larix decidua, Larix laricina, Larix leptolepis, Larix occidentalis, Larix siberica, Libocedrus decurrens, Picea abies, Picea engelmanni, Picea glauca, Picea mariana, Picea pungens, Picea rubens, Picea sitchensis, Pseudotsuga menziesii, Sequoia gigantea, Sequoia sempervirens, Taxodium distichum, Tsuga canadensis, Tsuga heterophylla, Tsuga mertensiana, Thuja occidentalis, Thuja plicata, Eucalyptus alba, Eucalyptus bancroftii, Eucalyptus botryoides, Eucalyptus bridgesiana, Eucalyptus calophylla, Eucalyptus camaldulensis, Eucalyptus citriodora, Eucalyptus cladocalyx, Eucalyptus coccifera, Eucalyptus curtisii, Eucalyptus dalrympleana, Eucalyptus deglupta, Eucalyptus delagatensis, Eucalyptus diversicolor, Eucalyptus dunnii, Eucalyptus ficifolia, Eucalyptus globulus, Eucalyptus gomphocephala, Eucalyptus gunnii, Eucalyptus henryi, Eucalyptus laevopinea, Eucalyptus macarthurii, Eucalyptus macrorhyncha, Eucalyptus maculata, Eucalyptus marginata, Eucalyptus megacarpa, Eucalyptus melliodora, Eucalyptus nicholii, Eucalyptus nitens, Eucalyptus nova-angelica, Eucalyptus obliqua, Eucalyptus occidentalis, Eucalyptus obtusiflora, Eucalyptus oreades, Eucalyptus pauciflora, Eucalyptus polybractea, Eucalyptus regnans, Eucalyptus resinifera, Eucalyptus robusta, Eucalyptus rudis, Eucalyptus saligna, Eucalyptus sideroxylon, Eucalyptus stuartiana, Eucalyptus tereticomis, Eucalyptus torelliana, Eucalyptus umigera, Eucalyptus urophylla, Eucalyptus viminalis, Eucalyptus viridis, Eucalyptus wandoo, and Eucalyptus youmanni.


As used herein, the term “plant” also is intended to include the fruit, seeds, flower, strobilus, etc. of the plant. A transformed plant of the current invention can be a direct transfectant, meaning that the DNA construct was introduced directly into the plant, such as through Agrobacterium, or the plant can be the progeny of a transfected plant. The second or subsequent generation plant can be produced by sexual reproduction, i.e., fertilization. Furthermore, the plant can be a gametophyte (haploid stage) or a sporophyte (diploid stage).


As used herein, the term “plant tissue” encompasses any portion of a plant, including plant cells. Plant cells include suspension cultures, callus, embryos, meristematic regions, callus tissue, vascular tissue, apical meristem, vascular cambium, xylem, phloem, flower, leaves, roots, shoots, gametophytes, sporophytes, pollen, seeds and microspores. Plant tissues can be grown in liquid or solid culture, or in soil or suitable media in pots, greenhouses or fields. As used herein, “plant tissue” also refers to a clone of a plant, seed, progeny, or propagule, whether generated sexually or asexually, and descendents of any of these, such as cuttings, cone, fruit, and seeds.


In accordance with one aspect of the invention, a transgenic plant that has been transformed with a DNA construct of the invention has a phenotype that is different from a plant that has not been transformed with the DNA construct.


As used herein, “phenotype” refers to a distinguishing feature or characteristic of a plant which can be altered according to the present invention by integrating one or more DNA constructs of the invention into the genome of at least one plant cell of a plant. The DNA construct can confer a change in the phenotype of a transformed plant by modifying any one or more of a number of genetic, molecular, biochemical, physiological, morphological, or agronomic characteristics or properties of the transformed plant cell or plant as a whole.


For example, gibberellic acid insensitive plants have characteristic phenotypes typified by dark green leaves and reduced stem elongation resulting in a dwarf growth habit. See Peng and Harberd, Plant Physiol. 113:1051-1058 (1997). Thus, plant stem cell growth can be modulated by altering the GA cell signaling cascade, its biosynthesis or degradation. Gene and gene products which catalyze each of these events can be used to increase or decrease plant stem cell growth. In this manner, the polynucleotides of the invention can be used to modulate GA cell signaling cascade, its biosynthesis or degradation, and thereby mediate plant growth.


In one embodiment, transformation of a plant with a DNA construct of the present invention can yield a phenotype including, but not limited to any one or more of increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, increased or decreased cellulose content, increased or decreased lignin content, increased or decreased nonlignin cell wall phenolics and production of novel proteins or peptides.


In another embodiment, the affected phenotype includes one or more of the following traits: propensity to form reaction wood, a reduced period of juvenility, an increased period of juvenility, self-abscising branches, accelerated reproductive development or delayed reproductive development, as compared to a plant of the same species that has not been transformed with the DNA construct.


In a further embodiment, the phenotype that is different in the transgenic plant includes one or more of the following: lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, proportion of rays, proportion of vessel elements, other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, rate of wood formation, aesthetic appearance of wood, formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape.


Phenotype can be assessed by any suitable means. The plants can be evaluated based on their general morphology. Transgenic plants can be observed with the naked eye, can be weighed and their height measured. The plant can be examined by isolating individual layers of plant tissue, namely phloem and cambium, which is further sectioned into meristematic cells, early expansion, late expansion, secondary wall formation, and late cell maturation. See, e.g., Hertzberg, supra. The plants also can be assessed using microscopic analysis or chemical analysis.


Microscopic analysis includes examining cell types, stage of development, and stain uptake by tissues and cells. Fiber morphology, such as fiber wall thickness and microfibril angle of wood pulp fibers can be observed using, for example, microscopic transmission ellipsometry. See Ye and Sundström, Tappi J. 80:181 (1997). Wood strength, density, and grain slope in wet wood and standing trees can be determined by measuring the visible and near infrared spectral data in conjunction with multivariate analysis. See U.S. Patent Application Publication Nos. 2002/0107644 and 2002/0113212. Lumen size can be measured using scanning electron microscopy. Lignin structure and chemical properties can be observed using nuclear magnetic resonance spectroscopy as described in Marita et al., J. Chem. Soc., Perkin Trans. I 2939 (2001).


The biochemical characteristic of lignin, cellulose, carbohydrates and other plant extracts can be evaluated by any standard analytical method known including spectrophotometry, fluorescence spectroscopy, HPLC, mass spectroscopy, and tissue staining methods.


In one embodiment, the making of a transformed plant comprises transforming a plant cell with a DNA construct and culturing the transformed plant cell under conditions that promote growth of a plant.


As used herein, “transformation” refers to a process by which a nucleic acid is inserted into the genome of a plant cell. Such insertion encompasses stable introduction into the plant cell and transmission to progeny. Transformation also refers to transient insertion of a nucleic acid, wherein the resulting transformant transiently expresses the nucleic acid. Transformation can occur under natural or artificial conditions using various methods well known in the art. See, e.g., Glick and Thompson (Eds.), Methods In Plant Molecular Biology, CRC Press, Boca Raton, Fla. (1993). Transformation can be achieved by any known method for the insertion of nucleic acid sequences into a prokaryotic or eukaryotic host cell, including Agrobacterium-mediated transformation protocols (see, e.g., Horsch et al., Science 227:1229-31 (1985), viral infection, whiskers, electroporation (see, e.g., Rhodes et al., Science 240(4849):204-207 (1988), microinjection, polyethylene glycol-treatment (see, e.g., Lyznik et al., Plant Mol. Biol. 13:151-161 (1989), heat shock, lipofection, and particle bombardment (see, e.g., Klein et al., Plant Physiol. 91:440-444 (1989) and Boynton et al., Science 240(4858):1534-1538 (1988)). Transformation can also be accomplished using chloroplast transformation as described in, for example, Svab et al., Proc. Natl Acad. Sci. 87:8526-30 (1990).


Plant transformation strategies are described in, for example, U.S. Pat. No. 5,159,135 (cotton), U.S. Pat. No. 5,981,840 (corn), U.S. Pat. No. 5,914,451 (soybean), and WO 00/12715 (eucalyptus), which are incorporated by reference in their entirety. Additional plant transformation strategies and techniques are reviewed in Birch, R. G., Ann. Rev. Plant Physiol. Plant Mol. Biol. 48:297 (1997) and Forester et al., Exp. Agric. 33:15-33 (1997), and are incorporated by reference in their entirety


Methods for transforming tree species are well known in the art. In accordance with one embodiment of the invention, genotype-independent transformation of Eucalyptus explants and generation of transgenic progeny can be accomplished by transformation using Agrobacterium. A tree explant can be, although need not be, harvested and cultured on a pre-culture medium before transformation. Although a pre-culture medium is not necessary, use of such a medium can increase transformation efficiency and plant regeneration. A pre-culture medium is a nutrient medium upon which plant explants can be cultured before transformation with Agrobacterium. Any pre-culture media and time periods of culture can be used. The pre-culture medium contains an Agrobacterium inducer, such as acetosyringone. The pre-culture medium can optionally contain plant growth regulators, including auxin and cytokinin. Pre-culture medium can be prepared using and appropriate salt medium, including, but not limited to Woody Plant Medium (WPM) salts (Lloyd and McCown, Combined Proceedings of the International Plant Propagators Society 30:421-427,1980), Murashige and Skoog medium (Sigma Aldrich, St. Louis, Mo.) or Lepoivre medium. The pre-culture medium can contain Agrobacterium inducers, such as, for example acetosyringone. Optionally, pre-culture medium can contain auxin, cytokinin, or both auxin and cytokinin. An exemplary plant pre-culture medium is shown in TABLE 5.









TABLE 5







Exemplary Plant Pre-Culture Medium.










Medium
Amount per



Components
Liter of Medium







WPM salts
1 package




(Sigma)











Ca(NO3)2•4H2O
3.7
g



MgSO4•4H2O
0.37
g



Nicotinic Acid
0.5
mg



Thiamine•HCl
0.5
mg



Pyridoxin•HCl
0.5
mg



D-Pantothenic Acid
1.0
mg



Myo-inositol
0.1
g



BA
0.1-1
mg



Bacto-agar
5-8
g



Acetosyringone
5-200
mg



NAA
0.2-3
mg



zeatin
1-6
mg










In this transformation method, plant explants can be pre-cultured for four days in the dark on the pre-culture medium. Induced Agrobacterium culture can be prepared by methods known in the art. The induced culture is applied to a plant explant. Explants can be transformed by application of Agrobacterium culture to the explant, vacuum infiltration, floral dip, etc. Following transformation, Agrobacterium culture-treated explants can be co-cultivated with Agrobacterium under light or dark conditions for 2-10 days. In one embodiment, the explants are co-cultivated with Agrobacterium under light or dark conditions for 4 days.


Following co-cultivation, explants can be transferred to regeneration medium with 400 mg/L timentin. Explants can be cultured on regeneration medium before transfer to a selection medium. In one embodiment, explants are cultured on regeneration medium for four days. Any suitable selection medium can be used. In one embodiment, the selection medium is the regeneration medium supplemented with both timentin and an herbicide selection agent. TABLE 6 provides an exemplary regeneration medium.









TABLE 6







Exemplary Plant Regeneration Medium.











Grams














Components for 1 Liter of Medium




KNO3
1



NH4H2PO4
0.25



MgSO4•7H2O
0.25



CaCl2•2H2O
0.10



FeSO4•7H2O
0.0139



Na2EDTA•2H2O
0.01865



MES (Duchefa m1501)
600.0



MS Micro (½ strength)



MnSO4•H2O
0.00845



ZnSO4•7H2O
0.0043



CuSO4•5H2O
0.0000125



CoCl2•6H2O
0.0000125



KI
0.000415



H3BO3
0.0031



Na2MoO4•2H2O
0.000125



Plant Growth Regulators



Zeatin



NAA (naphthalene acetic acid)



Sugars



Glucose/Sucrose
20.0



Myo-inositol
0.100



Amino Acid and Vitamin Mix



Nicotinic Acid
0.010



Thiamine
0.010



Ca Pantothenate
0.001



Pyridoxine
0.001



Biotin
0.00001



Ascorbic Acid
0.050



L-glutamine
0.1



Arginine
0.0258



Glycine
0.00199



Lysine
0.0508



Methionine
0.0132



Phenylalanine
0.0257



Serine
0.00904



Threonine
0.00852



Tryptophan
0.0122



Tyrosine
0.0127



Gelling Agent



Gelrite
3.0










Shoot clumps that survive selection are maintained on regeneration medium containing herbicide and timentin. The shoot clumps can be transferred until shoots proliferate and initially elongate. In one embodiment, the shoot clumps are transferred every 3 weeks. Any reporter gene can be used, such as, for example, GFP, luciferase, or GUS. See, e.g., B. Miki and S. McHugh, J. Biotechnol. 107(3):193-232 (2004).


In one embodiment, GUS staining can performed to monitor the frequency of Agrobacterium infection and to ensure that the selected shoots are not escapes or chimeras. Leaf and stem tissues from the regenerated shoots can be stained for reporter gene expression immediately upon shoot development. For example, to determine GUS activity, the explants can be incubated in a substrate comprising 100 mM phosphate buffer (pH 7.0), 0.05% dimethyl suphoxide, 0.05% Triton X-100, 10 mM EDTA, 0.5 mM potassium ferrocyanide, and 1.5 mg/ml 5-bromo-4-chloro-3-indolyl-β-D-glucuronide (X-gluc). The explants can then be subjected to 10 minutes of vacuum before an overnight incubation at 37° C. prior to counting GUS foci.


In accordance with another embodiment, transformation of Pinus is accomplished using the methods described in U.S. Patent Application Publication No. 2002/0100083.


C. Compositions and Methods for Enhancing Woody Plants


Another aspect of the invention provides methods of obtaining wood and/or making wood pulp from a plant transformed with a DNA construct of the invention. Methods of producing a transgenic plant are provided above and are known in the art. A transformed plant can be cultured or grown under any suitable conditions. For example, pine can be cultured and grown as described in U.S. Patent Application Publication No. 2002/0100083. Eucalyptus can be cultured and grown as in, for example, Rydelius, et al., “Growing Eucalyptus for Pulp and Energy,” presented at the Mechanization in Short Rotation, Intensive Culture Forestry Conference, Mobile, Ala., 1994. Wood and wood pulp can be obtained from the plant by any means known in the art.


As noted above, the wood or wood pulp obtained in accordance with this invention may demonstrate improved characteristics including, but not limited to any one or more of lignin composition, lignin structure, wood composition, cellulose polymerization, fiber dimensions, ratio of fibers to other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, rate of wood formation, aesthetic appearance of wood, formation of stem defects, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape include increased or decreased lignin content, increased accessibility of lignin to chemical treatments, improved reactivity of lignin, increased or decreased cellulose content increased dimensional stability, increased tensile strength, increased shear strength, increased compression strength, increased shock resistance, increased stiffness, increased or decreased hardness, decreased spirality, decreased shrinkage, and differences in weight, density, and specific gravity.


II. Expression Profiling of Cell Signaling Genes


The present invention also provides methods and tools for performing expression profiling of cell signaling genes. Expression profiling is useful in determining whether genes are transcribed or translated, comparing transcript levels for particular genes in different tissues, genotyping, estimating DNA copy number, determining identity of descent, measuring mRNA decay rates, identifying protein binding sites, determining subcellular localization of gene products, correlating gene expression to a phenotype or other phenomenon, and determining the effect on other genes of the manipulation of a particular gene. Expression profiling is particularly useful for identifying gene expression in complex, multigenic events. For this reason, expression profiling is useful in correlating polysaccharide synthesis gene expression to plant phenotype and formation of plant tissues and the interconnection thereof to the polysaccharide biosynthesis.


Only a small fraction of a plant's cell signaling genes are expressed at a given time in a given tissue sample, and all of the expressed genes may not affect the plant phenotype. To identify genes capable of affecting a phenotype of interest, the present invention provides methods and tools for determining, for example, a cell signaling gene expression profile at a given point in plant development and a cell signaling gene expression profile a given tissue sample. The invention also provides methods and tools for identifying cell signaling genes whose expression can be manipulated to alter plant phenotype. In support of these methods, the invention also provides methods and tools that distinguish expression of different genes of the same family, such as, for example, MAP Kinase and MAP kinase kinase proteins.


As used herein, “gene expression” refers to the process of transcription of a DNA sequence into an RNA sequence, followed by translation of the RNA into a protein, which may or may not undergo post-translational processing. Thus, the relationship between plant phenotype and cell signaling gene expression can be observed by detecting, quantitatively or qualitatively, changes in the level of RNA or protein. As used herein, the term “biological activity” includes, but is not limited to, the activity of a protein gene product, including enzyme activity, such as, for example, kinase activity.


The present invention provides oligonucleotides that are useful in these expression profiling methods. Each oligonucleotide is capable of hybridizing under a given set of conditions to a cell signaling gene or gene product. In one aspect of the invention, a plurality of oligonucleotides is provided, wherein each oligonucleotide hybridizes under a given set of conditions to a different cell signaling gene product. Examples of oligonucleotides of the present invention include SEQ ID NOs: 395-583. Each of the oligos of SEQ ID NOs 395-583 hybridizes under standard conditions to a different gene product of one of SEQ ID NOs: 1-197. The oligonucleotides of the invention are useful in determining the expression of one or more cell signaling genes in any of the above-described methods.


A. Cell, Tissue, Nucleic Acid, and Protein Samples


Samples for use in methods of the present invention may be derived from plant tissue. Suitable plant tissues include, but are not limited to, somatic embryos, pollen, leaves, stems, calli, stolons, microtubers, shoots, xylem, male strolbili, pollen cones, vascular tissue, apical meristem, vascular cambium, xylem, root, flower, and seed.


According to the present invention “plant tissue” is used as described previously herein. Plant tissue can be obtained from any of the plants types or species described supra.


In accordance with one aspect of the invention, samples can be obtained from plant tissue at different developmental stages, from plant tissue at various times of the year (e.g. spring versus summer), from plant tissues subject to different environmental conditions (e.g. variations in light and temperature) and/or from different types of plant tissue and cells. In accordance with one embodiment, plant tissue is obtained during various stages of maturity and during different seasons of the year. In a further embodiment, plant tissue is obtained from plants displaying different phenotypes. For example, plant tissue can be collected from stem dividing cells, differentiating xylem, early developing wood cells, differentiated early wood cells, and differentiated late wood cells. As another example, gene expression in a sample obtained from a plant with developing wood can be compared to gene expression in a sample obtained from a plant which does not have developing wood. As a further example, gene expression in a sample obtained from a plant displaying a reaction wood phenotype, such as compression wood or tension wood, can be compared to gene expression in a sample obtained from a plant which does not have reaction wood.


Differentiating xylem includes samples obtained from reaction wood. Reaction wood includes compression wood, side-wood, tension wood, and normal vertical xylem. Methods of obtaining samples for expression profiling from pine and eucalyptus are known. See, e.g., Allona et al., Proc. Nat'l Acad. Sci. 95:9693-8 (1998) and Whetton et al., Plant Mol. Biol. 47:275-91, and Kirst et al., Int'l Union of Forestry Research Organizations Biennial Conference, S6.8 (June 2003, Umea, Sweden).


In one embodiment of the invention, gene expression in one type of tissue is compared to gene expression in a different type of tissue or to gene expression in the same type of tissue in a difference stage of development. Gene expression can also be compared in one type of tissue which is sampled at various times during the year (different seasons). For example, gene expression in juvenile secondary xylem can be compared to gene expression in mature secondary xylem. Similarly, gene expression in cambium can be compared to gene expression in xylem. Furthermore, gene expression in apical meristems can be compared to gene expression in cambium.


In another embodiment of the invention, a sample is obtained from a plant having a specific phenotype and gene expression in that sample is compared to a sample obtained from a plant of the same species that does not have that phenotype. For example, a sample can be obtained from a plant exhibiting a fast rate of growth and gene expression can be compared with that of a sample obtained from a plant exhibiting a normal or slow rate of growth. Differentially expressed genes identified from such a comparison can be correlated with growth rate and, therefore, useful for manipulating growth rate.


In a further embodiment, a sample is obtained from clonally propagated plants. In one embodiment the clonally propagated plants are of the species Pinus or Eucalyptus. Individual ramets from the same genotype can be sacrificed at different times of year. Thus, for any genotype there can be at least two genetically identical trees sacrificed, early in the season and late in the season. Each of these trees can be divided into juvenile (top) to mature (bottom) samples. Further, tissue samples can be divided into, for example, phloem to xylem, in at least 5 layers of peeling. Each of these samples can be evaluated for phenotype and gene expression.


Where cellular components may interfere with an analytical technique, such as a hybridization assay, enzyme assay, a ligand binding assay, or a biological activity assay, it may be desirable to isolate the gene products from such cellular components. Gene products, including nucleic acid and amino acid gene products, can be isolated from cell fragments or lysates by any method known in the art.


Nucleic acids used in accordance with the invention can be prepared by any available method or process, or by other processes as they become known in the art. Conventional techniques for isolating nucleic acids are detailed, for example, in Tijssen, Laboratory Techniques in Biochemistry and Molecular Biology, Hybridization With Nucleic Acid Probes, chapter 3 (Elsevier Press, 1993), Berger and Kimmel, Methods Enzymol. 152:1 (1987), and Gibco BRL & Life Technologies Trizol RNA Isolation Protocol, Form No. 3786 (2000). Techniques for preparing nucleic acid samples, and sequencing polynucleotides from pine and eucalyptus are known. See, e.g., Allona et al., supra and Whetton et al., supra.


A suitable nucleic acid sample can contain any type of nucleic acid derived from the transcript of a cell signaling gene, i.e., RNA or a subsequence thereof or a nucleic acid for which an mRNA transcribed from a cell signaling gene served as a template. Suitable nucleic acids include cDNA reverse-transcribed from a transcript, RNA transcribed from that cDNA, DNA amplified from the cDNA, and RNA transcribed from the amplified DNA. Detection of such products or derived products is indicative of the presence and/or abundance of the transcript in the sample. Thus, suitable samples include, but are not limited to, transcripts of the gene or genes, cDNA reverse-transcribed from the transcript, cRNA transcribed from the cDNA, DNA amplified from the genes, and RNA transcribed from amplified DNA. As used herein, the category of “transcripts” includes but is not limited to pre-mRNA nascent transcripts, transcript processing intermediates, and mature mRNAs and degradation products thereof.


It is not necessary to monitor all types of transcripts to practice the invention. For example, the expression profiling methods of the invention can be conducted by detecting only one type of transcript, such as mature mRNA levels only.


In one aspect of the invention, a chromosomal DNA or cDNA library (comprising, for example, fluorescently labeled cDNA synthesized from total cell mRNA) is prepared for use in hybridization methods according to recognized methods in the art. See Sambrook et al., supra.


In another aspect of the invention, mRNA is amplified using, e.g., the MessageAmp kit (Ambion). In a further aspect, the mRNA is labeled with a detectable label. For example, mRNA can be labeled with a fluorescent chromophore, such as CyDye (Amersham Biosciences).


In some applications, it may be desirable to inhibit or destroy RNase that often is present in homogenates or lysates, before use in hybridization techniques. Methods of inhibiting or destroying nucleases are well known. In one embodiment of the invention, cells or tissues are homogenized in the presence of chaotropic agents to inhibit nuclease. In another embodiment, RNase is inhibited or destroyed by heat treatment, followed by proteinase treatment.


Protein samples can be obtained by any means known in the art. Protein samples useful in the methods of the invention include crude cell lysates and crude tissue homogenates. Alternatively, protein samples can be purified. Various methods of protein purification well known in the art can be found in Marshak et al., Strategies for Protein Purification and Characterization: A Laboratory Course Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1996).


B. Detecting Levels of Gene Expression


For methods of the invention that comprise detecting a level of gene expression, any method for observing gene expression can be used, without limitation. Such methods include traditional nucleic acid hybridization techniques, polymerase chain reaction (PCR) based methods, and protein determination. The invention includes detection methods that use solid support-based assay formats as well as those that use solution-based assay formats.


Absolute measurements of the expression levels need not be made, although they can be made. The invention includes methods comprising comparisons of differences in expression levels between samples. Comparison of expression levels can be done visually or manually, or can be automated and done by a machine, using for example optical detection means. Subrahmanyam et al., Blood. 97: 2457 (2001); Prashar et al., Methods Enzymol. 303: 258 (1999). Hardware and software for analyzing differential expression of genes are available, and can be used in practicing the present invention. See, e.g., GenStat Software and GeneExpress® GX Explorer™ Training Manual, supra; Baxevanis & Francis-Ouellette, supra.


In accordance with one embodiment of the invention, nucleic acid hybridization techniques are used to observe gene expression. Exemplary hybridization techniques include Northern blotting, Southern blotting, solution hybridization, and S1 nuclease protection assays.


Nucleic acid hybridization typically involves contacting an oligonucleotide probe and a sample comprising nucleic acids under conditions where the probe can form stable hybrid duplexes with its complementary nucleic acid through complementary base pairing. For example, see PCT application WO 99/32660; Berger & Kimmel, Methods Enzymol. 152: 1 (1987). The nucleic acids that do not form hybrid duplexes are then washed away leaving the hybridized nucleic acids to be detected, typically through detection of an attached detectable label. The detectable label can be present on the probe, or on the nucleic acid sample. In one embodiment, the nucleic acids of the sample are detectably labeled polynucleotides representing the mRNA transcripts present in a plant tissue (e.g., a cDNA library). Detectable labels are commonly radioactive or fluorescent labels, but any label capable of detection can be used. Labels can be incorporated by several approached described, for instance, in WO 99/32660, supra. In one aspect RNA can be amplified using the MessageAmp kit (Ambion) with the addition of aminoallyl-UTP as well as free UTP. The aminoallyl groups incorporated into the amplified RNA can be reacted with a fluorescent chromophore, such as CyDye (Amersham Biosciences)


Duplexes of nucleic acids are destabilized by increasing the temperature or decreasing the salt concentration of the buffer containing the nucleic acids. Under low stringency conditions (e.g., low temperature and/or high salt) hybrid duplexes (e.g., DNA:DNA, RNA:RNA or RNA:DNA) will form even where the annealed sequences are not perfectly complementary. Thus, specificity of hybridization is reduced at lower stringency. Conversely, at higher stringency (e.g., higher temperature and/or lower salt and/or in the presence of destabilizing reagents) hybridization tolerates fewer mismatches.


Typically, stringent conditions for short probes (e.g., 10 to 50 nucleotide bases) will be those in which the salt concentration is at least about 0.01 to 1.0 M at pH 7.0 to 8.3 and the temperature is at least about 30° C. Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide.


Under some circumstances, it can be desirable to perform hybridization at conditions of low stringency, e.g., 6× SSPE-T (0.9 M NaCl, 60 mM NaH2PO4, pH 7.6, 6 mM EDTA, 0.005% Triton) at 37° C., to ensure hybridization. Subsequent washes can then be performed at higher stringency (e.g., 1× SSPE-T at 37° C.) to eliminate mismatched hybrid duplexes. Successive washes can be performed at increasingly higher stringency (e.g., down to as low as 0.25× SSPE-T at 37° C. to 50° C.) until a desired level of hybridization specificity is obtained.


In general, standard conditions for hybridization is a compromise between stringency (hybridization specificity) and signal intensity. Thus, in one embodiment of the invention, the hybridized nucleic acids are washed at successively higher stringency conditions and read between each wash. Analysis of the data sets produced in this manner will reveal a wash stringency above which the hybridization pattern is not appreciably altered and which provides adequate signal for the particular oligonucleotide probes of interest. For example, the final wash may be selected as that of the highest stringency that produces consistent results and that provides a signal intensity greater than approximately 10% of the background intensity.


1. Oligonucleotide Probes


Oligonucleotide probes useful in nucleic acid hybridization techniques employed in the present invention are capable of binding to a nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing via hydrogen bond formation. A probe can include natural bases (i.e., A, G, U, C or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the nucleotide bases in the probes can be joined by a linkage other than a phosphodiester bond, so long as it does not interfere with hybridization. Thus, probes can be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages.


Oligonucleotide probes can be prepared by any means known in the art. Probes useful in the present invention are capable of hybridizing to a nucleotide product of a cell signaling gene, such as one of SEQ ID NOs: 1-197. Probes useful in the invention can be generated using the nucleotide sequences disclosed in SEQ ID NOs: 1-197. The invention includes oligonucleotide probes having at least a 2, 10,15, 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, or 100 nucleotide fragment of a corresponding contiguous sequence of any one of SEQ ID NOs: 1-197. The invention includes oligonucleotides of less than 2, 1, 0.5, 0.1, or 0.05 kb in length. In one embodiment, the oligonucleotide is 60 nucleotides in length. In another embodiment, the oligonucleotide is 30 nucleotides in length.


Oligonucleotide probes can be designed by any means known in the art. See, e.g., Li and Stormo, Bioinformatics 17: 1067-76 (2001). Oligonucleotide probe design can be effected using software. Exemplary software includes ArrayDesigner, GeneScan, and ProbeSelect. Probes complementary to a defined nucleic acid sequence can be synthesized chemically, generated from longer nucleotides using restriction enzymes, or can be obtained using techniques such as polymerase chain reaction (PCR). PCR methods are well known and are described, for example, in Innis et al. eds., PCR Protocols: A Guide to Methods and Applications, Academic Press Inc. San Diego, Calif. (1990). The probes can be labeled, for example, with a radioactive, biotinylated, or fluorescent tag. Optimally, the nucleic acids in the sample are labeled and the probes are not labeled. Oligonucleotide probes generated by the above methods can be used in solution or solid support-based methods.


The invention includes oligonucleotide probes that hybridize to a product of the coding region or a 3′ untranslated region (3′ UTR) of a cell signaling gene. In one embodiment, the oligonucleotide probe hybridizes to the 3′ UTR of any one of SEQ ID NOs: 1-197. The 3′ UTR is generally a unique region of the gene, even among members of the same family. Therefore, the probes capable of hybridizing to a product of the 3′ UTR can be useful for differentiating the expression of individual genes within a family where the coding region of the genes likely are highly homologous. This allows for the design of oligonucleotide probes to be used as members of a plurality of oligonucleotides, each capable of uniquely binding to a single gene. In another embodiment, the oligonucleotide probe comprises any one of SEQ ID NOs: 395-583. In another embodiment, the oligonucleotide probe consists of any one of SEQ ID NOs: 1-197.


2. Oligonucleotide Array Methods


One embodiment of the invention employs two or more oligonucleotide probes in combination to detect a level of expression of one or more cell signaling genes, such as the genes of SEQ ID NOs: 1-197. In one aspect of this embodiment, the level of expression of two or more different genes is detected. The two or more genes may be from the same or different cell signaling gene families. Each of the two or more oligonucleotides may hybridize to a different one of the genes.


One embodiment of the invention employs two or more oligonucleotide probes, each of which specifically hybridize to a polynucleotide derived from the transcript of a gene provided by SEQ ID NOs: 1-197. Another embodiment employs two or more oligonucleotide probes, at least one of which comprises a nucleic acid sequence of SEQ ID NOs: 395-583. Another embodiment employs two or more oligonucleotide probes, at least one of which consists of SEQ ID NOs: 395-583.


The oligonucleotide probes may comprise from about 5 to about 60, or from about 5 to about 500, nucleotide bases, such as from about 60 to about 100 nucleotide bases, including from about 15 to about 60 nucleotide bases.


One embodiment of the invention uses solid support-based oligonucleotide hybridization methods to detect gene expression. Solid support-based methods suitable for practicing the present invention are widely known and are described, for example, in PCT application WO 95/11755; Huber et al., Anal. Biochem. 299: 24 (2001); Meiyanto et al., Biotechniques. 31: 406 (2001); Relogio et al., Nucleic Acids Res. 30:e51 (2002). Any solid surface to which oligonucleotides can be bound, covalently or non-covalently, can be used. Such solid supports include filters, polyvinyl chloride dishes, silicon or glass based chips, etc.


One embodiment uses oligonucleotide arrays, i.e. microarrays, which can be used to simultaneously observe the expression of a number of genes or gene products. Oligonucleotide arrays comprise two or more oligonucleotide probes provided on a solid support, wherein each probe occupies a unique location on the support. The location of each probe may be predetermined, such that detection of a detectable signal at a given location is indicative of hybridization to an oligonucleotide probe of a known identity. Each predetermined location can contain more than one molecule of a probe, but each molecule within the predetermined location has an identical sequence. Such predetermined locations are termed features. There can be, for example, from 2, 10, 100, 1,000, 2,000 or 5,000 or more of such features on a single solid support. In one embodiment, each oligonucleotide is located at a unique position on an array at least 2, at least 3, at least 4, at least 5, at least 6, or at least 10 times.


Oligonucleotide probe arrays for detecting gene expression can be made and used according to conventional techniques described, for example, in Lockhart et al., Nat'l Biotech. 14: 1675 (1996), McGall et al., Proc. Nat'l Acad. Sci. USA 93: 13555 (1996), and Hughes et al., Nature Biotechnol. 19:342 (2001). A variety of oligonucleotide array designs is suitable for the practice of this invention.


In one embodiment the one or more oligonucleotides include a plurality of oligonucleotides that each hybridize to a different gene expressed in a particular tissue type. For example, the tissue can be developing wood.


In one embodiment, a nucleic acid sample obtained from a plant can be amplified and, optionally labeled with a detectable label. Any method of nucleic acid amplification and any detectable label suitable for such purpose can be used. For example, amplification reactions can be performed using, e.g. Ambion's MessageAmp, which creates “antisense” RNA or “aRNA” (complementary in nucleic acid sequence to the RNA extracted from the sample tissue). The RNA can optionally be labeled using CyDye fluorescent labels. During the amplification step, aaUTP is incorporated into the resulting aRNA. The CyDye fluorescent labels are coupled to the aaUTPs in a non-enzymatic reaction. Subsequent to the amplification and labeling steps, labeled amplified antisense RNAs are precipitated and washed with appropriate buffer, and then assayed for purity. For example, purity can be assay using a NanoDrop spectrophotometer. The nucleic acid sample is then contacted with an oligonucleotide array having, attached to a solid substrate (a “microarray slide”), oligonucleotide sample probes capable of hybridizing to nucleic acids of interest which may be present in the sample. The step of contacting is performed under conditions where hybridization can occur between the nucleic acids of interest and the oligonucleotide probes present on the array. The array is then washed to remove non-specifically bound nucleic acids and the signals from the labeled molecules that remain hybridized to oligonucleotide probes on the solid substrate are detected. The step of detection can be accomplished using any method appropriate to the type of label used. For example, the step of detecting can accomplished using a laser scanner and detector. For example, on can use and Axon scanner which optionally uses GenePix Pro software to analyze the position of the signal on the microarray slide.


Data from one or more microarray slides can be analyzed by any appropriate method known in the art.


Oligonucleotide probes used in the methods of the present invention, including microarray techniques, can be generated using PCR. PCR primers used in generating the probes are chosen, for example, based on the sequences of SEQ ID NOs: 1-197, to result in amplification of unique fragments of cell signaling genes (i.e., fragments that hybridize to only one polynucleotide of any one of SEQ ID NOs: 1-197 under standard hybridization conditions). Computer programs are useful in the design of primers with the required specificity and optimal hybridization properties. For example, Li and Stormo, supra, discuss a method of probe selection using ProbeSelect which selects an optimum oligonucleotide probe based on the entire gene sequence as well as other gene sequences to be probed at the same time.


In one embodiment, oligonucleotide control probes also are used. Exemplary control probes can fall into at least one of three categories referred to herein as (1) normalization controls, (2) expression level controls and (3) negative controls. In microarray methods, one or more of these control probes may be provided on the array with the inventive cell signaling gene-related oligonucleotides.


Normalization controls correct for dye biases, tissue biases, dust, slide irregularities, malformed slide spots, etc. Normalization controls are oligonucleotide or other nucleic acid probes that are complementary to labeled reference oligonucleotides or other nucleic acid sequences that are added to the nucleic acid sample to be screened. The signals obtained from the normalization controls, after hybridization, provide a control for variations in hybridization conditions, label intensity, reading efficiency and other factors that can cause the signal of a perfect hybridization to vary between arrays. In one embodiment, signals (e.g., fluorescence intensity or radioactivity) read from all other probes used in the method are divided by the signal from the control probes, thereby normalizing the measurements.


Virtually any probe can serve as a normalization control. Hybridization efficiency varies, however, with base composition and probe length. Preferred normalization probes are selected to reflect the average length of the other probes being used, but they also can be selected to cover a range of lengths. Further, the normalization control(s) can be selected to reflect the average base composition of the other probes being used. In one embodiment, only one or a few normalization probes are used, and they are selected such that they hybridize well (i.e., without forming secondary structures) and do not match any test probes. In one embodiment, the normalization controls are mammalian genes.


Expression level control probes hybridize specifically with constitutively expressed genes present in the biological sample. Virtually any constitutively expressed gene provides a suitable target for expression level control probes. Typically, expression level control probes have sequences complementary to subsequences of constitutively expressed “housekeeping genes” including, but not limited to certain photosynthesis genes.


As used herein, “negative control” probes are not complementary to any of the test oligonucleotides (i.e., the inventive cell signaling gene-related oligonucleotides), normalization controls, or expression controls. In one embodiment, the negative control is a mammalian gene which is not complementary to any other sequence in the sample.


The terms “background” and “background signal intensity” refer to hybridization signals resulting from non-specific binding or other interactions between the labeled target nucleic acids (i.e., mRNA present in the biological sample) and components of the oligonucleotide array. Background signals also can be produced by intrinsic fluorescence of the array components themselves.


A single background signal can be calculated for the entire array, or a different background signal can be calculated for each target nucleic acid. In a one embodiment, background is calculated as the average hybridization signal intensity for the lowest 5 to 10 percent of the oligonucleotide probes being used, or, where a different background signal is calculated for each target gene, for the lowest 5 to 10 percent of the probes for each gene. Where the oligonucleotide probes corresponding to a particular cell signaling gene hybridize well and, hence, appear to bind specifically to a target sequence, they should not be used in a background signal calculation. Alternatively, background can be calculated as the average hybridization signal intensity produced by hybridization to probes that are not complementary to any sequence found in the sample (e.g., probes directed to nucleic acids of the opposite sense or to genes not found in the sample). In microarray methods, background can be calculated as the average signal intensity produced by regions of the array that lack any oligonucleotides probes at all.


3. PCR-Based Methods


In another embodiment, PCR-based methods are used to detect gene expression. These methods include reverse-transcriptase-mediated polymerase chain reaction (RT-PCR) including real-time and endpoint quantitative reverse-transcriptase-mediated polymerase chain reaction (Q-RTPCR). These methods are well known in the art. For example, methods of quantitative PCR can be carried out using kits and methods that are commercially available from, for example, Applied BioSystems and Stratagene®. See also Kochanowski, Quantitative PCR Protocols (Humana Press, 1999); Innis et al., supra.; Vandesompele et al., Genome Biol. 3: RESEARCH0034 (2002); Stein, Cell Mol. Life Sci. 59: 1235 (2002).


Gene expression can also be observed in solution using Q-RTPCR. Q-RTPCR relies on detection of a fluorescent signal produced proportionally during amplification of a PCR product. See Innis et al., supra. Like the traditional PCR method, this technique employs PCR oligonucleotide primers, typically 15-30 bases long, that hybridize to opposite strands and regions flanking the DNA region of interest. Additionally, a probe (e.g., TaqMan®, Applied Biosystems) is designed to hybridize to the target sequence between the forward and reverse primers traditionally used in the PCR technique. The probe is labeled at the 5′ end with a reporter fluorophore, such as 6-carboxyfluorescein (6-FAM) and a quencher fluorophore like 6-carboxy-tetramethyl-rhodamine (TAMRA). As long as the probe is intact, fluorescent energy transfer occurs which results in the absorbance of the fluorescence emission of the reporter fluorophore by the quenching fluorophore. As Taq polymerase extends the primer, however, the intrinsic 5′ to 3′ nuclease activity of Taq degrades the probe, releasing the reporter fluorophore. The increase in the fluorescence signal detected during the amplification cycle is proportional to the amount of product generated in each cycle.


The forward and reverse amplification primers and internal hybridization probe is designed to hybridize specifically and uniquely with one nucleotide derived from the transcript of a target gene. In one embodiment, the selection criteria for primer and probe sequences incorporates constraints regarding nucleotide content and size to accommodate TaqMan® requirements.


SYBR Green® can be used as a probe-less Q-RTPCR alternative to the Taqman®-type assay, discussed above. ABI Prism® 7900 Sequence Detection System User Guide Applied Biosystems, chap. 1-8, App. A-F. (2002).


A device measures changes in fluorescence emission intensity during PCR amplification. The measurement is done in “real time,” that is, as the amplification product accumulates in the reaction. Other methods can be used to measure changes in fluorescence resulting from probe digestion. For example, fluorescence polarization can distinguish between large and small molecules based on molecular tumbling (see, e.g., U.S. Pat. No. 5,593,867).


4. Protein Detection Methods


Proteins can be observed by any means known in the art, including immunological methods, enzyme assays and protein array/proteomics techniques.


Measurement of the translational state can be performed according to several protein methods. For example, whole genome monitoring of protein—the “proteome”—can be carried out by constructing a microarray in which binding sites comprise immobilized, preferably monoclonal, antibodies specific to a plurality of proteins having an amino acid sequence of any of SEQ ID NOs: 198-394 or proteins encoded by the genes of SEQ ID NOs: 1-197 or conservative variants thereof. See Wildt et al., Nature Biotechnol. 18: 989 (2000). Methods for making polyclonal and monoclonal antibodies are well known, as described, for instance, in Harlow & Lane, Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1988).


Alternatively, proteins can be separated by two-dimensional gel electrophoresis systems. Two-dimensional gel electrophoresis is well-known in the art and typically involves isoelectric focusing along a first dimension followed by SDS-PAGE electrophoresis along a second dimension. See, e.g., Hames et al, Gel Electrophoresis of Proteins: A Practical Approach (IRL Press, 1990). The resulting electropherograms can be analyzed by numerous techniques, including mass spectrometric techniques, western blotting and immunoblot analysis using polyclonal and monoclonal antibodies, and internal and N-terminal micro-sequencing.


In another embodiment, cell signaling proteins can be detected by directly measuring their enzymatic activity. For example, cytokinin oxidase activity can be measured by a simple colormetric assay. See Libreros-Minotta et al., Anal. Biochem. 231:339-341 (1995). Likewise, cell signaling gene products can be detected directly or indirectly by the functional assays described supra in Part I.A. of this description.


C. Correlating Gene Expression to Phenotype


As discussed above, the invention provides methods and tools to correlate gene expression to plant phenotype. Gene expression may be examined in a plant having a phenotype of interest and compared to a plant that does not have the phenotype or has a different phenotype. Such a phenotype includes, but is not limited to, increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, increased or decreased cellulose content, increased or decreased lignin content, increased or decreased nonlignin cell wall phenolics and production of novel proteins or peptides.


In another embodiment, the phenotype includes one or more of the following traits: propensity to form reaction wood, a reduced period of juvenility, an increased period of juvenility, self-abscising branches, accelerated reproductive development or delayed reproductive development, and accelerated regeneration.


In a further embodiment, the phenotype that is different from the comparative plant includes one or more of the following: lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, proportion of rays, proportion of vessel elements, other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, proportion of nonlignin cell wall phenolics, rate of wood formation, aesthetic appearance of wood, formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape. Phenotype can be assessed by any suitable means as discussed above, such as, for example Hertzberg, supra, Ye and Sundström, supra, U.S. Patent Application Publication Nos. 2002/0107644 and 2002/0113212, Marita et al., supra.


It will be apparent to those skilled in the art that various modifications and variations can be made in the methods and compositions of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.


The following examples are given to illustrate the present invention. It should be understood, however, that the invention is not to be limited to the specific conditions or details described in these examples. Throughout the specification, any and all references to a publicly available document, including a U.S. patent, are specifically incorporated by reference in their entirety.


EXAMPLES
Example 1

Example 1 demonstrates the isolation and characterization of cell signaling genes from E. grandis and P. radiata.


Total RNA was extracted from plant tissue (using the protocol of Chang et al., Plant Mol. Biol. Rep. 11:113-116 (1993). Plant tissue samples were obtained from phloem (P), cambium (C), expanding xylem (X1), and differentiating and lignifying xylem (X2).


mRNA was isolated from the total RNA preparation using either a Poly(A) Quik mRNA Isolation Kit (Stratagene, La Jolla, Calif.) or Dynal Beads Oligo (dT)25 (Dynal, Skogen, Norway). cDNA expression libraries were constructed from the purified mRNA by reverse transcriptase synthesis followed by insertion of the resulting cDNA clones in Lambda ZAP using a ZAP Express cDNA Synthesis Kit (Stratagene), according to the using the manufacturer's protocol. The resulting cDNAs were packaged using a Gigapack II Packaging Extract (Stratagene) using an aliquot (1-5 μL) from the 5 μL ligation reaction dependent upon the library. Mass excision of the library was done using XL1-Blue MRF′ cells and XLOLR cells (Stratagene) with ExAssist helper phage (Stratagene). The excised phagemids were diluted with NZY broth (Gibco BRL, Gaithersburg, Md.) and plated out onto LB-kanamycin agar plates containing X-gal and isopropylthio-beta-galactoside (IPTG).


Of the colonies plated and selected for DNA miniprep, 99% contained an insert suitable for sequencing. Positive colonies were cultured in NZY broth with kanamycin and cDNA was purified by means of alkaline lysis and polyethylene glycol (PEG) precipitation. Agarose gel at 1% was used to screen sequencing templates for chromosomal contamination. Dye primer sequences were prepared using a Turbo Catalyst 800 machine (Perkin Elmer/Applied Biosystems Division, Foster City, Calif.) according to the manufacturer's protocol.


DNA sequence for positive clones was obtained using a Perkin Elmer/Applied Biosystems Division Prism 377 sequencer. cDNA clones were sequenced first from the 5′ end and, in some cases, also from the 3′ end. For some clones, internal sequence was obtained using either Exonuclease III deletion analysis, yielding a library of differentially sized subclones in pBK-CMV, or by direct sequencing using gene-specific primers designed to identify regions of the gene of interest. The determined cDNA sequences are provided in SEQ ID NOS: 1-197. The predicted polypeptide sequences are SEQ ID NOs: 198-394.


To identify cell signaling gene candidates in P. radiata and E. grandis databases, cDNA sequences were compared to the Arabidopsis cell signaling gene superfamilies. Richmond and Somerville, Plant Physiol. 124:495 (2000).


Next, public domain sequences (by SWISS-PROT/TrEMBL ID's) were used to search against the pine and eucalyptus databases (non-redundant by contig, expect <1.0e−2). Probably pine and eucalyptus gene candidates were obtained. Of these, several pine and eucalyptus gene candidates were potentially full length (i.e. contained start Met) or near full length sequences.


The contig consensus DNA and protein sequences were then obtained for all gene candidates and duplicate sequences were identified. Multiple alignment was then carried out with the protein sequences. The protein alignment was created using the remaining pine and eucalyptus sequences along with the Arabidopsis members, and previously identified cell signaling genes. From the protein alignment, a dendogram was created. This dendogram grouped the sequence hits into cell signaling families. These sequences were analyzed by primer walking to provide a full length sequence (best HT pick from the contig analyzed for full length sequence).


The public domain cell signaling sequences from maize, cotton, rice, and poplar were also extracted and blasted against the pine and eucalyptus databases. The completed primer walked pine and eucalyptus sequences were also blasted against ownseq and the top 500 hits were taken. This was done so that the sequences could be used to search further and ensure that nothing in the pine and eucalyptus databases had been missed by using the Arabidopsis superfamily. This search resulted in the identification of additional sequences not found in the previous searches. These sequences were then also sent for primer walked full length sequence.


After removing a small number of additional duplicates after primer walking, the pine and eucalyptus primer walked cell signaling genes were identified. The classification of these sequences was confirmed by alignment with ClustalX, the corresponding dendogram, and MEME/MAST analysis.


Example 2

Example 2 demonstrates how additional regions either 5′ or 3′ of target sequences are identified and characterized.


To identify additional sequence 5′ or 3′ of a partial cDNA sequence in a cDNA library, 5′ and 3′ rapid amplification of cDNA ends (RACE) was performed. using the SMART RACE cDNA amplification kit (Clontech Laboratories, Palo Alto, Calif.). Generally, the method entailed first isolating poly(A) mRNA, performing first and second strand cDNA synthesis to generate double stranded cDNA, blunting cDNA ends, and then ligating of the SMART RACE. Adaptor to the cDNA to form a library of adaptor-ligated ds cDNA. Gene-specific primers were designed to be used along with adaptor specific primers for both 5′ and 3′ RACE reactions. Using 5′ and 3′ RACE reactions, 5′ and 3′ RACE fragments were obtained, sequenced, and cloned. The process may be repeated until 5′ and 3′ ends of the full-length gene were identified. A full-length cDNA may generated by PCR using primers specific to 5′ and 3, ends of the gene by end-to-end PCR.


For example, to amplify the missing 5′ region of a gene from first-strand cDNA, a primer was designed 5′→3′ from the opposite strand of the template sequence, and from the region between ˜100-200 bp of the template sequence. A successful amplification should give an overlap of ˜100 bp of DNA sequence between the 5′ end of the template and PCR product.


RNA was extracted from four pine tissues, namely seedling, xylem, phloem and structural root using the Concert Reagent Protocol (Invitrogen, Carlsbad, Calif.) and standard isolation and extraction procedures. The resulting RNA was then treated with DNase, using 10 U/μl DNase I (Roche Diagnostics, Basel, Switzerland). For 100 μg of RNA, 9 μl 10× DNase buffer (Invitrogen, Carlsbad, Calif.), 10 μl of Roche DNase I and 90 μl of Rnase-free water was used. The RNA was then incubated at room temperature for 15 minutes and 1/10 volume 25 mM EDTA is added. A RNeasy mini kit (Qiagen, Venlo, The Netherlands) was used for RNA purification according to manufacturer's protocol.


To synthesize cDNA, the extracted RNA from xylem, phloem, seedling and root was used and the SMART RACE cDNA amplification kit (Clontech Laboratories Inc, Palo Alto, Calif.) was followed according to manufacturer's protocol. For the RACE PCR, the cDNA from the four tissue types was combined. The master mix for PCR was created by combining equal volumes of cDNA from xylem, phloem, root and seedling tissues. PCR reactions were performed in 96 well PCR plates, with 1 μl of primer from primer dilution plate (10 mM) to corresponding well positions. 49 μl of master mix is aliquoted into the PCR plate with primers. Thermal cycling commenced on a GeneAmp 9700 (Applied Biosystems, Foster City, Calif.) obtaining 94° C. for 5 seconds, 72° C. for 3 minutes, 5 cycles, 94° C. for 5 seconds, 70° C. for 10 seconds, and 72° C. for 3 minutes, repeated for 5 cycles. Subsequently, the thermal cycling occurred at 94° C. for 5 seconds, 68° C. for 10 sec, and 72° C. for 3 minutes, repeated for 25 cycles.


cDNA was separated on an agarose gel following standard procedures. Gel fragments were excised and eluted from the gel by using the Qiagen 96-well Gel Elution kit, following the manufacturer's instructions.


PCR products were ligated into pGEMTeasy (Promega, Madison, Wis.) in a 96 well plate overnight according to the following specifications: 60-80 ng of DNA, 5 μl 2× rapid ligation buffer, 0.5 μl pGEMT easy vector, 0.1 μl DNA ligase, filled to 10 μl with water, and incubated overnight.


Each clone was transformed into E. coli following standard procedures and DNA was extracted from 12 clones picked by following standard protocols. DNA extraction and the DNA quality was verified on an 1% agarose gel. The presence of the correct size insert in each of the clones was determined by restriction digests, using the restriction endonuclease EcoRI, and gel electrophoresis, following standard laboratory procedures.


The transformation of Eucalyptus elite clones with a sense UDP-glucose binding domain sequence operably-linked to a constitutive promoter confers an enhanced growth phenotype, as evidenced by increases in cellulose synthesis, primary cell wall synthesis, wood density, and tensile strength. Leaf explants are harvested from stock Eucalyptus plants and the explants are cultured on a pre-treatment medium. The pre-culture medium comprises auxin, cytokinin, and an Agrobacterium inducer, such as acetosyringone, to stimulate cell division along the excised edges of the tissue explant. Following four days of pre-culture, the explants are inoculated with Agrobacterium strain GV2260 containing a plasmid bearing a portion of the UDP-glucose binding domain operably linked to a ubiquitin promoter. The explants are co-cultivated for 3 days prior to transfer to Euc Regeneration medium. The explants are cultured on Eucalyptus Regeneration medium for 4 days before transfer to selection medium containing an herbicide.


Following the selection of herbicide-resistant transformants, the transformants are assayed for GUS expression. Upon the confirmation of GUS expression, shoots are harvested and transferred to a rooting medium. The rooting medium comprises BTM-1 salts supplemented with 5 g/l MeadWestvaco Nuchar activated carbon, and rooting development usually occurs after 2-4 weeks. Upon development of the primary root system, the transformed plants are transferred to soil. The transgenic Eucalyptus plants carrying any one of SEQ ID NOs. 1-197 operably linked to a ubiquitin promoter exhibit modulated growth rates, responses to environmental cues and altered phenotypic traits.


Example 3

Example 3 illustrates a procedure for RNA extraction and purification, which is particularly useful for RNA obtained from conifer needle, xylem, cambium, and phloem.


Tissue is obtained from conifer needle, xylem, cambium or phloem. The tissue is frozen in liquid nitrogen and ground. The total RNA is extracted using Concert Plant RNA reagent (Invitrogen). The resulting RNA sample is extracted into phenol:chloroform and treated with DNase. The RNA is then incubated at 65° C. for 2 minutes followed by centrifugation at 4° C. for 30 minutes. Following centrifugation, the RNA is extracted into phenol at least 10 times to remove contaminants.


The RNA is further cleaned using RNeasy columns (Qiagen). The purified RNA is quantified using RiboGreen reagent (Molecular Probes) and purity assessed by gel electrophoresis.


RNA is then amplified using MessageAmp (Ambion). Aminoallyl-UTP and free UTP are added to the in vitro transcription of the purified RNA at a ratio of 4:1 aminoallyl-UTP-to-UTP. The aminoallyl-UTP is incorporated into the new RNA strand as it is transcribed. The amino-allyl group is then reacted with Cy dyes to attach the calorimetric label to the resulting amplified RNA using the Amersham procedure modified for use with RNA. Unincorporated dye is removed by ethanol precipitation. The labeled RNA is quantified spectrophotometrically (NanoDrop). The labeled RNA is fragmented by heating to 95° C. as described in Hughes et al., Nature Biotechnol. 19:342 (2001).


Example 4

Example 4 illustrates how cell signaling genes important for wood development in P. radiata can be determined and how oligonucleotides which uniquely bind to those genes can be designed and synthesized for use on a microarray.


Pine trees of the species P. radiata are grown under natural light conditions. Tissue samples are prepared as described in, e.g., Sterky et al., Proc. Nat'l Acad. Sci. 95:13330 (1998). Specifically, tissue samples are collected from woody trees having a height of 5 meters. Tissue samples of the woody trees are prepared by taking tangential sections through the cambial region of the stem. The stems are sectioned horizontally into sections ranging from juvenile (top) to mature (bottom). The stem sections separated by stage of development are further separated into 5 layers by peeling into sections of phloem, differentiating phloem, cambium, differentiating xylem, developing xylem, and mature xylem. Tissue samples, including leaves, buds, shoots, and roots are also prepared from seedlings of the species P. radiata.


RNA is isolated and ESTs generated as described in Example 1 or Sterky et al., supra. The nucleic acid sequences of ESTs derived from samples containing developing wood are compared with nucleic acid sequences of genes known to be involved in cell signaling. ESTs from samples that do not contain developing wood are also compared with sequences of genes known to be involved in the plant growth and development. An in silico hybridization analysis can then be performed using BLAST (NCBI).


Sequences from among the known cell signaling genes that show hybridization in silico to ESTs made from samples containing developing wood, but that do not hybridize to ESTs from samples not containing developing wood are selected for further examination.


cDNA clones containing sequences that hybridize to the genes showing wood-preferred expression are selected from cDNA libraries using techniques well known in the art of molecular biology. Using the sequence information, oligonucleotides are designed such that each oligonucleotide is specific for only one cDNA sequence in the library. The oligonucleotide sequences are provided in TABLE 4. 60-mer oligonucleotide probes are designed using the method of Li and Stormo, supra or using software such as ArrayDesigner, GeneScan, and ProbeSelect.


The oligonucleotides are then synthesized in situ described in Hughes et al., Nature Biotechnol. 19:324 (2002) or as described in Kane et al., Nucleic Acids Res. 28:4552 (2000) and affixed to an activated glass slide (Sigma-Genosis, The Woodlands, Tex.) using a 5′ amino linker. The position of each oligonucleotide on the slide is known.


Example 5

Example 5 illustrates how RNAs of tissues from multiple pine species, in this case both P. radiata and loblolly pine P. taeda trees, are selected for analysis of the pattern of gene expression associated with wood growth and development in the juvenile wood and mature wood forming sections of the trees using the microarrays derived from P. radiata cDNA sequences described in Example 4.


Open pollinated trees of approximately 16 years of age are selected from plantation-grown sites, in the United States for loblolly pine, and in New Zealand for radiata pine. Trees are felled during the spring and summer seasons to compare the expression of genes associated with these different developmental stages of wood formation. Trees are felled individually and trunk sections are removed from the bottom area approximately one to two meters from the base and within one to two meters below the live crown. The section removed from the basal end of the trunk contains mature wood. The section removed from below the live crown contains juvenile wood. Samples collected during the spring season are termed earlywood or springwood, while samples collected during the summer season are considered latewood or summerwood. Larson et al., Gen. Tech. Rep. FPL-GTR-129. Madison, Wis.: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. p. 42.


Tissues are isolated from the trunk sections such that phloem, cambium, developing xylem, and maturing xylem are removed. These tissues are collected only from the current year's growth ring. Upon tissue removal in each case, the material is immediately plunged into liquid nitrogen to preserve the nucleic acids and other components. The bark is peeled from the section and phloem tissue removed from the inner face of the bark by scraping with a razor blade. Cambium tissue is isolated from the outer face of the peeled section by gentle scraping of the surface. Developing xylem and lignifying xylem are isolated by sequentially performing more vigorous scraping of the remaining tissue. Tissues are transferred from liquid nitrogen into containers for long term storage at −70° C. until RNA extraction and subsequent analysis is performed.


Example 6

Example 6 illustrates procedures alternative to those used in Example 3 for RNA extraction and purification, particularly useful for RNA obtained from a variety of tissues of woody plants, and a procedure for hybridization and data analysis using the arrays described in Example 4.


RNA is isolated according to the protocol of Chang et al., Plant Mol. Biol. Rep. 11:113-116 (1993). DNA is removed using DNase I (Invitrogen, Carlsbad, Calif.) according to the manufacturer's recommendations. The integrity of the RNA samples is determined using the Agilent 2100 Bioanalyzer (Agilent Technologies, USA).


10 μg of total RNA from each tissue is reverse transcribed into cDNA using known methods.


In the case of Pinus radiata phloem tissue, it can be difficult to extract sufficient amounts of total RNA for normal labelling procedures. Total RNA is extracted and treated as previously described and 100 ng of total RNA is amplified using the Ovation™ Nanosample RNA Amplification system from NUGEN™ (NUGEN, Calif., USA). Similar amplification kits such as those manufactured by Ambion may alternatively be used. The amplified RNA is reverse transcribed into cDNA and labelled as described above.


Hybridization and stringency washes are performed using the protocol as described in the U.S. patent application for “Methods and Kits for Labeling and Hybridizing cDNA for Microarray Analysis” (supra) at 42 C. The arrays (slides) are scanned using a ScanArray 4000 Microarray Analysis System (GSI Lumonics, Ottawa, ON, Canada). Raw, non-normalized intensity values are generated using QUANTARRAY software (GSI Lumonics, Ottawa, ON, Canada).


A fully balanced, incomplete block experimental design (Kerr and Churchill, Gen. Res. 123:123, 2001) is used in order to design an array experiment that would allow maximum statistical inferences from analyzed data.


Gene expression data is analyzed using the SAS® Microarray Solution software package (The SAS Institute, Cary, N.C., USA). Resulting data was then visualized using JMP® (The SAS Institute, Cary, N.C., USA).


Analysis done for this experiment is an ANOVA approach with mixed model specification (Wolfinger et al., J. Comp. Biol. 8:625-637). Two steps of linear mixed models are applied. The first one, normalization model, is applied for global normalization at slide-level. The second one, gene model, is applied for doing rigorous statistical inference on each gene. Both models are stated in Models (1) and (2).

log2(Yijkls)=θij+Dk+Sl+DSklijkls  (1)
Rijkls(g)ij(g)+Dk(g)+Sl(g)+DSkl(g)+SSls(g)ijkls(g)  (2)


Yijkls represents the intensity of the sth spot in the Ith slide with the kth dye applying the jth treatment for the ith cell line. θij, Dk, Sl, and Dskl represent the mean effect of the jth treatment in the ith cell line, the kth dye effect, the lth slide random effect, and the random interaction effect of the kth dye in the lth slide. ωijkls is the stochastic error term. represent the similar roles as θij, Dk, Sl, and DSkl except they are specific for the gth gene. Rijkls(g) represents the residual of the gth gene from model (1). μij(g),Dk(g),Sl(g), and DSkl(g) represent the similar roles as θij, Dk, Sl, and DSkl except they are specific for the gth gene. SSls(g) represent the spot by slide random effect for the gth gene. εijkls(g) represent the stochastic error term. All random terms are assumed to be normal distributed and mutually independent within each model.


According to the analysis described above, certain cDNAs can be shown to be differentially expressed.


The involvement of these specific genes in wood growth and development is inferred through the association of the up-regulation or down-regulation of genes to the particular stages of wood development. Both the spatial continuum of wood development across a section (phloem, cambium, developing xylem, maturing xylem) at a particular season and tree trunk position and the relationships of season and tree trunk position should be considered when making associations of gene expression to the relevance in wood development.


Example 7

Example 7 demonstrates how one can correlate cell signaling gene expression with agronomically important wood phenotypes such as density, stiffness, strength, distance between branches, and spiral grain.


Mature clonally propagated pine trees are selected from among the progeny of known parent trees for superior growth characteristics and resistance to important fungal diseases. The bark is removed from a tangential section and the trees are examined for average wood density in the fifth annual ring at breast height, stiffness and strength of the wood, and spiral grain. The trees are also characterized by their height, mean distance between major branches, crown size, and forking.


To obtain seedling families that are segregating for major genes that affect density, stiffness, strength, distance between branches, spiral grain and other characteristics that may be linked to any of the genes affecting these characteristics, trees lacking common parents are chosen for specific crosses on the criterion that they exhibit the widest variation from each other with respect to the density, stiffness, strength, distance between branches, and spiral grain criteria. Thus, pollen from a tree exhibiting high density, low mean distance between major branches, and high spiral grain is used to pollinate cones from the unrelated plus tree among the selections exhibiting the lowest density, highest mean distance between major branches, and lowest spiral grain. It is useful to note that “plus trees” are crossed such that pollen from a plus tree exhibiting high density are used to pollinate developing cones from another plus tree exhibiting high density, for example, and pollen from a tree exhibiting low mean distance between major branches would be used to pollinate developing cones from another plus tree exhibiting low mean distance between major branches.


Seeds are collected from these controlled pollinations and grown such that the parental identity is maintained for each seed and used for vegetative propagation such that each genotype is represented by multiple ramets. Vegetative propagation is accomplished using micropropagation, hedging, or fascicle cuttings. Some ramets of each genotype are stored while vegetative propagules of each genotype are grown to sufficient size for establishment of a field planting. The genotypes are arrayed in a replicated design and grown under field conditions where the daily temperature and rainfall are measured and recorded.


The trees are measured at various ages to determine the expression and segregation of density, stiffness, strength, distance between branches, spiral grain, and any other observable characteristics that may be linked to any of the genes affecting these characteristics. Samples are harvested for characterization of cellulose content, lignin content, cellulose microfibril angle, density, strength, stiffness, tracheid morphology, ring width, and the like. Samples are also examined for gene expression as described in Example 6. Ramets of each genotype are compared to ramets of the same genotype at different ages to establish age:age correlations for these characteristics.


Example 8

Example 8 demonstrates how responses to environmental conditions such as light and season alter plant phenotype and can be correlated to cell signaling gene expression using microarrays. In particular, the changes in gene expression associated with wood density are examined.


Trees of three different clonally propagated E. grandis hybrid genotypes are grown on a site with a weather station that measures daily temperatures and rainfall. During the spring and subsequent summer, genetically identical ramets of the three different genotypes are first photographed with north-south orientation marks, using photography at sufficient resolution to show bark characteristics of juvenile and mature portions of the plant, and then felled. The age of the trees is determined by planting records and confirmed by a count of the annual rings. In each of these trees, mature wood is defined as the outermost rings of the tree below breast height, and juvenile wood as the innermost rings of the tree above breast height. Each tree is accordingly sectored as follows:

    • NM—NORTHSIDE MATURE
    • SM—SOUTHSIDE MATURE
    • NT—NORTHSIDE TRANSITION
    • ST—SOUTHSIDE TRANSITION
    • NJ—NORTHSIDE JUVENILE
    • SJ—SOUTHSIDE JUVENILE


Tissue is harvested from the plant trunk as well as from juvenile and mature form leaves. Samples are prepared simultaneously for phenotype analysis, including plant morphology and biochemical characteristics, and gene expression analysis. The height and diameter of the tree at the point from which each sector was taken is recorded, and a soil sample from the base of the tree is taken for chemical assay. Samples prepared for gene expression analysis are weighed and placed into liquid nitrogen for subsequent preparation of RNA samples for use in the microarray experiment. The tissues are denoted as follows:

    • P—phloem
    • C—cambium
    • X1—expanding xylem
    • X2—differentiating and lignifying xylem


Thin slices in tangential and radial sections from each of the sectors of the trunk are fixed as described in Ruzin, Plant Microtechnique and Microscopy, Oxford University Press, Inc., New York, N.Y. (1999) for anatomical examination and confirmation of wood developmental stage. Microfibril angle is examined at the different developmental stages of the wood, for example juvenile, transition and mature phases of Eucalyptus grandis wood. Other characteristics examined are the ratio of fibers to vessel elements and ray tissue in each sector. Additionally, the samples are examined for characteristics that change between juvenile and mature wood and between spring wood and summer wood, such as fiber morphology, lumen size, and width of the S2 (thickest) cell wall layer. Samples are further examined for measurements of density in the fifth ring and determination of modulus of elasticity using techniques well known to those skilled in the art of wood assays. See, e.g., Wang, et al., Non-destructive Evaluations of Trees, Experimental Techniques, pp. 28-30 (2000).


For biochemical analysis, 50 grams from each of the harvest samples are freeze-dried and analyzed, using biochemical assays well known to those skilled in the art of plant biochemistry for quantities of simple sugars, amino acids, lipids, other extractives, lignin, and cellulose. See, e.g., Pettersen & Schwandt, J. Wood Chem. & Technol. 11:495 (1991).


In the present example, the phenotypes which can be chosen for comparison are high density wood, average density wood, and low density wood. Nucleic acid samples are prepared as described in Example 3, from trees harvested in the spring and summer. Gene expression profiling by hybridization and data analysis is performed as described above.


Using similar techniques and clonally propagated individuals one can examine cell signaling gene expression as it is related to other complex wood characteristics such as strength, stiffness and spirality.


Example 9

Example 9 demonstrates how a cell signaling gene can be linked to a tissue-preferred promoter and expressed in pine.


A cell signaling gene, which is more highly expressed during the early spring, is identified by the method described in Example 7. A DNA construct having the density-related polypeptide operably linked to a promoter is placed into an appropriate binary vector and transformed into pine using the methods described herein. Pine plants are transformed as described in herein and the transgenic pine plants are used to establish a forest planting. Increased density even in the spring wood (early wood) is observed in the transgenic pine plants relative to control pine plants which are not transformed with the density related DNA construct.


Example 10

Using techniques well known to those skilled in the art of molecular biology, the sequence of a cell signalling gene isolated in Example 9 can be analyzed in genomic DNA isolated from alfalfa. This enables the identification of an orthologue in alfalfa. The orthologue nucleotide sequence can then be used to create an RNAi knockout construct. This construct is then transformed into alfalfa. See, e.g., Austin et al.,. Euphytica 85, 381 (1995). The regenerated transgenic plants should demonstrate modulated growth, development or a perturbed ability to perceive and respond to environmental cues.


Example 11

Example 11 demonstrates how gene expression analysis can be used to find gene variants which are present in mature plants having a desirable phenotype. The presence or absence of such a variant can be used to predict the phenotype of a mature plant, allowing screening of the plants at the seedling stage. Although this example employs eucalyptus, the method used herein is also useful in breeding programs for pine and other tree species.


The sequence of a putative density-related gene is used to probe genomic DNA isolated from Eucalyptus that vary in density as described in previous examples. Non-transgenically produced Eucalyptus hybrids of different wood phenotypes are examined. One hybrid exhibits high wood density and another hybrid exhibits lower wood density. A molecular marker in the 3′ portion of the coding region is found which distinguishes a high-density gene variant from a lower density gene variant.


This molecular marker enables tree breeders to assay non-transgenic Eucalyptus hybrids for likely density profiles while the trees are still at seedling stage, whereas in the absence of the marker, tree breeders must wait until the trees have grown for multiple years before density at harvest age can be reliably predicted. This enables selective outplanting of the best trees at seedling stage rather than an expensive culling operation and resultant erosion at thinning age. This molecular marker is further useful in the breeding program to determine which parents will give rise to high density outcross progeny.


Molecular markers located in the 3′ portion of the coding region of the gene that do not correspond to variants seen more frequently in higher or lower wood density non-transgenic Eucalyptus hybrid trees are also useful for fingerprinting different genotypes of Eucalyptus, for use in identity-tracking in the breeding program and in plantations.


Example 12

This Example describes microarrays for identifying gene expression differences that contribute to the phenotypic characteristics that are important in commercial wood, namely wood appearance, stiffness, strength, density, fiber dimensions, coarseness, cellulose and lignin content, extractives content and the like.


Woody trees of genera that produce commercially important wood products, in this case Pinus and Eucalyptus, are felled from various sites and at various times of year for the collection and isolation of RNA from developing xylem, cambium, phloem, leaves, buds, roots, and other tissues. RNA is also isolated from seedlings of the same genera.


All contigs are compared to both the ESTs made from RNA isolated from samples containing developing wood and the sequences of the ESTs made from RNA of various tissues that do not contain developing wood. Contigs containing primarily ESTs that show more hybridization in silico to ESTs made from RNA isolated from samples containing developing wood than to ESTs made from RNA isolated from samples not containing developing wood are determined to correspond to possible novel genes particularly expressed in developing wood. These contigs are then used for BLAST searches against public domain sequences. Those contigs that hybridize in silico with high stringency to no known genes or genes annotated as having only a “hypothetical protein” are selected for the next step. These contigs are considered putative novel genes showing wood-preferred expression.


The longest cDNA clones containing sequences hybridizing to the putative novel genes showing wood-preferred expression are selected from cDNA libraries using techniques well known to those skilled in the art of molecular biology. The cDNAs are sequenced and full-length gene-coding sequences together with untranslated flanking sequences are obtained where possible. Stretches of 45-80 nucleotides (or oligonucleotides) are selected from each of the sequences of putative novel genes showing wood-preferred expression such that each oligonucleotide probe hybridizes at high stringency to only one sequence represented in the ESTs made from RNA isolated from trees or seedlings of the same genus.


Oligomers are then chemically synthesized and placed onto a microarray slide as described in Example 4. Each oligomer corresponds to a particular sequence of a putative novel gene showing wood-preferred expression and to no other gene whose sequence is represented among the ESTs made from RNA isolated from trees or seedlings of the same genus.


Sample preparation and hybridization are carried out as in Example 4. The technique used in this example is more effective than use of a microarray using cDNA probes because the presence of a signal represents significant evidence of the expression of a particular gene, rather than of any of a number of genes that may contain similarities to the cDNA due to conserved functional domains or common evolutionary history. Thus, it is possible to differentiate homologous genes, such as those in the same family, but which may have different functions in phenotype determination.


This hybridization data, gained using the method of Example 6, enables the user to identify which of the putative novel genes actually possesses a pattern of coordinate expression with known genes, a pattern of expression consistent with a particular developmental role, and/or a pattern of expression that suggests that the gene has a promoter that drives expression in a valuable way.


The hybridization data obtained using this method can be used, for example, to identify a putative novel gene that shows an expression pattern particular to the tracheids with the lowest cellulose microfibril angle in developing spring wood (early wood). The promoter of this gene can also be isolated as in Example 8, and operably linked to a gene that has been shown as in Example 9 to be associated with late wood (summer wood). Transgenic pine plants containing this construct are generated using the methods of Example 9, and the early wood of these plants is then shown to display several characteristics of late wood, such as higher microfibril angle, higher density, smaller average lumen size, etc.


Example 13

Example 13 demonstrates the use of a xylem-specific promoter functionally linked to a cell signaling gene for increased plant growth.


Xylem-specific cell signaling gene products are identified via array analyses of different secondary vasculature layers as described in Example 6. Candidate promoters linked to the genes corresponding to these gene products are cloned from pine genomic DNA using, e.g., the BD Clontech GenomeWalker kit and tested in transgenic tobacco via a reporter assay(s) for cambium specificity/preference. A promoter which overexpresses a gene in xylem can be chosen. The promoter is operably linked to a cell signaling gene and the DNA construct is used to transform a plant. Boosted transcript levels of candidate cell signaling genes, aberrant cell signaling enzyme activity, and modulated growth and development may result in an increase of cell growth thereby increasing xylem-biomass.


Example 14

Example 14 describes the construction strategy and assembly of DNA constructs comprising cell signaling genes.


The DNA construct pWVR202 was used as the base cloning vector for 16 cell signaling gene DNA constructs. The nucleotide sequence of pWVR202 is depicted in TABLE 7 as SEQ ID NO: 584 and graphically shown in FIG. 198. pWVR202 is a modified Ti plasmid comprising a polynucleotide with LB, RB, and nopaline synthase elements. pWVR202 comprises two neomycin phosphotransferase genes, nptII and nptIII, as selectable markers. It also comprises a chimeric Pinus radiata superubiquitin promoter and intron (SUBIN) operably linked to a polylinker sequence. The SUBIN promoter was previously described in U.S. Pat. No. 6,380,459 and identified therein as SEQ ID NO: 2. The pWVR202 polylinker comprises a polynucleotide sequence possessing the recognition sites of the restriction endonucleases PstI, NheI, AvrII, ScaI and ClaI.


The pGrowth DNA constructs were assembled by one of two cloning strategies. First, the target gene is excised from the source polynucleotide by a restriction endonuclease causing the resulting polynucleotide fragment to have blunt ends. Such a fragment is cloned into the ScaI restriction endonuclease recognition site. Alternatively, the ends of any polynucleotide fragment can be polished and inserted at the ScaI site. Second, some target polynucleotides were excited by the SpeI restriction endonuclease and inserted into pWVR202 digested by both the AvrII and NheI restriction endonucleases. Those skilled in the art can easily develop other cloning strategies using site-specific endonucleases and other enzymes known in the art. Once complete, the DNA constructs were verified by extensive restriction digests to ensure proper assembly.


Twelve pGrowth DNA constructs comprising cell signaling genes were assembled. TABLE 8 lists the DNA construct, the purported cell signaling gene and the gene SEQ ID NO.









TABLE 8







pGrowth Cell Signaling Gene DNA Constructs











DNA Construct
Putative Cell Signaling Gene
SEQ ID NO














1
pGrowth1
Polyphosphoinositide binding protein
130


2
pGrowth2
Polyphosphoinositide binding protein
132


3
pGrowth3
Polyphosphoinositide binding protein
122


4
pGrowth11
Ethylene-responsive elongation factor
117


5
pGrowth21
G-protein coupled receptor
150


6
pGrowth22
14-3-3 protein
180


7
pGrowth23
14-3-3 protein
195


8
pGrowth24
14-3-3 protein
192


9
pGrowth25
Synaptobrevin-like
98


10
pGrowth26
Synaptobrevin-like
140


11
pGrowth27
Synaptobrevin-like
155


12
pGrowth28
Synaptobrevin-like
124


13
pGrowth29
SNF1-related protein kinase
113


14
pGrowth30
Ethylene Receptor
152


15
pGrowth49
Synaptobrevin like
141


16
pGrowth51
Polyphosphoinositide binding protein
164





These DNA constructs are depicted in FIGS. 199-210 and 212-215.






Example 15

Example 15 demonstrates the transformation of Populus deltoids with some of the DNA constructs of Example 14.


The DNA constructs described in Example 14 were used to transform Populus deltoides stock plant cultures. The DNA constructs used were pGrowth1, pGrowth2, pGrowth3, pGrowth11, pGrowth21, pGrowth22, pGrowth23, pGrowth24, pGrowth25, pGrowth26, pGrowth27, pGrowth28, pGrowth29, and pGrowth30. The DNA construct pWVR8 comprising the gus gene acted as a negative control for subsequent experiments. See Gleave, Plant Mol. Biol. 20:1203-27 (1992), Wesley et al., Plant J. 27(6):581-90 (2001). Each DNA construct was inoculated into Agrobacterium cultures by standard techniques.



Populus deltoides stock plant cultures were maintained on DKW medium (see, e.g., Driver and Kuniyuki, HortScience 19 (4):507-509 (1984)) with about 2.5 uM zeatin in a growth room with an approximately 16 hour photoperiod. For transformation, petioles were excised aseptically using a sharp scalpel blade from the stock plants, cut into lengths from about 4 mm to about 6 mm, placed on DKW medium with about 1 ug/ml BAP and about 1 ug/ml NAA immediately after harvest, and incubated in a dark growth chamber at about 28° C. for about 24 hours.



Agrobacterium cultures were grown to log phase, as indicated by an OD600 from about 0.8 to about 1.0 A. Cultures were then pelleted and resuspended in an equal volume of Agrobacterium Induction Medium (AIM) containing Woody Plant Medium salts (Lloyd and McCown, Combined Proceedings of the International Plant Propagators Society 30:421-427 (1980)), about 5 g/L glucose, about 0.6 g/L MES at about pH 5.8, and about 1 μL of a 100 mM stock solution of acetosyringone per ml of AIM. The Agrobacterium pellet was resuspended by vortexing. Bacterial cells were incubated for an about an hour at about 28° C. in an environmental chamber while being shakien at about 100 rpm.


Subsequently, P. deltoides explants were exposed to the Agrobacterium mixture for approximately 15 minutes. The explants were then lightly blotted on sterile paper towels, replaced onto the same plant medium and cultured in the dark at about 18° C. to about 20° C. After a three-day co-cultivation period, the explants were transferred to DKW medium in which the NAA concentration was reduced to about 0.1 ug/ml and to which was added about 400 mg/L timentin.


After approximately 4 days on eradication medium, explants were transferred to small magenta boxes containing the same medium supplemented with timentin (400 mg/L) as well as the selection agent geneticin (50 mg/L). Explants were transferred every two weeks to fresh selection medium. Calli that grow in the presence of the selection medium were isolated and sub-cultured to fresh selection medium every three weeks. Calli were observed for the production of adventitious shoots.


Adventitious shoots were normally observed within two months from the initiation of transformation. These shoot clusters were transferred to DKW medium to which no NAA was added, and in which the BAP concentration was reduced to 0.5 ug.ml. This medium was designed for shoot elongation to occur over a period of about 14 weeks. Subsequently, elongated shoots were excised and transferred to BTM medium (see Chalupa, Communicationes Instituti Forestalis Checosloveniae 13:7-39, (1983)) at about pH5.8 and containing about 20 g/l sucrose and about 5 g/l activated charcoal. The complete BTM-1 formula is set forth in TABLE 9. This medium facilitates the development of roots.









TABLE 9







Exemplary Rooting Medium for Populus deltoides










BTM-1 Media Components
mg/L







NH4NO3
412



KNO3
475



Ca(NO3)2•4H2O
640



CaCl2•2H2O
 440*



MgSO4•7H2O
370



KH2PO4
170



MnSO4•H2O
   2.3



ZnSO4•7H2O
   8.6



CuSO4•5H2O
   0.25



CoCl2•6H2O
   0.02



KI
   0.15



H3BO3
   6.2



Na2MoO4•2H2O
   0.25



FeSO4•7H2O
  27.8



Na2EDTA•2H2O
  37.3



Myo-inositol
100



Nicotinic acid
   0.5



Pyridoxine HCl
   0.5



Thiamine HCl
 1



Glycine
 2



Sucrose
20000 



Activated Carbon
5000 










After development of roots, which typically occurs in about 4 weeks, transformants were propagated in a greenhouse by rooted cutting methods or in vitro through auxiliary shoot induction. In the later case, transformants were grown for about four weeks on DKW medium containing about 11.4 μM zeatin. Subsequently, the multiplied shoots from each transformant line were separated and transferred to root induction medium (each plant of a line is a ramet). Rooted plants were transferred to soil for evaluation of growth in glasshouse and field conditions.


Example 16

Example 16 demonstrates the modulation of adventitious shoots in the transformed plants of Example 15.


Approximately 100 explants of P. deltoides were transformed by the method of Example 15 with each of the DNA constructs described in Example 14 (except pGrowth1, pGrowth2, pGrowth3, pGrowth29, pGrowth49 and pGrowth51). A number of explants transformed with pGrowth22, pGrowth25 and pGrowth30 were found to provide shoots of a size that were already transferable to rooting medium at only 12 weeks after transformation. TABLE 10 demonstrates the regenerative capability of the transformants.









TABLE 10







Exemplary Growth Data for Cell Signal Gene Transformants





















Percent





Percent

Percent of

of Shoot





Efficiency
No.
Calli

Lines





of Calli
Regenerating
Regenerating

Collected



No. of

From
from
from
No. of
from


DNA
Petiole
No. of
Total
Callus on
Harvested
Shoot
Haversted


Construct
Explants
Calli
Petioles
Selection
Calli
Lines
Calli

















pGrowth11
96
38
39.58
7
18.42
0
0.00


pGrowth21
98
83
84.69
7
8.43
0
0.00


pGrowth22
100
54
54.00
3
5.56
1
1.85


pGrowth23
96
50
52.08
1
2.00
0
0.00


pGrowth24
95
31
32.63
3
9.68
0
0.00


pGrowth25
75
79
105.33
3
3.80
3
3.80


pGrowth26
97
62
63.92
0
0.00
0
0.00


pGrowth27
100
98
98.00
6
6.12
0
0.00


pGrowth28
98
104
106.12
8
7.69
0
0.00


pGrowth30
100
69
69.00
1
1.45
1
1.45


pWVR8
100
56
56.00
0
0.00
0
0.00









Briefly, calli produced on petiole explants are observed regularly. As shoots formed, they were transferred to shoot elongation medium. Sufficiently healthy and elongated shoot lines were transferred to rooting medium as they became ready. Only transformants comprising pGrowth22, pGrowth25 and pGrowth30 were found to possess a phenotype characterized by rapid regeneration.


At 3 months, neither the other transformants nor the control transformant had produced shoot lines that were ready to be collected for rooting. Cultures of the pGrowth22, pGrowth25 and pGrowth30 transformants, however, were ready to be moved to rooting medium. FIG. 211 shows the percent of shoot lines from each transformant which were ready to be placed in rooting medium. TABLE 10 demonstrates that the regeneration-enhancing effect of the putative cell signaling genes was not due to increased transformation efficiency, although pGrowth25 appears to have raised transformation efficiency relative to the control and the other plasmids.


Likewise, TABLE 11 shows the subsequent growth of the transformants. First, TABLE 11 demonstrates the regeneration of the other transformants and control plants within 5 months. Second, TABLE 11 illustrates that the characteristic of the pGrowth22, pGrowth25 and pGrowth30 transformants was, in fact, accelerated regeneration and not an increase in the total number of shoot lines produced.









TABLE 11







Exemplary Growth Data for Cell Signal Gene Transformants











3 Months
4 Months
5 Months















Percent of

Percent of

Percent of



No.
Lines from
No. of
Lines from
No. of
Lines from


DNA
of Shoot
Harvested
Shoot
Harvested
Shoot
Harvested


Construct
Lines
Calli
Lines
Calli
Lines
Calli
















pGrowth11
0
0.00
0
0.00
4
10.53


pGrowth21
0
0.00
0
0.00
11
13.25


pGrowth22
1
1.85
1
1.85
6
11.11


pGrowth23
0
0.00
0
0.00
1
2.00


pGrowth24
0
0.00
0
0.00
2
6.45


pGrowth25
3
3.80
3
3.80
4
50.6


pGrowth26
0
0.00
1
1.61
3
4.84


pGrowth27
0
0.00
7
7.14
10
10.20


pGrowth28
0
0.00
5
4.81
5
4.81


pGrowth30
1
1.45
1
1.45
5
7.25


pWVR8
0
0.00
0
0.00
1
1.79










P. deltoides is a model species representing a variety of commercially important angiosperm species useful for the testing of the effect of cell signaling genes and gene products on plant growth and development. Regeneration of plantlets from cottonwood callus cultures produced by transformation is a rate-limiting step for the establishment of plants in outdoor field tests. In this example, the control plant did not produce any shoot lines ready for transfer to rooting medium until 5 months after transformation. An acceleration of two months could, in certain seasons, significantly advance the establishment of transgenic plants. In certain seasons, up to a year of growth can be saved using the pGrowth22, pGrowth25 and pGrowth30 transformants.


Example 17

Example 17 demonstrated the qualitative and quantitative modulation of plant leaves in the transformed plants of Example 15.



P. deltoids plants were transformed with the DNA construct pGrowth24 by the method of Example 15. The pGrowth24 DNA construct ectopically overexpresses a putative 14-3-3 protein disclosed as SEQ ID NO: 192. The cloning strategy and assembly of pGrowth24 is described in Example 14. Negative control plants were transformed with the GUS expressing DNA construct pWVR8 described in Gleave, Plant Mol. Biol. 20:1203-27 (1992) and Wesley et al., Plant J. 27(6):581-90 (2001).


Upon regeneration, the pGrowth24-transformed plants presented an aberrant phenotype as compared to the negative control plants. Specifically, the transformants presented particularly narrow leaves in tissue culture. Ramlets generated in tissue culture continued to present this narrow leaf phenotype. After the ramlets were transferred from tissue culture to hormone-free BTM rooting medium, the narrow leaf phenotype persisted.


The transformants' leaves are exceptionally narrow as compared to the negative control. However, the length of the transformants' leaves were qualitatively similar to those of the negative control plants. Lastly, the transformants presented a qualitative increase in the number of leaves per plant as compared to a negative control plant of the same height (i.e., an increase of leaves per unit plant height).


Accordingly, by qualitatively and quantitatively modulating leaf surface area, the DNA constructs may alter the capacity of a plant for photosynthesis.


Example 18

Example 18 demonstrates the qualitative and quantitative modulation of stem growth and development in the transformed plants of Example 15.



P. deltoids plants were transformed with the DNA construct pGrowth25 by the method of Example 15. The pGrowth25 DNA construct ectopically overexpresses a putative synaptobrevin-like protein disclosed as SEQ ID NO: 98. The cloning strategy and assembly of pGrowth25 is described in Example 14. Negative control plants were transformed with the GUS expressing DNA construct pWVR8 described in Gleave, Plant Mol. Biol. 20:1203-27 (1992) and Wesley et al., Plant J. 27(6):581-90 (2001).


The transformants' presented unusually rapid regeneration as compared to the negative control plants. In addition, the transformants presented a qualitative and quantitative difference in stem growth. First, the transformants appeared to growth faster and longer compared to the negative control plants. Second, transformants presented quantitatively longer internodes than the negative control plants.


The modulation of internode length is commercially significant for the commercial forestry industry. In woody plants, stem nodes subtend potential branch. Branches, themselves, form a locus for undesirable traits such as knot formation and the deposition of compression wood. Both traits reduce the utility of the woody plant for pulp and solid wood products.


Accordingly, by qualitatively and quantitatively modulating stem growth, the DNA constructs may alter the utility of the plant for the commercial forestry industry.


Example 19

Example 19 demonstrates the qualitative modulation of stem growth and development in the transformed plants of Example 15.



P. deltoids plants were transformed with the DNA construct pGrowth27 by the method of Example 15. The pGrowth27 DNA construct ectopically overexpresses a putative synaptobrevin-like protein disclosed as SEQ ID NO: 155. The cloning strategy and assembly of pGrowth25 is described in Example 14. Negative control plants were transformed with the GUS expressing DNA construct pWVR8 described in Gleave, Plant Mol. Biol. 20:1203-27 (1992) and Wesley et al., Plant J. 27(6):581-90 (2001).


The transformants presented longitudinal invaginations of the stem. These invaginations are characterized as striations in the stem longitudinal architecture. As such, the transformants possessed stems which appeared either “corrugated” or possessing callus under the epidermis. From these observations, it appeared that the rate of cell division in the radial and/or tangential plane in the stem was exceeding the rate of tangential cell expansion. As the transformants grew, the stem striations became more pronounced. Likewise, the growth remained stem specific in all but one transformant. In that case, the plant leaves were unusually rounded convoluted across the face of the leaf. It is thought that both phenotypic characteristics result from an increase in cell division.


Synaptobrevins/vesicle-associated membrane proteins (VAMPs) together with syntaxins and a synaptosome-associated protein of 25 kDa (SNAP-25) are the main components of a protein complex involved in the docking and/or fusion of synaptic vesicles with the presynaptic membrane in Saccharomyces cerevisiae. It appears that the gene is conserved among eukaryotes, but its function in higher plants is as yet unknown. These observations represent the first description of a phenotype in plants produced by these genes.


To the commercial forestry industry, the striation phenotype has significant potential utility. It is believed that the striations are an indication of greater cell division rates in diameter growth. Striations are commonly seen in cottonwood on older, more mature stems. In contrast, newly emerging, succulent stems, such as those present in tissue culture, are smooth and cylindrical. It is believed that new, succulent shoots may be smooth for up to 3 feet from their distal/apical end to the point where striations begin to form. Striations seem to be associated with stems of larger diameter, for instance ones that are greater than 1 inch in circumference.


Moreover, this phenotype may indicate a quantitative increase in the density of stems and branches. This increased density and longitudinal thickening can provide additional support for the plant. In woody plants, species presenting longitudinal striations are more likely to form in waterlogged soils. It is thought that the increased striation phenotype described here is indicative of transformants adapted for soils in which less stable trees can topple.


Example 20

Example 20 demonstrated the effect of cell signaling genes on growth in the transformed plants of Example 15.



P. deltoids plants were transformed with the DNA constructs pGrowth2, pGrowth3, pGrowth11, pGrowth21, pGrowth22, pGrowth23, pGrowth24, pGrowth25, pGrowth26, pGrowth27, pGrowth28 and pGrowth30 by the method of Example 15. Negative control plants were transformed with the GUS expressing DNA construct pWVR8 described in Gleave, Plant Mol. Biol. 20:1203-27 (1992) and Wesley et al., Plant J. 27(6):581-90 (2001).


Rooted plants made by the method described in Example 15 were transferred to a mist house for between 10 days and 2 weeks to facilitate acclamation. Misting conditions varied depending on outside environmental conditions. Plants were then grown in standard greenhouse conditions for 2.5 to 3 months before being moved to outdoor conditions for between 7 to 10 days for hardening.


Four ramets for each line and the control were then planted in a field trial in a randomized block design. After 7 months of growth, plant height and diameter were measured to calculate the volume or biomass of the trees. Height was measured between the root collar and the terminal bud, while diameter was taken at breast height (4.5 feet) (Diameter at Breast Height=DBH). The volume index was calculated by multiplying the square of the DBH by the height. All subsequent growth measurements are a comparison of the volume index calculated as described above.


Plants transformed with pGrowth2 or pGrowth3 were measured after 14 months of growth, while plants transformed with pGrowth11, pGrowth21, pGrowth22, pGrowth23, pGrowth24, pGrowth25, pGrowth26, pGrowth27, pGrowth28 and pGrowth30 were measured after 18 months of growth. For example, after 18 months of growth plants transformed with pGrowth11, pGrowth21, pGrowth24, pGrowth25, pGrowth26, pGrowth27, and pGrowth30 did not demonstrate overall growth increases over the GUS control plants, but did generate rapidly growing lines with volume growth increases exceeding 50%. These lines with growth increases exceeding 50% result in their being a shift in the population and thus an increase of the volume in the top elite plants within that population compared to the top elite plants of the control. It was observed that one out of 8 lines (13%) of construct pGrowth 11 had growth increases exceeding 50%; the growth increase of this line was 100%. Four out of 15 lines (27%) of construct pGrowth21 had growth increases exceeding 50%; growth increases of these lines were 96%, 84%, 79%, and 54%. One out of 9 lines (11%) of construct pGrowth24 had growth increases exceeding 50%; the growth increase of this line was 55%. Two out of 27 lines (7%) of construct pGrowth25 had growth increases exceeding 50%; growth increases of these lines were 110% and 94%. One out of 8 lines (13%) of construct pGrowth26 had growth increases exceeding 50%; the growth increase of this line was 75%. Two out of 28 lines (7%) of construct pGrowth27 had growth increases exceeding 50%; growth increases of these lines were 98% and 88%. One out of 13 lines (8%) of construct pGrowth30 had growth increases exceeding 50%; the growth increase of this line was 117%. Table 12 summarises the results for the putative cell signaling genes that were transformed into P. deltoids plants.









TABLE 12







Exemplry growth data for cell signaling gene in P. deltoids


transformants













plants displaying

% growth



SEQ
growth
% of plants with
increase


DNA
ID
increases
growth increases
compared


Construct
NO
of >50%
of >50%
with control














pGrowth2
132





pGrowth3
122



pGrowth11
117
yes
13%
100%


pGrowth21
150
yes
27%
54%-96%


pGrowth22
180



pGrowth23
195



pGrowth24
192
yes
11%
 55%


pGrowth25
98
yes
 7%
 94%-110%


pGrowth26
140
yes
13%
 75%


pGrowth27
155
yes
 7%
88%-98%


pGrowth28
124



pGrowth30
152
yes
 8%
117%









Example 21

Example 21 demonstrates the modulation of plant growth and development by the modulation of the programmed cell death (PCD) signaling cascade.



P. deltoids plants were transformed with the DNA constructs pGrowth1 and pGrowth2 by the method of Example 15. The pGrowth1 DNA construct ectopically overexpresses a putative polyphosphoinositide binding protein disclosed as SEQ ID NO: 130. The cloning strategy and assembly of pGrowth1 is described in Example 14. The pGrowth2 DNA construct ectopically overexpresses a putative polyphosphoinositide binding protein SSH2P disclosed as SEQ ID NO: 132. The cloning strategy and assembly of pGrowth2 is described in Example 14. Negative control plants were transformed with the GUS expressing DNA construct pWVR8 described in Gleave, Plant Mol. Biol. 20:1203-27 (1992) and Wesley et al., Plant J. 27(6):581-90 (2001).


Transformants of each DNA construct presented, in tissue culture, shoots with a patterned necrosis occurring in and immediately surrounding the vasculature of fully expanded leaf blades. It is thought that the necrosis resulted from a PCD signaling cascade.


PCD has been the subject of considerable investigation by many researchers, and genes that are involved in PCD are claimed in multiple patent applications and patents, including U.S. Pat. No. 6,451,604.


The transformants appear to initiate a PCD cascade specifically in the leaf blade vasculature and surrounding cells. These two genes are normally expressed in a xylem-preferred manner, as shown by the method of Example 11. It is thought that the putative polyphosphoinositide binding protein functions in the PCD signaling pathway that normally occurs during xylem development or leaf abscission. However, the transformants express the protein here ectopically. The ectopic activity appeared to be predominantly on older, fully expanded leaves. Ramets of most of the translines perpetuated this phenotype through propagation, suggesting that the phenotype observed is not a tissue-culture effect.


To the forestry industry, modulation of the PCD signaling cascade has significant commercial importance. First, in some hardwood species, modulation of the PCD can be used to effect earlier PCD in developing xylem through the use of tissue specific promoters. This, in turn, can result in smaller xylem cells, denser wood, and perhaps more compact overall habit.


Likewise, PCD can be down-regulated through the use of antisense or RNAi DNA constructs with tissue-specific promoters. It is thought that down-regulation of PCD in xylem can result in larger xylem cells and greater wood volume. Similarly, down-regulation of PCD in leaf tissue can result in delayed leaf abscission, thereby extending the duration of leaf photosynthesis and resulting in enhanced overall growth of the plant.


Moreover, it is thought the phenotypic patterned necrosis occurs because the cell signaling gene products of pGrowth1 and pGrowth2 require the presence of additional gene products to initiate or sustain the PCD signaling cascade. It may be the additional factors are present only in the vasculature of maturing leaves, i.e. not in leaf primordia or elsewhere in the leaf blade.


Example 22

Example 22 demonstrates the transformation of Eucalyptus grandis×Eucalyptus europhylla with the DNA constructs of Example 14 and the growth and propagation of transgenic E. grandis×E. europhylla plants.


pGrowth22 and pGrowth27 as described in Example 14, were used to transform clonal E. grandis×E. europhylla leaf explants. The leaf explants were transformed according to the protocol described in International patent publication WO00/12715, except where noted below. In brief, dissected leaf explants were inoculated with Agrobacterium comprising the DNA constructs pGrowth22 or pGrowth27. Inoculated explants were co-cultured for two weeks in diffuse light and selected on agar supplemented with 250 mg/L kanamycin and 250 mg/L timentin (omitting NAA from the transformation media). Leaf explants were then cultured for two weeks on on agar supplemented with 100 mg/L kanamycin and 250 mg/L timentin. The leaf explants were cultured for another two weeks on on agar supplemented with 150 mg/L kanamycin and 250 mg/L timentin. Thereafter and until healthy single shoots were collected, the leaf explants were transferred monthly to fresh media containing 150 mg/L kanamycin and 250 mg/L timentin.


Single shoots were placed in elongation media in order to proliferate the putative transgenic tissue. The alongation media consists of Murashige and Skoog salts (MS) supplemented with 1 microM 6-benzylaminopurine (BAP), 20 g/L sucrose and 7 g/L agar. PCR analysis of the explant tissue was conducted after approximately 200 mg of tissue is grown and collected. Both the promoter and gene sequences were verified using PuRe Taq Ready-To-Go™ PCR beads (Amersham Biosciences, Piscataway, N.J.). PCR positive explants were then maintained as sock cultures through proliferation on elongation media supplemented with 150 mg/L kanamycin and 250 mg/L timentin.


Transgenic E. grandis×E. europhylla plants were propagated from these stock cultures. Where necessary, shoots were transferred monthly to fresh media. Single shoots were placed onto elongation media and maintained until reaching approximately 2-3 cm tall. Thereafter, single shots were placed into conventional rooting medium. After 10 days, the transformed plants were transferred to a green house with appropriate climate. A skilled artisan would recognize that many different culture media and intervals may be suited to regenerating plants of the instant invention. Using an appropriate humidity regime and fungicides to control fungal growth, plants were then grown in standard greenhouse conditions for 2.5 to 3 months before being moved to outdoor conditions for between 7 to 10 days for hardening.


Example 23

Example 23 demonstrated the effect of cell signaling genes on growth in the transformed plants of Example 22.


Eight ramets for each line transformed in Example 22 and an untransformed control were then planted in a field trial in a randomized block design. After 7 months of growth, plant height and diameter were measured to calculate the volume or biomass of the trees as described in Example 20. All subsequent growth measurements are a comparison of the volume index calculated as described above.


Plants transformed with pGrowth22 or pGrowth27 resulted in significant volume growth increases compared to the control untransformed plants. Average volume growth increases of 47% and 161% respectively have been recorded.


Six out of 14 lines (43%) of pGrowth22 lines have volume growth gains of at least 50% compared to the untransformed controls. The top 3 lines have volume growth gains of 249%, 214%, and 107% or a mean increase of 190%. Eleven out of 15 lines (73%) of pGrowth27 lines have volume growth gains of at least 50% compared to the untransformed controls. The top 3 lines have volume growth gains of 455%, 337%, and 306% or a mean increase of 366%. Table 13 summarises the results for the putative cell signaling genes that were transformed into E. grandis×E. europhylla plants.









TABLE 13







Exemplry growth data for cell signaling genes


in E. grandis × E. europhylla transformants















Mean % growth




plants displaying
% of plants
of top three



SEQ
growth increases
with growth
transformants


DNA
ID
of greater
increases
compared


Construct
NO
than 50%
>50%
with control





pGrowth22
180
yes
45%
190%


pGrowth27
155
yes
73%
366%









Example 24

Example 24 demonstrates the transformation of Pinus taeda with the DNA constructs of Example 14 and the growth and propagation of transgenic P. taeda plants


pGrowth1, pGrowth2, pGrowth3, pGrowth11, pGrowth21, pGrowth23, pGrowth25 and pGrowth30 as described in Example 14, were used to transform clonal P. taeda. Specified clones of elite selected families of loblolly pine (Pinus taeda), was initiated as embryogenic cell lines from zygotic embryos of individual immature megagametophytes using the procedures described in U.S. Pat. No. 5,856,191, and maintained using the procedures described in U.S. Pat. No. 5,506,136.


After one to three months of culture on maintenance medium, the tissue cultures were cryopreserved, stored for periods of up to several years, and retrieved using the methods of U.S. Pat. No. 6,682,931. Those skilled in the art of plant tissue culture will recognize that other cryopreservation and recovery protocols would be applicable to the present method and that the detail in this example may not be construed to limit the application of the method.


Uniform suspension cultures from each of the genetically different tissue culture lines were established by inoculating a 250 ml Nephelo sidearm flask (Kontes Chemistry and Life Sciences Products) with 1 g of tissue each according to the method of U.S. Pat. No. 5,491,090. The flasks containing the cells in liquid medium were placed on a gyrotory shaker at 100 rpm in a dark culture room at a temperature of 23° C.±2° C. One week later, the liquid in each flask was brought to 35 ml by pouring 15 ml fresh medium into the culture flask and swirling to evenly distribute the cells. Cell growth was measured in the sidearm by decanting cells and medium into the sidearm portion of the flasks, allowing the cells to settle for 30 minutes and then measuring the settled cell volume (SCV). When the SCV was greater than or equal to half the maximal SCV (50% of the volume of the flask was occupied by plant cells), each culture was transferred to a 500 ml sidearm flask containing a total of 80 ml cells and medium and the transferred culture was maintained under the same conditions.


To prepare for gene transfer, polyester membrane supports were sterilized by autoclaving and placed in separate sterile Buchner funnels, and for each of six replicate plates per cell line, one to three milliliters of pine embryogenic suspension was pipetted onto each support such that the embryogenic tissue was evenly distributed. The liquid medium was suctioned from the tissues and each support bearing the embryogenic tissue was placed on gelled preparation medium for Agrobacterium inoculation according to the methods described in U.S. Patent Publication No. 20020100083. Specifically, the constructs pGrowth1, pGrowth2, pGrowth3, pGrowth 11, pGrowth21, pGrowth23, pGrowth25 and pGrowth30 as described in Example 14, were each introduced into different isolates Agrobacterium tumefaciens by techniques well known to those skilled in the art, and virulence was induced with administration of acetosyringone by commonly used techniques whereupon each of the induced Agrobacterium isolates was co-mingled with separate replicates of the plant material according to the methods described in U.S. Patent Publication No. 20020100083. The cells were co-cultivated in the dark at 22°±2° C. for approximately 72 hours.


Following co-cultivation, Agrobacterium was eradicated from the cultures according to the methods described in U.S. Patent Publication No. 20020100083. Cells borne on polyester membrane supports were then transferred onto fresh selection media at intervals of 2 weeks. Active growth on the selection medium occurred in a number of isolated sectors on many of the petri dishes. Such active growth in the presence of selection agent was normally an indication that the growing tissues have integrated the selection gene into their chromosomes and are stably transformed. These areas of active growth are treated as independent transformation events and were henceforth referred to as putative transgenic sublines. The putatively transgenic embryogenic tissue was multiplied by transferring growing transgenic sectors to fresh semi-solid maintenance medium supplemented with the respective selection agent.


Putatively transformed sublines, after reaching approximately 2 g, were chosen for polymerase chain reaction (PCR) amplification for verification of the presence of transgenes using standard techniques. Lines that had been verified by PCR were selected for testing alongside lines transformed with the GUS control construct pWVR31.


Germinable embryos were produced from each of the selected lines verified as transformed by PCR, as follows. After the cell masses cultured on selection medium have proliferated to at least one gram, each culture was separately resuspended in liquid medium. When the cell suspensions were brought to uniform (half-maximal) SCV, equivalent amounts of suspension culture cells were pipetted onto sterile membrane supports for placement on development/maturation medium as described in U.S. Pat. No. 5,506,136 to develop high quality harvestable stage 3 (cotyledonary) embryos. Dishes were incubated in a dark growth chamber at 23±2° C. The membrane supports were transferred to new petri dishes containing fresh medium every 3 weeks. At week 9, stage 3 (cotyledonary) embryos were visually analyzed for germination quality and harvested onto fabric supports on medium as described in U.S. Pat. No. 5,506,136, and incubated for about four weeks in the dark at a temperature of 4° C.±2° C. Next, embryos on their fabric supports were incubated above water in sealed containers for about three weeks in the dark at a temperature of 25° C.±2° C. Following the above two treatments, embryos on their fabric supports were transferred to medium germination medium and incubated for about three days in the dark at a temperature of 25° C.±2° C. Embryos were then removed from their fabric supports and placed onto the surface of fresh germination medium. Germination was conducted in the light at a temperature of 25° C.±2° C. Germination plates were examined weekly, over a period of about four weeks, and germinating embryos were transferred to MAGENTA® boxes containing 100 ml of germination medium for conversion to plantlets. MAGENTA® boxes containing developing plantlets were incubated in the light at 25° C.±2° C. for about eight to twelve weeks.


When the plantlets formed epicotyls (newly formed shoots of approximately two to four cm), they were transferred to containers filled with a potting mix [2:1:2 peat:perlite:vermiculite, containing 602 g/m3 OSMOCOTE fertilizer (18-6-12), 340 g/m3 dolomitic lime and 78 g/m3 MICRO-MAX micronutrient mixture (Sierra Chemical Co.)]. The plantlets were grown in a shaded greenhouse and misted infrequently for a period of about two weeks. They were removed from mist for acclimatization in the greenhouse for 5 to 6 months. Plantlets were then transferred to outdoor conditions for 7 to 10 days final acclimatization before field planting.


Once transformed and propagated, a skilled artisan would also recognize the accelerated reproduction of Pinus plants can occur by grafting of the plantlets. See, e.g., Mergen, F. (1954) Rooting and grafting of slash pine (Pinus elliottii Engel.) for application in forest genetics. Ph.D. dissertation, Yale University, New Haven, Conn.; and Ahlgren, C. E. (1967) A relationship between scion, bud origin and growth of white pine grafts. Minnesota Forestry Notes 180. University of Minnesota, St. Paul. 2 p.


Example 25

Example 25 demonstrated the effect of cell signaling genes on growth in the transformed plants of Example 24.


Four ramets for each line transformed in Example 24 and the GUS control (pWVR31) plants were then planted in a field trial in a randomized block design. After 15 months of growth, plant height and diameter were measured to calculate the volume or biomass of the trees. Height was measured between the root collar and the terminal bud, while diameter was measured at the root collar. The volume index was calculated by multiplying the square of the root collar diameter by the height. All subsequent growth measurements are a comparison of the volume index calculated as described above.


After 15 months of growth, plants transformed with pGrowth1, pGrowth3, pGrowth11, pGrowth21, and pGrowth30 had growth increases of 34%, 8%, 28%, 10%, and 28% respectively when compared to the mean growth of the GUS controls. Two out of 8 lines (25%) of construct pGrowth1 had growth increases exceeding 50%; growth increases of these two lines were 103% and 70%. One out of 10 lines (10%) of construct pGrowth3 had growth increases exceeding 50%; the growth increase of this line was 136%. Two out of 8 lines (25%) of construct pGrowth11 had growth increases exceeding 50%; growth increases of these two lines were 106% and 81%. One out of 8 lines (13%) of construct pGrowth21 had growth increases exceeding 50%; the growth increase of this line was 109%. Two out of 9 lines (22%) of construct pGrowth30 had growth increases exceeding 50%; the growth increases of these two lines were 116% and 71%. Table 14 summarises the results for the putative cell signaling genes that were transformed into P. taeda plants.









TABLE 14







Exemplry growth data for cell signaling genes in P. taeda


transformants














plants with mean







growth increases




when compared
Mean % growth

% growth




to controls and
increase when
% of plants
increase


DNA
SEQ ID
with increases of
compared with
with growth
compared


Construct
NO
>50%
control
increases >50%
with control















pGrowth1
130
yes
35%
25%
70%-103%


pGrowth2
132



pGrowth3
122
yes
8%
10%
136%


pGrowth11
117
yes
28%
25%
81%-106%


pGrowth21
150
yes
10%
13%
109%


pGrowth23
195



pGrowth25
98



pGrowth30
152
yes
28%
22%
71%-116%









A summary of results in examples 16, 17, 18, 20, 21, 23, and 25 are presented in table 15.


* * *

While the invention is described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention. All references and publications cited herein are incorporated by reference in their entireties.









TABLE 1







Cell Signaling Genes and Corresponding Gene Products









Gene Sequences

Oligonucleotide











SEQ

Protein
SEQ
















ID



SEQ
ORF
ORF
ID



NO
Target
ConsID
Species
ID NO
Start
Stop
NO
OligoID


















1
14-3-3 protein
eucalyptusSpp_000217

E. grandis

198
84
845
395
Euc_000217_O_1


2
14-3-3 protein
eucalyptusSpp_000345

E. grandis

199
293
1081
396
Euc_000345_O_3


3
14-3-3 protein
eucalyptusSpp_000402

E. grandis

200
504
1298
397
Euc_000402_O_1


4
14-3-3 protein
eucalyptusSpp_000989

E. grandis

201
128
916
398
Euc_000989_O_5


5
Indole-3-
eucalyptusSpp_001121

E. grandis

202
6
1523
399
Euc_001121_O_4



acetaldehyde



reductase


6
Indole-3-
eucalyptusSpp_001122

E. grandis

203
15
1532
400
Euc_001122_O_2



acetaldehyde



reductase


7
Indole-3-
eucalyptusSpp_001123

E. grandis

204
18
1550
401
Euc_001123_O_2



acetaldehyde



reductase


8
RAB7
eucalyptusSpp_001357

E. grandis

205
144
767
402
Euc_001357_O_2


9
14-3-3 protein
eucalyptusSpp_001976

E. grandis

206
127
879
403
Euc_001976_O_2


10
14-3-3 protein
eucalyptusSpp_002470

E. grandis

207
1293
262
404
Euc_002470_O_1


11
14-3-3 protein
eucalyptusSpp_002585

E. grandis

208
102
893
405
Euc_002585_O_1


12
MAP kinase
eucalyptusSpp_003164

E. grandis

209
105
1175
406
Euc_003164_O_3



kinase


13
RAB11G
eucalyptusSpp_003661

E. grandis

210
833
215
407
Euc_003661_O_3


14
RAB11G
eucalyptusSpp_003664

E. grandis

211
167
823
408
Euc_003664_O_5


15
Indole-3-
eucalyptusSpp_003672

E. grandis

212
177
1241
409
Euc_003672_O_1



acetonitrilase


16
F-box family
eucalyptusSpp_003901

E. grandis

213
613
2355
410
Euc_003901_O_2


17
Ethylene
eucalyptusSpp_003961

E. grandis

214
263
2500
411
Euc_003961_O_2



receptor


18
RAB7
eucalyptusSpp_004008

E. grandis

215
142
762
412
Euc_004008_O_2


19
RAS-like
eucalyptusSpp_004124

E. grandis

216
89
745
413
Euc_004124_O_1



GTP-binding



protein


20
RAS-like
eucalyptusSpp_004275

E. grandis

217
145
795
414
Euc_004275_O_2



GTP-binding



protein


21
RAS-like
eucalyptusSpp_004355

E. grandis

218
911
218
415
Euc_004355_O_3



GTP-binding



protein


22
RAS-like
eucalyptusSpp_004433

E. grandis

219
245
922
416
Euc_004433_O_3



GTP-binding



protein


23
MAP kinase
eucalyptusSpp_004776

E. grandis

220
89
1210
417
Euc_004776_O_2


24
MAP kinase
eucalyptusSpp_004796

E. grandis

221
394
1512
418
Euc_004796_O_1


25
F-box family
eucalyptusSpp_004824

E. grandis

222
935
2653
419
Euc_004824_O_2


26
GAI giberellic
eucalyptusSpp_004908

E. grandis

223
297
2183
420
Euc_004908_O_4



acid



insensitive


27
F-box family
eucalyptusSpp_005075

E. grandis

224
215
2146
421
Euc_005075_O_2


28
SNF1-related
eucalyptusSpp_005102

E. grandis

225
118
1689
422
Euc_005102_O_5



protein kinase


29
RAS-like
eucalyptusSpp_005244

E. grandis

226
142
798
423
Euc_005244_O_3



GTP-binding



protein


30
14-3-3 protein
eucalyptusSpp_005479

E. grandis

227
1011
258
424
Euc_005479_O_2


31
F-box family
eucalyptusSpp_005507

E. grandis

228
287
2062
425
Euc_005507_O_4


32
RAS-like
eucalyptusSpp_005653

E. grandis

229
41
691
426
Euc_005653_O_2



GTP-binding



protein


33
1-
eucalyptusSpp_005812

E. grandis

230
118
1080
427
Euc_005812_O_2



aminocyclopropane-



1-



carboxylate



oxidase


34
1-
eucalyptusSpp_005813

E. grandis

231
75
1037
428
Euc_005813_O_1



aminocyclopropane-



1-



carboxylate



oxidase


35
F-box family
eucalyptusSpp_006242

E. grandis

232
62
1192
429
Euc_006242_O_4


36
RAB5B
eucalyptusSpp_006353

E. grandis

233
194
796
430
Euc_006353_O_3


37
MAP kinase
eucalyptusSpp_006361

E. grandis

234
351
1541
431
Euc_006361_O_2


38
MAP kinase
eucalyptusSpp_006615

E. grandis

235
152
1279
432
Euc_006615_O_3


39
F-box family
eucalyptusSpp_006845

E. grandis

236
89
1693
433
Euc_006845_O_1


40
F-box family
eucalyptusSpp_007557

E. grandis

237
182
1927
434
Euc_007557_O_1


41
Mago Nashi
eucalyptusSpp_007597

E. grandis

238
114
572
435
Euc_007597_O_2



protein


42
RAS-like
eucalyptusSpp_007971

E. grandis

239
218
865
436
Euc_007971_O_2



GTP-binding



protein


43
GA20-oxidase
eucalyptusSpp_008077

E. grandis

240
105
1262
437
Euc_008077_O_2


44
RAB7
eucalyptusSpp_008134

E. grandis

241
158
781
438
Euc_008134_O_1


45
Steroid
eucalyptusSpp_008349

E. grandis

242
522
1325
439
Euc_008349_O_2



reductase


46
Steroid
eucalyptusSpp_008461

E. grandis

243
283
1587
440
Euc_008461_O_2



reductase


47
MAP kinase
eucalyptusSpp_009014

E. grandis

244
86
1162
441
Euc_009014_O_1



kinase


48
RAN (GTPase
eucalyptusSpp_009403

E. grandis

245
333
1958
442
Euc_009403_O_1



activating



protein)


49
Synaptobrevin
eucalyptusSpp_009707

E. grandis

246
303
959
443
Euc_009707_O_3



like


50
1-
eucalyptusSpp_010310

E. grandis

247
126
1586
444
Euc_010310_O_4



aminocyclopropane-



1-



carboxylate



synthase


51
MAP kinase
eucalyptusSpp_010424

E. grandis

248
692
1801
445
Euc_010424_O_4


52
Synaptobrevin
eucalyptusSpp_010831

E. grandis

249
46
714
446
Euc_010831_O_3



like


53
MAP kinase
eucalyptusSpp_010908

E. grandis

250
436
2538
447
Euc_010908_O_5



kinase kinase


54
Synaptobrevin
eucalyptusSpp_011066

E. grandis

251
188
901
448
Euc_011066_O_3



like


55
F-box family
eucalyptusSpp_011354

E. grandis

252
51
824
449
Euc_011354_O_4


56
F-box family
eucalyptusSpp_011918

E. grandis

253
147
1769
450
Euc_011918_O_2


57
Synaptobrevin
eucalyptusSpp_012495

E. grandis

254
56
721
451
Euc_012495_O_3



like


58
RAS-like
eucalyptusSpp_012520

E. grandis

255
187
843
452
Euc_012520_O_2



GTP-binding



protein


59
F-box family
eucalyptusSpp_012653

E. grandis

256
268
1446
453
Euc_012653_O_1


60
Polyphosphoinositide
eucalyptusSpp_014684

E. grandis

257
1565
275
454
Euc_014684_O_4



binding



protein



SSH2P


61
Indole-3-
eucalyptusSpp_014843

E. grandis

258
53
2071
455
Euc_014843_O_1



acetaldehyde



reductase


62
F-box family
eucalyptusSpp_015050

E. grandis

259
3
1115
456
Euc_015050_O_1


63
RAN (GTPase
eucalyptusSpp_015957

E. grandis

260
215
1843
457
Euc_015957_O_2



activating



protein)


64
MAP kinase
eucalyptusSpp_016091

E. grandis

261
1314
331
458
Euc_016091_O_2



kinase


65
G protein-
eucalyptusSpp_016403

E. grandis

262
70
1047
459
Euc_016403_O_3



coupled



receptor


66
F-box family
eucalyptusSpp_016623

E. grandis

263
180
1733
460
Euc_016623_O_4


67
RAB5B
eucalyptusSpp_016847

E. grandis

264
131
790
461
Euc_016847_O_1


68
1-
eucalyptusSpp_017232

E. grandis

265
36
959
462
Euc_017232_O_1



aminocyclopropane-



1-



carboxylate



oxidase


69
Polyphosphoinositide
eucalyptusSpp_017284

E. grandis

266
69
1079
463
Euc_017284_O_3



binding



protein


70
RAB5B
eucalyptusSpp_017391

E. grandis

267
3
599
464
Euc_017391_O_1


71
F-box family
eucalyptusSpp_017393

E. grandis

268
18
1244
465
Euc_017393_O_2


72
1-
eucalyptusSpp_017739

E. grandis

269
27
986
466
Euc_017739_O_2



aminocyclopropane-



1-



carboxylate



oxidase


73
Steroid
eucalyptusSpp_017775

E. grandis

270
77
1090
467
Euc_017775_O_4



sulfotransferase


74
F-box family
eucalyptusSpp_017798

E. grandis

271
309
2063
468
Euc_017798_O_2


75
G protein-
eucalyptusSpp_018758

E. grandis

272
343
1635
469
Euc_018758_O_3



coupled



receptor


76
1-
eucalyptusSpp_020648

E. grandis

273
2189
380
470
Euc_020648_O_2



aminocyclopropane-



1-



carboxylate



oxidase


77
Ethylene
eucalyptusSpp_020951
E. grendis
274
147
2447
471
Euc_020951_O_5



receptor


78
RAS-like
eucalyptusSpp_021218

E. grandis

275
82
735
472
Euc_021218_O_3



GTP-binding



protein


79
Steroid
eucalyptusSpp_021474

E. grandis

276
80
1114
473
Euc_021474_O_1



sulfotransferase


80
Synaptobrevin
eucalyptusSpp_021708

E. grandis

277
99
761
474
Euc_021708_O_1



like


81
1-
eucalyptusSpp_023492

E. grandis

278
3025
370
475
Euc_023492_O_2



aminocyclopropane-



1-



carboxylate



oxidase


82
Gibberellin 2-
eucalyptusSpp_024797

E. grandis

279
102
1085
476
Euc_024797_O_1



oxidase


83
MAP kinase
eucalyptusSpp_028582

E. grandis

280
19
1101
477
Euc_028582_O_3



kinase kinase


84
Steroid
eucalyptusSpp_034316

E. grandis

281
201
1016
478
Euc_034316_O_3



reductase


85
Steroid
eucalyptusSpp_035385

E. grandis

282
109
1116
479
Euc_035385_O_1



sulfotransferase


86
14-3-3 protein
eucalyptusSpp_035910

E. grandis

283
25
798
480
Euc_035910_O_1


87
F-box family
eucalyptusSpp_039440

E. grandis

284
60
1172
481
Euc_039440_O_4


88
RAB7
eucalyptusSpp_039852

E. grandis

285
77
697
482
Euc_039852_O_2


89
F-box family
eucalyptusSpp_040890

E. grandis

286
249
1154
483
Euc_040890_O_1


90
Steroid
eucalyptusSpp_045179

E. grandis

287
107
1546
484
Euc_045179_O_1



reductase


91
Gibberellin 2-
eucalyptusSpp_046633

E. grandis

288
213
1208
485
Euc_046633_O_4



oxidase


92
Steroid
eucalyptusSpp_047001

E. grandis

289
77
1474
486
Euc_047001_O_3



reductase


93
14-3-3 protein
pinusRadiata_000460

P. radiata

290
1157
259
487
Pra_000460_O_2


94
RAB7
pinusRadiata_000760

P. radiata

291
84
683

no oligo


95
RAB7
pinusRadiata_000761

P. radiata

292
154
774
488
Pra_000761_O_1


96
F-box family
pinusRadiata_001338

P. radiata

293
2672
546
489
Pra_001338_ORF_O_1


97
F-box family
pinusRadiata_001342

P. radiata

294
280
2088
490
Pra_001342_O_4


98
Synaptobrevin
pinusRadiata_001591

P. radiata

295
51
743
491
Pra_001591_O_2



like


99
14-3-3 protein
pinusRadiata_001729

P. radiata

296
332
1111
492
Pra_001729_O_1


100
MAP kinase
pinusRadiata_001853

P. radiata

297
44
1057
493
Pra_001853_O_1



kinase


101
RAB5B
pinusRadiata_001859

P. radiata

298
388
990
494
Pra_001859_O_1


102
MAP kinase
pinusRadiata_001935

P. radiata

299
234
1352
495
Pra_001935_O_1


103
RAB11J
pinusRadiata_001960

P. radiata

300
20
682
496
Pra_001960_O_1


104
RAB11J
pinusRadiata_001961

P. radiata

301
1037
223
497
Pra_001961_ORF_O1


105
RAB7
pinusRadiata_002135

P. radiata

302
238
858

no oligo


106
RAB7
pinusRadiata_002136

P. radiata

303
209
829

no oligo


107
RAB7
pinusRadiata_002137

P. radiata

304
447
1139

no oligo


108
F-box family
pinusRadiata_002167

P. radiata

305
268
1761
498
Pra_002167_O_2


109
RAS-like
pinusRadiata_002192

P. radiata

306
693
1343
499
Pra_002192_O_2



GTP-binding



protein


110
14-3-3 protein
pinusRadiata_002262

P. radiata

307
126
908
500
Pra_002262_O_1


111
14-3-3 protein
pinusRadiata_002264

P. radiata

308
1235
260
501
Pra_002264_ORF_O_4


112
14-3-3 protein
pinusRadiata_002278

P. radiata

309
268
1047
502
Pra_002278_O_1


113
SNF1-related
pinusRadiata_002328

P. radiata

310
686
2221
503
Pra_002328_O_1



protein kinase


114
Indole-3-
pinusRadiata_002633

P. radiata

311
487
2121
504
Pra_002633_O_1



acetaldehyde



reductase


115
Indole-3-
pinusRadiata_002634

P. radiata

312
61
1704
505
Pra_002634_O_2



acetaldehyde



reductase


116
GAI giberellic
pinusRadiata_003369

P. radiata

313
490
2628

no oligo



acid



insensitive


117
Ethylene-
pinusRadiata_003503

P. radiata

314
291
1499
506
Pra_003503_ORF_O1



responsive



elongation



factor EF-TS


118
MAP kinase
pinusRadiata_003519

P. radiata

315
219
1337
507
Pra_003519_O_1


119
1-
pinusRadiata_003795

P. radiata

316
132
1133

no oligo



aminocyclopropane-



1-



carboxylate



oxidase


120
1-
pinusRadiata_003797

P. radiata

317
31
1056
508
Pra_003797_O_2



aminocyclopropane-



1-



carboxylate



oxidase


121
RAS-like
pinusRadiata_003807

P. radiata

318
472
1140
509
Pra_003807_O_1



GTP-binding



protein


122
Polyphosphoinositide
pinusRadiata_003928

P. radiata

319
48
863
510
Pra_003928_ORF_O1



binding



protein



SSH2P


123
14-3-3 protein
pinusRadiata_003961

P. radiata

320
164
940
511
Pra_003961_O_4


124
Synaptobrevin
pinusRadiata_004131

P. radiata

321
1543
219
512
Pra_004131_O_1



like


125
RAS-like
pinusRadiata_004155

P. radiata

322
214
855
513
Pra_004155_O_2



GTP-binding



protein


126
F-box family
pinusRadiata_004503

P. radiata

323
151
1908
514
Pra_004503_O_1


127
MAP kinase
pinusRadiata_004512

P. radiata

324
505
2235
515
Pra_004512_O_1


128
Mago Nashi
pinusRadiata_004937

P. radiata

325
369
818
516
Pra_004937_ORF_O2



protein


129
Mago Nashi
pinusRadiata_004939

P. radiata

326
221
700
517
Pra_004939_O_1



protein


130
Polyphosphoinositide
pinusRadiata_005336

P. radiata

327
1902
317
518
Pra_005336_ORF_O2



binding



protein


131
Steroid
pinusRadiata_005664

P. radiata

328
41
1498
519
Pra_005664_O_1



reductase


132
Polyphosphoinositide
pinusRadiata_006109

P. radiata

329
60
872
520
Pra_006109_ORF_O1



binding



protein



SSH2P


133
MAP kinase
pinusRadiata_006207

P. radiata

330
584
1453
521
Pra_006207_O_2



kinase kinase


134
MAP kinase
pinusRadiata_006211

P. radiata

331
61
2700
522
Pra_006211_O_2



kinase kinase


135
Steroid
pinusRadiata_006556

P. radiata

332
1
1464
523
Pra_006556_ORF_O2



reductase


136
Steroid
pinusRadiata_006558

P. radiata

333
89
1555
524
Pra_006558_O_1



reductase


137
MAP kinase
pinusRadiata_006562

P. radiata

334
187
1920
525
Pra_006562_O_5


138
RAS-like
pinusRadiata_006604

P. radiata

335
186
839
526
Pra_006604_O_1



GTP-binding



protein


139
F-box family
pinusRadiata_006664

P. radiata

336
715
2442
527
Pra_006664_O_5


140
Synaptobrevin
pinusRadiata_006899

P. radiata

337
231
896
528
Pra_006899_O_1



like


141
Synaptobrevin
pinusRadiata_006947

P. radiata

338
287
949
529
Pra_006947_O_2



like


142
Steroid
pinusRadiata_006962

P. radiata

339
71
1204
530
Pra_006962_ORF_O2



sulfotransferase


143
Synaptobrevin
pinusRadiata_007855

P. radiata

340
112
774
531
Pra_007855_O_2



like


144
MAP kinase
pinusRadiata_007911

P. radiata

341
2618
513
532
Pra_007911_O_4



kinase


145
MAP kinase
pinusRadiata_007918

P. radiata

342
1162
2274
533
Pra_007918_O_1


146
F-box family
pinusRadiata_008017

P. radiata

343
124
2067
534
Pra_008017_O_1


147
MAP kinase
pinusRadiata_008128

P. radiata

344
59
1231
535
Pra_008128_O_3


148
Steroid
pinusRadiata_008715

P. radiata

345
18
1406
536
Pra_008715_O_2



reductase


149
Cytokinin
pinusRadiata_009284

P. radiata

346
29
1717
537
Pra_009284_O_2



oxidase


150
G protein-
pinusRadiata_009432

P. radiata

347
424
1368
538
Pra_009432_O_1



coupled



receptor


151
RAS-like
pinusRadiata_009540

P. radiata

348
581
1228
539
Pra_009540_O_2



GTP-binding



protein


152
Ethylene
pinusRadiata_009549

P. radiata

349
585
2825
540
Pra_009549_O_2



receptor


153
RAB7
pinusRadiata_009741

P. radiata

350
147
767
541
Pra_009741_O_1


154
F-box family
pinusRadiata_009788

P. radiata

351
240
1964
542
Pra_009788_O_2


155
Synaptobrevin
pinusRadiata_010012

P. radiata

352
437
1096
543
Pra_010012_O_1



like


156
Indole-3-
pinusRadiata_010045

P. radiata

353
433
1473
544
Pra_010045_O_3



acetonitrilase


157
RAB11G
pinusRadiata_010668

P. radiata

354
150
803
545
Pra_010668_O_1


158
1-
pinusRadiata_010871

P. radiata

355
68
1060
546
Pra_010871_O_1



aminocyclopropane-



1-



carboxylate



oxidase


159
MAP kinase
pinusRadiata_010893

P. radiata

356
141
1247
547
Pra_010893_O_1


160
MAP kinase
pinusRadiata_010981

P. radiata

357
35
1480
548
Pra_010981_O_3



kinase kinase


161
MAP kinase
pinusRadiata_010995

P. radiata

358
159
1115
549
Pra_010995_ORF_O2



kinase


162
MAP kinase
pinusRadiata_011965

P. radiata

359
318
1424
550
Pra_011965_O_1


163
F-box family
pinusRadiata_012292

P. radiata

360
988
2790
551
Pra_012292_ORF_O1


164
Polyphosphoinositide
pinusRadiata_012454

P. radiata

361
174
944
552
Pra_012454_ORF_O1



binding



protein



SSH2P


165
RAB11G
pinusRadiata_012693

P. radiata

362
1110
216
553
Pra_012693_O_1


166
F-box family
pinusRadiata_013112

P. radiata

363
828
2297
554
Pra_013112_O_1


167
Indole-3-
pinusRadiata_013120

P. radiata

364
255
1748
555
Pra_013120_O_1



acetaldehyde



reductase


168
MAP kinase
pinusRadiata_013449

P. radiata

365
379
1428
556
Pra_013449_O_3



kinase


169
F-box family
pinusRadiata_013718

P. radiata

366
91
2850
557
Pra_013718_O_2


170
MAP kinase
pinusRadiata_013908

P. radiata

367
745
2466
558
Pra_013908_O_1


171
Cytokinin
pinusRadiata_014246

P. radiata

368
2523
572
559
Pra_014246_O_1



oxidase


172
F-box family
pinusRadiata_014765

P. radiata

369
151
1908

no oligo


173
Gibberellin 2-
pinusRadiata_015681

P. radiata

370
6
1031
560
Pra_015681_O_2



oxidase


174
Polyphosphoinositide
pinusRadiata_015966

P. radiata

371
53
829

no oligo



binding



protein



SSH2P


175
1-
pinusRadiata_016432

P. radiata

372
79
1050
561
Pra_016432_O_2



aminocyclopropane-



1-



carboxylate



oxidase


176
F-box family
pinusRadiata_016828

P. radiata

373
125
1531
562
Pra_016828_O_2


177
GAI giberellic
pinusRadiata_017416

P. radiata

374
118
1902
563
Pra_017416_O_3



acid



insensitive


178
Phytochrome A
pinusRadiata_017652

P. radiata

375
58
3532
564
Pra_017652_O_3


179
RAB5B
pinusRadiata_018337

P. radiata

376
231
833
565
Pra_018337_O_2


180
14-3-3 protein
pinusRadiata_018748

P. radiata

377
35
778
566
Pra_018748_O_2


181
Steroid
pinusRadiata_019345

P. radiata

378
25
1452
567
Pra_019345_O_1



reductase


182
Synaptobrevin
pinusRadiata_019839

P. radiata

379
63
740
568
Pra_019839_ORF_O_3



like


183
F-box family
pinusRadiata_020271

P. radiata

380
306
1094
569
Pra_020271_O_1


184
RAN (GTPase
pinusRadiata_021096

P. radiata

381
210
1853
570
Pra_021096_O_2



activating



protein)


185
14-3-3 protein
pinusRadiata_022578

P. radiata

382
180
968
571
Pra_022578_ORF_O2


186
RAS-like
pinusRadiata_022829

P. radiata

383
286
930
572
Pra_022829_O_1



GTP-binding



protein


187
Steroid
pinusRadiata_022951

P. radiata

384
75
1208
573
Pra_022951_O_2



reductase


188
F-box family
pinusRadiata_023140

P. radiata

385
167
2005
574
Pra_023140_O_4


189
Steroid
pinusRadiata_023522

P. radiata

386
317
1261
575
Pra_023522_O_1



reductase


190
RAS-like
pinusRadiata_023629

P. radiata

387
298
945
576
Pra_023629_O_2



GTP-binding



protein


191
14-3-3 protein
pinusRadiata_024074

P. radiata

388
86
859
577
Pra_024074_O_2


192
14-3-3 protein
pinusRadiata_025093

P. radiata

389
203
1048
578
Pra_025093_O_1


193
1-
pinusRadiata_025459

P. radiata

390
159
1238
579
Pra_025459_O_1



aminocyclopropane-



1-



carboxylate



oxidase


194
Synaptobrevin
pinusRadiata_025638

P. radiata

391
183
1073
580
Pra_025638_O_2



like


195
14-3-3 protein
pinusRadiata_026397

P. radiata

392
141
929
581
Pra_026397_O_1


196
RAS-like
pinusRadiata_027059

P. radiata

393
70
711
582
Pra_027059_O_2



GTP-binding



protein


197
F-box family
pinusRadiata_027138

P. radiata

394
167
2005
583
Pra_027138_O_1
















TABLE 2







Cell Signaling Gene Sequences








SEQ



ID


NO
Sequence











1
GCAAGCTAAGCTAAGGGAGCGGTTACCCTCGCGAAAGCAAGAACCTT



TCAGTTCACGCAGAAGAGAGAGAAAGAAAGAGAGAGATGGAGAGGGA



GAGAGAGCAGCAGGTTTACCAGGCGAGGCTCGCGGAGCAAGCCGAGC



GATACGATGAGATGGTTGAGTCGATGAAGCAAGTAGCTAAGCTGGAT



GTGGAACTGACTGTTGAGGAGAGAAATGTGTTGTCTGTTGGGTATAA



GAATGTGATTGGGGCCAGAAGGGCATCATGGCGGATTTTATCTTCCA



TTGAGCAGAAGGAGGGGACCAAGGGTAACGAGCAGAATGTGAAGAGG



ATCAAGGACTACAGGCAAAGGGTTGAAGATGAGCTCGCCAAGATCTG



CAGTGACATACTCTCAGTCATTGATAAGCATCTTATCCCATCCTCCT



CAAGTGGAGAGTCGACTGTTTTCTACTATAAGATGAAAGGTGATTAT



TGTCGTTACCTTGCTGAATTCAAGGCTGGTGATGACCGCAAAGAAGC



TGCTGATCAGTCGCTCAAGGCATATGAGGCTGCCAGTTCCACTGCTT



CAACGGATTTGGCTCCAACTCACCCTATCAGACTTGGACTGGCTTTG



AATTTCTCCGTCTTCTATTATGAAATCATGAACTCGCCAGAAAGGGC



ATGCCATCTGGCTAAACAAGCTTTTGATGAGGCTATCGCGGAACTCG



ATAGCCTAAATGAAGACTCCTATAAGGACAGTACCCTCATTATGCAA



CTTCTTAGGGACAATCTTACACTATGGACTACAGATCTGCCTGAAGA



AGGAGGTGAGCAATCCAAAGTTGATGAGCCTGCGGCAGAGAGTTAAT



TGGGCAAAGTAGACGCTTCCTGATGATTTCAATTCTTTGGGGGACAT



TGAGGCTTGCTAGGGCAGGAGTCATGGTCTTATGCGATGGTGCAGTT



AGTAGACTGTTGGTCTGTATTTACTTATTTAACAGAATGCTTCTCCA



CAGTGTTGTGTTTGTGCTGGTTACACGATTGAATACTGTTATCTTTG



TCCTATAAAACACGGAAGCCTTTTCTCAAAAAAAAAA





2
GGAGAAGCGCCTTTTTTTTCCTTTCTCTCTCCCTTGCTTTCGTTTCT



CCATTTGTGGTTTTTCCGTTTTTTCCACGTCGCTCCCAGCGGATACG



CGTCTTCCGCCACCTCATCTCGCCCCGCCGTATAAATTCGGAGTCCT



CCCTGGCGCACTCCCCTCTCGCGTCCGTCCGCAAAACACTCCCCCCG



CCCGCAGCTCGCTCCGCCCGGCTTTTTCTCGCTCGCTCGCTCGCGAT



TCTTGCTCTTCCGCAAATCCCTAGTCGAGAGTTAGGTTTCGTAACAG



TACACGGAAGATGTCGCCCTCTGATTCTTCACGGGAGGAATATGTGT



ACATGGCCAAGTTAGCTGAACAGGCTGAGCGGTACGAGGAGATGGTG



GATTTCATGGAGAAAGTTGCCAAGACTGTAGACGTCGAGGAGCTAAC



CGTTGAGGAACGTAACCTTTTGTCTGTGGCGTACAAGAATGTGATTG



GGGCCAGGAGGGCATCGTGGAGGATCATTTCTTCCATTGAGCAGAAG



GAAGAGAGCAGGGGTAACACTGATCATGTCTCGATCATTAAGGACTA



CAGGGGAAAGATCGAGTCCGAGCTCAGCAAGATCTGTGAAGGCATTC



TCAGCCTTCTTGAGTCGCATCTCATTCCTTCAGCCTCCTCTGCTGAG



TCCAAGGTGTTTTACCTTAAGATGAAAGGTGATTACCACAGGTATCT



GGCAGAGTTTAAGACTGCGACTGAAAGGAAAGAAGCTGCCGAGAGCA



CTTTATTGGCCTACAAATCTGCTCAGGATATTGCTGGGGCCGAACTG



GCTTCTACTCACCCAATTAGGCTGGGACTTGCGCTGAACTTCTCTGT



TTTCTACTATGAAATACTTAACTCTCCTGATCGGGCTTGCGCTCTTG



CAAAGCAGGCATTTGATGAGGCCATCGCTGAGTTGGATACGCTGGGC



GAGGAATCATACAAGGACAGTACATTGATCATGCAACTTCTTCGAGA



TAACTTGACTCTGTGGACTTCTGATCTCACGGATGAAGCTGGGGATG



ACATTAAGGAAGCTTCGAAACTGGAGTCTGGAGAGGGGCAGCAATGA



TTTGCTAGGATGATGTCAGTACTTTAATGATATTTTGCACCGTCGTA



GATGCCTTGTGGTTTGTCACAGTGAAGATTATTTATGAACTGAGAGT



GCTATAAGTTGTTTCTCTAGTGTTCCTTGAAAAAAAAAA





3
CAAAAGCAATCTACATTTCTTTCTTTGATTACCAGGACAAATAAAAT



AAGATGCTATACCAGAGCAGTATCAGTGTTACACAAGAATCAAATAG



GATTTGGCACCTCAAAGGCAGATAAATTGATTAAATGGCCACAAATT



GGAAAGCATCATTCAAAAGATAAGTCACAAGAGCTCCTCAAACCTGA



ACAATAAATTATATTCACCATGACCACAGCAATGAGCATCACATGAT



TGAGAATCTCGTTGCACAAGCCCACAAGACAGGTGAACTATCAATCT



GACTTTCTTGGCCATCCAAAGCAGTGATTCCTCATTGTAAAAATTTA



ATCAATCTTTTGCTATTAGGCAATTCTTCCATAGTCTTTTCTTCCAC



GAGTTGTTGGAGGTATGTTTGTGAAAGCATCACTGGCCCTTCGCCCC



CACTCTCGCTCACCTCCGAACGAGAGAGTCCCAATCATTCGCAGCTT



CGCAGCTTTTGTAATTTGATCAGCACGTTGAAGATGGCGGCAGCTGA



TTCTTCACGCGAGGAAAATGTGTACATGGCCAAGTTGGCTGAACAGG



CCGAGCGTTATGAGGAAATGGTGGAATTTATGGAGAAAGTGGCCAAG



ACGGTTGATGTCGAGGAGCTTACTGTTGAGGAACGTAACCTCCTCTC



CGTGGCATACAAGAATGTGATTGGTGCCAGGAGGGCTTCATGGAGGA



TCATCTCTTCCATTGAGCAGAAGGAAGAGAGCAGGGGAAATGAGGAC



CATGTTGTGATTATCAAGGAGTATAGGGGGAAGATTGAGACTGAGCT



CAGCAAGATCTGTGATGGCATCCTCAATCTCCTTGAGTCGCATCTCG



TTCCATCAGCCTCATCTGCTGAGTCAAAGGTGTTCTATCTGAAGATG



AAGGGTGATTACCACAGGTACTTGGCTGAGTTTAAGGCGGGAACTGA



GAGGAAAGAGGCTGCTGAGAGCACCTTGTTGGCTTATAAATCTGCTC



AGGATATTGCTTTGGCTGAGCTGGCTCCCACTCACCCTATTAGGCTT



GGACTTGCTCTTAACTTCTCTGTGTTCTATTATGAAATTCTCAACTC



ACCTGATCGTGCCTGCAGTCTGGCTAAACAGGCATTTGATGAGGCTA



TCTCCGAGCTAGATACATTGGGTGAGGAATCATACAAGGACAGCACA



TTGATTATGCAACTTCTCCGAGATAACCTAACACTCTGGACTTCCGA



TGTCACGGATGAAGCTGGAGATGAGATCAAGGAATCTTCAAAAAGGG



AGTCTGGTGAGGGGCAGCCACCACAGTGACGAGCTCCATTCGAAGAT



GGCTTCTCTGTACTTTAAGACTGTGAACTCTTATGTAGGCAGCGCTT



TGTTATAACATCATTTGGTCAGCACCATGATCTTAGTACTTGCACTG



CTTTTGGGTGAAAGTATTATGGGACTGTGTACTTTTCTCTGGTTAGT



TATGGGAAGAGATTGACTTGATGCAGTGCTCTGTTTTGTCTCGTGGT



AGTGATGTCAGTGGTTTTCTTATTGTGAAGTGAATAATTCTATAGAC



TCACACTACCAATGGTTCACAAAGTGATTGTGGTAGACATATGTCGA



GTGCTTTAATTGGTTCGCCGTTTCATGTCAAATGCTATCACCTTTTG



CCAAAAAAAAAA





4
GCGTCGTCCTCCTTCCTCCTCCCCCTTCCTCACCAGCCAGTCGTCGT



CTGCTTGAGGGCTAGAGAGAGAGAGAGAGTAGAGAGAGAGTAGAGAG



AGAGTGTAGAGAGAGAGAGAGAGAGAGAAGGAGATGGCGTCGACGAA



GGAGAGAGACGGCTACGTCTACGTCGCCAAGCTCGCCGAGCAGGCCG



AGCGCTACGACGAAATGGTGGAGGCCATGAAGAATGTGGCGAAGCTC



GATGTGGAGCTGACGGTGGAAGAGAGGAACCTGCTCTCCGTCGGTTA



CAAGAACGTGATCGGCGCGCGGCGGGCGTCGTGGAGGATCCTCTCTT



CCATCGAGCAGAAGGAGGACTCGAAAGGGAACGAGCATAATGTGAAG



AAGATCAAGGAGTTCAGGCAGAAGGTCGAGGCCGAGCTGGCGAATAT



CTGCGGGGATGTGATGAAGGTGATCGATGAGCATTTGATTCCTTCGT



GTGCTGGTGGAGAATCGACCGTGTTTTTCTATAAAATGAAAGGAGAT



TACTATCGGTACTTGGCAGAGTTTAAGGCTGGTGATGACAGAAAGGA



GGCAGCTGATCAGTCTATGAAAGCATATGAGCTGGCTTCCACCACCG



CAGAGGCTGACCTATCCCCGACACATCCAATCAGATTGGGTTTGGCA



TTGAACTTTTCTGTCTTCTACTATGAGATCATGAACTCTCCTGAAAG



GGCCTGTCACCTTGCAAAGCAGGCTTTTGACGAAGCGATCTCAGAGT



TGGATACTTTGAGTGAGGAATCCTACAAAGACAGCACATTAATTATG



CAGCTTCTAAGGGACAATCTGACATTATGGACTTCTGACATCCCTGA



GGATGGAGCTGAAGATGCTCAGAAGCTTGACAATGCTGCCAAAGCTG



CAGGAGGTGAAGATGCAGAGTGAGGCAGAGTGTTGCTTGGGAGCTCA



TAAAGGGAGTCAAATGGTTTGAGGGTGGTGTTTCCTTGTCTGAAGGC



ATATTGAGAGACTTTTACTTTCTGTTTCCTTCACTTTTTTCGTTTCG



TCGTCCTCTTTTGCTTCGACATTGCTACTAGCTAATTATTTGGTGCT



TGTTCTGTGCTCCCATTCTCACGTCTGCTGATTAAACCTGATAAAAA



TTATGTCAAGACAGTCTGTTGTACGATCTAAGTCTGTTTAATTGAGA



ATGTAGCGTTATTAGATGATGAATCTCAACAGTTGTGCAATCGGATG



TTAAGGCCTACTTGTTAATCTAAAAAAAAAA





5
AAGAGATGGCAGAGCACCGCAGCTATGGAAATGTGAATCTAAAGACG



TTTGATGCTCATGTTCCGGAGATTAAGTTCACCAAGCTCTTCATCGA



CGGCGAGTTCGTCGATTCTGTCAAAGGAAGGACATTCGAGACGAAAG



ATCCAAGAAATGGACAAGTGGTGGCAAGAGTCGCGGAGGGAGACGAA



GAGGACGTGGAGTTGGCCGTGATTGCTGCCCGTCGAGCATTTGATCA



CGGCCCTTGGCCACGCATGCCCGGCTATCAAAGGGGAAGGATCATGT



CAAAATTTGCAGACTTGATCGAAGAGAACATAGACGAACTAGCTGCT



CTGGACACTATAGATGCCGGGAAGCTATTCAGTGTCGGCAAGGCCCG



GGACATTCCTAACGCTGCCATGCTGCTGAGGTACTATGCCGGTGCGG



TGGATAAGATCCACGGCGAGGTATTGAAGATGTCGCGCGAGCTTCAC



GGGTACACGCTACGGGAGCCGGTTGGCGTGATCGGGCACATCATCCC



TTGGAACTTCCCGACCGGGGTGTTCTTCATGAAGGTCGCCCCAACAC



TGGCGGCTGGTTGCACCATGATCGTGAAGCCCGCCGAGCAAACCCCT



CTATCGGCTCTCTTTTACGCTCATTTGGCTAAGAAGGCTGGTGTTCC



TGATGGAGTGATCAATGTCGTTACCGGTTTTGGACCGACAGCTGGTG



CAGCGATAAGTAGTCATATGGACATTGATATGGTTAGTTTTACGGGG



TCTACAAAAGTAGGACACATGGTGATGCAGGCCGCGGCAACGAGCAA



TTTGAAACAAGTGTCGCTTGAATTGGGGGGCAAATCACCTCTTATAG



TCTTTGATGATGTCGATTTAGATACCGCTACTAATCTTGCTCTGACT



GGTATCCTCTATAACAAGGGAGAAGTATGCGTCGCAGGATCTCGTGT



CTATGTTCAAGAAGCGATCTATGAAGAATTCGAGAAGAAGCTAGTGG



CAAAGGCCAAGGCTTGGCCGGTCGGTGACCCATTTGATCCGAATGTC



CGTCAAGGACCGCAGGTCGATAAGAAACAGTTTGAGAAAATACTTTC



TTACATCGAGCATGGAAAGAGAGAAGGAGCTACACTTTTGATTGGGG



GTGAGCGTCTAGGCACCGAAGGGTACTACATTCAGCCAACAATCTTC



ACAGATGTTAATGAGGACAATGTGATCGTAAAGGATGAGATTTTCGG



CCCCGTCATGTCACTCATGAAATTCAAGACCATGGAGGAGGTGATCA



AGAGGGCCAATGACACGAGGTACGGTCTAGCGGCGGGAATTCTGACA



AAGAACATAGATCTAGCAAACACGGTCTCAAGGTCAATCCGAGCAGG



TATGATTTGGATAAATTGCTACCTTGCAGTTGACAACGACTGTCCTT



ATGGTGGCTACAAGATGAGTGGCTTTGGCAAAGATCTTGGCTTGGAC



GCTCTCCACAAATACCTACATGTCAAATCTATCGTGACCCCCATTTA



TAACTCTCCCTGGCTTTGAGAGAGTTTTTTTTTTCTTAGTGGGCGCT



GGATTGCATCATCAGACGGGTCAAATAATATATAATTAGAAGTGTAT



TTGTTTGAGTGAAAATATTTTTCCCGAAAAAAAAAA





6
AGGAGAGAGACGAGATGGCAGAGAACCAGAGCGACGCCAACGGGAGC



CTGAAGACTTATGATGAACACGTTCCGGACATCAAGTTTACCAAGCT



CTTCATCAATGGCGAGTTCGTCGATTCTGTCAAAGGGAGGACGTTCG



AGACGATAGATCCAAGAAATGGAGAAGTTACAGCAAGAGTTGCAGAG



GGAGACAAAGAGGACGTGGATTTGGCTGTGAAAGCCGCCCGTCAAGC



ATTTGATCACGGCCCTTGGCCACGCATGCCCGGCTACCAAAGGGGAA



GGATCATGTCGAAATTTGCGGACTTGATCGAAGAGAACATAGATGAA



CTGGCTGCTCTGGACACTATCGACGCCGGGAAGATATTCAGCATGGG



CAAGGCCGTGGACATCCCTCACGCTGCCACATGTCTAAGGTATTATG



CCGGCGCAGCGGACAAGATCCATGGTGAGGTGTTGAAGATGTCGCGT



GAACTTCATGGGTACACGCTGCTGGAGCCGGTTGGCGTGGTCGGGCA



CATTATCCCTTGGAACTTCCCGACCAGCATGTTCTTTATGAAGGTCG



CCCCAGCACTGGCGGCTGGTTGCACCATGATCGTGAAGCCTGCCGAG



CAGACCCCTCTGTCGGCTCTCTATTATGCTCATTTGGCTAAGAAGGC



CGGTGTTCCTAATGGAGTGATCAATGTTGTAACTGGTTTCGGACCAA



CGGCCGGTGCTGCAATAACCAGTCATATGGACATTGATATGGTCAAT



TTTACGGGGTCTACAAAAGTGGGGCGCATCGTGATGCAGACTGCAGC



GACAAGCAATTTGAAACAAGTGTCACTCGAATTAGGCGGGAAATCGC



CTATTATGATATTTGATGATGCTGATTTAGATACTGCTACCGATCTT



GCTCTAATAGGTATCGTCCATAACAAGGGAGAAATATGCGTCGCGGG



CTCTCGCGTTTATGTTCAGGAAGGGATCTATGAAGAGTTTGAGAAGA



AGCTGGTGGCAAAGGCAAAGGCTTGGCCAGTCGGTGACCCATTTGAT



CCGAAAGTCCAACAAGGACCGCAGGTCGATAAGAAACAATTTGAGAA



GATACTTTCTTATATCGAGCATGGAAAGAGAGAAGGGGCCACGCTTT



TGACTGGGGGCGAGCGTTTGGGCACCAAAGGGTACTATGTTCAGCCA



ACAATTTTCACAAATGTTAAGGAGGACAATGTGATCGTGAAGGATGA



GATTTTTGGTCCTGTCATGTCGCTCATGAAATTCAAGACTGTGGAGG



AGGCGATCAAGAGGGCTAACGATACTAGGTATGGTCTAGCAGCAGGG



ATTGTGACGAAGAATATAGATGTGGCGAACACAGTCTCGAGGTCAAT



TCGAGCGGGTGTCATATGGATAAACTGCTACTTTGCATTCGACAATG



ACTGTCCTTGTGGTGGTTACAAGACAAGCGGCTTCGGGAGAGATCTC



GGTTTGGATGCCCTCCACAAATGCCTACATGTTAAATCTATTGTGAC



CCCGCTTTATAACTCTCCATGGCTTTAAGAGAATTTTCTAGGAAAAG



AGCTTTGAGTCATATGGTGGCTCAAATAATGTGTAATTCCAAATTAT



GAGGTATATTTGCAATAAACAAAATGCAGGTCATTTTGGCAAAAAAA



AAAAAAAAAAAAAGCAAGTGTCAAAGCCATTCTAGTCCACTTGCCTT



GGTGGAATGGGTTTGTTGTGTATTCTTAAATGATCTGCCCTACTCTC



TGCTCCTTTGTCGTCTTTTATATATTTTTGATATTGGTAATGAGGAG



ATGAATTCTTCTGTGTCCTTTGTATGTCTTATAGTCTGATATCATCA



TGAGTGATGAAGTTGGTCGAAGAGCATATTGTGCAAACTGCTAAACT



TGAGTTGTACTATGGGGGGTTTACAGTTTAAAAAAAAAA





7
GGATTTTGAGTGCAGAGATGAGAGAGAGGGAGATGGCAGAGAACCAG



AGCAATGCCAACGGGAGCCTGAAGACTTATGATGCTCATGTTCCAGA



GATTAAATTCACCAAGCTCTTCATCAATGGCAAGTTCGTCGATTCTG



TCAAAGGGAGGACATTGGAGACGATAGATCCAAGAAATGGACAAGCG



ACGGCGAGAGTTGCCGAGGGAGACAAAGAGGACGTGGATTTGGCTGT



CAAAGCTGCCCGCCAAGCATTTGATCACGGCCCCTGGCCGCGCATGC



CCGGCTATCAAAGGGGAAGGATCATGTCGAAATTTGCGGACTTAATC



GAAGAGAACATAGACGAACTAGCTGCTCTGGACACTATAGATGCCGG



GAAGCTATTTAGTGTCGGCAAGGCCCAGGACATCCCTCACGCTGCCA



CGATGCTGAGGTACTATGCGGGTGCAGCGGATAAGATCCACGGCGAG



GTATTGAAGATGTCGCGCGAGCTTCACGGGTACACGCTACGGGAGCC



GGTTGGCGTGATCGCGCACATCATCCCTTGGAACTTCCCGACCGCGG



TGTTCTTTATGAAGGTCGCCCCAGCGCTGGCGGCTGGTTGCACCATG



ATCGTGAAGCCCGCCGAGCAAACCCCTCTATCGGCTCTCTTTTACGC



TCACTTGGCTAAGAAGGCCGGTATTCCTGATGGAGTAATCAACATTG



TAACTGGTTTTGGACGGACAGCCGGTGCGGCGATAAGCAATCACATG



GACATTGACATGGTTAGTTTTACGGGGTCTACAGAAGTGGGACGCAT



TGTAATGCAGGCCGCAGCAACAAGCAATTTAAAACAAGTGTCGCTCG



AATTGGGCGGGAAATCACCTCTTATAATTTTTGATGATGTTGATTTA



GATACTGCTACTGATCTTGCTCTAACCGGTATCCTCCATAACAAGGG



AGAAATATGTGTTGCGGGCTCTCGTGTCTATGTTCAAGAAGGGATCT



ATGAAGAGTTCAAGAACAAGCTAGTGGCAAAGGCAAAGGCTTGGCCG



GTCGGCGACCCATTTGATCCGAATGTCCGTCACGGACCGCAAGTCGA



TAAGAAACAGTTTGAGAAGATACTTGCATACATCGAGCATGGAAAGA



GAGAAGGAGCCACGCTTTTGACTGGGGGCGAGCGTCTGGGCACCGAA



GGTTACTACATTCAGCCAACAATCTTCACAAATGTTAAGGAGGACAA



CATGATTGTGAAGGATGAGATTTTCGGCCCTATCATGTCGCTCATGA



AATTCAAGACCACGGAGGAGGTGATCAAGAGGGCCAATGACACGAGG



TATGGTCTAGCAGCAGGGGTTTTGACGAAGAACATAGATATGGCGAA



CACAGTCTCGAGGTCAATTCGAGCAGGCACCATCTGGATAAATTGCT



ACTTTGCATTCGACAATGACTGTCCTCTTGGCGGCTACAAGATGAGC



GGCTTTGGCAGAGATTTTGGTTTGGACGCTCTCCACAAATACCTACA



AGTCAAATCTGTTGTGACCCCCATTTACAAGTCTCCCTGGCTTTGAG



AGAAATTTAGGCAAGAAGGGGGATGGGGGGCATTTGCATCATCTGAT



GGCTCAAATTATCAAATTATGAATGATTAAGAGTGTATTTGTTTGGC



TGAAAGCATTTTCACTCGTGTAATTTGCTGAAAATGATCAATAAATG



AGAATCATTTATGGCCAAAAAAAAAA





8
AAAATTTCGGAAGATCCCCAATCCGTTTCAAATTCTCTCGATCAAGG



ACCCCACGTTTTTCCTCCAAATCCAAAACCCTAATTCTCCGCATCTC



GATCCGTCGCAGATCTCTCCTCGCCGCCCTCCTCCCCGCCCTCCTCC



CCATGGCATCTCGCAGGCGCATGCTGCTCAAGGTCATCATCCTCGGC



GACAGCGGGGTCGGGAAGACGTCTCTCATGAACCAGTACGTCAACCG



CAAGTTCAGTAACCAGTACAAGGCGACCATTGGAGCTGATTTCTTGA



CGAAGGAAGTTCAGTTTGAAGATCGATTGTTCACATTGCAGATATGG



GATACTGCTGGGCAAGAAAGGTTCCAGAGTCTGGGTGTGGCTTTTTA



CCGAGGTGCAGACTGCTGCGTCCTTGTTTATGATGTGAATGTCATGA



AATCATTTGATAATCTTAACAACTGGAGGGAAGAGTTTCTACTTCAG



GCCAGCCCATCAGACCCTGAAAACTTTCCATTCGTCGTGTTGGGGAA



CAAGATAGATGTTGATGGTGGTAATAGTCGTGTGGTTTCTGAAAAGA



AAGCAAAGGCTTGGTGTGCTTCTAAGGGAAACATCCCTTATTTCGAG



ACATCTGCAAAAGAAGGATTCAACGTGGAGGCTGCATTTGAGTGTAT



AGCTAAAAATGCTTTGAAGAATGAACCTGAAGAAGAAATATACCTTC



CCGACACCATTGACGTCACTGGTGGAGGACGGCAGCAGAGATCTACT



GGCTGTGAATGTTGAAGAGAATTAATTGGCTACTCTTTCCTGGGAAT



GGAAATACAGTGGAACCGATTTATCGTGATTCATTGCTCAATAACTA



TTACGTAAGAGACTAATGTAGGCGACCAGATCAAACTCTCATCATGT



ATCATTAGTAGATCAAGGAAGACTGTTCCTTGGTCTTATCGGTTCCC



TCTTCTAATGTTAGTAGTTTACAAGTATAATTTGTTTGGACATGTAT



TCTTGGGTATGAGTTTGCTTTGAAGTAAAAAAAAAA





9
TCTCTCTCTCTTCAAATCAATCCACCCCCAAATCCTCCTCCTCCTCC



TCCGCCCCTCGCTTTCTCTCTCTAGATCGATCGGCCGGTCGATTTGA



TCGGAGCAGCTGCGGCGAGTCGGAGCGGGGCGATGGCGGTGCCGGAG



AACCTGGGCAGGGACCAGTACGTGTACCTGGCGAAGCTGGCCGAGCA



GGCGGAGCGGTACGAGGAGATGGTGGAGTTCATGCACAAGCTGGTCG



TCGGCTGGACGCCGGCCGCCGAGCTCACCGTCGAGGAGCGGAACCTC



CTCTCCGTGGCCTACAAGAACGTGATCGGCTCGCTCCGGGCGGCCTG



GCGCATCGTCTCCTCCATCGAGCAGAAGGAGGAGGGCCGGAAGAACG



AGGACCACGTCGTCCTCGTCAAGGAGTACAGATCCAAGGTCGAGAAC



GAGCTCTCCGACGTGTGCGCCAGCATCCTCCGCCTCCTCGACACGAA



TCTGGTCCCCTCGGCCGCCGCCAGCGAGTCCAAGGTGTTCTACCTGA



AGATGAAGGGGGATTACCACCGGTACCTGGCCGAGTTCAAGGTCGGC



GACGAGAGGAAGGCCGCCGCCGAGGATACCATGCTCGCTTACAAGGC



GGCTCAGGATATCGCTCAAGCAGATCTGGCTTCAACCCATCCAATAA



GGCTGGGTCTGGCACTCAACTTCTCTGTGTTCTATTATGAGATCCTT



AATCAGTCTGATAAAGCTTGCAGCATGGCCAAACAGGCATTTGAGGA



AGCAATTGCTGAGCTGGATACATTGGGTGAAGAATCATACAAGGACA



GCACTCTCATCATGCAGCTGCTAAGGGATAATTTCACCCTCTGGACT



TCTGATGTGCAGGACCAATTGGATGAGCCCTAGAAGATGCAGCGTAA



GCTCAACGGAAATTCGAAACTTTGTTCTGGGAGGAGGTGGGCTGTGA



AATGTCATTTGTCGGTACCGATTTAAAGCGTGCATCAGTGACATGTT



TCTCTTTTATTTTTAGATTATTAAATCCTTTTCCTGTTTCCAAAACG



AATTGGAAAACGCTCTTGGGTTTGTGAACGTGCTTCTCACTGCTTTA



GTGTTGGTTTTCACTGGATAAAAAAAAAA





10
CTCTCTCTCTCTCTCCGCCAAACGCTCTCGAAGAATCACCAGGGAAA



AAAAAAAAAGAAAAAAAAGAGAAAGAAAAAAGATCAGGAAATCGAAA



AAACCGAAAGAGGAAGAAGAGAACCCCCCAAATCCCCCCCTCCCCCA



GTTCCAGATCTAGAAGCCCCGGCGAGCAGCGAGCGAGCAGCAATGGC



GACGGCACCATCGGCGCGCGAGGAGAACGTGTACATGGCGAAGCTGG



CGGAGCAGGCGGAGCGCTACGAGGAGATGGTGGAGTTCATGGAGAAG



GTCGCCGCCGCCGCCGCCGCCGCCGACGCCGAGGAGCTCACCATCGA



GGAGCGCAACCTCCTCTCCGTCGCCTACAAGAACGTCATCGGCGCCC



GCCGCGCCTCCTGGCGCATCATCTCCTCCATCGAGCAGAAGGAGGAG



AGCCGCGGCAACGAGGACCACGTCGCCGCCATCCGCGACTACCGCTC



CAAGATCGAGTCCGAGCTCTCCGGCATCTGCGCCGGCATCCTCAAGC



TCCTCGACTCCCGCCTCATCCCCGCCGCCGCCTCCGGCGACTCCAAG



GTCTTCTACCTCAAGATGAAGGGCGACTACCACCGGTACCTCGCCGA



GTTCAAGACCGGCGCCGAGCGCAAGGAGGCCGCCGAGAGCACCCTCA



CCGCCTACAAGGCCGCTCAGGACATTGCCAACACGGAGCTTGCTCCG



ACTCACCCAATCCGGCTCGGACTAGCCCTCAACTTTTCTGTTTTCTA



CTATGAGATTCTGAATTCTCCTGACCGTGCTTGCAGTTTGGCCAAGC



AGGCTTTTGATGAAGCAATTGCTGAGTTGGATACACTTGGAGAGGAG



TCTTACAAAGACAGCACTTTGATTATGCAACTTCTTCGCGACAACCT



CACCTTGTGGACTTCCGACATGCAGGAAGACGGTGCAGACGAGATTA



AAGAAGCACCGAAGGCTGATGAACAGCAGTGAGGTCTTGACTATTGC



TCGCTGTCAAATTTCTCCATTCAATGTTTTTACTTGGAGAAGGTGCT



TGTTGCTGATTTCTCTTTTATTCCGAAGTTGGAGGCATCATCGTCTC



TTTTTATTTGTTTCTGACTTTAGTTTGTCTCATCAATCTCCTCATGT



GCTATCAATTGTGCCTTATTTTTCTTGGAGGCATGGAGCTTCAAATT



CTGCATTGAGTGTAGCAGATCCCTTCTATTAGATTATTCATATGACT



ATGTGACTGATGATATCTTCTTTCTTTGTCAACAAGATATTTGATTC



GATGTGCTAAAAAAAAAAAAAAA





11
GCTCTCTCTCCCTCCCTCCCTCCCTCTCTCTCTCTCTCTCTCTCTCT



CTCTCTAAACCCGACGCGATTTTCGAATCCGACCTCCCTCGACAACC



CTCTCCGATGGCCGCCGCCGCACCGCCGCCGTCCTCGCCGCGCGAGG



AGTACGTGTACATGGCGAAGCTGGCCGAGCAGGCGGAGCGCTACGAG



GAGATGGTGGAGTTCATGGAGAAGGTGTCGGCCGCCGCCGCCGACGC



CGAGGAGCTCACCGTCGAGGAGCGCAACCTCCTGTCGGTCGCCTACA



AGAACGTGATCGGGGCCCGCCGCGCCTCCTGGCGCATCATCTCCTCC



ATCGAGCAGAAGGAGGAGAGCCGCGGCAACGAGGACCACGTGGCCGC



GATCCGCGACTACCGCGCCAAGATCGAGGCCGAGCTCTCCAAGATCT



GCGACGGCATCCTCGGCCTCCTCGACACCCGCCTCATCCCCGCCGCC



TCCGTCGGCGACTCCAAGGTCTTCTACCTCAAGATGAAGGGGGATTA



CCACCGCTACTTGGCCGAGTTCAAAACCGGCACCGAGCGCAAGGAAG



CCGCCGAGAGCACCCTCACCGCCTACAAAGCCGCTCAGGATATTGCC



AACTCTGAACTGGCTCCTACTCACCCAATTCGGCTTGGGCTGGCTTT



GAACTTCTCTGTTTTCTACTATGAGATTCTCAACTCCCCCGACCGTG



CTTGTGGTCTCGCTAAACAAGCCTTTGATGAAGCAATTGCTGAGTTG



GACACTCTTGGTGAGGAATCCTACAAGGACAGCACTTTGATCATGCA



GCTTCTCAGAGATAACCTGACCTTGTGGACATCCGACATGCAGGATG



ATGGAGTGGATGAGATCAAAGAAACAGCCAAGGCTGATGAGCAATAG



TGATGTCTCAGCTGCTCATCAATATCCGTATAGAAGCTACCCTCTTA



TCTGTTTTTTAACTGGGGAAGATTGCTGGCTACTGATTCATGTGCAA



TTCTGGGTTTTAGGCTCGTTGTCTCTATAACAGAATTCTGGTGTTGC



TTGTCTTATCGAAGTCTTATGTATTTCCAAATCACTCTTATTTCTCT



TGGATTCTTAATGCTTCAATATCTCAATTGAACACGATAAAAGGCCT



CCATGTCTATGCAGATTGTTGCCTACTTTAAAAAAAAAA





12
CTCTCTCTCTCTCTCTAATTTCCTTCACCTCAAACCCCCCCCCCCCC



CAAATCCCACCGGCTCCCGGCAGCAACCGCCGATCGCCGATCGCCGC



CGCCGCCGCGATGAAGAAGGGGGGCTTAAACCCCATCCTCAACCTCA



AGCTCTCCCTCCCTCCTCCCGATGAGGACTCCATCGCCAAGTTCCTG



ACGCAGAGCGGCACGTTCGTGGATGGCGATCTGCTCGTCAACAGGGA



CGGGGTTCGGGTCGTGCAGCAGACCGAAGTCGAAGTGCCACCCCTTA



TCAAGCCAACAGACAACCAGTTGAGTTTAGCGGACATAGACACAATT



AAAGTTATTGGAAAGGGGAATGGTGGAATAGTCCAATTGGTCCAACA



CAAATGGACTGGGCAGTTTTTCGCATTGAAGGTCATCCAAATGAAGG



TTGAGGAGTCTGCAAGAAAGCAGATAGCACAGGAACTCAAAATTAAT



CAATCTTCGCAGTGTCCATATGTTGTGGTCTGCTACCAATCTTTCTA



TGATAATGGTACCGTTTCTATTATATTAGAGTATATGGATGGAGGGT



CGCTGGCGGATTTTCTGAGAAAAGTTAAACTATTCCAGAGCCAAATC



TTGCGGTCATTTGTAAGCAGGTGCTCAAGGGTTTGTTGTATCTGCAT



CATGAGAAGCACATAATACATCGAGATCTGAAGCCTTCTAATCTGTT



GATAAATCATAGAGGAGAAGTCAAGATTACTGATTTTGGAGTGAGTG



CTATAATGGCTAGCACATCTGGACAAGCTAATACCTTTGTCGGCACA



TATAACTATATGTCTCCTGAGAGAATCATTGGAAACAATTATGGTTA



CAAAAGTGATATTTGGAGCCTGGGCTTAGTATTGCTAGAGTGTGCAA



CTGGGAAGTTCCCATATACACCGCCTGATCAACAAGAAGGATGGACC



AATTTCTATGAGCTCATGGAAGCCATTGTTGATCACCCACCGCCTTC



AGCAGCTTCTGATCAATTCTCTAGCGAGTTCTGCTCATTTATCTCTG



CCTGTGTACAGCAGGACCCAAAGAAAAGATGGTCTGCGAATGAACTT



ATGGGTCATCCTTTCATCAGCATGTATGAGGACTTGAATGTTGATCT



TGCTTCCTACTTCACTAATGCAGGCTCCCCGCTTGCAACCTTTTGAA



ACTCCACTGTGGTTCCAGCAACCGGAGATCTTTGGCTCCCTGGGAGC



TTAGAGAGCAGTTTCAAGAAAAACACCTGCTCAGGATTTTAATTTAT



TATGAAAGTGGATAACTTTTGGAGCTGATAACTGTCTGCCTCGAGCG



GAGTGTAGTGGAGTGGAGTGAAGTGTTGGCAGTTAAGACGATTTCAA



GGGCGTGATTACTTTGAGCGTCGAAGGACAGCTGATGTAAATTCGAA



ATTTCTTTCTTATTGCAAGG





13
CCGGCATTGCCCCGACCCGACCCGGCACGGATGGAGGACGACGAGCG



GGGGGAGGAGTACCTCTTCAAGATCGTGCTGATCGGCGACTCCGCCG



TCGGGAAGTCCAACCTCCTCTCCCGGTTCGCGCTCGACGAGTTCGAC



ATCAACACCAAGGCCACCATCGGGGTCGAGTTCCAGACCCAGGTCGT



GGAGATCGACGGCAAGGAGGTGAAGGCCCAGATCTGGGACACCGCCG



GCCAGGAGCGCTTCCGCGCCGTCACCTCCGCCTACTACCGCGGCGCC



GTCGGCGCCCTCATCGTCTACGACATCACCCGCCGCACCACCTTCGA



GAGCGTCAAGCGGTGGCTCGACGAGCTCGATACTCACTGTGATACCG



CTGTCGCAAGAATGCTTGTTGGGAACAAGTGTGATTTAAACAATATC



AGAGAGGTGAGCACCGAGGAGGGCAAAGCCCTTGCAGAAGCAGAAGG



GCTATTCTTTATGGAGACCTCCGCCCTCGATTCCACGAATGTTCAGA



TATCGTTCGAGATTGTTATCCGCGAGATATACAAGAATATCAGCAGG



AAGGTCCTCAACTCCGATTCATACAAGGCGGAATTGTCCGTAAATCG



AGTGACCCTCGCCAAAAACGGTGCGGACTCGTCAGGTCGGAGTTTCT



ACTCGTGCTGCGCTAGATGATGTCCGATCCTTCATGTACGCTCCATC



AATTTTTTGGAGTCTCTTGTACTGTTTTATTTCATCAAATTTTTGGA



AGTGTCTTGCACTGTCTTATTTTATCAATTTGTATCCTAATACGTGG



CCAATGAACTTTACGGTTTTCTTCAAAAAAAAAA





14
CGAGCACAGTCGGTGGTCAGACCACTTTCCCACGTCTTTTTCTCTTT



CCTCCTCCTCCTCTTCTCCTTCAATCCCCTCCGCATTCCAAGCGTCC



GCTGCATTGGATCGACCTCTGACGGAACCTGCAGAAGAAGCGAGAGA



CAGAAGAGCGAGAAAGCAGAGGGAGATGTCGTCGTCGGACGAGGAGG



GAGGGGAGGAGTACCTGTTCAAGATCGTCATCATCGGGGACTCGGCG



GTGGGGAAGTCGAACCTGCTGTCCCGGTACGCCCGGAACGAGTTCAA



CCCCCACTCCAAGGCCACCATCGGGGTGGAGTTCCAGACCCAGTCCA



TGGACATCGACGGCAAGGAGGTCAAGGCCCAGATTTGGGACACCGCC



GGCCAGGAACGCTTCCGCGCCGTCACCTCCGCCTACTACCGCGGTGC



CGTCGGCGCCCTCGTCGTCTACGACATCACCCGCCGCTCCACCTTCG



ACAGCGTCTCCCGCTGGCTCGACGAGCTCAAGACTCACTCAGACACA



ACAGTTGCAAGGATGCTTGTTGGGAACAAATGTGACCTGGAGAGTAT



TAGGGATGTGACGGTTGAGGAGGGGAAGAGTTTAGCGGAATCAGAAG



GGTTGTTCTTTATGGAGACTTCCGCTTTGGATGCCACAAATGTGAAG



ACAGCCTTCGAGATCGTGATAAAAGAAATATATAACAATGTGAGCAG



GAAGGTTCTAAATTCAGATGCTTATAAAGCAGAGCTCTCTGTTAACA



GGGTAACCTTGGCTGGTAATGGGGCCGATGGATCAAAGCGGAGTCAG



AGCTTTTCTTGCTGTTCCAGGTGATACTGTAGAGGTGTAATTCTTTC



AAGTCCGATGATGAAAACTTCATTGTCGATTCTATTGGTTGAGCTGT



CTGTTTGTTTGGTTTTTGCTTGTTTTTTCTTATCAGGGGTTTTTAAA



ATGCTGTTATAGCAAATTTTATTCAAGAATATTAACCTATCGATTTC



TTCTAGTTCTAGATATATGTAATAGCAAAGAATTATGTGGACCAAAA



AAAAAA





15
GAAAGATCGAGAAACCTGCTGCGGCTGCTAAGTGGGAGGACTAGCAG



AGACAAACCAATTTCCACACGTCTCTCTCTCTCTCTGCTCTCAGACC



AGACGGCGACAAAACTGAGCTCCGGCTCGGAGCGACAGCAAAACCCA



AGCCACACAGAAGAGAGAGATACACAGAATAGCAATGGCGCTGGTTC



CATCCGATCCCATCAACAACGGCCAGTCCCTCCCCCTCATCGCCGAG



GTCAACATGTCCTCCGACTCCTCCTCCGCCGCCGCCGTCGTCCGCGC



CACCGTCGTCCAGGCCTCCACCGTCTTCTACGACACGCCCGCCACTC



TGGATAAGGCGGAGAGGCTGCTGGCCGAGGCGGCTTCGTACGGGTCT



CAGCTGGTCGTCTTCCCCGAAGCCTTCGTCGGCGGTTACCCCCGCGG



CTCCACCTTCGGCGTCAGCATCGGCAATCGTACGGCGAAAGGCAAGG



AGGAGTTCCGCAAGTATCACGCCTCCGCCATCGATGTTCCAGGCCCT



GAAGTTGATCGCTTAGCAGCGATGGCTGGAAAATATAAAGTTTTCCT



AGTGATGGGGGTGATAGAGAGAGATGGATATACATTGTATTGCACAA



TCCTGTTTTTTGATCCTCAAGGTCATTACCTTGGGAAGCACCGTAAA



GTCATGCCAACGGCTCTGGAGCGTGTCATCTGGGGATTTGGTGATGG



GTCGACCATTCCGGTGTTTGATACGCCGATTGGGAAAATTGGTGCGG



CCATTTGCTGGGAAAATAGAATGCCACTTCTGAGGACAGCAATGTAT



GCTAAAGGTGTTGAAATATATTGTGCGCCGACAGCTGATGCGAGGGA



CATTTGGCAAGCATCTATGACACATATTGCTCTTGAGGGTGGATGTT



TTGTTTTATCAGCCAACCAATTTTGTCGTCGGAAAGACTACCCGCCT



CCACCAGAGTATGTTTTTGCAGGAACAGATGACGATCTTAACCCAGA



TTCTGTCGTATGTGCTGGAGGCAGTGTAATTATATCTCCATCAGGAA



ATGTTTTGGCCGGACCCAATTATGATGGCGAGGCACTCATCTCAGCT



GACCTTGACCTTGGAGAAATAGCGCGGGCCAAGTTTGATTTTGATGT



GGTTGGGCATTATTCGAGGCCTGAGGTGCTTAGCCTGATCGTGAGGG



ACCATCCGAGCAACCCAGTTACCTTTGCATCGACATCCGGGAAGCCT



GAAGGCCCTTACAAATAGGTTATGTTTTCTTTCACGGAGCCAGGTCT



GAATCATGGCAAATAACGGCAAGCAAATGTTGGTCCCAGTGGGAAGC



TTTTGATTGTTTGTTTCAACTTTTTGGACTCCTGATTGTTTGTTCAA



CTTTTTCGACTTCATGAGCTATTGTAAATTCTGATTGCAAGCAACAT



AGTTCATGAATACTTCCTGCTTGATAGTTGAGAAAGCGATGTTATAT



TTCAGTTGCACAGTAAACATGTCTGTATCCTGTGCAGTAGGACTCTT



GTAACTAGTCTGTATCTTGGCAATGAAATAAGAACATTAGTGACTGT



TCTCGTGAATTAAAAAAAAAA





16
TCTCTCTCTACACACTCTCTCTCTCTACATTCTTTCTCTCTCTTCAC



TTTCTCTCTCTACTGTGTCCCTGCCCAAATTGCCATTTCTGAAGTGT



GTCAGCTTCGCCCTTTGGGTGGAGTTAAACAGAGATCACAATAATCT



CCTTCATTATTGTCATCTTGACATCGACTCCTCTCTCCCTCTCTCTC



TCTCTCCATCCATCTCCTCCTCGTTCTCTCTCTATATTACCCATTTC



GCCTCCGTCCTTCCGTTTCTCTCTCCTCCTCTCCTTCCCCCCCCTTT



TCCCCCCAACCTCCAGTTCATTCGGCATCACTCACTCCCAATCTCAA



TCTCCCGGACCCATGTATCAATCTGAATCTTTGCTCTCAATTCCCAA



TCCCCGGTCGAATCTTTGACTACCCATCTTCGAATCCTCTTCTGGGT



CGCCCTCTATCTCCCTCCCCACGTCCCCCGCCTCCGCCGCCGGAGCG



GCCGGGGTTCTGCAGCCGAGGCCGCCGCGACCGGCCGCATTGAGCCC



GGAGCCGACCGCCGTCCGCCGTCCGGGACCGATCCGGAGCGCAAAGT



CATGAGCTTGGCGGGGTCTTGGTGATTCCCCGGGAGGTGGGTCGGTC



ATGGATCCGAGCAAATCGCGCGACTCGGCGGAGTCGACCCGGGTGAT



ACAGTTCCCGAACGACGTGCTGGAGCGGATTCTGTCCCTCATAGACT



CGCACCGGGACCGGAACGCCGTCTCCCTCGTCTCCAAGGCGTGGTAC



AACGCGGAGCGGTGGACGCGGCGGCACGTCTTCATCGGCAACTGCTA



CGCGGTGTCGCCGCAGATCGTGGCCCGCCGGTTCCCCAACATCCGCA



GCGTCATGCTCAAGGGGAAGCCCCGGTTCTCGGACTTCAACCTGGTG



CCGCCCAACTGGGGTGCTGACGTACACGGGTGGCTCGCGGTCTTCGC



GGATCAGTACCCGCAGCTCGAGGAGCTGAGGCTCAAGCGGATGACCG



TGACGGACGAGAGCTTGAAGTTCTTGGCTCGCAAGTTCCATAATTTC



AGGGTGCTCTCGCTCCTGAGCTGCGATGGGTTCAGCACCGATGGTCT



CGAGGCAATCGCAACCGACTGCAGACATTTGACTGAGCTGGATATAC



AAGAGAATGGGATTGATGATATCAGTGGCAACTGGTTGAGTTGCTTC



CCTGAAACTTCACATCTATGGAGGTGCTGAACTTTGCAAGTCTAAGT



AGTGATGTGAATTTTGACGCTCTTGAGAGGCTTGTAAGTCAGTGCAA



GTCACTGAAGATTTTGAAGGTTAATAAAAGTATTACGCTAGAACAAT



TACAGAGGCTGCTTGTCCGTGCTCCTCAGTTGACCGAGCTTGGTACT



GGTTCGTTTTTACAAGAGCTTACTGCTCACCAGTCTGAGGAGCTTGA



AAGAGCTTTCATTGGTTGCAAGTATCTGCATGCACTCTCCGGCTTGT



GGGAAGCTACGACACTATATCTACCTGTTCTTTACCCAGCCTGTACA



AATTTGACTTTTCTGAATTTAAGTTATGCTGCTTTGCAAAGTGAAGA



GCTTGCCAAGCTTGTTGCCCACTGTCCACGTCTTCAGCGTCTCTGGG



TACTTGACACTGTTGAAGATGTAGGACTTGAGGCTGTTGCCTCGAGT



TGTCCCCTTTTAGAGGAGCTTCGAGTCTTCCCAGCTGATCCTTATGA



CCAGGACATTAATCGTGGTGTGACTGAATCGGGGTTTCTTGCTGTGT



CGCTCGGCTGCCGCAAGCTCCACTATGTCCTCTACTTTTGCCGTCAG



ATGACAAATGCTGCTGTAGCCAGAATTGTGCAGAACTGCCCTGGTTT



TACCCACTTTCGTCTTTGCATAATGAAGCCGGGGCAACCTGATTACC



TAACAAATGAACCTATGGATGAGGGTTTTGGTGCAGTTGTGAAGACT



TGCACAAATCTCCGAAGGCTTGGCGTTTCTGGTCTTTTGACTGACTT



AACGTTCGAGTATATTGGAAGATATGCGAAGAACTTGGAAACGCTTT



CTGTGGCTTTTGCTGGCGGCAGCGATCTCGGGATGAAGAGTATACTG



GTTGGTTGCCCAAAGTTGAGGAAACTTGAAATAAGGGATTGTCCATT



TGGTAATGAAGCTCTTCTTTCGGGCTTGGAGAAATATGAGTCAATGA



GATCTTTGTGGATGTCTGCTTGCAAAGTGACGCTACATGGTTGTAAG



ACATTGGCTACGCAAAGGCCACGGTTGAATGTTGAGGTAATGAAGGA



TGAGGAGATCGATGATGGCCAGTCTTATAAGGTTTATGTTTACCGTA



CTGTTGCTGGACCAAGGACAGATGCTCCATCTTTTGTCCATACTCTT



TGAAGTTGATAATTAGAGGGAGCTGGTGCCAGGATTCTGGAACTTTC



AAGGGCAGCCTGTGTTCTGCGAAGTCAGCCCTTGTGCTAATGCTGGA



GCCCGGGGAGCGGAACAGAACTCATGTTCCTGTTACCTCAACTGTTT



TACAAGGCCTCCACCTGTGGTGCTCAATTTGTTGTAGCAAGGCACCT



TGAAATTTAACTTCTTGTAGACTCGTGAAATTTCCTTCCTTTGTCAT



ATTTTCTTCTGAGTGTTTTTTAACTC





17
GGAGAGATAGAGAGAGCGAGAGGAGAGAGACGGCGATGGAGGATGAG



GAAGAAGAGACGACGACGACGACGATGATGCGCGGACCATGCCGATC



CAGAGACGGCGGCGCAGCAGCGGCGGCGGCGGCGGAGGCGGCGGGGC



CTTCCACCGTGTGTTGACTTCTCTCTCCCGGCCCTCCCGACTCCGCC



TTCGGGCTCGGCGGACTTGATTAGTCGGGCATGTGAAAAAGAATCTT



TGACTGCTCAGATTGTTGAACAACGTGATGGAGTCCTGCAACTGCGT



TGAGCCACAGTGGCCAGCTGATGAGCTTTTGATGAAGTATCAGTACC



TCTCAGATTTCTTTATTGCTCTGGCGTACTTTTCCATCCCTCTAGAA



CTCATCTACTTTGTCAAGAAATCTGCTGTATTTCCCTATAGATGGGT



TCTTGTTCAGTTTGGTGCCTTCATAGTTCTGTGCGGAGCAACCCACC



TGATCAACTTATGGACATTTGCCATACACTCAAGAACTGTAGCATAT



GTTATGACCATTGCAAAGGTTTTAACTGCTGCGGTATCATGTATTAC



AGCTCTCATGCTTGTGCATATCATCCCCGATCTACTTAGTGTGAAAA



CCAGGGAACTATTTCTGAAAAACAAGGCTGCAGAACTTGACAGGGAA



ATGGGCTTAATTCGTACTCAGGAGGAAACTGGCAGACATGTCAGGAT



GCTAACGCACGAAATCAGAAGCACTCTTGATCGACATACTATTTTGA



AAACTACTCTGATTGAACTGGGCAGAACTTTGGGATTGGAAGAGTGT



GCCCTGTGGATGCCAACACGAAGTGGCTTGGAGCTTCAGCTATCCTA



CACTCTCCGTCAGCAGCAGAATCCAGTTGGATACACAGTACCCATTC



ATCTTCCTGTAATCAATCGAGTGTTTAGTAGCAATCGTGCGTTGAAG



ATATCACCCAATTCACCCGTTGCTAGAATACGTCCTCTTGCGGGGAA



ATACATTCCCGGTGAGGTTGTCGCTGTGCGGGTTCCTCTGCTGCATC



TCTCTAATTTCCAGATAAATGACTGGCCTGAGCTTTCAACGAAACGG



TATGCTTTAATGGTGTTGATGCTTCCATCCGACAGTGCTAGGCAGTG



GCATGTCCATGAACTGGAGCTCGTTGAAGTGGTAGCTGATCAGGTTG



CAGTTGCTCTCTCCCATGCTGCAATACTAGAAGAGTCTATGCGGGCA



AGGGATCTTCTCATGGAGCAAAATGTTGCACTTGATCTGGCCAGAAG



AGAAGCGGAAACAGCTATTCGTGCTCGCAATGATTTTTTGGCTGTTA



TGAACCATGAAATGAGAACTCCCATGCATGCAATTATTGCCCTTTCT



TCCTTACTGCAGGAAACTGAACTGACCCCTGAGCAGCGTCTAATGGT



TGAAACGATAATGAAGAGCAGTAATCTTTTGGCTACTTTGATAAATG



ATGTACTAGATCTTTCGAGGCTTGAAGATGGAAGCTTTCAACTTAAC



ATCGCCACGTTTAATCTTCATGCTGTGTTTAGAGAGGTCCTTAATTT



GATTAAACCGGTGGCATCTGTGAAGAAACTGCTCATCACATTGAATT



TAGCCCCAGATTTGCCTGAGTATGCTGTTGGGGATGAAAACGCCTCA



TGCAAGTCATTTTAAATGTTGTTGGTAATGCAGTTAAATTTTCTAAA



GAAGGTGGCATTTCGATAACCGCCTTTGTGGCTAAAGCAGAGTATTT



AAGAGAAGCCAGAACTCCCGAATTTCTTCCATTGCCAAGTGATAATC



ACTTCTATTTACGTGTACAGGTGAGAGATTCTGGATCAGGTGTTAAC



CCTCAAGATATTCCCAAGTTATTCACAAAATTTGCACATAACCAATC



ATTAGCAACCAGAAATTCTGGTGGGAGTGGACTAGGTCTTGCAATTT



GTAAAAGGTTTGTAACTCTCATGGATGGACACATATGGATTGAAAGC



GAAGGCATTGGCAAAGGATGTACTGCCACGTTTATTGTAAGGCTGGG



AATCCCAGAGAAGTTGAATGAATCTAAGTTCCCTGTATTACCCAGAG



GGTCATCAAATCATGTCCTGGCCAATTTTTCTGGGCTCAAAGTGCTT



GTTATGGATGATAATGGTGTTGGCAGGGCAGCGACCAAGGGACTTCT



CCTACATCTGGGATGTGATGTGACAACCGTAAGCTCGGGGGATGAGT



TGTTGCATGCTGTCTCTCAGGAACACAAGGTAGTTCTTATGGATATT



TGCACGCCTGGTATAGACAGTTACGAAGTTGCCGTCCAGATACACAG



GTTGTATTCACAACATCATGAGAGGCCACTCTTAGTGGCAATCACTG



GAAGCACTGACAAGGTAACCAAAGAGAATTGCATGAGGGTTGGGATG



GATGGTGTTATCCAGAAACCTGTGTCGCTTGATAAAATGAGAAACGT



ACTGTCTGAGCTACTGGAATGTGGACATCAAATGTCTAGTTTGGCCC



GTGTTTGAGAAGAATGGAGAAAATAAGACTGCGATAAAGTTTCTTGC



GGCAATGATTTGTAAATACTGCATGCAGTGGAACATTGGAGGGTTAT



CAAGCAATGCTACAACAACCCCATGTAATACGAGACTCATACCGATC



ATTTTTATCCAAGAATGACCAAGGTCATCAGATGATTGAACAAGCCG



AAGCCCCATAGTGGAGCTGCTAGTAACTTCACGGGATGATGACAAGT



CTTATGTGTCGTCGACAAAGTTGTGATGTCGTTGCAATTGTAAGATA



TTATGGTCCCATCAATGATATCTCTTTGTTTGAAAAAAAAAA





18
GAAAAGCTTCTGTACATGCGCAATCCCAAAGGAAGCCCTCTGAACAT



CCGTTGATCCCTGGCGGAAAAAAGAGGCAGCACCCATTGATCACCAG



GGAGAAAGAGAGAGAGGGTTGCTTACGGATTCTCCGAATTCGCAAGA



ATGGCTTCTCGGAGACGCATGCTTCTCAAGGTCATAATCCTTGGTGA



CAGCGGGGTTGGAAAGACATCTTTGATGAATCAATATGTGAACCGAA



AGTTCAGTAATCAGTACAAAGCAACCATCGGGGCAGATTTCCTTACC



AAGGAAGTCCAGTTTGGGGATAGACTTTTCACATTGCAGATATGGGA



TACAGCGGGGCAGGAACGGTTCCAAAGTCTCGGTGTTGCCTTTTACC



GTGGAGCTGACTGTTGTGTTCTTGTATATGATGTGAATGTGATGAAA



TCGTTTGACAACCTTAACCACTGGAGAGAGGAGTTTCTCATTCAGGC



CAGCCCTTCTGACCCTGAGAACTTCCCATTTGTTGTGTTGGGAAACA



AGATTGACATTGATGGTGGCAACAGTCGAGTGGTATCTGAGAAGAAA



GCGAAAGCATGGTGTGCCTCAAAGGGAAACATTTCTTACTTCGAAAC



TTCTGCAAAGGAAGGTTTTAATGTTGAAGCAGCTTTCCAATGTATAG



CCAAGAATGCCCTTAAGAATGAGCCTGAAGAAGAACTCTACCTTCCC



GATACTATTGATGTGGCTGGTGGACAGCAGCAGCGTTCTTCGGGCTG



TGAATGTTGAAGAGTATATGACTTTAAATTTGCTGGTCCCTCGAGAA



AAGACTCGCAAAAGACGGCCATCATTTTACTTCTGCCGACTGTGAAT



CGCCAGGGCACTACCGGTTGTTGAGAGTGCCATGTATATCATTAGCA



ATGTTCATCAGTTCAGCACAATATTTGTGGTTTCATCGTTCCAAAAT



CGTGCGTTGTGAAATTGGTTGTGTATAATCTCTAGAATCCAAAGGCT



TACGGGTCATGCAATCCTTTCTAATTTGATTACTCAGATGTCCAAGC



TGTACACTTAATTTGCTCTCAAAAAAAAAA





19
GGTCGAAGCTGAAAATCTGACAAAATCCTCTCCCCGCGGCCGTTTCC



GTTCTTGAGCTTCGATCCGCAGGGAAGGGGAGCTCCGAGCAATGGCG



GGCGGCTACAGGGCGGACGACGACTACGACTACTTGTTCAAGGTGGT



GCTGATCGGCGACTCCGGCGTCGGCAAATCCAACCTCCTGTCCAGAT



TCACGCGGAACGAGTTCAGCCTGGAGTCCAAGTCCACCATCGGGGTC



GAGTTCGCCACCAGGAGCATCCGCGTCGACGACAAGGTCGTCAAGGC



CCAGATTTGGGACACCGCCGGCCAAGAGAGATATCGTGCAATCACAA



GTGCCTATTACAGAGGAGCAGTTGGTGCATTGCTTGTTTATGACGTT



ACGAGACATGTCACTTTTGAGAATGTCGAAAGATGGTTGAAGGAGCT



GCGGGACCACACAGACTCTAATATCGTGATAATGCTGGTAGGAAACA



AAGCAGATCTGAGGCACTTGCGTGCCGTGTCTACGGAGGATGCCAAG



GCCTTTGCAGAAAGAGAGAACACTTACTTCATGGAGACTTCCGCTCT



TGAATCTATGAATGTAGAGAATTCATTCACCGAAGTGCTCACACAAA



TATACCACGTGGTGAGTCGAAAAGCACTTGATGTTGGGGAAGATCCG



GCAGCACCTCCCAAGGGACAAACTATCAGTGTCGGTTCAAAGGATGA



TGTTTCCGCAGTCAAGAAAGTGGGCTGTTGCTCCGCTTGAAGTTAAG



AGTAACAGAATGAAGATTTTGGGGGAAGTCTTTATTCAATCCTAATC



TGCTGCCCGGAGAATTGGAAGATGTTACGCGGGAATTGCAGACCTTC



TTTACAACCTGTCACCATCATCTCCATGCATGGCGATGCTTAAGCTT



TTGCCGGATCAATTTAAGTTTGAAGTCCAAGGAAACCGGATGTTAGG



GCTTCGTGTATTTCATTTGTTTCATTTCCAGATGCTTAATTTTCTAT



TCCCATCCCGTGTTGATTTGTTTGTTGGGTTCTCTAGGTTTTTGAGC



TGAATTGGTCATGTCACACAGGGAACTGTCTTCGGGCGAGTTTAATC



ATGTATCTGATTTACGATCGGTGTTGTGAACGTCGGA





20
CACCAACCATCCCGGGCGGGCGGCCTCGACTCCTTCTTGTTCCGTGC



AGTTTTCATAGACTACTTCCATTAACGAGAATCCTTCCTCCATCGGC



GTCTCCTTCTCCTTGTGCTTCTTGTTCTTGGTGAGACTCTTGGAAAA



GGGATGGTGGATTCGTTCGACGAAGAGTGCGATTACTTGTTCAAGGC



CGTCTTGACCGGGGACTCTGCCGTCGGGAAATCGAATCTCCTATCGA



GGTTCGCGAGGAAGGAGTTCCAGTTGGATTCGAAACCCACGATAGGC



GTCGAATTCGCATACAGGAACGTCAAGGTCGCCGACAAGCTCATCAA



AGCCCAAATATGGGACACTGCAGGGCAAGAAAGATTTCGAGCCATCA



CCAGTTCATACTATCGCGGAGCACTGGGGGCGCTGCTGGTTTACGAC



ATCACTCGGCGAGTGACGTTCGAGAACGTGAAGAAATGGCTGCGCGA



GCTCAGAGACTTTGGGAATCCCGACATGGTGGTGGTCCTGGTCGGGA



ATAAGTCCGATCTGGGCAGCTCTAGAGAAGTGGACCTGGAAGAAGGG



AAGGACTTTGCGGAGGCAGAGAATCTGTGCTTCATGGAAACTTCTGC



TCTGGAGAATCTAAATGTCGAGGAAGCATTCTTGGAGATGATCACCA



GAATCCATGAGATCACAAGCCAGAAGAGCTTAGAAGCCAAGAACAAT



GAAATAACCAGTAGCCTTCACGGTCCTAAGCAGGTCATTCAGATTGA



TGAGGTCACTGCTACTAAAAAGCCATACTGTTGCTCAAGTTAATCCC



AACCGTTGGGGGATTTTTTGACGAGTCAGTACCAAATTTATAGTTGC



CTACTGACCACATCTTGATTTTTTTCCCCTGAATTCAAGTCCAATCA



GCTTCCTCTTTAAAAAAAAAA





21
GGTAATTGCCCAAATCAGATTCCTAGATTCTAGCCAACTCGACAACC



GTCTCCACCCTTTCTTTCTTCCCCTCAAATTTCAAATCAGTCCAAAA



AAACTCAAGACTGCTGCTGCTGCCGATTGATTCGCCATCTCCTTCCC



ACCTTCCCTCCTTCCTCTCCAATCTCTCGAAGCTCCGTTGCTTTCAT



GGCCGGGTACAAAGCCGACGAGGAGTACGACTACCTGTTCAAGCTGG



TCCTGATCGGCGACTCCGGCGTCGGCAAGTCCAACCTTCTCTCCCGC



TTCACCCGGAACGAGTTCAACCTCGAGTCCAAGTCCACCATCGGCGT



CGAGTTCGCCACCAAGAGCTTGAGCATCGACGGCAAGGTCGTCAAGG



CCCAGATTTGGGACACCGCCGGCCAAGAAAGGTACCGTGCCATCACT



AGTGCTTACTATAGAGGAGCTGTTGGCGCTTTACTTGTGTATGACGT



CACCAGGCGTGCGACTTTTGAGAACGTTGCAAGGTGGCTGAGGGAGT



TGAGGGACCACACCGACCCCAACATCGTGGTCATGCTCATTGGCAAC



AAGTCTGATCTTCGCCACCTTGTGGCAGTCCCACTGGAGGATGGGAA



GTCATTTGCCGAGATGAGTCACTACTATTTCATGCAGACTTCTGCAT



TGGACGCGACCAATGTGGAAGCAGCTTTTGCTGAAGTCCTTAGTCAG



ATTTATCGGATTGTGAGCAAGAGAGCAGTCGAAGCGGGTGACAACCC



AAGTGTTTCTTCTGTTCCAGGTCAGGGACAAACGATCAATGTCAAAG



AAGAGGGGTCTGTTTTTAAGAGGATTGGATGCTGCTCTAGTTAAGGT



AGGTTTCTTCGGCTGCTTGTTGCTCCAAGGGTGGGTCTGCCAAGTGC



TACCTCTGTGTATATTTT





22
GGTCATTGAAGTCTAATCATCTTCAACCTCTCACCGAACAGACGCTG



CTGCTGCTCTCTCCTTCTTTCCCCTTCCCCATCAACACGCTCGTCTC



TGTCCCTGTCCCTGTCCCTGTTTCTCTCTCTACCCTCCGAGATCTCC



ACAGTAGAGAGAGAAAGACAGAGAGAGAGAGAGAGAGAGAAGTGACG



TGGTGACAGTAGAGAGAGAAAAGACCCGAGCTTGAGTCGTGGGTCGG



TCGTGGGCAATGGCGAGCGGAGGAGGCTACGGGGACGGGAACCAGAA



GATCGACTACGTCTTCAAGGTGGTCCTGATCGGGGACTCCGCCGTCG



GGAAGTCCCAGATACTCTCCCGCTTCGCCCGCAACGAGTTCAGCCTC



GACTCCAAGGCCACCATCGGCGTCGAGTTCCAGACCCGGACCCTCGT



CATCCAGCACAAGAGCGTCAAGGCCCAGATCTGGGACACCGCCGGCC



AAGAACGATACAGAGCTGTTACGAGTGCATATTATAGGGGTGCGGTG



GGGGCAATGCTTGTTTATGACATTACCAGACGGCAGAGCTTCGATCA



CATACCTCGCTGGTTGGAAGAGCTGCGTAGCCATGCTGACAAGAACA



TTGTCATTATTCTGGTCGGTAACAAAACCGATCTCGAGAACCAGCGT



GCCGTGCCCACTGAGGACGCGAAAGAGTTTGCCCAGAAGGAAGGGCT



CTTCTTCTTGGAGACCTCTGCATTGGATTCTACCAATGTCGAGAGTG



CATTCTTGACTGTCTTGACCGAGATATTCAACATCGTCAACAAGAAG



AGCCTAGTTGCTGGAGAGAGCCAAACTAATGGCAATCCTGCATCTTT



GGCTGGCAAAAAGATCATCATCCCGGGTCCTGCCCAAGAAATCCCAG



CCAAGAACAAAATGTGTTGCGGAACATAATGCACTTCGACGTGATTT



TCCTCTTATGCTCTAGCAATTTTTCCTCAGATTTGTCATGTGTGCTG



CTTTATATTCTATGTATATCTACATATTAGAAGAGTGGTGGGGTTAT



ACTGCTGATTGTAATAGTGTGTTTCGTGAGGTCACAGACACAATAGA



CCTAACTGGGGTGCATATTCATTGAATGATTTTTGGCTTCGGAAGTT



ATATTTCATGCAATTTGCCAAAAAAAAAA





23
GTACGTTTCTAGAGAGAGAAAGTGAAGAGAGAGGATAGAAGAGAAGA



GAGAGAGAGAGAGAGAGAGAGCGCTGAGGAGGTTAGAGGTCATGGCT



GACGCCGCAGCTCAGAACGGCCAGTTCAGCGACTTCCCGGCGGTCCC



GACCCACGGCGGCCAGTTCATCCAGTACAACATCTTCGGCAACCACT



TCGAGATCACGGCCAAGTACCGGCCGCCGATCATGCCGATCGGCCGC



GGCGCGTACGGCATCGTCTGCTCTGTTCTGAACTCGGAGACGAACGA



GATGGTGGCGATCAAGAAGATAGCGAACGCGTTCGACAACCACATGG



ACGCCAAGCGGACGCTCCGCGAGATCAAGCTGCTCCGCCATCTGGAC



CACGAGAACGTTATTGGCATTAGAGATGTGATTCCTCCTCCCCTACG



GCGAGAATTTACTGATGTCTACATTGCTATGGAACTCATGGACACTG



ATCTTCACCAAATTATTCGTTCAAACCAAGGCTTGTCAGAAGAGCAC



TGTCAGTACTTCTTGTATCAGATTCTACGTGGACTGAAGTATATCCA



CTCTGCGAATGTTATTCATAGAGACTTGAAACCCAGCAATCTTTTGC



TGAATGCCAATTGTGACCTGAAGATCATTGACTTTGGCCTGGCACGG



CCAACTGCAGAAAATGAATTTATGACTGAATATGTGGTCACCAGATG



GTACAGGGCACCAGAATTGCTGTTGAACTCTTCAGATTATACTGCTG



CTATAGATGTGTGGTCTGTTGGTTGCATATTTATGGAGCTTATGAAC



AGAAAGCCTTTGTTCCCTGGGAGGGATCATGTGCATCAGATGCGTTT



GCTTGTAGAGCTTCTTGGTACACCAGCTGATGCCGATCTTGGGTTTG



TGCGAAATGAGGATGCACGCCGATACATAAGACAGCTTCCTCAGCAT



CCCCGTCAACCATTGGCTAGTGTTTTTCCTCATGTTCACCCTTTGGC



CATCGATCTGGTTGAGAAGATGTTGACATTTGACCCAACAAAGAGAA



TCACAGTTGAAGAAGCACTCGCCCATCCTTATCTTACGAGATTACAC



GACATAGCTGATGAACCTGTGTGCCGACAACCATTTTCTTTTGAGTT



TGAGCAACAGCCCTTGGGAGAAGAGCAGATGAAGGACATGATATATC



AGGAGGCTATAGCGCTCAATCCAGAGTTTGCTTGATGCTGTTTAAAG



TTTCTATGGTGGATGAGGAACTGCGAACTAAAGTGGAAACAGTGCAG



CGCAACGAAATGAAGAGTTGCACATATTCAGAGGCAACCGATCTCGT



TGCTTTATTTTTCCGTGGAGTAAGTATGCCGTACCACGAATACTGAT



TTGAGGGGAGCTTTGCTCCACCTGTCGAATAAACTTTCTTGATTCCT



TGAAACGCCTTTTGTTTTTGCAATCGGTGCTTCTTGGCATTCTTTTA



TTAGCTTGTATTTCACTCAACGTGCTTAATATCATTTTGTTGTAACA



TTTCACAGTTTGTAAATTTGTACTGCAAGATGTATTAGTAAGAAGAA



CTGTATTTTTTTTTATTTTTTTGGTTCATTGAACCGTGCTTCAGTTT



ATGAATGCTAATCTGTATGTAACGCGCAGAGCAGGGCGCTAGAGCTT



TTATCTGTGCCTTCACAACTTCTGTTTTATTATAAATCCCTTCGTTC



CCAAAAAAAAAA





24
TTCTCGATAAGCAATAATTGCTGCCCTTCTCTTTTCCTCGTCACTGC



TACAGAGGCCGGGTCTAATCGCGACGAGGTGACGAATCTGAGATCGA



AAGTCGTCTCCTCTTGTTGCGGGGTCAGATCCGTAGGGCTCGTGGCT



TGACAAGAACAGTGCTTTCCGAGGGAATAAGCAGATCCCAATGCGTT



AGGGGAATGATTGCGTAGGGCTGCGATCTTGGGCATCTGTTGCTGTC



GGGAATTCTTGCGAGGAGAAGGGCCTCTGAGGCTGCGTCGTGCTGGG



GAGTTGATGAATTGCGCCTGCTCGGGGGAAGAGTGAGTGGGATCCGA



CGATGGGTCTGAGCAAGAATGGCTTCTTTCTTTGAATTCGCTTCGAA



GATCACATAAAAAGCAAATGGCAACACTAGTTGAGCCGCCAAATGGG



GTTCATTCCGAGGGAAAGCACTATTACTCGATGTGGCAGACCTTGTT



TGAGATTGACACAAAGTATGTGCCCATCAAGCCCATTGGCCGGGGAG



CCTATGGCATTGTTTGCTCTTCTGTGAACAGAGAAACCAATGAGAAG



GTGGCTATAAAGAAAATTCACAATGCCTTCGAGAATCGGGTTGATGC



GCTGAGAACTTTGCGCGAGATAAAGCTTCTCAGGCATCTTCGGCATG



AGAACGTCATTGGTCTGAAAGACGTCATGATGCCTATCCAGAGGAAA



AGTTTCAAAGATGTCTATCTGGTGTATGAGCTTATGGACACAGATCT



GCACCAGATAATCAAATCCTCTCAGACACTTACGAATGACCACTGCC



AATATTTCCTCTTCCAGTTGCTACGAGGCTTGAAGTATCTACATTCA



GCAAACATTCTCCACCGAGACTTGAAGCCAGGGAACCTTCTCATCAA



TGCAAACTGTGACCTCAAGATCTGCGATTTTGGGTTGGCACGAGCTA



GCAATGGAAAGGGACAGTTCATGACTGAGTATGTGGTCACTCGCTGG



TACCGGGCCCCAGAACTCCTTCTGTGCTGTGACAACTACGGCACATC



CATCGATGTGTGGTCTGTTGGATGCATCTTCGCTGAGCTTCTCGGAC



GTAAGCCATTATTCCCTGGTACTGAGTGCCTCAACCAACTCAAACTG



ATCATCAATGTCCTCGGCAGCCAAAGAGAGGAGGATATCGAATTTAT



CGACAACCCAAAGGCGAAAAAGTTCATAAAGTCTGTCCCATATTCCC



CAGGGACTCCATTATCCCGTCTTTACCCTAATGCACATCCTCTGGCT



ATTGATCTCCTGCAAAAGATGCTCATTTTCGACCCATCAAAGCGCAT



TGGCGTCACTGAGGCTCTCCAACACCCATACATGTCACCGCTGTATG



ATCCGAATACCAATCCTCCTGCGCAGGTTCCCATCGACTTAGATGTC



AATGAAGATCTGGAGGAAGAGATGATAAGGGAGATGATGTGGAAGGA



AATGCTCCATTACCATCCCGAAGTCGCTGTGGGCAATTTAGAGGTGT



ACTCTTAAGCATTCTTCAGTTGTTTTGTCTCGCCTCTCTGTGATAAG



GTACTCCATCAATATGCTGCTGCACTTCATTATGATGGTTCTGTAGT



TTCTCTTAACATATAGGCTAGCTTTTCCTCTTTTTCTCAGAGAGGGG



ATAAAATAATTTGCTGGAATCATGCCCAGGAAGTTCTTGTCCTCAAA



ATGCATGATTGAGCAACCGTTATCTTTCTTCTTCACTATGTCTGTTT



GAGATCCATGTACTAGGTTTCCTATCTAACCTGTAAATAGCCTTATT



GCTATGAGACTTCAGGCTTGTTGTACAATTATATGATATGCTTGAGG



ATGCTTTTATAACATCTGGTTTGGACGTAATAAGAGTACTTCTAAAG



CTGTAAAAAAAAAA





25
GCTCTCTCTTCGTTCGCTTCACTGCCCCCCTCTCTCTCTCTTTCTCT



CTCTCTCCTCGAGCTGAGCTCAACTCGAACAAGAGCATTGCGGTTCA



CACAGAGGAGGGCAGAGGAGAGAGAAAGATAGAGAGAGAGAGAGAGA



GAGGAGGAGGAGGAGAGAGAGAGCTCTGCATATTCAGGGTCATTGAG



GAGATTTGTATCTACTTATGGAGATTGTAGATTCTGCGATCTGAGAA



ATTCGGGAGCTCTGCTTATCTTTTTCTCTTCCTGTCTTGTCTTTTTT



GTTTGTTTTTTCGTTTTTTTGGGTCTCCCTCTTCTCAGCTGCTGCTG



CTTGCTGCAGCTGCTGCAGCAATCATCATCATGACTTCTTGATTCGT



AGATGATAGGTGAAGAAGAAGAAGAAGAAAGGGGGGGTTTTTCTCTT



TCTCTGCTCTCTTTCCTAGCTCTCTGCTCCTTACCCAGAAAGCCGTT



CGTTCTCTCTCTCGGGCCGGAATTTGCTCAGCGTCTGTCTTTTCCTC



TCTCCGTTCAGATCTAATCGGAATCGGGAAGATATGTAAGGGGGGGT



CTTCTGGGTTTTGTCCGTCGCCATTTCCTCTCGAGCCTCGCGCGGTT



TTAAGCGTTTAGATCTGGGTTTTTCTTAGCTGGGTAGGTTTGGATTC



AGTTCGCAGGTTGTAGTAGCTTAATCTCTGTACATTTGTTTTTTTTT



TTTTTTTTTTTTTGTCTCCGAGCTATTTGGTTCTTTTGGGGCGAAGG



GTTGTGTTGGGATTAGGTTGTTTTTGCCGCCCCCCGGCTGTTTTTTT



CGTTAGGGTTTCTGTTCTTTTTTCTTCTTTCTTCCTGCGGGAGGGAT



GGATTGAGGGCTCATTTCGTTTGAAAGTTGGGATTTTTTTTTTCCTG



GGCAGTCGTGGGAATTGGATTTGTCACTTGGGTAAGGGAAGATGAAT



TATTTTCCCGATGAAGTTATCGATCACGTGTTCGACTTTGTGACGTC



GAACAGGGACCGCAACGTGATCTCTTTAGTGTGTAAATCTTGGTATA



GGATCGAGAGGCTTAGCAGGCAGAGAGTGTTTATCGGGAACTGCTAC



GCGATAAGTCCTGAGAGATTGATCGCGAGATTCCCGGGGGTAAGGTC



GCTCACTTTGAAGGGGAAGCCCCATTTCGCTGACTTCAATCTAGTGC



CACCTGACTGGGGAGGGTTCGTGTACCCTTGGATCGATGCATTGGCT



AGGAGTAAGGTTAATTTGGAGGAGCTCAGGTTGAAGAGGATGGTGGT



TACAGATGATGGTCTTGAGCTGATTTCGAGATCGTTTGTAAATTTCA



AGTCCTTGGTTCTTGTTAGCTGCGAAGGGTTCACTACTGATGGCCTT



GCGGCTATAGCAGCCAACTGTAGGTTTCTTAGGGAGCTGGACTTGCA



AGAAAATGAAGTTGAGGATCATAGAGGCCAGTGGCTAAACTGCTTTC



CCGATAGCTGCACCTCTCTTGTCTCCCTAAATTTTGCATGCTTAAAA



GGAGATATAAATTTAGCAGCACTTGAGAGGCTTGTGGCAAGATCTCC



ATATCTCAAGAGCTTGAGGCTAAGCCGTGCTGTCCCTCTTGACACGC



TGCAGAAGATCCTGGTCCGAGCACCTCAGTTGGTGGACTTAGGCGTG



GGCTCTTTTGTCCATGACCCAGATTCTGAAACCTACAACAAGTTGGT



GACAGCAATTGAAAAATGCAAATCTATGAGGAGCTTATCCGGATTCT



TGGAGGTTTCTGCGTACTGCCTACCAGCTATTTATCCAATATGTTCA



GGCCTGACCTCCTTGAATCTTAGTTATGCTCCTGGGATCCCTGGAAG



TGAGCTAACTAAGTTAATCCGTCATTGCAGAAAGCTGCAGCGCTTAT



GGATACTTGACTGCATAGGAGATAAAGGGCTGGGAGTCGTGGCTTCA



AGCTGCAAAGAACTACAGGAATTGAGGGTTTTTCCGTCTGATCCTTA



CGGAGTTGGAAATGCTGCAGTGACCGAAGAAGGGTTGGTTGCTATTT



CCAGAGGTTGTCCAAAGCTTAACTCACTGCTGTACTTCTGCCAGCAG



ATGACAAATGCTGCCCTGAAAATTGTAGCCCAGAACTGCCCTAATTT



CATACGGTTCAGGTTGTGCATCCTCGAGCCCACAAAACCGGATTCTT



CAACCAATCAGCCTCTTGACGAAGGATTCGGAGCTATTGTTCAGTCA



TGCAAGGGTGTCAGGCGCTTGTCACTTTCTGGCCTTCTTACTGACCA



GGTCTTCAATTATATTGGCACATTCGCTGAACAGCTTGAGATGCTTT



CTATTGCATTTGCTGGGGACAACGACAAGGGAATGCTTTATGTGTTA



AATGGGTGCAAGAAGATTCGGAAATTGGAAATCAGGGATTGCCCCTT



TGGTAACATCGCACTTCTGACGGACGTGGGAAAGTATGAAACAATGC



GATCCCTTTGGATGTCGTCGTGCGATATTACCCTTGGAGGCTGCAAA



CCCTGGCAAAGAAGATGCCGAGGCTGAACGTGGAGATTATCAATGAA



AACAATGAGATGGAGGATTGCATTGATGATGAGCAGAAAGTAGAAAG



GATGTACCTCTACAGAACCTTGGTGGGGCCGAGGAAGGATGCACCAG



AGCATGTTTGGACATTGTAGGGTTCCCCTGAGGTTCATTGCCATGGC



TTTGCCTCAAAATCTCCTGTTGTACCATCATTGTACCTCGTTTAGGC



TCGTAATTTGTGGATTTTTAGTTGTATGGTGATTTTTTATTTTATTC



AGAAGAGATTCTAATGTGCTTCTAGTTATAAATAGATTTTTCTTTAG



CAAAAAAAAAA





26
GCTCCCTTGTTCCTTATCTCTTCCATTTCCTCAGCCTCTGCTGTTCC



TCCACTGGACCTCCCACCACCCCCCTCCCTCCTCCCTCCTCCCCCCT



AACCCCCCAAGAAAATCAAGAAAATCAAGAAAAGAGACGCTGCCAGC



AAAAGCAGCAGCATGCTAGTCATAAAACCTCCTCCACTCCCTGCTGC



CATGAACGAAATTTGATCCTCAGCTCCCCACTCACAGCCCTCCGAAA



TCTCTGAAATCAAAGCAAGGAAAGAGAGAGAGAAGAGAGAGAAGAGA



GAGGGGAAAGAGAGATGAAGAGGGATCATCGAGACGCTTGCAGTGGC



GGCTATGGCGGCGGCGGTGGCGGGGAGGCGAGCGGCGCCTCGAAGGG



CGAGCCCCCGTCGTCCTCCTCCACCCACTCATTGCCCGGCTCTGGCA



AGGCCAAGATGGTGATGTGGGGCGAGGACGACCAAGATCCGAGCGGC



GGTGGCGGGGGCGGCATGGACGAGCTCCTCGCGGTGCTCGGGTACAA



GGTGAGGTCGTCGGACATGGCCGAGGTGGCGCAGAAGCTGGAGCAGC



TCGAGATGGTGATGGGCTCTGCTCAGGAGGACGGCATCTCGCACCTG



TCCTACGACGCCGTCCACTACAACCCTTCCGATCTCTCCTCGTGGGT



CCAGAGCATGCTCTTCGAGCTCAACCCCCCTCCGCCGCCGCAGCAGG



TGGCCGACGCGGTCCTCGCTGCGGCCGAGTCGTCTTCCACCATCGCG



CAGCACCACCGTTCGCATCTCGGGTCTCGGTCTCAGACGCAGACTCG



GACTCTGAGTCAGACTTCGGCTCCCACTCAGACGCAGTCCCAGGTAA



TCTTCAACGACGACTCCGAGTACGACTTGAGGGCGATTCCCGGCGTC



GCCGCTTTCCCACAGGGCGACTCGGACTTCGAGAGCGCCGCCCGGAA



GAAGATGAAGACCCTGAACGGCGGGTCGAATTCGTTGTCGTCCTCGT



CCTCTTCGTCGGCCGCCGGAGCGGCGCCCTCCGAGTCGACCCGGCCG



GTCGTCCTGGTGGACACGCAGGAGACTGGGGTGCGGCTCGTCCACAC



GCTCATGGCCTGCGCCGAGGCGGTCCAGCAGGAGAACCTGAAGCTGG



CCGATGCGCTCGTCAAGCACATTGGCCTGCTCGCCGCTTCGCAGAAC



GGCGCGATGCGCAAGGTAGCGACCTACTTCGCCGAGGCGCTCGCCCG



CCGGATTTACCGAATCTACCCCAACGACGGCAGCCTCGACTCCTCGT



GCAACGACATCCTCCAGATGCACTTCTACGAGACCTGCCCGTACCTC



AAATTCGCCCACTTCACTGCCAATCAGGCGATTCTTGAAGCCTTCGC



CACCGCCAGCCGCGTCCACGTCATCGATTTCGGCCTCAAGCAGGGTA



TGCAGTGGCCGGCCCTCATGCAGGCTCTGGCCCTGAGGCCCGGCGGT



CCGCCCGCCTTCCGGCTCACCGGGATTGGCCCGCCGCAGCCGAACAA



CACCGACGCCTTGCAGCAGGTCGGCTGGAAGCTGGCTCAATTGGCCG



ACACTATCGGGGTCGAGTTCGAATTCCGGGGTTTCGTGGCGAATTCG



CTGGCTGATCTCGAGCCCGCCATGCTGGACATCCGCCCTCCCGAGGT



CGAGACGGTGGCCGTCAACTCGGTGTTTGAGCTCCACCCCCTGCTCG



CCCGACCGGGGGCGATTGACAAGGTTCTCTCATCGATCAAGGCCATG



AGACCTAAGATAGTGACGATGGTGGAACAGGAGGCGAATCACAATGG



CCCGGGGTTCGTGGACCGGTTCACGGAAGCTTTGCATTACTACTCCA



GCCTGTTCGATTCGCTGGAAGGGTCTGGGGTGGCTCCCCCGAACCAG



GATCTGGTCATGTCCGAGGTCTACTTGGGTCGGCAGATTTGCAATGT



TGTGGCCTGCGAGGGGCCGGATCGAGTGGAGCGGCACGAGACGTTGG



TGCAGTGGCAGGCGCGGATGGGATCGGCTGGGTTCGACCCGGTCCAT



CTCGGGTCCAACGCGTTCAAGCAGGCGAGCATGCTGCTGGCCCTGTT



CGCAGGTGGAGAAGGTTACCGGGTCGAGGAAAACGATGGTTGTCTCA



TGCTCGGTTGGCACACGAGGCCTCTGATCGCCACTTCGGCGTGGCAA



CTCGCTGCTGCAACTCAGTGAATCAACTGTCGTTCGGTTGAGTTTGG



TCGAAATCGAGATAGACCCTGTTGTCGGTTGGACCCCTTAGATGATC



AGTGAATGGAAGTGCTTTGCCTGAGTTGGGAAGGTACTAAGAGAAGA



GAGGCTACGAAACAACCTCAGAGCGTGTAGTTCCACTTCTTGTTTTT



TGCCTCTGTGTAGTCTTCTGCAAGATCTTCCAAATCTTCCTTATTGA



TTTATTTCATGAATTTTGATTTTGGTTAGACCTTTGGGCTCTACTCA



AGGTTGGATGAATGCGAATGTGTATCCTCTGCATTTAGCTTCTGGAA



TAAAATGATGACGACGACGATTCTCGCTGCCAAAAAAAAACGGATGC



AATCGTTTACGATTCATCACATCTCTATGGAACTCCAAGTTACTGGG



TGCAACAGTTTTTCGCCGAGTCAAGTGGAGCAACTCTTCTTGATACA



ACAATTCCAGCGAATTACTCCAGCTCACTTCTCGCCTCAGCAATCAC



GTGGACAAATTCAGATGATGATAAAAGTTATATAAAGATTAAGATCG



TGAACTTCGGTAGCAGTCCAGTTAATCTAACAATTTCCATTAGCGGA



CTGGATCAAAATTCGATACAAAAGTCTGGATCCTCAAAGACGGTATT



GACATCTGCTAACTTGAAGGATGAGAACTCCTTTTCTGAGCCGAACA



AGGTGGTGCCAACCCAAAGTCTACTCGAAAATGCAGGCAAAGAGATG



GATGTTGTTATCTTGCCCTATTCCTTCACTTCCTTTGATCTGTTAAA



AGAATCGACTAGCATCCGGATGAAGGGAGATGATTATTCGTCTAAAT



CTTCTATCTAATTTATATATCTGATTGAGTGTAATTATATGGAATAA



TCTCATGACTCAGATGTTATGATACTCAAAAGTTATGTAGATCTTTG



TGGCTGTAACATGTACTTCTTGCTTACCTGTTCGATGCTATATAATA



TAAATTATATTACATAAAAAAAAAA





27
TTCCTCTCCCCCCACTTCCTTTTTGCCCTATCTGATAGGGTTTCTCA



CCTTCTTCCCCCCTCCCTCTCATGCATTCTTGCCCGCTAGCAGCCCT



GCAAATCGCCCTGACCTTCTTGATCGTCGTCTCGGGATCCGCCTTTT



TTGCTCTCTCTCGAGGGTTTTCGGGTCGCGACCGTTTCGGAGCCCGC



CTCCCGGAGTCACCGGAGCCGTTCCCATGTCGAAGGTCCTCAGATTC



ACTGGAGGCGAGGATTTTTACTCTGGGAGGTCAATATACCAAAGCCC



AAAGGAGGTCAACCTCTTTTTGTCCCTTGGTAACCATGTGGACGTGT



ATTTTCCTCCTAGCAAGAGGTCCCGCATCAGCGCTCCGTTTGTTTTC



AGTGAGGACCTATTCGAGCAGAAAAGGCAGGACACAATCGAAGTTCT



TCCAGATGAGTGCCTCTTTGAGATATTCAGAAGGTTGCCTGGAGGCC



AGGAGAGGAGTGCCTGCGCTTGTGTCTCCAAACGCTGGCTCAATCTT



TTAAGCAATATATGCCCCAATGAACGCAGCTCTGGTAAATCTCAGAA



CAATTTGGATCCTACCTGTGGGGGAGAGGAAGTGAGTTCAGAGGACG



ATGGATTTCTCTCTAGGAGCTTGGAAGGGAAAAAGGCCACTGATATC



CGTCTTGCTGCCATAGCTGTGGGAACTGCTGATCGTGGGGGATTGGG



CAAACTTTCAATCAGGGGTAGCAAGTTGTCCCATGTGACAAGCCTTG



GTCTTGGGGCAATAGCACGCAGTTGCCCCTCTCTTAAGGCCCTGTCC



CTTTGGCACCTACCTTCTGTCGGAGACGAAGGTTTACTCGAGGTTGC



AAATGGTTGTCACCAGCTTGAGAAGCTAGATCTTTGCCAGTGTCCCA



ACATTACCAACAAGTTTTTGGTTGCAGTTGCAAGGAACTGCCCTAAT



TTGACCGACATATCAATAGAGTCTTGTTCTAGCATTGGAAATGAAGG



TTTGGCTGCTGTTGGACAGTTCTGCCAGAATCTGAAGTCCATTTCAA



TCAAAAATTGCCCCAGTGTTGGAGATCAGGGCATTGTTGGTCTGATT



TCGAGGGCTGGTAGTGCCTTAACAAAGTTCAAATTGCAGGCATTAAA



CATAACTGATGTATCTCTTGCGGTCATTGGGCACTATGCCACGGCTG



TTACCGATTTAACCCTTGCGAGCCTCCACAATGTCACAGAGAGAGGG



TTTTGGGTCATGGGCAATGGTCATGGCTTGCAAAGGCTGAGGTCTTT



GATAGTCACCGCTTGTCGGGGTGCTACTGATCTGGGACTTGAATCTC



TGGGGAAAGGTTGCCCTAATCTTAAGCAGTTATGCATCCGTTCATCT



GCATTCCTGTCAGATGGTGGCCTTGTTTCTTTCATGAAGTCAGCAAG



GTCACTTGAGAGCCTGCAATTGGAGGAGTGCCACAGGATTACCCTGT



CAGGACTATATGGTCTTGTCGTTGGTTGTGGGGATAAACTGAAATCT



CTTGCTCTGACAAATTGCTGGGGATTTAAGGACTTTGATTTTGGATC



ACCTCAAGTGTCTCCTTGCAAGTCCCTGCGCTCTTTCTCTGTTCGCA



ACTGCCCAGGCTTTGGTGATGCGTGCTTGGTGGCACTTGGGAAGATT



TGCCCACATCTGCAGCAAGTAGAATTGAGTGGGCTTACAGGAATAAC



GGATGAAGGGCTTTTACGACTGCTTGAATGCTGTGAAGCTGGTCTTG



TGAAGGTTAACCTCAGTGGATGCATCAACCTGACAGATCAAGTGGTT



TCAGCAATGGCTAAGTTGCATGGTAGGACCCTTGAGGTGCTAATTCT



GGATGGTTGTACAAAAGTTAGTGATCTGGGCTTGCTGGCTATTGCAG



AAAATTGCCAACTGCTATCTGATCTCGATGTCTCGAAAATGTGCAAT



TTCGGATTTTGGATTGATGGCATTGGCTCGTTCTAGTCAACTGAGTT



TGCAAGTCCTTTCCGTGTCTGGTTGCTCTTTGGTGTCAGACAAGTGC



TTGCCTGCTCTTAAGAAAGTGGGCCGCACCCTTTTAGGTTTAAATCT



CCAACATTGCACTGCAATCAGCACTCGTTCGGTGGACCTGCTTTTGG



AAGAGCTTTGGAGGTGTGACATTCTCGCTTGATTGAGAGTGGATGGA



AATTGCAGTTTCGTCTGAAGATTGGATTTATTTGTTATGAAGACTAG



AGTTCAACTCGGCCTATGTGGACAGCTACAGTTTGTGTTAGTTTTTG



GATCCAGAATCCAGCGGATATGGGTGTTGAAGCAAAATCCGGTGCTT



GGTCCTTTTTTCAGGGAATATGGCCTTTCTTTTTTGGCAGGCTTCCG



AATTGGGAATCTGTTCTTAGTAGTTTTGCCTCTCCAAGACGAGAGGA



GTCATTTATGGCCAGATTTTCCTGAGAATGTCCTGACCAAGTTCCGG



TTCAGTTCATCATCAATTTCGACAGAGTTTTTATGATGCCTGGGTTG



GTATCTGCTGTTTTAGCTCGGCATCATGCTGGTCAACTATGCTGGCT



TGTGATCAACTTTTCTCCGCGTCTGGATCCTTGCACTTGCAGGAATA



TTTCGGTTCTGACAGGTCTTTCTTGTTCCAGATCCTTGTATGTCATG



GGCGGGTCATTCTCCAGAGTTTTGGTGACGGTCGCGGTTGCTTTTCA



TGCTTACAATGCCTTGGATTCTTGGGCTTAGGCCATGGCAGCTGCTC



AAGCAGTCTTGCCATCACAACCCATGAGGTTGTTTTTTTCTAGCCAA



GCCTTGTTTTTCCCGGCATTGCGGTGTGGAAAGTTTCTTCGACCGTT



TCGCCACACGTTGTTAGAATCTCCCTCCCCCCTGACTATATGTTGGT



TTTACAGTTTGTCAAGTGAAATAAAAGCAGTGTACTTGTTCATGTTC



TAAAAAAAAAA





28
GGTAACATTGAGGTCCTCCTCTGCACGTTTCTCCTTCGTCATCGGGG



TTCTCTTACCTAGGGTTTGCAGGCGGGCGCCACTCTTCTCCGCTGTT



TCTACCTCTCTCGTTTGGCAGCCATGGGAGAATCCAGGAGAGGAGAG



ATGGATGGAACGACTCGAGGGGGCAGCAATGCGGACATGTATCTGCC



GAATTATAAGCTCGGGAAGACTCTGGGCATCGGTTCGTTTGGTAAGG



TGAAAATAGCGGAACACGTGTTGACTGGGCACAAGGTCGCCATAAAG



ATCCTCAACCGGCGCAAGATAAAGAACATGGAGATGGAAGAGAAAGT



GAGGAGAGAAATAAAAATCCTCAGACTCTTTATGCATCCGCACATCA



TCCGACTTTATGAAGTCATTGAGACGCCTACGGACATTTATGTTGTG



ATGGAGTATGTGAAGTCTGGGGAGCTGTTTGATTACATTGTCGAGAA



GGGCAGGTTGCAGGAGAATGAAGCTCGCAACTTTTTTCAGCAGATTA



TTTCCGGTGTGGAATACTGCCATAGGAATATGGTCGTTCATAGAGAT



CTAAAGCCTGAAAACTTGCTGTTGGATTCTAAATGGAATGTGAAGAT



CGCAGATTTCGGTCTGAGCAATATAATGCGTGACGGTCATTTCTTAA



AGACAAGTTGTGGGAGCCCCAACTATGCCGCTCCGGAGGTTATCTCT



GGTAAACTTTATGCGGGGCCTGAAGTAGATGTATGGAGCTGTGGAGT



TATATTATACGCTCTTCTTTGTGGCACACTCCCTTTCGATGATGAAA



ACATACCTAACCTTTTCAAGAAAATCAAGGGTGGGATGTACACTCTT



CCAAGTCACTTATCGGCAGGTTCAAAGGACTTGATCCCAAGGATGCT



TATAGTTAATCCAATGAAACGAATCACCATTCCAGAGATCCGTCAGC



ATCCTTGGTTTCAAGCTCATCTTCCACGTTATTTGGCCGTGCCTCCA



CCTGATACGATGCAGCAAGCGAAAAAGATTGACGAGGAAATACTCCA



GGAAGTGGTCAACATGGGTTTTGAGCGCAATCAACTTGTCGAATCAC



TTCGCAACCGGATTCAAAATGAGGCTACTGTTGCATACTACTTGTTA



TTGGATAACCGTTTCCGACCTTCCAATGGCTACCTCGGAGACGAGTT



TCAAGAAACGATGGAGTGCACCTTCAATCGTGGAAATCCAGGGGAGC



TTACCATTCCAACTGTTGGGCCTCGCTACCCACTACCTGGATATATG



GATTACCAGGGAGTGAATTCAAAACCAGGTTATTATGGTGCTGAGAA



GAAATGGGCTCTTGGTCTCCAGTCTCGAGCCCATCCACGGGAAATAA



TGACTGAAGTTCTTAAGGCGCTGCGAGAACTAAATGTGTGCTGGAAG



AAGATTGGGCACTATAACATGAAGTGCATGTGGAATCCTTGTGTTCC



CAGTCATGAGAGCATGGTTAGCAATCCTGTCCAGAGTAATTATTTTG



GTGATGAATCTACAATAATCGAGAATGATGGCGCAACCAAGTCCAGA



AATGTGGTCAAGTTTGAGGTGCAGCTTTACAAAACGACGGAGGAGAA



ATATTTACTCGATTTGCAGAGGGTGCAGGGACCCCAGTTTCTGTTTT



TGGACCTCTGTGCTGCTTTTCTTGCCCAACTCCGGGTCCTTTAGGAA



GAGAAGGGTGAAGATATCCACGAAAAGTCCTGCCAATAAAACTTGTG



AATAACCATTGGAGGATTTTAGGCGTTCAACATTCATCAGGAAATTG



ATATCAAGCTTTTTGTTCTATATCAAAAATAAAACGTTAAAGAAAAA



CTCGTGGAAAATACAGTTTTGTACCAACTGACGAGGTCGTTTCAGAT



GTTGTGTACTTAATCGAAAGTGATCTTTATTTACACTTAAAAAAAAA



A





29
GAAGGGGGGCTCTCTGTTTTTTTTAACGAGGAAGGAAACAAGCACGT



CGTGCAACTTGCCGTGTAGCTCTCGAAAACGCCCCTCCTTCTCTCTT



TCTCTCTCTTCTCTCTCTTCTCTCTTTCTCCTGGGTCTGAGCAAGAA



ATGGCAGGGTACAGAGCAGAGGATGACTACGACTACCTCTTCAAAAT



TGTCCTGATTGGGGACTCTGGCGTGGGCAAGTCCAACCTGCTCTCCA



GATTCACCAGGAACGAGTTCAGCCTCGAGTCGAAGTCCACCATTGGG



GTCGAGTTCGCCACTCGGAGCTTGAACGTCGATGGCAAGGTCATCAA



GGCCCAGATTTGGGACACCGCTGGTCAAGAAAGGTACCGTGCCATCA



CTAGTGCTTATTACCGGGGAGCTGTGGGCGCATTACTTGTGTACGAC



GTTACTCGTCACTCCACATTCGAAAACGTGGAGAGATGGTTGAGGGA



ATTGAGGGATCACACGGACCCCAACATCGTGGTCATGCTCGTCGGCA



ACAAGTCCGATCTCCGGCACCTCCTGGCAGTCTCAACAGAGGATGGG



AAATCATTTGCGGAGAGAGAGGCCCTCGTCTTCATGGAAACTTCTGC



ACTCGAGGCGACCAACGTGGAGAATGCTTTCGCCGAAGTCTTGACTC



AGATTTACAACATCGTGAGCAAGAAGGCCCTGGAAACAAGTGAGCAA



GCAAATGGCTCGGCTGTGCCGTCTCAGGGAGAGAAGATTGATGTTGG



TAAGGATGTGTCAGCTGTCAAGAGAGGTGGATGCTGCTCAAGCTAGT



CAGATTCTTGGAACATTCGAGAGTTTTGGATTACTGGGTAGTTGCCG



TTTTTCCTGTCATCATATTTTGCGATATATAGCGTGAGATATTTTTT



CTGCACGACACTGGCCGATCCGGTCTAGATTGCAGGTACACGAATTT



GTATCATTTATGTCAGCGATTTCTTGTGATGGGTACAGAGCTTAATT



TAGGAAACTGCTTGTTAATTTTACATCTATTGGTTCATTACCATGTT



GGTCTTCTTTTGTTTTTAGGACACAATGTATTAGGTGCTTGATGCTA



GCGCGGACACATTGTATTATTTTCCGAGGGAATCATGACGTTGAATT



GGAAAAAAAAAA





30
CCAAGCTGTCTTCATCATTTCTCGCTGGGAATCAATTTGAATTCGAT



TTCGATTTCGCCGTGTCGATCGAGGATCGCTCGATCGATCGATCGAT



CAGAATCCCCAGTTCGTCTGAATCCTTCTCTCCCTCCCTCCCTCTCT



CTCTCTCTGTGTCTCTCTCTCGCCATTTCCGTGAGATCCAGCTATGG



ACTCCTCTCGCGAGAGCCTGGTCTACGTCGCGAAGCTCGCGGAGCAA



GCCGAGCGCTACGAGGAGATGGTGGATGAAATGAAGAGGTTGCGAAG



CTCAATGTTGCATTAACCGTTGAAGAGAGAAACCTGCTATCTGTTGG



GTACAAAAATGTTATTGGGGCTCGGAGAGCATCCTGGAGGATTCTGA



CATCCATAGAGCAAAAGGAAGATGCAAGGGGGAACGAGATCAGTGTG



AAGCGAATCAAAGAGTACAGGAAGAAGGTTGAATCAGAGCTCTCTAG



CATCTGCAGCGATATCATGGTCATACTTGATGAGCATGTCATTCCTT



CAGCATCAGACGGTGAATCCAAAGTATTTTACTATAAGATGAAGGGA



GACTACTACCGTTATCTTGCGGAATTCAAGAGTGATGACGAGAAGAA



AGAGGTTGCTGAACAGTCAATGAAAGCTTATGAGATGGCTACAAGTA



TTGCAGAGTCCGATTTGCCTTATACACATCCCATCCGCCTTGGTTTG



GCTTTGAATTTTTCGGTGTTTTACTATGAGATCCTCAACTCAGCTGA



AAGGGCATGCCACATCGCAAAGCAGGCATTTGATGATGCAATTGCAG



AACTTGACAACCTCAATGAGGAGTCTTACAAAGATAGCACTTTAATC



ATGCAACTTCTCAGGGACAATCTCACATTGTGGACATCTGACATCAC



AGAGGAAGGAGAAGATGCACAAAGGATAAATGGCTCAGCTAAAGTTG



GCATGGAAGAAGGAGAGTAAAACAGGTGTAACCCTGAATCATATGCC



TTGCAGTGGGTCGACGCGGCCGCG





31
CGTTTCCGCGCTTCTGCTCGCGCGTCCTCTCGCTCGAGGCTTTCCGC



TTCCTTCTTCCGAACCCCTTAAAGGTCGGGTCTTTCCCTCCCCCCTC



TCGATGGATCCGGCCGCCGGCTCCGGCTCCGGCTCCGGGCTGATCCG



ATTAGGGTTCTTGGCCGGCTCCGACGAGTGAGCTGTCGCCCGCCTCC



TCGCGGGCGGTTTTCCGGCGGCGGGTTTAGGGTTTTGCCCTTTTTCC



GTTCTTGAGAGAGAGAGAGAGATAGATAGAGAGAGAGAGGGGGGGGA



GGTGATGGAGGATCGGAACGTGAAGAGGCCGGACAGCCCGGGGCTTT



CCGACATCGTGTTGACCTGCGTCATGCCGTACATCGACGACCCCAAG



GATCGGGACGCGATTTCCCTGGTCTGCCGCCGCTGGTACGAGATTGA



CGCCCTCACGAGGAAGCACGTCACCATCGCCCTCTGCTACACCACCA



GCCCCGAACGGCTGCGCAGGAGGTTCAGGCACCTCGAGTCGCTCAAG



CTCAAGGGGAAGCCGAGGGCCGCCATGTTCAATCTGATACCCGAGAA



TTGGGGCGGGTACGTGACTCCCTGGGTGACCGAGATCGCGCAGTCTT



TCGATTGCTTGAAGTCGCTTCACTTTCGGCGCATGATCGTGGAAGAT



TCGAACTTGGAGGTGCTCGCCACGTCGCGGGGACGCGTTCTGCAAGT



GCTCAAACTCGACAAGTGCTCTGGTTTCTCGACCGACGGGCTTTTAC



ACGTGGGGCGTTTATGCAAGACTTTAAGAACCTTCTTTTTGGAAGAA



AGCACAATCATTGAGAAAGATGGTGCGTGGCTTCACGAGCTTGCTAT



GAACAACACAGTCCTTGAGACTTTAAATTTTTACATGACAGAGCTAT



CCAGTTTTAGTGTCCAGGACCTTCAAATTATTGCCAGAAATTGTCGA



TCGTTAACATCTGTGAAAATTAGCGATTGCGAAATTCTGGATCTTGT



GGGTTTCTTTCAAGATGCAGCTGCTTTAGAAGAATTTGGTGGAGGTC



TTTTTAATGAGGAACCAGAAAGGTATGCTGCTTTATCGTTCCCAGCA



AGATTATGCCGTTTGGGTCTAACCTACATTTCAGAGAATGAGATGCC



TATCGTGTTCCCTATTGCATCTCGGCTAAGGATGTTAGATCTTCTCT



ATGCATTTCTTAGCACAGATGACCTCTGCTTGCTGATTCAGCAATGC



CCCATCTTGGAAGTTCTTGAGACAAGGAATGTCATTGGAGACAGAGG



ATTAGAGGTTCTTGCTCATAGTTGTAAAAGGTTGAAGAGGCTTAGGA



TTGAAAGAGGTGCTGATGAGCAGGGTATGGGGGATGAAGGAGGCCTT



GTTTCGCAAAGAGGATTAATGGACTTGGCTCGGGGCTGCCTAGAACT



GGAATACCTGGCTGTTTATGTATCTGATATCACAAACTCATCCCTCG



AATGTATAGGAACTTATTCGAAGAACCTTTGTGATTTCCGTCTTGTT



CTACTTGACCGCGAGGAAAAGATAACTGATTTACCCCTGGACAATGG



TGTCAGGGCTATTTTAAGGGGATGTGAAAAGCTAAGAAGGTTTGCTC



TTTATCTGCGGCCTGGGGGCTTGACAGATGTGGGTCTTGGTTACATT



GGGCAGTATAGCCAAAACATAAGATGGATGCTTCTTGGATATGTGGG



AGAGAGTGATGAGGGCCTTAGGGAGTTCTCCCGAGGCTGCCCGAGTT



TGCAAAAACTTGAAATGCGGGGTTGTTGCTTTAGCGAACAGGCGCTG



GCTGATGCTGTGATGCGGTTGACTTCTTTGAGGTATGTCTGGGTGCA



GGGGTATAGAGGATCTGACACCGGTCGAGATATTCTGGCGATGGTCC



GTCCCTTTTGGAACATCGAGTTGATTCCTGCTAGAAGAATAGCTGTT



GCCAATCAGAATGGGGAAAACGTGCTTAATGAAGACCCAGCCCATAT



ACTTGCATATTACTCTCTAGCAGGACCAAGAAATGATTGTCCTGACA



GCGTTATACCTTTGGCTCCAGCAAGGCTGCTTACCTTGTAGAGCTGT



ATATACACCCTTTTGCCGAAGATGTCTTTTATCTTCTTAAGTGCTCT



AGACCCCCTGTCATACGGTTCTGTATTTTATCACTCCTCCCTGAGAA



ATTTCTCCTCTTGCTTTACTTTTCGTCTTCCGTTTGTTGGAATTCCT



TCTTTTCTCTTTTATTTTGTCGCAATAAGATTGTGTACTTTGTAAAA



AAAAAAAAAAAAAA





32
AGGTTTGGGTTTTTTTTTTTTTTTTAGGGGCGATCGGGGGATGGCGA



ACCGGGTGGATCACGAGTACGATTACCTGTTCAAGATCGTCTTGATC



GGGGACTCCGGCGTCGGCAAATCGAACATCCTCTCGAGGTTCACGAG



GAACGAGTTCTGCCTGGAATCTAAGTCCACCATCGGCGTTGAGTTCG



CGACGAGAACCCTGCAGGTTGAGGGAAAGACCGTCAAGGCACAATAT



GGGATACTGCTGGTCAAGAGCGATATCGAGCCATTACCAGTGCATAC



TACAGGGGAGCAGTGGGCGCTTTGCTAGTTTATGACATAACAAAGAG



GCAAACCTTTGACAATGTCCAGAGGTGGCTTCGGGAGCTGAGGGACC



ATGCAGATTCTAACATAGTTATTATGATGGCTGGGAACAAGTCTGAT



TTGAACCACCTAAGAGCTGTCCCGGGGGACGATGGTCAAGCCCTGGC



TGAGAAGGAGGGTCTTTCATTTCTTGAGACTTCAGCATTGGACGCAA



CAAACATTGAGAAGGCGTTTCAGACAATTTTGACAGAGATCTACCAC



ATCATAAGCAAAAAGGCATTGGCAGCTCAGGAAGCTGCTGCTACTAC



GCTTCCTGGTCAAGGGACCACAATTAATGTCGCTGATGCCACAGGGA



ATGCCAACAAGAGAGGCTGTTGTTCTACTTAAGGCGACACTGTGATT



CAGGAGACAAAATTTGAGTGGTAATTAACCCCAGCAGCTTAGATATG



AGCCCATTTTCTTTTGGGTCAACGAGACATTTGTAGAATATTTGTGG



TGTTCTTTTCCTCCCCCGTTTTATTTTTCTTTTTACTC





33
GCCTCGTGCCGAATGCAAGGCAAACAAGCAAGTGCATTATCTTCGTT



CTGAGTGAGAGAGAGAGAGAGAGAGACCAAAAGACAAGCAAGGTTTC



ACTACAGCTTCTAGAGAGAGAAAATGGAGAGCTTCCCAGTGATCAAC



ATGGAGAACTTGAATGGTGAGAAGAGAGCAATCACCATGGACAAGAT



CAAAGATGCTTGTGAGAACTGGGGCTTCTTTGAGCTGGTGAATCATG



GGATTCCACCCGAGTTTATGGACACGATCGAAAGCATGACAAAGGGG



CACTACAAGAAGTGCATGGAGCAGAGGTTCGGAGAGCTGGTGGCGAG



CAAGGGGCTCGAGTGTGTCCAGACAGAGGTCCACGACTTGGACTGGG



AAAGCACCTTCCACTTGAAGCACCTTCCTGTCTCTAACATCTCCCAA



ATCCCAGATCTCGATGATGACTACAGGAGAGTCATGAAGGAGTTTGC



ACTGAAATTGGAGAAGCTGGCGGAGGAGCTCATGGACCTACTGTGTG



AGAACCTGGGCCTGGAGAAAGGCTACTTGAAGAAGGCCTTCTACGGG



TCCCAAGGACCGAACTTCGGCACCAAGGTTAGCAACTACCCGCCGTG



CCCGAAGCCCGACCTGATCAAGGGGCTCCGGGCCCACACCGACGCCG



GTGGCATCATCCTGCTCTTCCAAGACGACAAGGTTAGCGGCCTGCAG



CTCCTCAAGGATGGCCAGTGGGTTGACGTCCCCCCAATGCGCCATTC



CATCGTCGTCAACCTCGGAGACCAAATCGAGGTGATAACTAATGGAA



AGTACAAGAGCATACTGCACAGGGTGGTGGCCCAGACCGATGGAAAC



AGGATGTCCATAGCTTCATTCTACAACCCAGGCAGCGACGCCGTGAT



CTATCCGGCACCGGCACTTGTGGAGAGCGAGGCAGAGGAGGCCAGCA



AAGCAGTTTACCCAAAGTTCGTGTTCGAGGACTACATGAAATTGTAT



GCTGCTCTCAAGTTCCAAGCCAAAGAGCCAAGGTTCCAAGCCATGAA



AGCCATGGAGTCGAGCCCCAGTTTGGGCCCAATCGCAACCGCTTGAT



TTGGAGAATTTAGGACTTCTCTAAGTGTGGACGCAGAAGAATAAATT



GGCTTTTTTTTTATTATTATTTTTAGGTTATGATTGGACCAACTGAG



GAGATTCTATCCATCAGTTTAAGTACATATTTGAACTCTGTCCCAAT



ATGTACTTTGATTTATGGATTGTAACGATGTACTCAATTGGAAATAA



TAGGAGCGAAAGATCATTTAAAATAAAAAAAAAAAAAAAAAAAAA





34
GAGAGAGAGAGAGAGAGAGAGAGAGAGAGACCAAAAGAGAAACAAGG



TTTCACTGCAATTTCTCAAGAGAGAAATGGAGAGCTTCCCAGTGATC



AACATGGAGAACCTGAATGGTGAGAAGAGAGCAATCACCATGGACAA



GATCAAAGATGCCTGTGAGAACTGGGGCTTCTTTGAGCTTGTGAATC



ATGGGATTCCGCCCGAGTTCATGGACACGGTCGAGAGAATGACCAAG



GGGCACTACAGGAAGTGCATGGACCAGAGGTTCAGAGAGCTGGTGGC



GAGCAAGGGGCTCGAGAATGTCCAGACGGAGGTCCATGACTTGGACT



GGGAAAGCACCTTCCACTTGAAGCACCTCCCCCTATCCAACATCTCC



CAAGTCCCTGATCTCGAAGATGACTACAGGAAAGTCATGAAGGAGTT



TGCAGTGAAGTTGGAGAAGCTAGCGGAGGAGCTCATGGACTTGCTGT



GTGAGAACCTGGGCCTGGAGAAAGGTTACTTGAAGAAGGCCTTCCAC



GGGTCCAACGGGCCGAACTTCGGCACCAAGGTCAGCAACTACCCGCC



GTGCCCCAAGCCCGAACTGATCAAGGGGCTTCGGGCCCACACCGACG



CTGGCGGCGTCATCCTGCTCTTCCAGGATGACAAGGTCAGCGGCCTA



CAGCTCCTCAAGGACGGCCAGTGGGTTGACGTCCCCCCGATGCGCCA



CTCCATCGTAGTCAACCTCGGCGACCAAATCGAGGTGATAACCAATG



GGAAGTACAAGAGCGTGCTGCATAGGGTGGTGGCCCAAACTGACGGG



AACAGGATGTCCATAGCTTCATTTTACAACCCGGGCAGCGACGCCGC



GATATATCCAGCACCGGCACTCATGGAGAGCAAGGCAGAGGAGGCCA



GCAAAGCAGCTTATCCAAAGTTTGTGTTCGAGGACTACATGAAACTG



TATGCTGCCCTCAAGTTCCAGGCCAAAGAGCCAAGATTCCAGCCATG



AAAGTCATGGAGTCGAGCCCCAATTTGGAGCCTATTGCAACCGCTTG



ATTTGGGAATTCTTTTTCGCAATTCTTTGCTTGCAAAAGATGTAGTC



ATACACATTATGGAAGTCCTCTAGGGTTAGAAAGGACTCTGAATTTT



TTGGTGGTGGAAGGAAATTTTTTCCTACCCCAAACTTGATAAAAATT



GTCATTGTGACTCATGTTAGTATTTGACATGATTCGTGTTAAATTAT



TTATGAAATATTGCATGTTATAGTCAAAAAAAAAAAAAAAA





35
GCGAGGACATCATCACCAACGCCGCCATCGAAGAAGGGGCGAATCTG



AAGCGAAAGAAGAGATGAGCGGCGGCAGCGACCTCCCTGAAGAGATC



CTGATCCAGATCCTCCTGAAATTGCCCGTCAAGTCACTTGTACGATT



CCGATGCGTCTCCAAGTCGTGGGACTCCCTCATCACCCACCCATCCT



TCGTCTCCCTCCACCTCCGCCACGCCATGGCGGGCCACGACCGCTCC



GTCATCCTCCTCCGGCACTACTCCCTCACCCAGCGCAAGGAGCGGAA



CACCCTCTACCTCGACGGGGAGTCTTTCTTGGAGCACCAGGAGCTCG



AATTCCCCTTGAAGACCCACGACACTTACTACCTCGCCGGCTCCTGT



AATGGGTTGCTCTGCTTTTCCGACTATATCATCAACAACCTCCAGGT



AATCCTCTGGAACCCTTCCCTCAGGAAGTGCGTGCAGTTGCCGATCC



CGCGGTTCATTGATACTGATCTCACGCACACGTATGTTCTCGGGTTT



GGGTTCGATACGCGGCGTGTCGATTACAAGGTCGTGAGGTTGATTTA



CATTCTGGGGAAGAATTGGTCCGTGATAGTGCCACCGGAGGTTGAGA



TCTATGAGCTTAAAACTAATGCTTGGAGAGGGATCCAGACGGCCGTT



CCTTATGTCATACCAGAATCTTCGTCGCAGGCCTTTGTGAATGGGGC



TATCCATTGGATTGGGTATAACCCAGCTGATAGGCGATTGAAGGTGG



CTTCAAGTCCTAGGTCGATTGTGGTATTATTCGATATGCAGGACGAG



GTGTTTGGGGAAATGGAGTTGCCGAAAGGTGGGGATTATGCGAACAG



GCTGAATTTGTCGCTGGCTGTGCATCAAGATTTGATTTGCTTGTTGC



ATTGCCATCCGATGGAAGAAGATGGGCATCAGTTGTATGGGGTTTGT



TGGGTCTGGGTCATGAAAGAATACGGCGCAGCAGACTCCTGGACTAA



GCTGTTTACCATTAACATCAGTGAACACGGCGGGATCGGGAGGATTT



TAGGTTTTAGGAAAAAGGGGGACGCTCTGCTCGTGACTCACAATGAC



GAGCTGGTTTCATATGACTTGAGGGGTCAGAGAATTAGTCGGCTTGG



ATTGTATGGTGTTGCGAGATCTTTTGAAGTCATCCCATACATGGATT



GTCTAATTTTAGTGTGAGGAGAGCACACACTCTCCAGACAACCATAT



TTCATGGCTGGTTAGGTTGTAGGTAGATTATGTTGGATTTCGCTCTC



CTGAAGGAGTGAAGCATATGACACAAATAATGGAGAACCAGAGTGAT



TAGAGATACTTAGACTTTAGTTGTTGTATACGGGTTGATTGCTGTTT



TCTCTAGAAGTTATTCTGGACTAGTGAAGTATGTCCTTTTACTTATC



TGAATGATTTTTTATTTTTTGGGAGTTTCAGATGGTTGATTGGATGT



ATGCTACTGAAAGTTGGGGCTTCTATTGCTACTGCCAGTTGCCCTAG



CAGAAGAATGATAATAATTTCTTTGTTCCAAAAAAAAAA





36
CCCGTAGCGTCGACCACGCCAACTACCTTTCATTCGTGCCCGTCGAT



ACTCCAACGAACTCCAGTCCTCCTCCCCCTCTCCGTCTCGGTCGCGC



TCCCCGCACGCCGACCTTCGATTTCGACCAGCGGTTCTCTCGAGCTC



CCGCGCGTCCGCCGATCCGAGCGTCCGCCGGATTCACCTCGTCGGAG



CCGCCATGGGTTGCTCCTCTTCGCTTCCAGATAGGGCTTCTGGGAGA



TTGGGCGGGCTCAATTCGGAGAACGGTGCAGTGAACGACGCGAAGAA



CCTGCGTGTTAAGCTTGTACTTCTAGGGGATTCTGGTGTTGGGAAAA



GTTGCATTGTACTTCGCTTTGTCCGTGGTCAGTTTGATCCGACATCT



AAGGTGACTATTGGAGCATCGTTCCTGTCACAGACCATAGCTTTGCA



AGATTCTACGACAGTTAAGTTTGAAATATGGGACACTGCTGGTCAAG



AGAGGTATGCTGCCCTGGCCCCACTTTACTATCGGGGTGCTGCGGTT



GCGGTAGTGGTTTATGATATAACAAGCCCGGAATCATTTCAAAAAGC



TCAGTACTGGGTCAAGGAGCTTCAAAAACATGGAAGCCCTGATATGG



TTATGGCTCTGGTTGGAATAAAGCTGACCTTCAGGAGAATAGAGAAG



TGACGGTCCAAGATGGGATTGACTATGCTGAGAAGAACGGCATGTTT



TTCATTGAGACATCTGCTAAAACTGCAGATAATATAAATCAGCTGTT



TGAGGAAATTGCCAAGCGACTTCCACGTCCAACACCGTCATGATTGG



GAAGTTCATACCGTGTTTAAAGCCGCAGATGATGTTATTGGAGTCTT



CAACGGCGGTGATGTAAAATATCTATCCCAATGTATACCTCCTGTCC



TGGAATTCTTTGGTCGACAGTTACTTTCATTTGTCCATGAATTCACT



CCACATAAGTTGTAAGATGATCAATCCTCAATTGTACCAGAGAGAGC



TTGCGAAAAAAAAAA





37
GCAGCAGCAGGCGCAGCAGAAAGGAAACAAAAACAGGGAGGAAAGGA



AAACGACCTTTCCCACTCAAAAGCTCCTCCCTTTTTCATTTGCATTT



CTGCATCCACACAGGCACAGGGAGACAAGGGGACCGAGTCAGTGAGT



CGGAACGGTTGACCGCGGAATCTCCCCCCCCCAACAAAAAGCCATCG



CCCAACTCAGGCCAACAGTCAAAACCCACCTTAACCGAATTCCCCCA



GATCAATCCCCTCTCTCTCTCTCCTCCACTGTAACGGAATCGCGACC



CCCAAATCCTAGGGCTTTCTTTCTCTCTCTTTCTCTCTCTATTTCTA



CCACCACCATCACCACCACCGATGGACGGCGGGGCTCCTCAGCCGGC



GGATACCGTCATGTCGGAGGCGGCGCCGGCGCAGCAGCAGCAGCAGC



AGCCGCAGCAGGCGCAGCCGCAGGGGATCGAGAACATCCCAGCGACG



CTCAGCCACGGGGGCCGCTTCATCCAGTACAACATCTTCGGCAACAT



CTTCGAGGTCACCGCCAAGTACAAGCCCCCCATCATGCCCATCGGCA



AGGGCGCCTACGGCATCGTATGCTCGGCTTTGAATTCGGAGACGAAC



GAGCACGTGGCCATAAAGAAGATTGCTAATGCTTTCGATAACAAGAT



CGATGCGAAGAGGACTCTCCGTGAGATCAAGCTTCTCCGGCACATGG



ACCATGAAAACGTTGTGGCAATTAGGGATATCATTCCACCGCCACAG



AGAGAGGTGTTCAATGATGTTTATATTGCATATGAGCTTATGGACAC



TGATCTGCATCAAATTATTCGTTCCAACCAAGCATTGTCTGAGGAGC



ATTGTCAGTATTTTCTATATCAGATCTTGCGAGGATTAAAATACATA



CATTCTGCAAATGTTCTGCATAGAGACTTGAAGCCCAGCAATCTTCT



CCTAAATGCAAATTGCGATTTGAAAATATGTGATTTTGGACTAGCTC



GTGTCACTTCTGAAACTGATTTTATGACAGAATATGTTGTCACAAGA



TGGTACCGTGCACCAGAGCTATTGTTAAATTCTTCAGACTATACGGC



GGCAATAGATGTATGGTCTGTAGGCTGTATCTTTATGGAACTAATGG



ATCGGAAACCCTTGTTTCCTGGCAGAGACCATGTGCAACAGCTGCGT



TTGTTGATGGAGCTGATTGGCACCCCATCAGAGGCAGAGTTGGGGTT



CTTAAATGAAAATGCTAAGAAGTATATCAGACAGCTTCCTCTGTACC



GTCGGCAATCTTTCACTGAAAAGTTTCCCCATGTCCACCCACTTGCA



ATCGATCTCGTTGAGAAGATGTTAACGTTCGATCCCAGGCTGAGGCT



CACAGTTGAAGAGGCATTGGCTCATCCCTACCTAAACTCACTGCACG



ACATCAGCGATGAGCCGACTTGCATGAATCCATTCAACTTCGACTTT



GAGCAGCATGCACTCACGGAGGAACAGATGAGGGAGTTAATTTATAG



GGAAGCGCTTGCATTTAATCCCGAGTATCTACAGTAATGGAAGTCAT



GCTGTTAGTATTTGGTGGCTGTTCTCGAGTGTGATGCCCGCGCTTTA



ACATGGCGATGATTTATTTCTTCATGTACATATGGTTTATCCTATTG



TTGGATGGCTCTGCTATTGAATTCTTTTCATGACTTCGAGAACCATA



AGAATTTTCAAAAAAAAAA





38
TTCCCTCTTCCTCTTCCCTTCCGTTTCGAGCTCGCTCCATCTCCTCC



GACGAAAGATCCGAGCCCCCTCCTCCTCCCCCAGCACCATCCGGGCC



CGATTCGGGTCGGGTCGGGTCGTCCGGAGCGGACCCTCTCCTCCGCG



CTCTCCTCCGATGGAGTCGTCGAGCTCGGGAGGTGCCTCGGCGGAGC



ACAGCGTCCGCGGGATCCCCACGCACGGCGGGCGCTACGTGCAGTAC



AATGTGTACGGGAACCTCTTCGAGGTCTCCAGGAAGTACGTCCCCCC



GATCCGCCCCATCGGCCGCGGCGCCTACGGTCTCGTCTGCGCTGCCA



TGAATTCAGAGACAAATGAGGAGGTTGCCATCAAGAAGATTGGCAAT



GCGTTTGACAACAGAATAGATGCCAAGAGGACTTTACGAGAAATTAA



GCTTTTATGTCATATGGATCATGAGAATGTTATTGGCCTTAAAGACA



TTATACGTCCACCAAGTAGGGAGAACTTTAATGATGTTTACATTGTG



TATGAATTGATGGACACTGATCTCCATCAAATTATCCGTTCCAATCA



GCCATTGACTGACGATCACTGCAGGTACTTCTTGTATCAGTTGCTTC



GAGGTCTCAAATATGTGCATTCAGCAAGTGTTCTGCATCGCGATCTG



AAGCCAAGCAACTTGTTTCTGAATTCGAATTGTGACCTTAAAATTGG



AGACTTTGGGCTAGCTAGGACCACATCTGAAACGGATTTTATGACTG



AGTATGTAGTTACTCGCTGGTATCGTGCACCAGAACTGCTCCTTAAT



TGTTCAGAGTACACTGCTGCGATTGATATTTGGTCTGTGGGTTGCAT



ACTTGGTGAAATTATGACTAGGCAGCCCCTATTTCCAGGCAAAGACT



ATGTCCATCAGCTGAGACTTATTACAGAGCTTATAGGATCTCCTGAT



GACTCCAGCCTTGGGTTTTTAAGAAGTGATAATGCACGAAGATATGT



AAGACAGCTTCCACAGTACCCAAGACAGCAATTTTCTAGTAGATTTC



AGACTATGTCTCCAGGTGCTGTTGATCTCCTAGAAAGGATGCTCGTC



TTTGATCCCATCAGGCGAATAACAGTTGAGGAGGCTTTGTGCCACCC



TTATTTGGCCCCTCTACATGATATAAATGAGGAACCCATTTGCCCGA



CTCCCTTCATTTATGACTTTGAGCAACCGTCATTTACTGAAGAAAAC



ATTAAGGAGCTCATTTGGAGGGAGACTCTGAGATTCAATCCAGATCC



CATGCATTAGGGATTTGCGACAGGTTGTCGCTTTGTTTAGTAATGTT



CTACACTTAACTGGTTGGATGTTTCATTCAAAAAATGAAACAAGTGT



GCTGTAGATAGCGAAATTAGTTTTGAAGTTTTCTACACAGCTGGACA



AAAGTTCTTTGAGCTTGGATGCTATGTATGCTTGTAATGTTCAACTT



GTTCAGCCGATGATAAAAGGTCTTCACTCTTGAGGCTTAAAAAAAAA



A





39
GCCCAAGTTCGCATCTTTCGTCCTTTCCCCACGTACCCATTTGCTCA



TTCCGCCGGAATTCGGCCGGAATTCCTCCCCCGCCGCCGCAATGGGG



CAGGTCCCGTCTTCCGCCTCCTCCTCCCCCGAGCCCAGCCACCGCGG



CGGCGCGATCTCGTCCAGCCACCGCCTCGACTCCCTCCCCTCCCTCG



AGTTCGTCTCGTCGTTCGAGGACGAGGAGGACGCCGCCGCCGCCGAC



GAGGGGGCCGCCGCTGGGTACGACTACACCGGCGACCTCCCCGACGA



GTGCCTCGCCCACGTTTTCCACTTCCTCGGCACCGGCGACCGGAAGC



GGTGCTCCGTCGTGTGCCGGCGGTGGCGCCGCGTCGACGGGGAGAGC



CGGCACCGGCTCTCGCTGAACGCGCAGGCCGACCTGCTCTCGTCGCT



CCCCTCCGTGTTCTCCCGCTTCGACGCCGTCACGAAGCTCGCGCTCC



GGTGCGACCGGAAGTCGGTCAGCCTGGGCGACGAGGCGCTGGTCCTG



ATCTCCCTCCGGTGCCGCGGCCTCGCCCGGCTCAAGCTCCGCGGCTG



CCGCGAGGTCACCGATCTCGGGGTCGCGGCCTTCGCCGAGAACTGCC



GGCAGCTGAGGAAGCTCTCCTGCGGGTCGTGCTCGTTCGGCGCGAGG



GCCATCAATGCGGTGCTCGACCACTGCGTGAATCTGGAGGAGCTGTC



CATCAAGCGCCTCCGGGGAATCCACGACGGCGCCGAGCCCATCGGGC



CGGGAGCCGCGGCGAAGTCGCTGAGATCCATTTGCTTGAAGGAGCTC



ATCAATGGTCAGTGCTTCGGTCCTCTCCTGGTCGGAGCGAGAAAGCT



CTCGACTTTGAAGTTGATTCGCTGTCTGGGCGATTGGGACAATGTTC



TCCAGACAATTGGGAGCTCAAATCCAGGTCTATTAGAAGTTCATTTG



GAGAGAATTCAGGTGAGCGATGGCGGTCTTTGCGGGATCGCGAACTG



CAAGGGTATCGACAGTCTGCATGTCGTGAAGGTCCCCGAGTGTTCGA



ATTTAGGTCTTTCTAGCATTGCTGAGAATTGCAGGCAATTGAGGAAG



CTTCACATTGATGGGTGGAGGATAAACAGGATAGGCGACGAGGGTCT



GGTCGAGGTCGCCAAGCAGTGCCTCCAGTTGCAGGAGCTGGTCCTGA



TCGGCGTCAGCGTGACCCATTCTAGCTTGGCCGCAATCGGTTCCAAT



TGCAGGAAATTGGAAAGGTTAGCCTTCTGTGGGAGTGACACGGTCGG



TGATGCGGAGATTGCGTGCATTGCCGCCAAGTGCGAGGCCCTGAAGA



AGCTCTGCATTAAGAATTGCCCCATTACTGATGTCGGGATCGAATCC



CTTGCTCAGGGGTGTCCCAATCTGGTGAAGATTAAGGTGAGGAAGTG



CAGGGGAGTGAGCGGGCAAGTGGTGGAGCTGTTGAAGGAGCGGAGAG



GGTCGCTGGTCTTCAATTTGGATGCCTGTGGAATCGAAGCATTGGAC



GATATCAGAGGAGTTCAAGAAAGTGTTATGGAGTTCCCTCCTGTGAA



TACTTCCGATGCGCCGTCGAGTAGCAATGAGAGGTCAATGTTGTTTA



GGGCGAAGCTAGGTCTTTTCGCGGGTAGGAATTTAGTGGCCTGCACC



TTCAGGAGGTGGTCAAATGGTGAACATAGCACCAATGGAAACTTGTG



AATTCCAATTGTTGTAAGCGCTGAAAATTGTTTTGTTGACATTTCGT



TGTGTTTAGACCTTCCCTAGGCAATTCTTGTTCGCAATGATGTACCT



ATTATCGCCCTTTTGCCTCGTGCAACTTTTCTTGGAAATGAAACTCG



AGTTCTTTTAAAAAAAAAA





40
GGCTCCAAAACAACCAAATAACTCACACTGAGCTCTTCCTCCTCCTC



CTCCTCCTCCGCCTCTATATGGCCGTCCAGATCTAAACACCACTTCT



GCCCTTCTCTCTCTCTCTCTCTCTCTTGCCTTTCCCTCGGAGCCAAT



CAAGAAGAAGCTAGAGCTCCGGTCCTCGCTCCCGAGATTCATGGCGT



ACTCGTTCCCGGAGGAGGTGCTGGAGCACGTGTTCTCCTTCATCGGC



TCCGACCGGGACCGCAATGCCGTCTCCCTGGTGTGCAAGTCGTGGTA



CGAGATCGAGCGCTGGTGCCGGCGGCGCGTCTTCGTCGGCAACTGCT



ACGCCGTCAGCCCCGCGGCCGTCGTCCGGCGCTTCCCGGAGGTGAGA



TCCGTCGAGCTCAAGGGCAAGCCCCACTTCGCCGACTTCAACCTCGT



CCCCGAGGGCTGGGGCGGCTACGTCTCCCCCTGGATCACCACCCTGG



CCCGCGCCTACCCTTGGCTCGAGGAGATTCGGCTCAAGCGGATGGTG



GTCACCGACGAGAGCTTGGAGCTGATCGCCCGCTCGTTCAAGAACTT



CAAGGTCCTGGTTTTGTCCTCTTGCGAGGGGTTCTCGACCGACGGGC



TCGCCGCTGTTGCCGCTAATTGCAGGAACTTGAGGGAGCTTGACTTA



CGGGAGAGTGAAGTGGAAGATATGAGTGGACATTGGCTCAGTCATTT



CCCTGATTCATATACATCACTCGTATCCCTCAACATTTCCTGCTTAG



GCTCTGAGGTAAGCTTCTCTGCCTTGGAGCGCCTGGTGAGTCGCTGC



CCCGACCTGAGGTCTCTCCGACTCAACCGCACCGTGCCACTTGATCG



CCTTGCCAATTTACTTCGACGGCCCCCACAGTTGGCTGAATTGGGCA



CGGGCGTTTATTCTGCTGAACTGAGGTCTGATGATTTCTCGAATCTA



GTTGGTGCTCTAGCTGGCTGCCGAGAGCTGAGAAGTCTGTCTGGATT



TTGGGATGTGGTACCTGCATATCTTCCAGCTGTATATCCCCTATGCT



CAGGGCTTACATCGTTGAACTTGAGCTATGCTACCATCCAAAGCTCT



GAACTTACAAAACTTATCAGTCAATGTCACAGTCTGCAGCGCTTATG



GGTACTTGATTATATTGAAGACAGCGGTTTGGAAGCCCTGGCTGCAT



GTTGCAAAGATTTACGGGAATTGAGGGTGTTTCCCTCTGAGCCCTTC



AACCGTGAAGGAAATGTATCTTTAACGGAGCAGGGCCTTGTGTCAGT



GTCTGAGGGTTGCTCCAAGCTTCAGTCAGTTTTGTACTTCTGCCGCC



AGATGTCTAATGCGGCCTTACTTACCATAGCTCGGAACCGTCCTAAC



ATGACTCGATTCCGACTTTGTATCATTGAACCACGTTGTCCTGATTA



TATAACTCATGAGCCACTCGATACAGGCTTTGGAGCCATTGTCCAAC



ACTGCAAGGATCTCCAGCGTCTCTCTCTATCAGGTCTTCTAACTGAC



CGTGTGTTTGAGTACATAGGGACTTATGCAAAGAAACTTGAGATGCT



TTCTGTGGCATTCGCTGGAGACAGTGACTTGGGACTGCACCATGTGC



TATCGGGGTGCGACAGTCTTAGAAAATTGGAGATCCGGGACTGCCCG



TTTGGTGACAAGGCGCTTTTGGCCAATGCTGCAAAGCTGGAGACAAT



GCGATCCCTTTGGATGTCTTCTTGCTCAGTGAGCTTCGGAGCATGTA



AGCTGCTTGGTCAGAAGATGCCCAGGCTTAATGTCGAAGTCATTGAC



GAGAGAGGCCACCCGGATTCAAGGCCTGAAAGCTGCCCGGTCGAGAA



GCTTTACATCTATAGAACGGTTGCAGGTCCGAGGTTCGACATGCCTG



ATTTTGTTTGGACAATGGATGAGGATTCTGCTCTGAGGCCTTCTTGA



CAGCTTTCATTCAACCGTTTGCTTTTTTTCCTCGTGGCACTATGGTG



TGGTGACTGTGACAGTCAAAGCAGGTACATGCTCTTCACCGCCCTCT



TTCATGCAGGTCTAATTTCTTTTTAGCTTAGTATTAGCAGCTGTTAT



TGGTGGTGACATTAGCTGTGGGAAGGGTATATGGAGGCTCAAGAGCT



CTTTAGCCGAAGATTTTGCACTTGGCTGAGCTATGGATACCAATGCA



TTGTTAAATAAAAGAGGACCCTTTTTGCTTTTGCTGTTGTTGTTGTT



ATTGTTGCTGTTGTATGTGTATCAAGACATGGTTATTTAATTTGGGT



TAAAAAAAAAA





41
CTCCTTCTTCTTCCTCTTCTCTCTCTCTTTCCCCCCAACATTTTCAC



GAACACCTGCCGGACGGAGAGAGACCTGCAGCTGGGTTGCCGGAGAG



GAAGAGGGAGAGAGGGACAATGGCGCAGTACGAGGAGGACAACGCCG



AGTTCTACGTGCGGTACTACGTGGGCCACAAGGGGAAGTTCGGGCAC



GAGTTCCTGGAGTTCGAGTTCAGGCCCGACGGGAAGCTGCGGTACGC



CAACAACTCCAACTACAAGAACGACATCATGATCCGCAAGGAGGTCT



GGCTCACCCCCGCCGTCCTCCGCGAGTGCCGCCGCATCATCTCCGAG



AGCGAGATTATGAAGGAAGATGATAGTAACTGGCCAGAACCTGACCG



TGTGGGACGGCAAGAACTTGAGATTGTAATGGGGAATGAGCACATTT



CCTTCACTACCTCAAAGATTGGTTCCCTTGTTGACGTGCAGACAAGC



AAGGACCCTGACGGGCTTCGGATATTCTACTATCTTGTTCAGGACTT



GAAATGCTTTGTGTTCTCTCTCATCTCCCTCCACTTCAAGATCAAGC



CAATCTAAGGAGGACTTCTTCCAAGCATCTGAATCCCAATTGTTTGA



TCCTTTTGGCGGTAGCCTCGTGGTCTGTCATTGATTGAGCAGCATGC



ATATTGTGGTATTGTGCACTTTGAGTATTGACTGGTGGAATCTCCTT



GTTGAGTTTTGGGTTTGTAACTAAAAGATGCTTTTAACTCGAAATGC



CAGACACCTCTCTCTCTCTCAAAAAAAAAA





42
GGCATTGTTCCTTCGCAGTCGAGTCGAGTCGAGTTCGCTTCCCGCTG



CCGCTGACGAAGGGTCCCATCTGCTCCTGCTCCTGCTCCTGCTCCTG



CTTCGGCTTCATCCCGCTCTCCTTTTCTCTGCTTCTTCTTCTTCTTC



GTCTTCTTCCGACCAATCCCCCAAAAGAGAAGAGGAGGAAGAGGGAG



GGATAAAGTAGGGGGAGGAGGGGTTGGAAATGGCGAGGAGAGCGGAG



GAGGAGTACGATTACCTGTTCAAGGTGGTGCTGATCGGCGATTCCGG



GGTCGGCAAATCCAACCTCCTCTCCCGATTCACTCGCAACGAGTTCT



GCCTCGAGTCCAAATCCACCATCGGCGTCGAATTCGCCACCCGCACC



CTCCAAGTTGAGGGAAGGACTGTTAAAGCACAGATATGGGACACCGC



TGGCCAGGAGCGATACAGAGCGATCACCAGCGCCTACTACAGGGGTG



CCCTTGGGGCTCTTCTTGTATACGATGTGACAAAGCCGACTACTTTT



GACAATGTGAGTCGATGGCTGAAGGAGCTGAGGGATCATGCCGATTC



CAACATTGTCATCATGCTAATTGGGAACAAGACTGACTTGAAGCACC



TTAGAGCAGTGGCTACTGAAGATGCCCAGAGTTATGCCGAGAAAGAG



GGCCTCTCGTTCATCGAGACATCTGCCCTGGAAGCGACCAATGTGGA



GAAGGCTTTCCAGACTATTCTCTCAGAGATATACAGGATAATTAGTA



AGAAGCCTCTGTCCTCAGAAGATGCAGCCCCGGCCAACATTAAAGAA



GGGAAAACCATTGTAGTTGGCGAATCAGAAGCCAACACGAAGAAGGC



ATGCTGCTCTTCGTCTTGAAGATCATCCTATGTTCTTTTCCCTTACC



ATTGTGGTCCTTGTTTCCTTAGTTTCTCTGCTGGTTTATATGTTGTC



TCCAATTTGTTTTTCTTCTTTCTCTTTCTTTTCCAATTTTTTGACTG



TTTCCAAGATTATTATTGGGTCATTTGACGAAAAAAAAAA





43
GCTTTTCTTTTATCCCAACTCTCAAATTTATTCCCCGCCCACTCCTC



CCTCATTTCCCCTGCACAGGAAAAAAGTCGGCTCACATATATAGCTT



CCTGAATGCAATGGCAGTTGATTGCCTCACAAGTAAAACCTCACCAG



CCATGCCTCCGCAGCACAAAGATGAAGCCAGAGAGGATAAAAAACAT



CTAGTTTTTGACGCCTCGGTGATCCGGCACCAACCCGACATCCCGAA



ACAGTTCATTTGGCCCGACGAGGAAAAGCCGTGTGCGAACGCCCCGG



ATCTCGCCGTCCCGCTCATCGACTTGGACGGGTTCCTCTCCAAAGAC



CCGAGTGCCTCCGAGGAGGCATCGAGGCTCGTGGGGGATGCGTGCCA



GAAGCACGGCTTCTTCCTTGTCGTCAATCACGGCGTGGATGCTGGCC



TCATATCGGACGCTCACAAGTACATGGACAAATTCTTCGGGTTACCG



CTCAGCGAGAAGCAGAGGGCTCAGAGGAAGCTCGGTGAGCATTGTGG



ATATGCCAGCAGTTTCACTGGCAGGTTCTCTTCCAAGCTCCCATGGA



AAGAAACGCTTTCCTTCGGCTACTCCGCCGAGAAAAGCTCGGCCAAT



GTCGTGGAAGACTACTTCAAGAACACCATGGGCGAAGAGTTTGAGCA



ATCCGGGAGGGTGTACCAGGACTATTGTGAGGCCATGAGCAGACTGT



CTCTAGGAATAATGGAGCTGCTAGGAATGAGCCTAGGAATCGGCAGA



GACCATTTCAGGGAGTTCTTCGAAAGCAACGATTCGATCATGAGGCT



CAACTACTACCCTCCGTGCCAGAAGCCGGACCTCACCCTAGGAACCG



GTCCCCACTGCGACCCGACATCCTTAACCATCCTACACCAGGACCAA



GTTGGCGGGCTCCAAGTGTTCGTCGACAACGAGTGGCGTTCCATCAG



CCCGAACTTCAACGCGTTCGTCGTCAACATCGGCGACACTTTCATGG



CTCTATCAAACGGGCTATACAAGAGCTGTTTGCACAGAGCAGTGGTG



AACAGCCGAACTCCGAGGAAGTCCCTCGCCTTCTTCTTGTGCCCGAG



GAGCGACAAAGTGGTGAGACCACCGAGTGAGCTAGTCGCAATGTCCT



GTCCGAGAGCGTACCCGGACTTCACATGGCCGGTGCTCCTCGAGTTC



ACTCAGAAGCATTACAGGGCCGACATGAACACGCTCCGAGCATTCAC



CAACTGGCTTCAACAGAGAACATCTGAACCAGTTCGGTGATGAAGAT



TTGTCACAAGTAGAGAGATCTATTTGGAGGTCCGAAAAGTTGCGGCT



AACAAAGGGGTGAAAGAGCCTCTCTGCCAAAGCAAAGAAGATGACAT



TGACGACGACAAAGAAGAGAGATCAAAAGGGAAGTGGTGGGTTTTTT



TTAAAGGACGTTGGAGAGGGACAAACAGAGAGTTAGAGGAAAAGCCA



AAATATCTTTTACCTTCAAGGGTACGTCTTCTGTAGCCAGATAGTAC



TGGCACCCATGATGGTCACGATGATCAAAGGGCAAGAGATCAAGAAA



CATGAGAACCAATAAAGAGCTGTAATACATCAGCTAATTTTTGTTTT



GTTTTTTTCCTTCTCCTTTTGTCCTTGGTTAAGGTAGAAAAGTTTAC



CCCACAGTAACCCCTGCCTTGATGTAAATTTTGCATTTTGG





44
GCTCGTGTCCACCTACAAGTCAAATTCCGCTTCGATTGTCCGGTCCG



ACTCCCCGACCCAAGGAAGGAACGACGTCAAAAAAAAAAAAAAATAC



GAACTTTCTCTGCCTCAAGACTCGCTAGGAAGTTGTCTTCTTTGAGA



GCTCCGATCGGCATCAATGGCTTCTCGCCGGCGCATGCTCCTCAAGG



TCATCATCCTCGGCGACAGCGGGGTTGGGAAGACTTCTCTGATGAAT



CAGTACGTGAATCGCAAGTTCAGCAATCAGTATAAGGCGACGATCGG



AGCTGATTTCTTGACGAAGGAAGTTCAGTTTGAGGACAGGCTGTTCA



CATTGCAGATATGGGATACAGCTGGCCAAGAAAGGTTTCAAAGTCTT



GGTGTGGCTTTTTACAGAGGTGCCGACTGCTGTGTTCTTGTGTATGA



TGTGAATGTAATGAAATCATTCGACAATCTAAATAACTGGCGGGAGG



AGTTTTTGATTCAGGCCGGTCCTTCTGACCCTGAAAACTTCCCATTT



GTCGTTTTGGGTAACAAGGTGGATGTCGATAATGGCAATAGTCGTGT



GGTTTCTGAGAAGAAAGCGAGGGCTTGGTGTGCTTCCAAAGGAAACA



TTCCTTACTTTGAGACCTCTGCCAAAGAAGGATTTAACGTGGAAGCT



GCTTTTGAGTGTATAGCCAAAAATGCTTTGAAGAATGAACCAGAAGA



AGAAATATATCTTCCGGACACCATTGATGTTGCGGGTGGAGCACGGC



AGCAGAGGTCCACCGGCTGCGAGTGTTGAAGAGTCCAACAGTACATC



AATTCCCTTGGGATGCGTATACGATGCGGCTCAAGGTGTATCAATTC



GTGTTACAGATACCATTCTCTTATGTATTGTCAAAAGCAGAGTAAAA



AAAAATTCTTCCTAAAGGATTGATGTAGAGAACCGTTGAACTTCCCA



GTGTGCATTTGTATCATAAGCCAATCAGGGAGACCTTGTTTGTTTTT



TCATCTTTTCACACCTATTTGGTTCCATGATATCTTTGGTCACCCTG



AAATTCTTAATATCTTTTCCTAAAAAAAAAA





45
GGAATAAAAGGGCATCTACATTGACTTGGATCTAAAAAGATTCGATT



TTTTGTATTTTTCCGAGCTGAATTTCAGGAATTATAGCTTCCTTTCC



AGTACCCATTGAAAGAGCACCCCCGTGGGCCGTCGCTGCTCCCTCGC



AGATTCATGGAGTGAGAAATCTGAAGGGGAGAACGCTGATGATGCAG



ATCCGAATGAAACCCCACGTTGGGTTCTTCCTCCCGGTTGCCCTGCA



TCGATCCCTGTCGTCGCTTCCTCCGAATCCAGTCGCCTGACCCGTGC



AGGTACGCTCAGTGGGACATTGACCAACTCTCTTGTCCTAATTTTCC



ATCACAAGCTACTATATGGGAGCTAGCTAGGCACCAGAGCAGAAGGT



GTCTGTTCCGGCCAATACTACCTCGATTTGTCAGCTCCTATTTTATT



GCTTGCTTGAGAGTCTAATTCATATTCGTACATTAAACTCCCAAACT



CTTCCCTCGATTGCCACATCATCAACCAGCAAAGACATTCAAAACTC



AAAGATGCTCACCATCTCGGATGAGAAACTCTTTCACAACTGCCTGC



TCGCTCTCTACCTCATTGGACCGCCCACCTTCATCTCCCTACGATAC



ATCCAAGCCCCTTATGGCAAGCACCACCGCTCAGGGTGGGGCCCCAC



CATCTCCCCAGCCCTTGCTTGGTTCCTCATGGAAAGCCCCACTCTTT



GGCTCACGCTCTTGATTTTCCCCTTTGGCAAAAACTCCTCCAACGCC



AGATCCCTCATTCTCATCTCCCCTTTCCTCTTTCACTACTTTCATCG



AACAATCATATATCCACTGCGCATCAGATCAAGCGGTGGTCAGAGAA



GTACTCAACCAAATGCTGCAAATCGTTTTCCGGTCACTGTGGCCTTC



ATGGCATTTGGGTTCAATCTCTTGAATGCTTACGTGCAAGCCAGGTG



GGTGTCTAATTACGAGAGTGACGGTGCTGCTGGTGGGTGGTGGTTTT



GGGGGAGATTCTTGGTGGGATTGGTGATATTTGTTAGTGGGATGTAT



ATGAACATGTCATCGGACATGGTGTTGGTGGGGTTAAAGAGGGAAGG



GAAAGGGTATCGAGTGCCAAGAGGAGGGTTGTTCGAGTTTGTGAGCT



GTCCCAATTATTTTGGAGAGATTGTGGAGTGGCTGGGATGGGCTGTG



ATGACATGGTCTTGGGCCGGCTTCGGGTTCTTCCTCTACACGTGCGC



CAACTTGGTGCCTCGGGCTCGTGCAAACCACAGGTGGTATTTGGATA



AATTTGGGGAGGAGTATCCCAAGAGCAGGAAAGCTGTCATTCCATTC



TTGTATTGATCAATTCATAAGGATGCTTGCAAACAGGGAAATGAAAA



ATATGGATGAAACTGGACGTGATTTGTACCCAACGTTTCTTCTTGTT



AGAGCTTTTCCAAGAAAAATTTGTAATCCCCCTGAATAATGGAGTTA



CTATTGATCAGTGGATATTGCTTACTATGTTGTTCAAAAAAAAAA





46
GATCAGGGGCGGGGCCGGTGGGGACAACGAGAAAGATTCTCTCTCGG



TCGCCGCCGTCGCCGTCGTGTCGCCGTCGTCGCCAGTCACTTCGCAC



TGTGTCTGCCGGTCTCCGCTGGAGCTCCTCTGTACCGCTTTAGCGAA



GTCTACTCCAGCAAGTCAAGCAGACTACCTAAGCAACCCGCTCCTCT



CTCTCTCTCTCTCTCTCTTTCTTTCTCTCTCTATCTCATCGATCGAG



TTCACTCCCGAACGGAGAGAGGCGGAGCGGAGGAAGGAGGAGAGAAA



ATGGCGGAAGCGAAGACCGTGCACTCGCCGCTCGTCACCTACTTCTC



CATGCTGTCGCTCCTCACCCTCTGCCCTCCTTTCGTCATCTTGCTAT



GGTACACGATGGTGCATGCTGATGGGTCTATCGTCCAAACTTTTGAT



TACCTGAGGCAGCATGGACTGCAAGGATTCCTAGACATATGGCCCAG



GCCGACTGCCGTCGCTTGGAAGATCATCGCCGTTTATGCTGCATTTG



AGGCGGCGCTGCAGCTCCTTCTTCCAGGAAAGACAGTCAAGGGCCCT



ATATCTCCTGCTGGGAATCAGCCAGTGTATAAGGCAAACGGAATGGC



AGCATATTTTGTGACCTTGATCACCTATCTTGGCCTTTGGTGGTTTG



GGATTTTTAACCCCACGGTTGTTTATGATCACTTGGGCGAAATATAC



TCCGCACTCATTGTTGGAAGCTTCATCTTTTGTATTTTCTTGTACAT



TAAAGGTCATGTGGCACCATCATCTACCGACTCTGGTTCTTCGGGGA



ATATAATAATCGACTTCTATTGGGGTATGGAGCTCTATCCTCGGATT



GGCAAGGACTTTGATATTAAAGTCTTCACAAATTGCAGGTTCGGAAT



GATGTCTTGGGCAGTTCTTGCTCTAACCTATTGCATAAAGCAGTACG



AACAGAATGGAAAAGTTGCTGATTCAATGCTCGTGAATACAATATTG



ATGTTAGTGTATGTCACCAAGTTCTTTTGGTGGGAAGCCGGCTATTG



GAACACAATGGATATTGCACACGATCGAGCTGGCTTCTACATCTGTT



GGGGATGCTTGGTATGGGTCCCATCCATCTATACCTCTCCTGGCATG



TATCTCGTCAATCATCCTGTTAACCTGGGAACTCAGCTCGCACTATA



TATTTTGGTAGCAGGCATTCTGTGCATATATATCAATTATGATTGCG



ACAGACAGAGGCAAGAATTTCGCAGAACAAATGGCAAGTGCTCAGTA



TGGGGGAAGGCTCCATCAAAGATATCGGCTTCGTACACTACAACATC



TGGAGAGAACAAAACTAGCCTCCTCTTGACTTCAGGATGGTGGGGCT



TATCACGTCATTTTCATTATGTGCCCGAGATTCTTGGAGCCTTTTTC



TGGACTGTCCCTGCACTATTTAATCATTTTCTGCCTTACTTTTATGT



GATCTTTCTCACAATCCTATTGTTTGACCGGGCAAAAAGGGACGACG



ATCGGTGTCGATCAAAGTATGGGAAGTACTGGAAGCTATATTGTGAG



AAGGTTCGATACCGAATTATTCCTGGTATTTACTGAGGTTCAGCAAG



AACTCCTGTATGGGGAAGATATGGTCGGGCGAAAGGAGTCCACATGG



ATCGGCTTTGGCTCGTTCTCATGTACTTCAGAAGATGTCCCTGTACT



TGGTTTTATAGGAGATGCCAGCGGTAGAGCTACTTTTCGTGTTTCAT



GCATGCAGCAGCATTTAACATTGCGTTTATCTTTGCTACTCCAATTC



GGAATGACTTTGTATCGAACTCAGAGTATCGGCACTCAGTAACTGTA



GCTTTAGTTTGAACCGGCTGCCCTGAACGTTGAGGTTTTTCAGACTG



CAGTCTATTTCTGCTTGTATGTTGACTTGACGTAGAAATTGCGTGGT



GGGACTTATTTCGAACGGTGTGTGATTTAA





47
GCTCTCTCTCTCTCTCTCTACTCTTTCTCTCTCTAACTCTCCGTCCG



CCATTGAAGCTTCTCCTCCAGCGCGGAACCCTAGAGGCATGAAGGCG



ATGAGGAGCACGAAGCCGCTGAAGCCCCTCAAGCTCGCGGTCCCCGC



TCCCGACGCCCCGATCGCCTCCTTCTTGACTGCGAGTGGCACGTTCC



ATGATGGGGATTTGCTATTGAACCACAAAGGTCTGCGGCTCAAGTCT



GAAGAAAAGGAGTCTTGTCTTTCCAATGGTAAGGAACTTGATCTTGA



CTTCTCATTGGAAGACCTTGAGACTATCAAAGTCATAGGAAAGGGAA



GTGGTGGTGTGGTACAACTTGTTCGCCATAAATGGGTTGGAAAACTA



TTTGCTCTAAAGGTCATCCAGATGAATATACAAGAAGAGATCCGTAA



ACAGATTGTACAAGAGCTAAAGATAAATCAAGCTTCTCAATGTCCAC



ATGTCGTGATTTGCTACCACTCGTTCTACCACAATGGAGCTTTCTCC



TTGGTGTTAGAGTACATGGACCGTGGATCCCTGGCTGATGTGATCAG



ACAAGTTAAGACTATTCTAGAACCATATTTAGCAGTGGTCTGTAAGC



AGGTCTTACAAGGTCTTGTTTATTTGCACAATGAGAGACATGTAATA



CACAGGGATATAAAACCATCCAATCTGCTTGTGAACCACAGAGGTGA



AGTCAAGATTACAGATTTTGGTGTCAGTGCTATGCTAGCGAGCTCAA



TGGGTCAACGAGATACATTTGTTGGAACTTACAATTATATGTCGCCT



GAGAGGATTAGCGGGAGCACATATGACTATAGCAGTGATATCTGGAG



TTTGGGCATGGTAGTACTTGAATGTGCTATAGGACGCTTTCCTTACA



TGCAATCTGAAGATCAGCAAAGCTGGCCAAGCTTTTATGAGCTTTTG



GAGGCGATCGTCGAAAGTCCACCACCTTCTGCTCCAGCAGATCAGTT



TTCCCCAGAGTTCTGCTCATTTGTATCTTCCTGCATACAAAAGGACC



CTCAACAAAGATCTTCGTCTTTGGACCTTTTGAGTCATGCTTTCATA



AAAAAGTTTGAAGACAAAGATATCGATCTTGGGATTCTCGTAGGTAG



CTTGGAACCTCCCGTAAGTTTTCCGAGATGCTAAGCTGTGGGTGCTT



ATGGGGTAAAATCCTCTTACTCATATGTATCCTTCCTGCGCGTGGTT



GAGGATTCGCATAGAGTGACTTCGCTTGAGCAATTGAGCAAATGATG



ATAGAAGTCTCTTACTTATAGAAAGAGCAGCATGCCAAGGTTCTGTA



CTGAGAAAATTCTGCCTTCTACTTAATCCTACCAGCTTAAGTGAGCT



TACCCGAGATGTACTTGTTTTGGCTCCATAACCTTAAAGAGCTGACT



CCTGAAAAACAAGAAAACAAGAAGACAGGCATCTATAATCCATGCTT



AGCCTTTATAATCCATCTTCTTAAACATTTTCTGCTCATGTATGCGA



GAAGAAAGGCAGATGCATCAAGCCTTTTCTGATGCTGCCCTTGAACA



ATTCCCAAAAAAAAAA





48
GAAGAAGGGGCCGGGCTCGAGCCCAGAGAGAGAGAGAGAGAGAGGGC



CCACGGAGGGCCCACGGAGACGCTCCCGCGCGAGGAGGGCTTTCTGT



CGCGCTGCAGGAGGAAACGGACAGCGACGCTGCTTCGCTCCCAATCT



TTCAATTTGTTTGAACTTTTGAGTTGAAAGGGCCGAAAGGCGAATCT



CAATGGCTTGGCTTCCATCACTTCCCTGATTTCTTCCCTCCATTTCC



ACCCCCACTCTCCCTCCACCCACCATTCCGAGCGCACCAGCCGCGTC



CGACCAATCTTGGGTTGCTCTCGTTTCTACCCAACAAGGTTTCCTTG



GGATGGATTCAACCACACACAGTTTCCAGCGTCGGCCACTCTCGATA



AAACTCTGGCCGCCTAGTCAAAGTACTAGGATTATGCTTGTGGAGCG



TATGACAAAAATCTAATAGCTCCATCTGTATTGTCTAGAAAGTATGG



CCTTCTGAGTAAGGAAGAGGCCGAGGAGGATGCCAAGCGCATTGAAG



AGAGCGCATTTGCTATCGCCAATCAACACATGGAGAAGGAGCCAGAT



GGTGATGGGAGTTCTGCAGTACAAGTTTATGCTACACAGTCAAGTAA



ACTTATGCTGGAAGTCATCAAAAGAGGCCCAAGGATGAAGGTGGATG



GCGAGGCCATTTTACCTGCAAAAGCTATTGCTGCAAGTGAAACTGTC



TTTGACATCTCTGGAGGTCGACGGGCCTTTATTGATGCGGAAGAAGC



TGAGGAGCTTCTTAAACCATTGAAGGCACCAGGGAACTTCTACAAGA



AAATATGTTTCAGCAACAGAAGCTTTGGCTTAGATGCTGCCCGAGTT



GCTGAACCTTTTCTAGTATCTGTCAAGGATAAATTGACAGATGTTGA



TCTGTCAGATTTTGTTGCAGGAAGACCGGAAGCCGAAGCTCTTGAAG



TGATGAATATTTTTTCTTCAGCCCTTGAAGGTTGCAACTTGAGGAGT



CTGGACCTATCCAACAATGCATTGGGAGAAAAGGGTGTCAGGGCATT



TGGAGCACTTCTAAAGTCTCAAAATAATCTCGAGGAACTTTATTTGA



TGAATGATGGTATCTCTGAGGAAGCTGCTCTGGCAGTTTGTGAGTTA



CTTCCTTCTACTGAGAAGCTTAGGATCCTTCACTTCCATAATAACAT



GACTGGAGATGAGGGAGCGCTTGCCATTTCTGAGATTGTGAAGCATT



CTCCGGTGTTGGAGGACTTTCGATGTTCTTCTACGAGGGTAGGCTCA



GATGGTGGAGTTTCTCTGTGGATGCACTTAGCGCATGTTCCCGGATC



AAGAAGCTTGATCTGCGGGATAACATGTTTGGTGTCGAATCTGGAGT



TGCTTTGAGCAAGGCTATCCCTTCATTTGCTGACCTAACAGAGGTGT



ATTTTAGTTATCTAAACTTGGAGGATGAGGGCACAGAAGCTCTTGCC



ATTGCTCTCAAGGAATCTGCACCTTCCCTTGAAGTTTTGGAATGGCA



GGGAATGACATTACTGCAAAAGCTGGTGCTGTTTTAGCAGCCTGTAT



TGCAGCAAAGCAGTTTTTGACCAAGTTAAATCTGTCTGAGAATGAAT



TGAAGGATGAAGGTGCAATATTGATCGGTAAGGCTTTGGAAGAGGGC



CATGGACAGTTGGTTGAAGTTGATTTGAGCACAAACTCGATTAGAAG



GGTTGGAGCAAGAGTCCTAGCCCAGGCTGTTGTGCAGAAACCTGGAT



TTAAAATGCTGAATATAAATGCTAATTTCATTTCGGAGGAAGGGCTT



GATGAGGTAAAGGATATATTCAAAACTTCTCCTAATATGCTTGGTCC



ACTTGATGAGAATGACCCTGAGGGTGAAGATTTTGATGAGGAGGCTG



ATGAGGAAGGCGCTGGTCACGAGGATGAATTGGAAGCCAAGCTCAAG



GATCTTGAAATAAAGCATGAGGAGTAGTTTGGTTGATTCTCTGATTG



TTTGATTGAGAGAGTTTTTAGTAATTTTAAAACTGGTTCAGCTCTAT



TTGCAATGTCTAGTTGCTTAATTTTAGGTTAGTTAGGTGATGTTCTT



GTCAAATCTGTCATTGCATGTGAAGTTCAGAAACATGTAAGATGATG



ATTTTTCTTGCTGGCAAGTTTAGCAGATCATCATAGCAAAGCTCCAT



CTGAAGGGTATTTGATAAGGTTACTTGGGAAAAAAAAAA





49
CTCTCCTGGTTCAAAAACCTAGAGAGAGAAAGAAGAGAGAGAGAGAG



AGAGACGGAGACCGCAGGAAATTCATCGACGAGAGCCGCTCGTCTCC



GATCCGCCGCCGCGCGATCGCCGATCGATCCGGCCGGAGCCGTGCGG



AGATCGGTAGGGTAGATTGCCGAATCGGGGCTGGACCTCGCGACCCG



CGATCGGGATTCGGCACGGAGGTCCTGCGCGCGATCGGATCTGGTGG



GATCGATTTCGAAGGGCGTAGAAGGAGAAGAAGCAGGAGGAGGAGGA



GGAGGAGGAGAAGGAGGAGAATGGTGAAGCTCACGATGATCGCCCGC



GTCACCGACGGCCTCCCGCTCGCGGAGGGGCTCGACGACGGCCGCGA



CGTGAAGGACGCCGAGTTCTACAAGCAGCAAGTCAAGGCGCTGTTCA



AGAACCTCTCCAAGGGCCAGAACGAGCCCTCCAGAATGTCGGTCGAA



ACCGGCCCTTACTACTTCCACTACATCATTGAAGGGCGCGTCTGTTA



CTTGACCATGTGCGATCGATCTTACCCCAAGAAGCTCGCGTTCCAGT



ACCTGGAGGACCTCAAGAATGAATTCGGGCGCGTGAATGGGGCGCAG



ATCGAAACCGCGGCTCGGCCGTACGCCTTCATCAAATTCGATACGTT



TATACAGAAAACAAAGAAACTTTATCAGGACACTCGTACCCAGAGGA



ACATTTCGAAGTTGAATGATGAACTCTATGAGGTCCACCAGATTATG



ACCCGCAATGTCCAAGAGGTACTTGGCGTTGGCGAAAAATTGGACCA



GGTCAGTGAAATGTCTAGTCGGTTAACATCAGAATCTCGCATATATG



CCGACAAGGCCAGAGACTTGAATCGACAGGCACTAATTCGAAAATGG



GCCCCAGTTGCCATTGTTCTGGGAGTGGTCTTCCTTCTCTTCTGGGT



CAAATCAAAGATATGGTGATGTGACTGCCTTGCCTGTACTTCTGTTC



TACTGCAGTGGGCTGCTGGGTTGCTGAGAGATTCATTCTCAACGATT



TTAAATGGGGCACGGGATTTTCACAGAGAATCATATGCGTTCAAAAG



TTAGTGTAGTTCTTCTAATTGCATTTTGTATTGGATGCTTCATTCCT



TATGCAGTTGTGGCAATAGATTTGCCATGTTAAGTAGTGAATAGAGA



ACCCTCCCTTAAGACAGGAGCAACATCAATATCTTATTGTCGACAAA



CTAGCAGAGTGTTTTCCGTACAGGAGGCTGCGTATAACTTTTGTTCA



TCAATACCTATAATCATCTCTTATAGTAAAAAAAAAA





50
CGCTCCTCTCTACAACAATCTCGTGCTCTTTTCCGGCAAACTCCTCC



TTCGTCTTTGTCCATCTTTCTTGCTATATTATAAGTTACCAAGTCAA



AAACCCGACAAGCCTTTTTTCTTTGAAGACGATGAGTTACGTTTCAA



GCAACAGAAAGCCACTGTTGTCTCGGAAAGCAACCAACGACGGTCAT



GCCGAGAAGTCTCCCTATTTCGATGGGTGGAAGGCCTACGACAAGGA



CCCATTTCATCCTACGCAGAATCCCAGTGGTGTCATCCAAATGGGTC



TTGCAGAACATCAGCTCTGTTTCGACTTGGTTCAAGAATGGCTCGTC



AGCAACCCAGAAGCCTCCATCTGCACTAAGAAAGGAGTGGACAAATT



CAGGGACATTGCCCTCTTTCAGGATTATCATGGCTTGCCCGCGTTCA



GAAACGCTGTGGCGAAGTTCATGGGGAGAGTGAGGGGGGACAAGGTC



AAGTTTGATCCCGACCGGATTGTCATGAGCGGGGGAGCCACAGGAGC



TCACGAGATGATCACATTCTGCCTGGCTGATCCTGGCGATGCGTTCT



TGGTGCCAACCCCTTACTATGCAGGATTTGATCGAGATTTGTGTTGG



AGGACTGAAGCACGACTTCTCCCGGTAGTCTGTCACAGCTCTAACAA



TTTCAAGGTCACCAGGAAGGCTTTGGAAGAAGCATACGCAAAAGCTG



TTGAGGCCAACATCAGCGTAAAAGGGTTGCTCTTAACCAATCCATCA



AACCCACTAGGGACCATCTTAGACCGAGACACGTTGAGAGAAGCCAT



GAGCTTCATCAACGAGAAGAACATCCACCTCATTTGCGATGAGATAT



ATGCTGCTACAGTCTTTCGTCAGCCTGATTTCATAAGCATCGCAGAG



ATAATCGAGGAAGATCAAGAATACAATCGCAACCTCGTGCATATAAT



TTATAGCCTCTCAAAAGATATGGGTTTCCCTGGCTTCAGGGTTGGGA



TTGTGTATTCATACAATGATGCCGTGGTGGAGTGCGGCCGGAGGATG



TCCAGCTTCGGTCTAGTATCCTCCCAAACTCAGTACCTAATTGCATC



CATGTTATCGGACGATCAGTTCATTGGGAAATTCCTGTTGGAGAGTG



CGGAGAGGTTAGAGACGAGGCATAAGAATTTCACTGACGGACTTCAT



CAAGTAGGCATCAAGTGCTTGAACGGCAATGCGGGTCTCTTCTTATG



GATGGATTTGAGGGAGCTCCTGATGGAGAGCACCGTAGAGGCAGAGA



CGGCTCTGTGGCGGGGCATAATTAACGAATTCAAGCTCAATGTCTCA



CCGGGTTCTTCCTTTCACTGCTCAGAGCCAGGATGGTTCAGAGTTTG



CATTGCCAACATGAATGAGGAGACCATGAAGGTCGCTTTAGCACGAA



TCCGAGAGTTTGTGCGGAGGAATGGCGATAAGCTGAACAGGAAGGAG



AAGTGCCGGCAGAGCGACCTAAGGCTCAGACTCTCGTTCCGAAGAAT



GGATGATGTGTTGAGGTCGCCCTGCATTATGTCCCCTCACTCGCCCA



TCCCTCAATCACCACTGGTTCGAACCAGAACTTGAAGTTGGCAATCG



CGTGATTCTACAAACGGGCATTTTTCCCATTAAATCCAAAGCTTTCC



AAATGTAAAATAGGGAATTGTATTCTTTATTTGCTTGTAACTGGGTG



CAGTGCAGAATGCATCCTAATTTTTCTGCACCCCATTTTGTTCATTC



TTTCATCAGGCACGGTATTTTAATTTTTTCCTTCTGTATAATCCCTA



AGATGGCCCTAAGTTCCATCAGGATTGACATTTTCAACAATATTCAG



ACTGTCGTGTTGTTTTCAAAAAAAAAA





51
CTTTAAGTTCATCGTATCCCCTTGTCCTTTTGTTCATGGATTCCGGA



AACTCACGGAAGAGAAAATTTGCAGGAATCCTTTACCTAATTATCTT



GCGGTGCATGCGTAGGTATCCACCAGTTTCATCACCACGCACTTTCA



GTTCTCCCGATCCCCCTTTTTAAACCCCCTCTCTCTGCTCACGCCCT



TCTTTCAAGATCTGATCAAGATTTTTATCTATAGATTCTTCTTTATT



TCAAGATAAGCGATTCGTTTGGTGTGTCTTGCAAGATCTGAATGGAC



CTTGGAGCTTGCAAGAACCTCTCCTCTGTCGAGCCGGTTATGGGCTT



GATCCTTGGTGGGTTTTGGCGGAGGAATTCAAGAAAGTCGGCGGTTC



TTTCTTGAGTGGTGAAACAGGGGAATTCCTTCCTCCTGTTGTTGCCC



TCTGAACGTTCTTGCGTCTCTCTACTTTCTGGGAAAATAGCGAGTGG



GAGAGCTGAAATCATGTGAGGGGAGAGAAAAGGAAAAAAAGGTTTTG



AAGAATCTGGCGCTTGGCTGTTTCGTGTTTCGTGGTGGGTCTGTTCT



GGAAGAGGAGCCCGGAGAAGGTAAAGGATAGAATTTTATACTCATCA



AGAAAGGAGATCAGAGGAAAACCGAAAAGGGGCAGAGAGCATAAGCA



CAGTTCCTCACAGCAGGAGCGGCAAGGGAATCCATGGCGACTCTGGT



CGAGCCCCCGGATGGAGTTAGGCAGAGAGGGAAGCAGTACTACTCAA



TGTGGCGGACCCTGTTCGAGGTGGACGCCAAGTACGTCCCCATCAAG



CCCATCGGGCGAGGGGCGTACGGCGTGGTGTGCTCGTCAATCAACCG



GGAGACACACGAGAAGGTCGCCATCAAGAAGATCCACAACGTGTTCG



AAAACCGGATCGACGCCCTCCGGACCCTGAGGGAGCTCAAGCTCCTG



CGGCACATCAAGCACGAGAATGTGATCGCCCTCAAGGACGTCATGCT



CCCGGTCCACAGCGCTAGCTTCAGGGAGGTGTACCTGGTTTACGAGC



TCATGGACACCGACCTGCACCAGCTCATCAAGTCCCCGCAGCCGCTG



TCCAACGAGCATTGCAGGTTCTTCATTTTTCAGTTGCTGAAAGGGCT



GAAGTATCTGCACTCAGCCAACGTTCTTCACCGCGACCTCAAGCCCG



GAAACCTCCTGGTGAACGCCAACTGTGACCTGAAGATATGCGACTTC



GGACTCGCGCGGACCAACCAAGGCGACGGGCAGTTCATGACTGAGTA



CGTGGTCACGCGCTGGTACCGTGCCCCTGAGCTGCTGCTCTCATGCG



ACAACTATGGGACCTCAATCGACGTCTGGTCCGTGGGCTGCATCTTC



GCCGAGATCCTCGGGCGCAAGCCCTTGTTCCCCGGGACAGAGTGCCT



CAACCAGCTGAGGCTGATCATCGACACGCTGGGAAGCCAGGGGGAGG



AGGACATCGAGTTCATCGACAACCGGAAGGCCCGGAGGTACATCAAG



GCGCTGCCCTTCTCGAGGGGCACCCACTTCTCCCAGCTGTACCCGCA



GGCCGATCCCCTGGCGGTGGACCTGCTGCAGCGGATGCTCGTGTTCG



ACCCGAGGAAGAGGATCACAGTGACGGAGGCCCTCCAACATCCGTAC



ATGGCAGGCCTGTACGACCCGCGGGGCAACCCGCCGGCTCAGTACCC



GATCAACCTCGACATTGACGATAGCATGGAGCAGCACATGATTAGGG



AGATGATGTGGAACGAAATCCTTCACTACCATCCTCATCAGTATGCT



TCCCTCCATGGATAAAATAGCGGAATCCTTCACCATCGACATGCCAG



AGCAAGAATTTTCTATCCTCTGTTCCCTGAATTTTCCCCTGAAACTT



TCTTGTTGGTTCCTGCATTGAGAGAGACCTAATTGCTTGATGTCCTG



TAATTTGTAAAAAGTTGCAATGGCCACACCAACTAAGATAGCACATT



GCAATTTCTTTAAAAAAAAAA





52
CTCGTTGCTTCGCGGTCGAGGGAGGGCGGGGGGGGGATCGACCGGAT



GGGGCAGCAATCGCTGATCTACAGCTTCGTGGCCCGGGGCCCCGTCC



TGCTGGCCGAGTACACCGAGTTCAGCGGCAACTTCACCAGCGTCGCC



TCCCAGTGCCTCCAGAAGCTCCCTGCCACCAGCAACAAGTTCACCTA



CAACTGCGACGGCCACACCTTCAACTACCTCGTCGACGATGGCCTCA



CTTACTGTGTGGTTGCAGTTGAGTCTGTTGGGCGCCAGATTCCAATG



GCTTTCCTTGAGCGGATCAAGGAGGACTTTACTCACAGATACGACGC



AGGAAAAGCTGCAACAGCATCTGCTAATAGCTTGAACAGGGAGTTTG



GGCCTAAACTCAAGGAGCACATGCAATATTGTGTTGATCATCCGGAA



GAGATCAGCAAACTTGCTAAGGTGAAAGCTCAGGTATCAGAAGTGAA



GGGAGTAATGATGGAAAATATTGAGAAGGTTCTTGATCGTGGTGAAA



AAATCGAACTTCTGGTTGATAAGACAGACAATCTTCGTTCTCAGGCT



CAAGACTTCAGGCAGCAGGGAACCAAAATGCGAAGAAAAATGTGGCT



GCAGAACATGAAAATAAAGCTGATAGTTCTGGGCATTATTATTGCTT



TGATTCTGGTCATTGTTTTATCTGTTTGTCATGGCTTCAATTGTGGT



CATAAATAGTGGAGTGGTGCTGCTAATAGGTTCTTATGAACCTGTCT



TGAAGGTATTTTGCCTGTAAGTTTTCTTTCCTCTTTTGTTCTTTACA



TGGTCCTTCATTATACTATAGCCTATAGAAGAAATACATTTGCATGT



ATAGTTTGTATTCTTGGACAAGTTCTATAATCATCGCGCCCCGGATT



GTAATGTCAGCGACCTATGAGTGCTGATAAAAAAAAAA





53
AGCTATTATCCTTTGCTTCCAAGTGCTTCTCCGTCGTACTTGGCGTG



TATAAGTCGAATCTCGCCTGAATTTGCTGATGTTTCTCTAGATCCTT



AGATTAAGGTTTGATCTGTGTATATGCTGTGTCGTTGCCTGAGAATG



GTTCTGGGTTTGATGATGGCGATATTGGTCGAGGCGGCTGTGCTGTG



AGATTCTTTGTCGAGATCGCCGGTTGAGCTTTTCGGGAGTTTGTGTA



TTGTTTGGAGGTAGTTTTGCGAGAAATGTAGGACATTGATGTCGTCG



TTGAGTTTAATAACTTAGTTCTGTTCAGTTTCTTGGTTTTCCGTGGC



AGAACGGCGAGTGTGGAAATGGCTGATGTAGCGGGTCGTCGTTGAGT



TTATTAACTTAGTTCTGTTCAGTTTCTTGGTTTTCCGTGGCAGAACG



GCGAGTGTGGAAATGGCTGATGTAGCGGGTCTGACTGAAGCGGCGGG



GTCCAGATTCAGTTCGCTCGAGTTGATTGGGAGAGGATCTTTTGGAG



ATGTCTATAAAGCATTTGATAAGGAGCTCAACAAAGAAGTTGCTATC



AAAGTTATTGATCTGGAGGAGTCAGAGGATGAAATTGAAGACATTCA



GAAGGAAATTTCTGTTCTATCACAATGTCGATCTCCATATATTACGG



AATATTATGGTTCCTATCTCCACCAGACCAAGCTATGGATAATAATG



GAGTACATGGCCGGTGGCTCCGTTGCTGATCTACTTCAATCAGGTCC



ACCTCTTGATGAGATGTCCATAGCCTGTATTTTACGTGACTTGCTGC



ATGCAATCGAATATTTGCACACTGAAGGGAAAATTCACAGGGATATT



AAAGCGGCCAACATTTTATTGAGCGAGAACGGTGATGTTAAGGTTGC



AGATTTTGGTGTTTCTGCTCAATTAACTAGAACTATATCAAGGAGAA



AGACATTTGTCGGAACCCCATTCTGGATGGCTCCGGAGGTAATTCAG



AATTCGGATGGGTACAACGAGAAGGCAGATATCTGGTCTCTAGGGAT



CACTGCGATTGAGATGGCAAAAGGTGAACCTCCGCTTGCAGATCTTC



ACCCAATGAGAGTTCTTTTTATCATACCTCGAGAAAATCCCCCACAG



CTGGATGAGCATTTTTCTCGTTCCATTAAAGAATTTGTTTCCCTGTG



CCTGAAGAAAGTACCGGCAGAGCGGCCCAGTGCCAAGGAACTTCTGA



AGCACCGTTTCATAAGAAATGCCAGGAAGAGTCCAAGGCTTCTAGAG



CGAATAAGAGAGCGTCCAAAATATCCGACAGTGGAAGATGGAGAAAC



ACCTATGATTGGTAAAGGTGTAGTGGAGGGATCAGACACTGTGAAGA



TTAGAAGAGACATAAAAGGAGAAGAAACAGTAAGAGCCAGTAATCAA



GGGCGAGGAGGGAAGAATACTGGATGGGATTTCAGCATTGGTGGAGT



GCAGGGAACAGGGACTGTTAGGACCAATCTATTGCCACCTCAAGTCA



GAGAGAGGAAATCAGAGAATTCCCACAATCAGGCTACCCCTAGAAGA



GTGGCGGATGGTGGTAACTCATGGTTGTCTGCATCTGGAAATTCACC



TCAGGCTGCAGAAATATCACTTCGGAAAGATGCTAGAGATTTGCATT



ATAATAATCACCACGATGACGAAGATTCATCTTTGAGCGGATCGGGT



ACGGTCGTGGTACGAACTCCTAGAGAATCTCAACCATCACCCTTGCT



TCGCGATCAAAGCACTCTGTCTAGCAGCTCGTACAGTTCTGTTGAAG



ATGCTTCTACAACAGGAACTGTAGTTTTCCGCGGTCAACATGATGAG



TCTGATTCTCCTCGGACACCAAAATCGAGACTCGGGATTCAGGAGAG



AAGTTCCAGTGCTTCACTGGAAGACAGTGCAGCAAACCTTGCAGAGG



CTAAGGCGGCTATGCAAGGCGCTTTTAAAAGAGGAAATGCAAGAGAA



AAGAGATCTGTACTAGGTAAGTTTAATGACGGGCAGGAAAATGGGAA



TAGAGAACAACTTACAAAAAGCCCTGATTCGTCGAGGAATTCCTATG



AGTATTTTGATGCTCATAAAGTTCTCCCGAGGTCCCGCCAAGCAAGC



GATGATGAGGACATTGCAAAAATTTTATCTTCATCTGCTCCATTATC



GGTTCTGCTCATCCCTTCCTTGAAAGAGACAACTGGTGATGATTCTG



ATGGGCCAGTTGTCCATGCTGTTTCAACCTCACTCACTAACTTAGAG



CGCATGAAGCCAGGATCATGTGAGGTTCTTATAAGCAAGTTGCTACA



GAGATTGGCAAGTTCAAAAGAATCCTCGTTGAAAGACTTGCAGGATC



TGGCAACTCACACCTTTTCCAAGGGCAAGATATCCCCAGAAAAGTCG



GGAAATGCGAACACTGAAGCTGATAATCGCAAGAAACAACAGAACAA



AGAATTCAATTCTAATGCTAATTTAAGCCCACTAGCAAGATTTTTGC



TCTCAAGATGGCAAGGCCAAGTATCCCGAGATCTTAACCCAACTTGA



GAGAGAAGAAGAGAATAGTATCTATTTGTTTGTATTGTGCTTCGTGT



CGATGCATTTATTCTGATTCACTGTACATAGAAATGATAGTGTATTT



ATTAGCAACCAACCTTTGTCTGAGTAAATTGCCTCTGATGGTAAGAG



TTGCTGCGCGACTAGGAGGTTTGTTGTTGGTGCACTAACAATGTAAA



AAAAGACAAAATGGACCATCATTCTTATTTATCGATGGTTGAATTTT



GGCTTTTATTTTCTCGCCAGAGCTTTCCCGCCGTTTTCGATCAATAC



AAAGAAGAGCAGTACCATGGATTTGACAGAGTAAAAAAAAAA





54
AGAAAATACAGAAATCTCAGCACGATCCCCATCTCCTCCTTCGCCAA



AGTCGTTGGGAACTTCCCCCCTTCTCCCTCTCGCTCCGTCCACGAAG



CAAGCAAGCTCTCCGCGAAGATCCCTTCCTTGTTGTTACCAAATTGG



TTGAAGCTTCTTGTGGGTTGCTGGACCTGCAGATTTTGGTTAATAAA



TGAGTCAGAAGGGCCTTATATATAGCTTTGTGGCGAAAGGGACTGTT



GTTCTGGCCGAGCACACGCAATTTTCGGGAAACTTTAGTACTATTGC



TGTGCAGTGCTTGCAGAAGCTGCCTTCTAATAGCAGCAAGTACACAT



ACTCCTGCGATGGGCACACATTTAACTTCCTAACGGATAGTGGATTT



GTTTTCCTGGTTGTTGCTGATGAGTCCGTCGGAAGAAGTGTGCCTTT



CGTGTTTCTTGAGCGAGTGAAGGATGACTTTATGCAGCATTATAGTG



CCAGCATTGCAAGTGGCGACCCACATCCACTTGCAGATGATGATGAG



GATGACGATTTGTTTCAAGATCGTTTTAGCATTGCATACAACCTTGA



CCGAGAGTTTGGGCCAAGACTTAAGGAGCATATGCAGTACTGCATGA



GCCATCCAGAGGAGATGAGTAAGCTATCCAAATTGAAGGCTCAGATA



TCAGAGGTCAAAGGGATTATGGTTGATAATATTGAAAAGGTGTTGGA



CCGTGGGGAGAGAATTGAACTTCTGGTTGACAAAACAGAGAACCTAC



AATTCCAGGCCGACATTTTCCAAAGGCAAGGAAGGCAACTGCGTAGG



AAGATGTGGTTTCAGAATCTCCAAATGAAGGTTGTGGTGGCTGGAGC



AGTTGTCATAGTAATATTCTTGCTGTGGCTTATAGCAAAGTGGGGAA



GTAAATAAAACTTGTTCTCAGGGTCGACGCGGCCAAGGTACAATATG



ATTTTGTATCTGGATATGTTTGTTGGTATGTGGAGCTAGCCTACCAC



TTAGGATTT





55
CGGCACTCGCCATCGGAGCAGCTGGTGGGATTGCTCGCGGCTTTCTG



CTCATGGAAGGAGAAGAAGAGCAGAAGCCGGCGGCGACGAAGCGGAG



GAAACCGAGATCGGGAGCGCCTTCTTCCGCCCCGATCAACAATCTCG



ATGACGGGTGCCTCATGCACATCTTCAGCTTCCTTTCTCCTATTCCA



GATCGTTATAACACCGCCCTCGTTTGCCACAGATGGTGTTACCTGGC



ATGTCACCCTCGGCTGTGGCTACGAGTAGACCGGTCTGTAAAGGATT



CATCAGAGCCAGGAGTTTTCCCCAATATTGAGTTGGCTGTCTCTGCT



GCAAGACCTGGAGATACTATTCTGATTGCAGCAGGGGGAAGTCATGT



TGCCTCTAATATTCAGATAAAGAAACCACTTTGCCTGATTGGTGGAG



GTGAACTTCCAGACGAGACAATGCTTCTCTGTTCACGAGGTTCAGAC



AGTGCCCTGGAGTTCCTTTCCACCTGCAAACTGTCGAATCTAACTGT



GAAAGCGGAGCTTGGATGCTGTCTGCTTCATAGGAGCGGAAGGCTGA



TTATCGACGGTTGTATTCTCCAATGCGAGACAGACCCTTTAGACTAC



CTCTCGTGCCCAATTGTGAGCACAGCTACAGGCAGCAAGGTCGTTTC



CTCTCCTAATGGGTGTCATGGCGATGGTGTTTCGGTCTCTCGGACAC



GAATTGAAGGTGGTGCCAAAGCCGTATTGACTAGTGGGGACCTGGCA



TTGCAGCGTGTTCGGGTTATATGCGCTCGTACTTCTATGTTCTTCTG



GTTCGACGTCGAGTGTCCCTCTTGACTCGATATCTTTGTGCTGTTGT



CTGTAGTATATATCAGTACCAGTTAGTTTTACTTTTTAAAGATGTTA



ATGAATATTGCTGTGATGGTGTGGATACTGTGGAATTTTCATCGTAT



CCTGTCATCCAAATCCTTATTTTCTTTTGAGATAATTAACCAATAAA



AAAAAAA





56
CGCCCTCGATCTTGCAAGACCAAAAAAACACAGTGAGTCCTCCGTGC



GCACCCGAAGAACCACAGGATAAGATAAGCCGCCTGAATCTTCTCTT



CTCCTCCCCCTTCAACCGCCCACCTCCCTCGCCGCCTCCGCCTCCGC



CGGCGATGGGCCAGTCGTCGTCCTCGACGGCCCCCGCGCTCGGCGGC



CGCGGCGCCGACCCCGACCCCGACCCCGACCCCGACGACGGCCACTC



GGCGGCCAAGTCGAAGGCCGTGATCTGGCCGGTGCTCGGGGAGGCCG



CCGCCGAGGAGTGCGCCGCCCCCGATCTCTCCCTCTCCATCTCCGAT



CTCCCCGACGAGTGCCTGGCCTGCGTCTTCCAGTACCTAGGCTCCGG



CGACCGGGCCCGGTGCTCCCTCGTGTGCCGCCGCTGGCTCGCGGTCG



AGGGCCAGAGCCGCCAGAGGCTCGCCCTCCACGCCCAGTCGGAGCTG



CTGGAAGCGGTCCCGGCGCTGTTCGCGCGGTTCGACTCGGTCTCGAA



GCTCGCGCTCAAGTGCGACCGCAAGGCGCTGAGCATCGGCGACGACG



CGCTCGTGCTGATCTCGCTCAAGTGCAGGAACCTCACGCGCCTCAAG



CTGCGGGGCTGCCGCGCGCTCACGGACACGGGGATCGCGGTCTTCAC



GAGCAATTGCCGGGGGCTGAGGAAGCTCTCGTGCGGATCCTGTGCGT



TCGGAGCCAAAGGCTTGAACGCCGTGATTGATCACTGCGCCTCCCTC



GAAGAGTTATCTGTGAAGCGGCTCCGGAGTCCCACTGAAGGTGCTGC



GGCGGAGCCGATTGGGCCTGGTGCGGCTGCCGCCTCCCTCAAAACGA



TTTGCTTGAAGGAGCTTTACAACGGACAGGGCTTCGGTCCGCTGATC



ATCGGCTCGAAGAATTTGAGGACGTTGAAGCTGGTGAAATGTTACGG



AGATTGGGACACGGTGCTCCAAGTTATGGTGGAGAGGGTCGCAAAAT



TAGTGGAGATCCATCTGGAGAGGATCCAGGTAAGCGATTTTGGCATT



GCCTCGCTATCTAATTGCTCGGATCTCGAGATACTGCATCTGTTAAA



GACACCGCACTGCACGAACTTAGGGCTCATATCGGTTGCCGAACGTT



GTACGTTGTTGAGGAAGCTCCATATTGATGGATTGAAGCTGAACCGC



ATTGGCGACGATGGTTTGATTGCTGTCGCAAAGCGTTGCCCTAATTT



GCGAGAACTTGTTCTTATCGGCGTCAATCCTACGGAGTTGAGCTTGG



ATTTGCTAGGATCTAACTGCCTCACGTTGGAGAGACTGGCGTTTTGC



GGTAGCGATACGGTTGGAGACGCTGAGATTATGTGCATCGCGGCTAG



GTGTGTGGCGCTCAAGAAGCTTTGCATCAAGAATTGCCCAGTTTCGG



ACGAAGGAATGAAGGCATTAGCCTCTGGTTGCCCTAACTTGGTGAAA



CTGAAGGTTAAGAAGTGTGGTGGAGTGACTTCTGAGGGTGCAGCTTG



GTTAAGAATGAGAAGGGGATCGCTTGCGTTGAATTTGGACTCCAGTG



ACCAAGAACAGATAGACGCATTCGCCAGTGATGGTGGAGGAGAAGAA



AATCATGTGGAGTTTCCTCCCGTACCTAGCCAAACAGCCGGCGCTAA



TATTGCATCATCGAGCGGCACCAGTCGGTCATCTTCCTTTAAATCGA



GATTGGGCAGTTTGAGAGGAAAGAGTTTGATGGCATGCACGTTCAGA



AGATGGTCAAGTGGCAGTAAAGATTCCTAAAAGCCAAGATCTTAGGG



GAATCTCTGAACAGCCAGGGTAAACCAATGACTGTCCCTCGGCGCAT



CAAATTTGAATTGTTGACTTTATGGGTCTGAAGGTTTCGAACTTTGA



TCTTCAGATGATCAGCTTCGTGCCATCACCGATTGTTGTCCTAACAT



GCCCAAACCTGTTTTAATTGGTGTCGGTCCTAAAAAAAATCGTGCTT



GAGTTTGCTGGAATTAAATTCCCTGAGTTTAGAGTGGTTTTTAGCAA



TCAATGGTTAGGGATACTATTCCCTTCGCTAAATGTACAGCTTTAGA



GAAACTTTGTTCGGAGAATTTCCCCATTTCGATTAGGGGTAGAAGCC



CTAGTCGGCTGTTGCCCGAACTTGCTGATGGCGATGCTCAGAAGGTA



TGTACTGTTTGTGGAGTGACTAGTGAGATGCAGTTTGTGAGGAAAGC



TCGTGTTTGAAATTGATGCTTTAAATTGGAGGGAAAAAAAAAA





57
CGTGAACGTCTTGCGCTCGGTTCTTGAGCTCGTTCTTGAGAGCTGAA



CGGAGACGATGGGCGAGGAATCGTTCATATACAGCTTCGTGGCGAGA



GGGACGATGATCTTGGCGGAGTACACGGAGTTCACGGGCAACTTCCC



GGCCATAGCCGCTCAGTGCCTCCAGAAACTCCCTTCCTCCAACAACA



AGTTCACCTACTCCTGCGATCACCACACCTTCAATTTCCTCCTCGAA



GATGGCTACGCTTATTGTGTTGTCGCCAAAGAATCAGTGGCCAAGCA



AATCTCCATTGCATTTTTGGAGCGTGTAAAAGTTGACTTTAAGAAAA



GATATGGTGGCGGCAAAGCAGATACAGCTGTTGCCAAAAGTCTGAAT



AAGGAGTTCGGGCCAATTATGAAGGAGCACATGAAGTACATTATTGA



ACATGCTGAAGAGATCGATAAGCTCATAAAAGTGAAGGCTCAAGTTT



CAGAAGTTAAAAGCATAATGCTGGAGAATATTGACAAGGCGATCGAT



AGAGGGGAGAACCTGACCATTCTAGCCGACAAAACAGAGAATCTGCG



TGATCAGGCTCAAGCATACAAGAAACAAGGGACACAAATCCGGCGAA



AGATGTGGTACCAGAACATGAAAATCAAGCTGGTCGTGTTTGGTATC



TTATTATTTCTGATCCTTGTAATTTGGCTTTCAATTTGTCATGGATT



TGATTGCTCCAACTAGTATATTATCATCACATGGAGAAAGGTTCAGC



TTCAATTAGAGAGAGAAGAGAGAGAGAGATCTTGTAACTATACTGGC



GGAGAAATGTATCATTTGTTGTTACTTGGGACTGAAAAAAAAAA





58
GCATCAAAATTGACATCGCCTCTCCTCTAATGCCTCGGTCGTCTCTC



TTCTCTTCCATTTCGCCCTCGTTCTCCACGGCCGTTCCAATCCGACC



TCGCCGGAATCTTTGAATTTCCTTTTATTGTTTCCGATCGAGGGGGG



TTTCGGCCGGCGGGAGGAGCTGCGAAGATTTCCCTCGCGCGGCGGAT



GGCGGGCGGGTACAGGGCCGACGACGATTACGATTACCTGTTCAAGG



TGGTGCTGATCGGGGACTCCGGCGTCGGCAAGTCCAATCTGCTGTCC



AGATTCACGCGCAACGAGTTCAGCTTGGAGTCCAAGTCCACGATCGG



CGTCGAATTCGCCACTCGCAGCATCCGCGTCGATGACAAGGTCGTGA



AGGCCCAGATTTGGGACACCGCCGGCCAAGAGAGGTACCGAGCAATC



ACTAGTGCATATTACCGAGGTGCTGTTGGCGCATTGCTTGTCTATGA



TGTAACTCGTCATGTCACATTCGAGAACGTGGAGAGATGGTTGAAGG



AGCTGCGGGATCACACCGACTCTAACATTGTTATAATGCTTGTGGGG



AATAAGGCTGATTTGCGACATTTACGTGCTGTTTCTACTGAAGATGC



CACGGCATTTGCGGAAAAGGAAAATACCTTCTTTATGGAGACCTCTG



CGCTCGAGTCTATGAACGTTGAGAATGCGTTCACTGAAGTGCTCACC



CAAATACATCGAGTAGTCAGTAGGAAAGCCCTTGAGGCTGGGAATGA



CCCTGGAGCTCTTCCTAAAGGACAAACCATTAACGTTGGATCAAAGG



ATGATGTCTCAGAAGTTAAAAAGGTCGGTTGCTGCTCTTCTTGAGGA



TTTACCCGTCAAACATTTGAAGGAAATGAAATTTTCTCCAGTAGTCT



CATGTGTCCAGATGCTTTAGTTTCTCTACTCTCTTTGGTTTTCAGTT



TTCTACTTCATACTTGTTGTACTCTCACTTGTATAATTCTTTCCTTT



TCTCTGGCTCTTCCCTTCTTTTTTGTCTTGGGGTTGTGATTGCTCTA



AATTATTGGGACAAGCTCGAAAATT





59
GCATCTCCCACCCAACCCCTACTCTCTCTCTCTCTCTCTATCTCTAT



ATCGTCCTGTCAAGAAGAAGGAAGAAGACGAAGAAGGAAGGTGAACA



AGAAGCAAGAAGAAGATGCAGCAGTAGAAAGGTGAGATCTCGATCTC



GCACCGATGCTCTCGAATCGAACCTGTTCCTCCCCGATCCCCCCGCA



TCGATTCGCCTGAACCACAAAAGAGTTCGCATCCTTTTCCCTCCTTC



GAGGCGTAGAGCAGTTAGGGCCTTGAGCATTCATGGCGGAACTCGCG



GGCGATCTGCCCGGCGAGCTGGTGACCGAGATCCTGGACCGCCTCCC



GGTCGAGTCGCTGCTCCGGTGCCGCTCCGTCTCCAAGCGGTGGCGCG



GCATCATCGACAGCCGGGAGTTCGTCCGCTCCCACCTCGCCCGCTCC



TTCGAGTCCACCGCCAACCTCACCCTCTTCTTCCGCCACTCCTCCAG



CCTCTACTGCATCGACCTCACCTCCCTCCTCCGCCACGGCGGCGTCG



CCGAGATGAACTACCCGCTCATGTGCTACAGCGACCAGATCCGCGTC



CTCGGCTCCTGCAACGGCCTGCTCTGCATCTCCAACGCCGCCGACGA



CGTCGTCGTTTGGAACCCCGCCACGCGGAAGCACAAGTTCCTGCCGT



ACTCCGCCGTCGAGGTGCGGCGCTCCTCGGTTTTCTCCGTCTGCGTC



TACGGGTTCGGGTACGACGAGAGGCGAGACGATTACGTGCTGCTCAG



GCTCGTCCAGCTCGTGACGGAGCCGATCGAGTCGGAAGTTAGTATCT



ACAGCTTGAAGGATAACGCTTGGAGGCGGCTCAAGGACATGCCGTAC



TCCCTCGTTTATCCCCGCAAGATGGGGGTTTTCGTGTGCGGCCATCT



GCACTGGATAATGACTCGGGAGCTGGTGTCGGATTCGGCGAATCTGC



TGGTGGCTTTCGATTTTCGAATTGAGGATTTTAAGGTGGTGGACCAG



CCTGAAGGTATCGATAATAAGCTTGACATGGATTTGTCCGTCCTGGG



AGGGTGTCTCTGCCTTAGCATTAACGGGAACCACATGGGTGTCCATG



TGTGGATTATGAAAGAGTATGGATTGAGAGATTCATGGACTAAGTTG



TTCTCGATACCGCAATCTGAAGTTGCCAGACCTCTTGGGTTTGTCCG



GCCGTTGGCTTACGCCAGCAATGGTCGTCAAGTTTTGGTAAGACAGG



ACAGTAAGAATCTCATTTTGTATGATCTAGAGACTAAGGGCATGGAG



AGGGTTGATATAAATGGCATGCCAAATTCCTTTGAAGCAGAAATTTG



TTTGAGAACCCTTGTTTCGGTCGATGATTATGGAGGATACACCAAGA



AGAAGCAGCAAGAAGCGGAAGAGATTGAGAATAGGACCAAGAGGGAT



GACTTCCTCTCGGTGGGCTTCAAGCTTGTTCTCTAATCGAGACATAG



TTGTGCAAGGGGGGTGTCACAAACTACTCAGCGAAGGAAATGCAGTA



GGAGAAGTTAAGTTTTTTGCCTCAGTATTTAGATTCATGGCTCAACT



TTCGACAATATGGACCAATGTATCATTGGGAAAGGTTTGGCAAAAAA



AAAA





60
CTTCTTCTTCTTCTTCTTCTTTCTCCTCTCTATGGCGGACACCGCAA



CTCGAGCGATTCCTCCGAGAATGGAGTTCTCCGACGAGGCTGCGGCC



GGCGGAGCTGCGGCGCCGGCGGCTGCGGCGGCGGCGGCGGAGGAGGA



GGAGGAGGAAGAGGAGGCGCCGTCGCCGGCGGCGGAGATCAGCGAGG



TCGAGAAGAGCAAGATCGGCATCATGCGGGCCGTCGTGGAGCGGGAC



GACCCTTCCGCCAAGGATGTCGATGATTTTATGATACGGAGGTTTCT



GCGAGCTCGGGATCTAGATATAGAGAAGGCTTCCAAGCTATTTCTGA



AGTACCTGAGCTGGAGACGGTCTTTCGTCCCCAATGGGGTCATATCG



GCATCAGAAGTTCCAAATAACCTTGCTCAGCGGAAGTTGTTTATGCA



AGGTCTTGACAAAAAGGGACGGCCTATAATAGTTGTGTACGGGGGTA



GACATAATCCTTCCAAAGGAAGTCTCGAGGAGTTCAAGCGTATGATA



CTTCTCTGATTCTTCCGGATTTTCTTCTAATCAATATGAATTTATCG



CTTCATGCAAGACTTACCATCATCATATTATTGAAAAGAAATTTAGG



CAGAAAAATACTGAATTTGGCTAAAGTTGAGTTGTTTTTTACTGTGG



CGAAGGTTTTGTGGTCTACACTCTTGACAAAATATGTTCCAGGTAAC



TCTTCTCCTTATTAAGACTCTGCACATCACGGAAATCTAAAAACATT



GCAAACTGAGGATTCTTCCAAAAATGAAATCCTTCAGAAGCATTCTG



GTTAAGGTGTCTATCTTGTGAGGCACAAAAATTGCACGTGTCACCTA



ATTGCATGATTGGAAAAGAATGGCCATATTAGTTGCAAATGAAGCCC



TTGAAGACTATATCTAGAGCCACCCTCCTCAATGGGAAGTATCGGAA



AGTTTTTACCTGGTCCCTTATTGGTTTCTCAATTCCCAGTTTCTTAA



GAACTGTGATCAACCCAAGTCTTTCTTTTGAATTCGCTATCCAGTGT



TGGTCAAATTTTAGCCAATAATTTAAGTTGTTTCTTGGGTGTTGATC



TTTCAGAATGCCTGGAGGGCAGGAGAAGTTTATGGGCATAGCAGATC



TCGAAGGATGGGGATACAAAAGCAGCGACATTCGTGGATACTTAGCA



GCATTGTCAATCTTGCAGGACTGCTATCCGGAGAGGCTGGGCAAGCT



CTTTCTTATTCATGTGCCTTACATATTTATGACTGCATGGAAGATGG



TTTACCCATTCATCGACCCTAAGACGAAAAAGAAGATTGTTTTTGTC



GATAACAAAAAACTGAGAACTACTCTGCTCGGGGACATCGATGAAAG



CCAGCTCCCGGATGTATATGGAGGCAGGTTGCCACTAGTTGCCATTC



AAGACAGCTAAATTCTGCTCAAATTACAAGAATTTTCTCCTCATTTC



TTTTCTGGCCGTGGGTCTATATTGTAGAATATAATGAAGATATAATT



TGATAAAATGCGGAACAACAGCCAAATATTTCATGGCTGAACTCTCT



TGATAAAAAAAAAA





61
AGAACAAGACCCCGTCCCTCACTACTACTGCACGCGCGACGCGACGG



GAGATATGGCTGCTCGGCTCTTTTCAAGCCTCCTCTCTCGCTCCTCC



TCCGCCGCCTCCTCCTCCTCGTCGTCTTCTTCTGCTCGTGCTCTGCT



TTCTCGAGCGAGAAAACCGCTACTGGGAAGAGAAATCAAGAGCTACA



GCACAGCAGCTGCTATCGAGGAACCGATAAATCCAGGCGTCACTGTG



AACCATACTCAGCTTTTCATAAATGGGCAGTATGTGGACTCAGCATC



AGGAAAAACTTTTCCGACCTTTGACCCCAGGACCGGAGAAGTGATTG



CTCATGTTGCTGAAGGCGAGGCTGAAGATATAAACCGAGCTGTAGCT



GCTGCTCGCAAGGCATTCGATGAGGGACCATGGCCTAGAATGACTGC



TTATGAAAGGGCAAATGTACTATTTCGCTTTGCCGATTTGCTTGAAA



AGCATAATGATGAGATTGCAGCACTCGAGACTTGGGATAATGGGAAG



CCATATGAACAGGCTGCCAAAATTGAGCTTCCAATGATCGTCCGTCA



AATTCGATATTATGCAGGTTGGGCTGATAAGATTCACGGTCTCACAG



TTCCAGCTGACGGGCAGTATCATGTCCAAACCTTGCATGAGCCAATT



GGAGTTGCAGGTCAGATTATTCCGTGGAATTTCCCTCTTCTGATGTA



TGCTTGGAAGGTGGGACCTGCCTTAGCCACAGGCAACACCGTTGTAC



TGAAGACGGCAGAGCAGACACCACTTTCTGCTTTATATGCAACCAAG



CTCTTGCATGAGGCTGGTCTCCCCCCTGGAGTGTTGAATGTGGTTTC



TGGTTTTGGTCCAACTGCAGGCGCAGCTCTTTCCAGTCATATGGATG



TTGATAAGCTTGCTTTCACAGGATCAACCGACACAGGGAAAATCGTA



CTTGAGTTGGCAGCAAAAAGCAATCTTAAGCCAGTGACTTTGGAGCT



TGGAGGGAAATCCCCTTTTATTGTATGTGAGGATGCTGATGTTGACA



AGGCTGTTGAGCTAGCCCATTTTGCTCTTTTCTTCAATCAGGGTCAA



TGCTGCTGTGCTGGATCTCGTACATATGTACATGAAAGCATATATGA



AGAATTTGTAGAAAAGGCAAAGGCACGGGCAACAGTGCGTAGTGTGG



GTGATCCGTTCAAAAGTGGCATCGAACAAGGTCCTCAGGTAAGTTAG



CCGATTCTCCTGTATGAGGAAATTTGAATGGATAAGATTGATATCTT



GCGAATGGAAGTAAACTCCTGCTCTTATGACTCTTTTGTCAAATGTA



ATTGACAAATTTGATATTTTTGTCGATTTCACATAAATTTACTGGAT



GGAAATTGAAATGCAACTGAAATAAATCCTTGATAAATGGAGCTAGT



CGTTTGACTAGTACCTGTATGTAGATCTAATGGAAGCTACAGAGTTC



TGAGCGTTCTTTATCTTTACCTCACATCAGATAGACTCGGAGCAGTT



TCAGAAGATTTTGAGGTACATAAGATCTGGAGTAGAAGGTGGAGCAA



CTCTTGAAACAGGAGGAGAAAGATTTGGAACCAAGGGACACTACATT



CAGCCAACTGTATTCTCAAAATGTTAAGGACGATATGTTGATCGCTA



AGGACGAGATTTTTGGTCCCGTGCAGACCATTTTGAAATTCAAGTGA



GTATAAGACCATCTCCTCAAGCTCATTACTAGAGCGGCTTTCCGGTT



AGGATGCATGGTACGATTGTCTGTTGACATGGTGACATCTTTGTCAT



GTTTAATTGCAGGGACCTCAAGGAGGTGATTCAAAGGGCAAACAACT



CACGCTACGGGCTGGCAGCTGGAGTCTTCACCCAGAACATAGACACG



GCGAATACCTTGACCCGCGCTTTAAAAGTTGGAACAGTTTGGGTTAA



CTGTTTTGATGTCTTTGATGCGGCTATTCCATTTGGCGGGTACAAAA



TGAGTGGCCATGGAAGGGAAAAGGGCGTGTACTCTCTGAGCAATTAC



TTGCAGGTCAAAGCTGTGGTCACTTCTTTGAAGAATCCAGCATGGCT



CTAAGCTGAAGTTTGCTTTCATCTTTGGATTTTTCGACCCTTGATAT



TTTTTAATAATAAGGGAAGTAACAGATACTGGAGTTCAAATTATTAT



CGTGACAGTTGTGATGGGAGTTTTGAGGCGGTGACGACGACGATTGT



AGGACGCTGGTGAAATTGCTTCTGTAGCAAACAGTGCCGTGAAGAAT



TCACTTTTTGAGTGTTCACGATCAAATTGTGCTACTATACATTATTG



ATGTTACTTTTGCCATCTTCCAGGCTTG





62
GCATGAGTTCCTCCTCCTCCTCCGGCGGCGGCGGCGGCGGCGCGAAG



CTCCCTCACGACGTCGCCGTCGAGATCCTGAAGCGGTTGCCGGCGAG



ATCCCTCCTCCGATTTAGGTGCGTCTGCCGATCGTGGCGTTCCGCCA



TCGACGACCCTCGTTTCGTGGCCCTCCACTGGAGCCACTCCGCCCTC



CACGCCTCCAGTCGGCATCTCGCGTGTCTAGACTGCGGCGACGACGC



CGTCCAGAACCGGTGCTCTCTGTTCCCCAACGCCCCTCTCGCCCTGC



CTCCTCCCCCGTCGCAAATCGAAATCCCGTTCGTTGCTCCTCCCAAC



CGTTACGCCCTCGTCGGTTCGTGTAACGGTTTGATCTGCGTCTCGGA



GAGTTCCAGTGACGGCACTGAGCGGGCGCTGTATTTTTGGAATCTAT



TCACCAGGAAGCATAAGGCGGTTCGGCTCCCCCGTCCGGAGCGGATG



CCACCCTTCTCCGTGGGGGGCGCTCATGTAGTTCTGGGGTTTTGTTT



CGATGCGAAGTCTAATGACTATCGTGTTGTCAGGATTATCCGATACC



TAGGTATTCGCCGTCGACGCTTCCGCAATAAGAAGCCTCGAGTCGAG



GTTTATTCGTTCCGTACAGATTCATGGAAGACCTTGGAATGTGAGGT



TCCTCTTCTCTGTGACAGTGCGGTCTTCTTGAATGGGAACCTGCACT



GGTATTCTTTCAATGGGGAGGGGGATGGATACGGATCCATAGTCTTG



TTCAATGTCGCAGATGAGGTGTTTGATGAAATAGCTCTGCCGGAAGG



GATCAGTCCCCATTTTGTGTTGTCCGTGACGGTATTGAATGAATCGC



TGGCTGTGTTCTTTAGTCATAGGGAGGCTTGTTTCGTTTGGGTTATG



AAAGACTACGGCGTGCCAGAGTCTTGGAGTAAGCTGTATACTTTCGA



GGTTACGGAACCGGTAACAGGATTTGATGGCTTTACATGGAATGGCG



AGCTTCTTATGGAAATAAATTGTGAAGAACGAGTTTCTTGGAATCCG



ATCACAGCACAACTCTCAATTCTTCCATTGTCGGCGAGATACAAATT



GGTCCCCGTTGTAGAGAGCCTCGTTCCACCTTAGATATGACTCGATT



GCTGCTATATCGTCAGGTGCAAGGTGCTGGAGCTCTTCTTTATTAAC



AGGAATTCTGGTGATTGGCAATGCAAGTACAGCTGGCTCTAACAAAA



ATGGGGGAGTGGCAAAGGACAGCAGAAAGTGATGTTGAAGTTTCTTC



GGAATATAGTTTACGTGGAAGGCAAGAAACAATCTGCTTCATGGTTA



AGCTACTTCTCCCTTCGAGCATGTTCTTAGATTGATCGATTTGTTAC



TTAACATCAATTTGAAGGCTATCTAGTTTCAAAAGGATACATGTCGT



GCTTATGATTATCTATATAATGTAATGTGTGAGATTTGCTTATAAAA



AAAAAA





63
CAAGCGCACTGCATTGATTTTCGAACATCGCCGGACGAGACACACAC



AATTCGCTCTCATTTTCAAAATCGATCTATCCAAAACCCTCTTTCTG



TCTTTAGGCCATTTCTCCTCTTTGCCATCTCACAGTCTCACTCGCCT



TTCATTCGACGCTCGTCGCTCTCTTTCCCCGAACGTTTGAAGAAAAC



GCGACGGTTTTTGAGGTTGTGTTGTGATGGATGCTGCACCATTGACT



TCTCAGCGCCGACCATTTTCAGTGAAACTATGGCCCCCGAGCAAAAA



TACTCGTGAAACACTTGTAGAACGGATGACAAGGAATCTCACAAGTG



AATCCATTTTCACTAGGAAGTATGGAAGTTTGAGCCCGGAAGAAGCT



GAGGAAAATGCAAAAAGAATTGAAGATGAAGCTTTTACAACTGCTAA



TCAACATTATGAAAAAGAGCCTGATGGTGATGGAGGGTCTGCAGTGC



AGCTCTATGCTAAGGAATGCAGTAAACTTATACTGGAAGTCCTCAAA



AAAGGCCCAAAAGGCAAGGATGAAAAGCCGCCAACTTCTGACAGTGC



TAAGGCCCCTAGAGAGACATTTTTTGATATTTCCAAGGGCCAGCGGG



CCTTCATTGAAGCAGAGGAGGCAGAAGAACTTCTGAGACCATTGAAG



GAGCCTGAAAATTCTTTCACCAAAATATGCTTTAGCAATAGAAGCTT



TGGATTAGGAGCTGCTCATGTTGCTGAACCCATTCTGATTTCCCTGA



AGCAACAATTGAAGGAGGTAGATTTATCTGATTTCATTGCAGGAAGG



CCAGAAACAGAAGCTCTTGAAGTCATGAGCATATTTTCAGCTGCCTT



GGAGGGTAGTGTTTTGAATTCTCTAAATCTTTCCAATAATGCTTTGG



GTGAAAAAGGCGTCAGAGCATTTAGCGCACTCCTGAAATCACAGAGT



CAATTGGAGGAGCTCTATTTAATGAATGATGGAATTTCTGAAGAAGC



TGCTCGTGCAGTATGTGAGTTGATCCCTTCCACAGAAAAACTTAGAG



TTCTTCATTTTCACAATAACATGACAGGAGATGAAGGGGCGATTGCT



ATTGCTGAGGTTGTGAAATGCTCTTCATTAATGGAGGACTTCCGCTG



CTCCTCCACAAGGATTGGCTCTGATGGAGGTGTTGCCTTATCAGAAG



CACTTGAAAATTGCATCCATCTGAAGAAACTTGATTTGAGGGACAAT



ATGTTTGGTGTAGATGCTGGAGTTGCTTTGAGTAAAGCTCTTTCCAA



GCACACTAATTTGACTGAGGTTTACTTGAGTTACCTGAATTTGGAAG



ATGAGGGGGCAATTGCTATAGCCAATGTTCTTAAAGAGACAGCCTCA



TCTCTTACAGTTCTAGATATGGCTGGCAATGACATAACAGCGGAAGC



AGCTCCAACTTTATCTGCTTGTATAGCTGCAAAGAATCTTCTCACCA



AATTGAACTTGGCTGAGAATGAGCTCAAGGATGAAGGTGCTATTCAG



ATTGGCAAAGCATTGCAAGAAGGCCATGAGCAGTTGACGGAAGTTGA



TTTGAACACCAACTCGATCAGAAGGGCTGGAGCTCGATTCTTGGCCC



AGGTTGTGGTGCAGAAGCCTGGTTTCAAGTTGCTCAACATCGATGGA



AATTTCATTTCGGAAGATGGGATTGATGAGGTCAAGAGTATATTCAA



GAAATCCCCTGAAATGCTGGCTTCCCTAGATGAGAATGACCCTGAAG



GAGGTGATGAAGATGAAGAGGACGAGGAAGGTGAAGCGGAAGGTGAA



GCTGATGAAGGTGAGCTGGAGTCAAAGTTGAAGAATCTTGAAGTAGG



TGAAGAGTAGGATATGTTCTTTCTAGTTTAAGGTAATTTGAATTGGC



TGTCCAAGTTAGTTCAGGAACAGCTTTAATAGCCAGGAACATTTTTG



CTGAATTTTTAGCTCATTACATCGTCGAGGCTCATGAACCATGAGCA



GGATAATCGTAGCTCCTAGAGATGAGCATTTTTTTTACTCAGGAGGA



CGACCTTGGAGGAGCTGTTCGTAGGGTACTCATTTTACAGTGTACCG



GGTAATCTTGTCGTATGAAGGGATTACCAGAACTTCCGTTCTAGTTA



CTAGCTACTAGCTACTAGCTAGTGAATTGTTTTAATGCGCTTTCTTC



TCTCCTAGCTGATTTTATTCATTAAAAAAAAAA





64
GCTCTCTCTCCCTCCCTCCTTCCCTCTGATGGCACTCGTCCGCGAAC



GCCGGCAGCTCAACCTCCGCCTCCCGCTGACGGATCTCCCCAACCGC



CGCCCGCTCTTCCCGCCGCCCCTCTCCCTCCCCCTCCCTCCCTCCGC



CGCCGCCGCCGCCTCCGCCACCGCCGCCGCCGGCTCCGGCGCCGCCG



CGACCTCCCTGTCCGACCTCGAGAGCCTCGGCGTCCTCGGCCACGGG



AACGGCGGCACCGTCTACAAGGTCCGCCACCGGCGCACCTCCGCCGT



CTACGCCCTCAAGGTCGTCCACGCCGGCTGCGACGCCACCGTCCGCC



GCCAGGTCCTCCGCGAGATGGAGATCCTCCGCCGCACGGACTCGCCG



CACGTGGTCCGGTGCCACGGCATCTTCGAGAAGCCGAACGGCGACAT



CGCGATCCTGATGGAGAACATGGACGCCGGCAGCCTCCAGACGCTCC



TGGAGGCCTCCGGGACCTTCTCGGAGAAGCAACTCGCCGCCGTCGCC



CGCCACGTGCTGAACGGGCTCCACTACCTCCACTCCCTCAAGATCAT



CCACCGCGACATCAAGCCGTCGAACCTGCTCGTGAACTCGGCGATGG



AGGTCAAGATCGCCGACTTCGGGGTGAGCAAGATCATGTGCCGGACC



CTCGACGCGTGCAACTCCTACGTCGGCACGTGCGCGTACATGAGCCC



CGAGCGGTTCGACCCGGACAGCTACGGCGGCAACTACGACGGCTACG



CCGGCGACATCTGGAGCCTGGGGCTGACGCTGCTGGAGCTCTATCTG



GGTCACTTCCCGCTGTTGGGTCCCGGCCAGAGGCCCGACTGGGCGAC



GCTGATGTGCGCGATCTGCTTCGGGGAGCCGCCGAAGTCGCCCGACG



GGTCGTCGGAGGAGTTCCGGAGCTTCGTCGAGTGCTGCCTGCAGAAG



GAGTCGAGCAAGCGGTGGTCGGTGGCGGAGCTGCTGAACCACCCTTT



CATAGCCGGCGGTAAAGATCCGGCGGGATCCTTGTGAGGTGGAAGCA



CGCGGGTCGGGTTGAGGCAAAGTATTTTACCGCTGGAAAACCCGGAA



GTCGAGGCGGGCGCACGCAGAACGGGCCCGCCCGGGACAAATCAAGT



ACGGGTCGGGTCGAGATTCGCTTCGCGATGAGTTTTTGTACATATAG



GGCGGACTTCGGGTCGCAAATTCGGGCGCTCTCTGTTTCTTTTTTCT



TTTTCAATGTCCTCTTTAGGATGCTTCGGGCAGTGAAATTGCTGTTC



GAGAACTAATGAAGGACCCTTCTTGACTAGTTCAAAAAAAAAAAA





65
GCGGAAAACCCGAATCCCGGGAAAAAGAAACAAGCCTCGAGATCACT



GATCAGAGAGAGAAGGAGGGAGATGGTGAGCGCAGCGCAGGCGGCGG



GCGGGAGCCTGAGCCTGAGCCTGAGCCTGCGCGATCGCGAGATCCTG



ACCTCGGTGAACTCGGTGGCGTCGAGCTTCTCGCTCCTCGGCTCGGG



CTTCATCGTCCTCTGCTACCTCCTCTTCAAGGAGCTCCGCAAGTTCT



CCTTCAAGCTCGTCTTCTACCTCGCCCTCTCCGATATGCTTTGCAGT



TTCTTCAACATAATTGGTGATCCATCCATAGGATTCTTCTGTTATGC



TCAGGGTTATACCACCCACTTCTTTTGTGTGGCATCCTTTCTTTGGA



CAACAGTGATTGCATTTACTCTTCACCGGACTGTCGTTAGACACAAG



ACTGATGTTGAAGATTTGGAGGCTATGTTTCACTTGTATGTATGGGG



CACATCCGTGGTTATGACCATCATACGCTCTATTGGCAATGATCACA



GACATTTGGGTGCATGGTGCTGGTCACAAACAGGGCGCACAGGAAAG



GCAGTTCACTTCATTACGTTTTATGCGCCACTCTGGGGAGCAATCCT



TTATAACGGTTTTTCATACTTTCAAGTGATACGCATGTTAAACAATG



CCACACGTATGGCCGTTGGCATGTCAGATCGAGCATACCACTTAGAT



GCAAGACCTGATATGAAGGCTTTGAACAGGTGGGGATACTACCCGCT



CATTCTGATAGGATCATGGACTTTTGGTACAATCAATCGCATACATG



ACTTCATTGAACCTGGACATAAGATTTTTTGGCTGTCTCTTCTTGAT



GTTGGCACTGCTGCTCTGATGGGTCTGTTCAACTCAATAGCATATGG



CCTGAATTCTTCCGTGCGACGGGCGATTCGCGAGAGATTGGATCTAG



TAACGTGGCCGGAGACGATTAGGCCATGGTTGCCTAACAGTTCAAGG



ATCAGACACCAACAGCAAGAGAGTGAACTAGTGTCACTGAAAAGCCA



AGATCCGCACTGACGATTCCAAGATTATGCCCATCTTCTTCGACGAG



TGGTCGAGTATAGCCATGGAGCTACTGGTTTTGAAACCCTCATCAGA



CTGATCCAAAGTTCTGGTAGATGCTCACGGGATGGACCTTCTTCTGT



CATTTTAATGAAACAGCCGGTAATCTTTTCGCGACAAAGGGGTAGCG



TTGCCCATCTGCAACTGGTAGCTGCAATCTTGTACATTAGGAAGGTA



AAAAGCCCTTTTTGCGATTGTGATTCCTTCCTCCGCTGGGGACTCGG



GTGCCGGCTCCCCATTTTGTAGGTCGAATTGTACAACAATCTCTCGT



CTCCCTAATATCCGTTACGATCATATTCTTTCGACAATAGACTGATC



CCTGACTGCTTTACGTTGTTTCAAAAAAAAAA





66
GCTCATATCGAACCTGTTCCTTCTGGATCATGTGAATCGATTGACCA



AAAGAGGAGCGTTTTCTCATCGTCTTCCTCTTTGTCGCAGTTTGTCT



CGAGCTGTAAGGAGATTCGCCACAATGTAGCCGTCACGGCTCGTCTC



GAACTGTAAGGAGGCGAGATTCGGAAGTACTCTGGGAAATGGCGGGC



CTTTCGGACGATCTGATCACCAAGATACTGGACCGATTCCCGAAGGA



ATCGCTGATCCCCTTCAGGTGCGTGTCCAAACAGTGGCGTCGCTTGA



TAGACGACCGTTTCTTCAGGAAGTCGCTCCTCTACCTCGTCCCCATG



TATTCCTCGAGTCTCTACCGTATCGGTCTGCGTCGCCTGGGTGACTT



GGTGGAGATTGAGAACCCTTTCGAGTCGGAACAGATCGTGTTGTTGG



GGTCTTGCCGTGGCTTCCTTTGCATTTATAATGAGATCGACGGCCAG



ATTGCTATATGGAATCCGTCCACTAGGAGTTGTCAGCTCTTGCCACC



TGCAGATGCTGAGATAGCCCATAGATTGGGTCCCCCTGCTTGCGTTT



ATGGATTTGGATATGACTATTGGAATGATGAGTTCGTGTTGTTGAGG



CTGGTTCAGACCATGGAAGATCCAATTCTATCAGTTAGCATCTATAG



ATCAAGAGGTAGCGTGTGGAGGCGGCTCCAGGGGATACCACCATACT



CTTTGGTTGAACCGCGCACAATGGGGGTTTTCTTGCGCGGCCGTCTG



CACTGGATAATGAGACGCGACCCGATGCAGAACTCGGCAATAGTTCT



GGTGGCTTTTGATATTCATACTGAAAACTCCGTGGAGGTACAACAGC



TTAATTTTATTGACAATAGGCTTCCAATGTATTTGGCCATCCTGGAA



GGGGGTCTTTGCCTTATTATTAATGATGAGCGAGGGGGTGTCAGTGC



GTGGATTGCAAGTGAATATGGATCGGAAGAGTCATGGGCTAGGCTGT



TCTCGATAGCTGACTACTCGATGGGTCGGGTACTTCTCCAGCCACTG



GCTTACTCCCAGAACGGTCGTCAAGTTTTGCTCCTGTACCGTGAGAC



TCTCGTTTGGTACGATTTAGATACCGGTGACGTTGAGAATATAAACA



GCATGCTAAGCATCTCCAATACACCTATTGTTGGAGACTACTTAGGG



TCTCGTCGTCGGAGACTACAAGGTGCGTGGAGGCAGCTCGAGGGTAT



GTCGTACTCTCTGGGTAATGCGTGCAAAAGGGGGATTTTCCTGCATG



GCCGTCTGCACTGGATAATGACTCTCCAGCTGGTGCTGAATTCGACA



AAAGTGTTAGTGGCTTTTGATATTCGTTCAGACAAATTTATGGAGGT



GAGCGAGCTTAATTTTATAGATAATAGGCTCAACATGGATTTGACCC



TCTTAGGAGGGTGTCTTTGCCTTATCATTTATGGTGAGCAAAGGGGT



GTCCATGCGTGGATTATGAGGGAATATGGATTAAACAGACCATGGTA



TATGTTGTTCTCGATGCCTGGCCACTCAAGGCCGCTATTGGCTTACT



CCCAGAACGGTCGTCAAGTTTTGGTGGCAGTGGGCGGTAAGACTCTC



GTTTGGTACGATAGAGTCTGGTACGATTTACATACTGGGGGTGTCAA



GAAGTTCGGTAAAAGGGGCATGCCAAGTTCCTATGAAGCAGAAATTT



ATTTGCGAACCCTTGTTCCGGTCGGTAAGCCGCCGATATGAGGAGGG



ACGACTTCTGAGCTAATGACTTGTTTGGAGGATCGTCGATGATCTGC



ATCGTAATCATCCAAAGTGAAGTCAAATCTGATGTAATCTGGAGTGT



ACTCTGAATGCGTGTTGTGGTTTGAATGTACTTAGATGCCAGTAGTT



TCTAGCCTGTTGCATCCGCTTATTTGCTATATTAACGTATATTCAGC



AAAAAAAAAA





67
GGTGTTTATCGCGTGCTGGAAACAACGAAGGAAGGAACGAAGGAAGC



ACTTCGCGTGCTGAGATTACTTACTCTCTTCGGCGGCGTCCCGGGCG



AGAGCTCCGATTCGGTTCGATTCGATTCGATTTGCGATGGCCGGAGG



AGAAGCCTTCTCCTCGAATCCTCCGCCGCCCAAGCCGGCGATTCTCG



GGAACAACAGCAAGACCATCAATGCGAAGCTCGTGTTGCTGGGGGAC



ATGGGTGCCGGCAAGTCCAGCCTGGTCTTGCGCTTCGTCAAGGACCA



GTTCTTTGATTTTCAGGAATCAACTATAGGAGCAGCATTCTTCTCGC



GGACAGTGGGTGTCAATGATGCATCAGTGAAGTTTGAGATATGGGAT



ACTGCAGGTCAGGAAAGGTACCACAGCTTGGCTCCTATGTACTACAG



AGGCGCTGCTGCAGCTATTGTTGTCTATGACATCACTAGCACCGAGT



CATTTGAACGGGCTAAGAAGTGGGTGGAGGAACTTCACAAGCAAGGA



AATCCCAATTTGATAATAACACTTGCTGGAAATAAGACTGATATGGA



GGATAAAAGAAAAGTGGCAGCTGAGGAGGCATGCATGTATGCAGAAG



AAAGGCGACTCGTGTTCATAGAAACATCTGCTAAGACTGCCACTAAT



GTTAGCAAACTGTTTTATGAAATAGCAAAGAGGTTGCCTAGAGTTCA



GGCTATGCAGAATTCAGCGCCAGCGGGAATGGTTCTAGCAGATACAA



GCTCTGAAGAAACCCGATCTGCATCCTGTTGTTCATGAGTTCTTATC



AACTCTCTGTCCATTCCTTTCCTTTTTCCCCTCACTTTCTATAGTTG



TCTCCACTCAAAGTACCTTGATCTTTTAGTTCTTGATGTATATGAAT



AAAAACAAATCCGAACACCACTTGTGAAATTGGAAAACCAATTGGAG



TTGGGGAGTTAGTCCATTTAAACCCAGTAAATTCCTCGGTGAAAAAA



AAAA





68
GGGAGAGTTCAGAGGTAAAGGAGGAAAGCAAAAAAATGGAGATTCCT



ATGATAGATTTGAGTGAGCTTGATGGTAAGAACAGGAGCAAAACAAT



GGCACTGCTTCACCATGCTTGTGAGAAATGGGGCTGCTTCAAGATTA



AGAACCATGGAGTTGACCCAGAACTGATGGAGAAAGTGAAGCATTTT



GTCAACACCCACTATGAGGAGAATTTGAAGGCAAGTTTCTATGAGTC



AGAAACTGCCAAATGCTTGGAAATGCCAATGGTGCCACATCTGATCT



AGACTGGGAATGCACCTTCTTTATCTGGCACCGCCCGAAGTCGAACA



TTGAGGACTTCCCGAACCTCTCGAATGATCTTCGGAAGACAATGGAT



GAGTACATTGCTCAGCTGGTTAAACTAGCAGAGAACCTCTCAGAGCT



CATGTGTGAGAATCTTGGCCTAGGCAAGGACCACATAAAGAGGGCAT



TCTCAGGGAAAGATGGGCCCTCTGTGGGGACGAAGGTGGCGAATACC



CGGAATGCCCCTATCCGGAAAAGGTAAGAGGACTCAGAGAGCACACT



GATGCAGGTGGTATCATACTGCTGCTTCAGGATGACCAAGTCCCAGG



ACTTGAATTCCTCCATGATGACCAGTGGGTTCCAATCCCACCATCCA



CAAACGACACCATCTTCGTCAACACCGGAGACCAACTTGAGGTGCTG



AGCAACGGCCGGTACAAGAGCGTCTGGCACCGTGTCATGGCTGTGGA



GAGCGGGAGCCGGCTCTCTGTGGCCACGTTCTACAATCCCGCCGGCG



ATGCGATCATCTCGCCTGCGCCGAAGCTCCTGTACCCTGAGAAGTAC



ACTTTTGGGGAGTACCTGAAGCTTTATGCCACTACCAAATTTCAAGA



AAAAGAGCCCAGGTTTGAGTCGATGAAGAGTGTGATGAGCAATGGAT



ACAATGGAGTTGTCTAAGAGCTGCCAATAACTAAATGGATCAGGCTC



ATTTGTCTCTGTTTGGATTTTGTTTTTACTTTTTCTTGCTTTGATAG



AAACATGGTCTTGTGGTTATATATGCCAGTTGTCTCTTTTACAGTGA



GTTTTGTGTAACTCCTAAAGAAGAGATGGTATAAGTCTGTCTTTATC



AGCTTTCTTGGCTCTCTTTGTGCTGATGTTGAATGGGCTCCAATGAA



AAAAAAAA





69
AATTTCCTGGGTGGCTGCATTTTCTTTACTGGGCTGCTGCTGGAGAG



ACAGAAGAGGAGGAAGAATTCATGGCTACAGTTCCTCAAGAAGCGAT



CAATGAGCTCCAAGCTCTGATGGATCGAGTTGACGAGCCGTTGATGA



GAACATTCGAGAACATTCATCAAGGGTATCTTAAAGAAACTTTGGTG



CGTTTTCTAAAGGCGAGAGAAGGCAATGTTGCCAAAGCCCATAAAAT



GTTATTGGATTGTTTGAAGTGGCGTGTTCAAAATGAGATTGATATCA



TTTTGTCGAAACCAATTATCCCTGATGACTTGTACAGAGCTGTGCGG



GATTCACAACTTATTGGATTGTCAGGTTACTCCAAGGAGGGACTCCC



AGTATATGCTATCGGGGTTGGGCTTAGCACCTTTGACAAAGCTTCAG



TTCATTATTACGTGCAATCACATATTCAAATCAATGAATACAGAGAC



CGTGTAATTTTGCCTTCTGCATCCAAAAGGTACGGGCGACCTATTAC



CACTTGTTTGAAGGTTCTAGATATGTCCGGCCTGAGGCTTTCAGCCC



TCAGTCAGATAAAGTTGTTGACTATTATATCGACTGTTGATGACTTG



AACTACCCTGAAAAGACGAATACCTATTACATTGTGAATGCTCCATA



CGTCTTTTCTGCTTGTTGGAAGGTTGTGAAACCACTTTTGCAAGAGA



GAACGAGAAAGAAAGTTCAGGTGTTGCCTGGTTGTGGACGTGATGAT



CTACTAAAGATAATGGATTACAGTTCCCTCCCACATTTTTGCAAGGG



GGAAGGTTCGGGTTCTGGTCGGCATACATCATACGGTCCAGAAAATT



GCTACTCGTTGGACCATCCCTTTCACCAACAGCTTTACAGCTATATC



AAGGAGCAATCTCAGAGACGTCAACCCATCCAACCCATCAAACAGGG



CTCTTTTCATGTTGCGCTGCCTGAGGCCGCTGCAGAAGGGACAGAGA



TCGCTAAAACCATAGAATCCGAGCTACAGAAGTTTGAAAACGGAAGT



GGGATGCCTGACTCACTGGATGGCCTTAAAATCAATGGCGAGTGAAG



CCGTTGGGATCAAAATGCTTCGGACGACCATTTGCAGCGATGAATCT



AACAAGAGCTGATCATTGCCTTGATTCAACTACGTGAACGATGATGT



GTGGGCCATTTCCAGTCACGCGACGTAACAGCACAGTATGGGTGGCT



CTCCCTATTGTCTATGTTATCTTCTTGAGGTAACCTGATCCAGCCGG



ATGTACCTTAGTGTACTGAATAGCCTAAAGCCATGTTCCTATCAGAT



GTATGACCTGGCATGTTGTAATATTCATTTCCATATGCAAGTTAACA



TCATTTCCACCTAGGGATCTCTTGGAGGCTCTCAGATTTTAAAGGAG



ATGTTCCTCATCTTCTTTACACGATATGACTGTCGGATGTTGCAAAT



GTTTACTAGCAAGTCTAGCTAGTCAATGTCTTCGGTTTCGTTGTTCA



AAAAAAAAA





70
GGATGGCCCGAGCGGGGAACAAGAACATACAAGCCAAGCTGGTACTT



CTTGGGGACATGGGAGCTGGAAAAACAAGTCTGGTGCTGAGATTTGT



CAAGGGCCAATTCCACGAGTACCAGGAATCCACTATCGGCGCAGCCT



TCTTTACTCAGGTCTTGTCCCTGAACGAAGCGACTGTGAAGTTTGAT



ATATGGGATACGGCCGGACAGGAAAGATATCACAGCTTGGCTCCAAT



GTACTATCGAGGTGCTGCTGCAGCTGTCGTTGTCTATGACCTCACTA



GCATGGACTCATTTCAACGAGCCAAAAAATGGGTTCTAGAACTGCAG



AGACAAGGGAATCCCAAGTTAATAATGTTCTTGGTGGCGAACAAGGC



GGACCTGGAGCAGAAAAGGCAAGTGCTGAGTGAGGAAGGCGAGCAAT



ATGCTAAGGAAAATGGTTTGTCGTTTCTTGAAACTTCAGCAAAGACT



GCACAGAATGTCAATGAGCTTTTCTATGAGATAGCGAAGAGAATTGC



AAAAGCTACTCCTTCACGACCGACTGGAATGAAGCTGCAGAGACAAG



AAAGTCGAAGAAGCTTATTTTGTTGCTCGGGGTGATTCCAGTGCTTG



CTCTCTTAAGGAAATTGCTGCGAATGGCTGTGGTGGATGCACCTCTT



GTGGTTGTCGATGTTGAAGATGGAATCTCATTCTGACCCTGGCTCGT



GAATACTTTCATATGTACACAGTATTTCACCGGACAAAATCCTTTGC



TTACCATTTCAATTGTATCAAATTCTCCTTCATGTGGAAAGGGTTAT



GAAAACTCGTAAGCAATAAGAAATGTTGCTCCAAAAAAAAAA





71
GTCGGAGGGGAGTAACCATGTCGACACTCAGCGAAGACGACGAAACC



GAAATCCTCCTGCGGCTTCCCGTGAAATCTCTGCTCAAGTTCAAGAG



CGTGTGCAAGCCATGGAACTCACTGATCTCCTCTCCCTATTTCGCCA



AGACCCATCTTCAGATTTCCGCTTCTTCCCCAAGAATCCTCCTCGCC



ACCAACCCTCCTCTGTCCGTGAGCTGCGAATCACTCCATGATGATGA



TCGTGCCGGCCATGAAGGTACGCCTCTAACCCAGCTTCGGCCTCCGG



TTGAAGCTCCCGACGGATGTCGCCCCCGCATCGTCGGATACTGCGAT



GGTTTGGTCTGCTTGGAGTACGACGATCATCGGATTGTTGTCCTGTG



GAACCCGGCAACAGGGGAGTCTAGAAACATCCCAAACGCTAGCTGCT



CGTATAACCGACCGACCATTTGCGGACTTGGCTATGATCCATCGACT



GATGATTACAAAATATTGCGGCACTGTTCCGTTGCGGATGCGTATGG



GTTTCCAGAATATAGCGTGTTCGATGTTTTCGCGCTGAAGACTGGTT



CTTGGAGGAGAGTTCATGACAAGCATGATGAATTTAACTATTGGCCG



GAAGCTGGGACCTATGCGAATGGTTTCCTTCATTGGCTAGTCGTGGG



GAGAGATCCTTGGGAACACAAGAAGATTGTTTCGTTCAGCATGAGCA



AAGAGAAGTTTGAGGATGCGTTGTTGGCGCTGCCGGAGGCCAATGAA



GGTACTGGGTTCAGAGTATTGGGAGTTGCCGGTGAATGCCTTCTCAT



ATATAAAAGCATGGCGGAGGTGGACACTTTTATGGCATGGATGATGA



GCGACTATGGTGTGAGATCGTCGTCGTCTTGGATGGAGTTGTGTAGT



GTTACTCTCCCGAATCAGACATTAAACACTTACTTCTACATGAGGCC



ATTGTGCTCTACCAGAGCAGGGAAGATAGCATTCAGTTCGATCGGCA



CAACCCGCTTATCTATGATCCTGAGAAATGTTATGACAAAGTGGTTC



GTGAAGGAGGATAAATTAGACTTTGTAGTGTACGTTGAGAGTTTTGT



TTCACCTCATGGAGCAAAGCTGCAGAATCAATATGTGTCTCGGGTGA



AGGAGCCTATGGAGAGAAGTGACTTCATTGGTGATCACTCAGTATTT



AAAGAAGGGGAAACTTCATATAAGAAAGCCAATAGCCATCTTAGCAG



TAAAAGGAGAAAAGCTTCCTAGAGGGCTAGTTGTGATGTGGATGCGC



AGGTCGATATATTGTGAAGTCAAAGGGGTGACTCAGTAACTGCTTTA



GGCACTTTGTTCTTCTCTTTTGTGGGTTCCTTCTGGATTACTTTGTG



TGTCTGTGTTTGGTCGGGATGGCAGACTTGTTTCTTTGTTTACTTGT



ATAACATTTTTGTAATTCCTCTTTCCACAAATCAAAGCCCTGATGAA



AACCAAAAAAAAAAAAAAAAAAAAAAAAA





72
AGAGAGAGAGAGAGAGAGAGAGAGAGATGGAGATATTCCCAGTGATT



AACTTGGAGAAGTTGAATGGCGAGGAGAGAGGAGTTACTATGGAGAT



GATAAGAGATGCTTGTGAAAACTGGGGCTTCTTTGAGTTGGTGAATC



ATGGGATATCCCATGAGCTGATGGACACGGTGGAGAGGCTCACAAAG



GGTCACTACAAAGAATGCATGGAGAGGAAATTCAAGGAAATGGTGGC



AAGCAAAGGGCTCGAGGCCGTTCAGTCTGAAATCGGCGACATTGATT



GGGAGAGCACCTTCTTCTTGCGCCATCTCCCCGTCTCCAACATCTCT



GAAGTCCCTGATCTCAAAGAAGATTACAGGAAGGTGATGAGAGAATT



TGCACTGGAGATAGAGAAGCTAGCAGAGCAACTTCTAGACCTGTTGT



GTGAGAACCTCGGTCTGGAGAAAGGGTACCTGAAGAAGGTGTTCTAT



GGATCCAAAGGGCCAACATTTGGAACCAAGGTGAGCAACTACCCTCC



GTGCCCGAACCCAGAGCTTTTTAAGGGCCTCCGGGCCCACACCGACG



CCGGTGGGATCATCCTTCTCTTCCAGGACGACAAGGTCGGCGGCCTT



CAACTCCTCAAGGACGGCAAATGGATCGATGTCCCTCCACTGAGGCA



TTCGATTGTCATCAACTTAGGCGACCAGCTAGAGGTCATTACAAATG



GCAAGTACAAGAGCGTGGAGCACCGGGTTATTGCGCAGTCAGATGGG



AATAGAATGTCCATAGCATCGTTTTATAACCCTGGAAGCGATGCTGT



CATCTGTCCTGCACCAGCACTATTGAAGAAAGAAGCAGGAGAGGAAG



GCCAAGCTTATCCCAAGTTTGTGTTTGAGGACTACATGAAGTTGTAT



GCAAGGCTTAAGTTCCAGGCGAAGGAACCGAGATTCGAAGCCATGAA



AGCCACGGAATCCACCATTGCTAGGGGTCCTATCGCAACTGCTTGAG



TGTTGAATGACAAGTTTCTTGTTACTAAGAATAGGGTCTTGTTTCAT



GGTCTACTAATGTAATGAATCTCGCTCTTTATCTAGTGCTGGAGAGT



GGCTGCTTTGCTTGTGTTAAGTAATGTGTTTATCATGACCTTTGAAC



TAGTGATTTCTGAGGCTTTTTATTTGAAAAAAAAAA





73
ATCCTTCACTCCGACTCTCCACCCCCACCATCTCCTCCTCCGCCACA



CCACTACCAACACCACCACCATCACCACCATGCAAGTCTCTCAACCT



GCTCGTCCTTCCGATCCAATATACAGGCGAGACGATCACTTGTCACA



AGCATGCAAAGACTTGGTGTCCTCTCTCCCTTCTGAAGAAGGCTGGG



TCGCAACCTCTTTCTGCTTGTACCAGGGCTTCTGGTTCCCCACTTGG



CTCTTCAACGGTGTCCTCGCTTGCCAAAACCACTTCCAAGCTCAACC



CTCTGACATCCTCCTCGTCACCAACCCGAAATCCGGCACCACCTGGC



TAAAGGCCATCCTCTTTGCTCTCTTGAACCGTGCCAAGTACTCTGAC



TCCGACTCAAAACAACGCCACCCTCTTCTAACCCAAAACCCCCACGA



TCTTGTGCCCTTCTTGGAGGTCAAGTTGTATCTCCAGCAAGAAAATC



CCGATCTCACTACTTTCGAGTCCCCGAGGCTCTTCGCCACCCACTTG



CCCTATTCGTCACTTCCAGGGTCGGTGAGGGACTCCAGGTGCAAGCT



GGTTTACCTGTGTAGGAACCCTAAGGACATGTTCATCTCGCTGTGGC



ACTACGTCAACAAGCGGAGGGCCGAAGAGAAGGGCCAGATTCCGCTC



CCAAAGTGCCTTGACAAGTTCTGTCGAGGATTGAGCCCCTACGGGCC



TTATTGGGATCATGTGATGGGTTACCACAAGGCGAGCTTGGAGATGC



CTGAGCAGGTGTTGTTCTTGATGTACGAGGAGTTGAAAGAGGACCCG



CGTGTTCATGTGAGTAGGTTGGCTGATTTCTTGGGGTGTCCGTTCAG



CGATGAAGAACTGAGAGACGGCACTGTAGAGGGAATAATGAGGATGT



GTAGCTTCGACAATTTGAGCTCATTGGAGGTGAATAAGAGCGGGAAG



CTGTGGACTGGACAAGAGAACCAGTGGTTTTTCAGGAGAGGGAAGGT



CGGAGACTGGGTGAATTATCTGAGTGCTGAGATGGCCGACAAGATTG



ACCAGGTAATGGAAGAGAAGTTGCGTGATTCTGGGTTGAAACTTTCA



GTACAAATAACTCACTCGTTCAATAATTTCCGTGGGCTGTGTTAATT



TTAAAGATGTTTGGTTTGATGGTGGAGAAAAAAAGGCACAAAAAGTT



AAAAAGGAAAAAAAAGGAAACGACTCGTTTGTTCGCACTTTATGAAA



GTGTGATTCTTATGCTATAGGATCAAAGATTTTTAGTGGCAGTGTCG



ATCGTGGCTTCGTATCAATAATGAGACGCTTCAAGGTTGTGTTTCTG



GGCACCAGCTTTGTTGTACTATTGGCTTTTGCAGATGCTATTTGGCC



AACACTTAGTTGGCCAATAAAAAGCAGCTTTCCATCTTTTTCTTTTT



GCCGTGTGAAGCTTTGTGATGTATGGTCTTGTGTAGATCGAATTGCT



AAACAACTGATATGTGTGGTTTGGATTAAAAAAAAAA





74
TGGGGTTCTCTTTCTCTCTCTATAAGACGCATTGCTCCCTCTCCCTC



CCCCTTTTGGCCCTCCGTGCGCTCCAAAGCTCGCTCCTTTGAACCCC



GCGCGAGCGAGACGGGGAGGTGGGCAGCCAGCTTTTCGCCTTTCTCG



AACTGGGTCGGCTCCCTTTTTCCGCCTCCCGCCTCCCAGATCTCGCC



CTCGCCCCCTCGCCGGCGGCCGGGCAAAGGCAAAGGCAAAGGCAAAG



GCCGAGTCTTTTTGATCGGCCGGTGATGCTCAGCGGCTGACGTGGGC



CGCTCCTCCCCGGTTGCGCTGCCCGCATGGATCCGACGAAGAAGCCG



CGGGAGTCGTCCTCGTCGACGGCGTCGGCGGCGGCGGCGGAGTTCCC



GGACGAGGTGCTGGAGCGGGTGCTGGCGCTGCTAGCCTCGCACAAGG



ATCGGAGCGCCGCGTCCCTCGTGTCCAAGGCCTGGTACCACGCCGAG



CGGTGGTCCCGGACGCGGGTCTTCATCGGGAACTGCTACTCGGTGAC



GCCCGAGATCGTCGCCGGCCGGTTCCCGAAGATCCGCAGCGTCACGC



TCAAGGGGAAGCCCAGGTTCTCGGACTTCAAACCTGGTGCCGCAGAA



CTGGGGGGCCGACATCCGGTCGTGGCTCACGGTCTTCGCGGAGCGGT



ACCCCTTCCTCGAGGAGCTGCGGCTCAAGAGGATGACCGTGACGGAC



GAGAGCTTGAAGTTTCTGGCCCTGAAATTTCCAAACTTCAAGGCTCT



CTCGCTCATGAGCTGTGATGGGTTCAGTACCGATGGTCTTGCGGCCA



TTGCGACTCGCTGCAGGAATTTGACTGAGCTGGATATACAAGAGAAT



GGCATTGATGATATTAGTGGTGACTGGTTGAGTTGCTTCCCTGAGAA



CTTCACATCTTTGGAAGTGCTGAACTTCGCAAGTCTAAATAGCGATG



TTGATTTTGATGCTCTTGAGCGGCTTGTAAGTCGGTGCAATTCACTG



AAGGTCCTTAAGGTTAATAGAACTATTTCACTAGATCAGTTACAGAG



GCTGCTTGTCCGTGCTCCTCGGTTAACTGAGCTCGGTACTGGCTCGT



TTTTGCAAGAGCTTAATGCTCACCAGTACTCAGAGCTTGAACGAGCT



TTTGGTGGCTGCAAGACTCTACACACGCTCTCTGGATTATATGAAGC



TATGGCACCATATCTCCCAGTTCTATACCCGGCCTGTGCAAATTTGA



CTTTCCTGAATTTAATGATGCTGCTTTGCAAAATGAAGAACTTGCCA



AGCTTGTTGTTCACTGTCCATGTCTTCAGCGCCTCTGGGTACTTGAC



ACTGTGGGAGACGAAGGGCTGGGAGCTGTTGCGCGGAGTTGTCCACT



CCTAGAGGAGCTTCGGGTCTTCCCGGCCAACCCTTTTGACGAGGAAG



TTAATCATGGTGTTTCCGAATCAGGGTTTCTTGCCATTTCATATGGC



TGCCGGAGACTTCACTATGTACTCTACTTCTGCCGTCAGATGACAAA



TGCAGCTGTAGCCACAATTGTGCAGAACTGCCCTGATTTTACACACT



TCCGTCTTTGCATAATGAACCCAGGGCAACCTGATTATCTGACAAAT



GAACCTATGGACGAGGCTTTTGGTGCAGTTGTGAAGAGGTGTACGAA



ACTCCAGAGGCTTGCTGTTTCAGGTCTCCTAACTGACCAGACATTTG



AGTATATTGGGACATATGCTAAAAATCTGGAAACGCTTTCTGTAGCT



TTTGCTGGAAGCAGTGACCGGGGGATGCAGTGTGTGCTGAGGGGTTG



TCCAAGTTGAGAAAACTTGAAATCAGGGATTGTCCATTTGGTAATGC



AGCTCTTCTCTCGGGATTGGAGAAGTATGAGTCTATGAGGTCGTTGT



GGATGTCGGCCTGCAAAGTGACAATGAATGGGTGTGCGGTATTGGCT



AGGGAGAGGCCTAGATTGAATGTTGAAGTAATGAAGGATGAGGAGAG



CAGTGATGGTCAGGCATATAAAGTTTATGTTTACCGCACTGTTGCTG



GACCAAGGAGAGATGCCCCACCTTTTGTTCTTACTCTCTGAAGTGAT



TATTTCAAGGCATTTGTTGCTATGTGAATTTGTCTGATTGAAGTGGG



GAGCACCGGTGCAGAGAGTCTGAGGGTGTGGAATTCACAGAAAGCTC



GAACATTCTGTTACCTATGTTTCTGCGGTTCAGCTAATTCCAGATTG



TGAAGGCACACAAAATGGATAATCTGGTGGGAAAAACAACGTGTAGT



GTCTGCCTCCATTTGCTTGAAGGTGCTGGAAAGCGTATGATGCAGTC



GGTGAGATGGAGTTCAAAAGAAACACCAGAGATCTGCCAAAATGTCT



CGAAGCATCGGCCGACAGCTCGGGGACTTGAACCCATGAAATTTTCC



CCTTGCAAGCGCATCAATCTCTGCAACATTCTTCATCAATTGCAAGA



CATCATCAACAGCTGGGAGAAAAGATGATGATTTTCCTGATGTTTTG



ACTCATCTTTCCCTGGTGACTTCCATCCACAGCAATTGCAAGGAATC



CTTTATGGATCTCTCGCTTGCAATGTATG





75
ATTTTTTCATGGGGATCGTCAAGCTGATAAAACCGCACGAGGTTCTG



ACGAGTCCGGATAATCCCCTTTTAATTAATCAAGCTTGATTAAACCG



CAGCTTAATTTAATTAAGTTGATTAATTAAATCGGATTCCCCGAAAT



GGGATGACGTGCTATAAGGACGTAGCCACTGCCGTCCGCTCGTGCAC



CCAAGGCGCAGCACCGCACGCTCTCTCTCTCTCTTCTTTCTCTCTCT



ATCTGCGCGTCCCGACTTCTGGTTCGAGCTTGTGCTTAGCTTTGCAA



GAGCAGACGAAGCCGAGGTGAGAGGATCGAGCAGCGTTGCAGCGGAG



CGACCGGGCGAGCATGTCGTCGTCGGCCGTGCAGTTCGCCGCCGCTT



CTCGCGACGGCCACGAGAACAACGGCGGGGGCGGAGGGGACAGCAGC



GGCGAGCGGCTCGACCCCACCGCCGTCCTCCTCCCCGTCGATCCCGG



GGCCCCCGACCTGTCCCTCCCCCGGGAGACCTTCCTCCGGGCGGCCC



TCTCTCTCAAGGACCAGGTGGTGCAGGCGACGTGGCGCGAGGGCGGA



GCGGCCGATCCGACCGCGTACACGGGGCTGCTCGGGACGGCGTTCCT



GTGCCTGAGGTCGTACGCGGCCACCGGCGACCGGGGCGACCTGCTGC



TGTCGGCCGAGATCGTCGACGCGTGCGCTTCCGCGGCGCGTGCTTCC



ACGAGGCATGTGACGTTTTTATGTGGTAAAGGAGGGGTGTTCGCGGT



GGGCGCGGTGGTTGCCAATCTTCTGGGGGACCATCATAAACGTGACT



TCTTCCTCAACCTATTCCTCGAGGTGGCACAAGAGAGGGCTCTCCCG



GTTGGACCTGAGGAGGGCGGTTTTGGGATGTCGTACGACCTTCTCTA



CGGCCGAGCTGGTTTCCTGTGGGCGGCTCTATTTCTGAACAAGAACC



TGGGAGAGGAGACGGTGCCGAACAATGTTCTGATGCCTATTGTTGAC



GCCGTGCTGGCTGGGGGCAGGGCCGGTGCGTCCGATATCGCTACGTG



CCCATTGATGTACAGATGGCATGGGACCCGGTACTTGGGCGCAGCCA



ACGGCCTCGCTGGAATCTTGCAAGTGTTGCTTCACTTTCCACTCTGC



GAAGAGTACCTCGAGGATGTTAAGGGGACTTTGAGGTATATCATGAG



CAAGAGGTTTCCGCACAGTGGGAATTACCCCTCGAGCGAAGGGAACC



CGAGGGACAAACTGGTTCAGTGGTCTCACGGCGCGACGGGGATGGCC



ATCACTCTATGCAAGGCATCACAGGTTTTTCCACATGACAGAGACTT



CCGTGATGCGGCCATAGAGGCGGGGGAAGTTGTGTGGAAGAACGGGC



TCGTGAAGAAAGTGGGGCTTGCTGATGGCATTTCAGGGAACGCGTAC



GCCTTTCTCTCGCTGTATCGCTTGACGGGGGAGAGAATCTACGAGGA



CAGAGCCAGAGCGTTTGCGAGCTTCCTCTACCACGATGCCAACAAGC



CCGTCGGCACGGGGCACGGGCACGTTGCGGACTATGCCTTCTCCCTC



TACCAAGGGCTCGCCGGGGCGGCTTGCCTCTGGTTCGATCTCGTTGA



CGCGGAGAACTCCAGATTCCCAGGGTACGAGCTATAAGGGAAGGAAC



GCGAATGCGAACACACGAGAGTTTACGTATAGCTCTTTCGTGTACAT



ACTAATGAGAGGTATGCCGTTACAAATCACGTACGCTGTTGCTCTAT



TGCTACAGTCAATATATGTAAGGATTGCAACTTGACAATCCCACGTT



TGAGGCAAGAAATTGGTATCCGAAAAAAAAAA





76
AACCATCAAGTTCAGCCTTCCCCGCCGTGCAGCACTTCACCTAGATG



CTTGTCGACGAATTCCAGTTGGCGACCTAAAGCGCTTCTCGACCAGC



CAGCAGTTGCCCAGACGATTTCCGGTGACCTCCGCGGCATCCCCACA



CCGGAGACCCTTCACTGCTGCAGCTGTCCTCTGCTGATTCCGGGCTT



GGGTTGCCATTCACTGTTGTTCCTCCTGCCGATTGCTGTTCGCTACA



ACAGATCACGACACCTGTAACATCGGCAAGCTCCCGGTTCGAAGGAC



CGCTCACAGACCTTCACGAATTCAAGATCCTCACGTATCCAAATTTC



TTGAAGAGATTAATAAAGGTGAGGCCTTGAAGGGATAAGTCCACCAT



CTGGAGAGCAGCCCGTGACTTGCCTCGTGTCCATGCCTACAAGGCCT



TGGTGTCATTGGTGTTAACTGTCCATTGAAGGAACACTCAACCCAGT



AGCGAACCAGCAAGCTACCTTGCTGTTACGCACATGTACTGACGAAC



CCAGCCTTGCCGAAATTTTTAGACGATCTCAACGACTCGCTCCTGCA



CCTCAATTGTGAACCCCCCACCTTCCGACACTAGCCGCCGTTCTTGT



TCGTATCCAAACCGAGTCGATTCTACGAAGTTCTTATTTTTGCAGGT



TCGTTCACCGTGAGCCCACGGTCGTCCTTTACTGAGGAGCACCACCG



TGCCGAGCTTCAAATTTTGTTCTTGTCGAGTTCAAATTTTGCAATAT



TACTTGTGAAAATTTAGGATTAATAGGCTTCAAAGCTTCTCCTTACA



AAGATGCAAATCTTGCCCAGTCCTGAAGAATCCATCACCTGTAGTGG



CCCGCACTATGACAGAGCGAAAGAAGCAAAGGAATTCGACGAGACCA



AAGCCGGCGTCAAAGGCCTCATCGACTCCGGCATGGCCAAGGTCCCT



CGGCTCTTCATCCACCCTCCCCAGAACCTGCGCGACTTGTCCTCTGA



CACAGAGGGGTCCGCCACTGACCTCAAGGTCCCCATCATCGACATGA



TGGGCTGTCAGGATTCCCAGCTGCGGCGAGACGTGGTCGACGACCTC



CGTAGAGCGTCGGAGACGTGGGGGTTCTTCCAGATAATTAACCACGG



GATCCCGGTCGATGTGATGGACGGCGTGTTGGAAGCTGTCAAGCAGT



TCCACGAGCAGCCTGAGGGAGTGAAGGGAGAGTGGTACTCCAGGGAC



GACGCTAGGAAATTTAGGTACTACAGCAATGGAGACTTGTTTTGGTC



CAAAGCAGCAACTTGGAAGGACACTCTCCTGTTTGATTTCCCGTTTG



GAGAGCCAGACCGAGAGGCAGTCCCTCTTCTATTCAGAGAAACGGTT



TTTGAGTACGAAAAACACGTGGAAAAATTGAAGGGATCTCTGTCTGA



ACTACTATCAGAGGCACTGGGGCTCGATTCAGGCTATCTTGGTGACA



TTGAATGCATGGACTCCAAGAGAATAGTAAGCCATTATTACCCAACT



TGCCCTGAGCCAGAGCTGACTCTGGGCACAATCAATCACTCAGATGC



CACATATCTCACTCTTCTCCTGCAAAACCACAATGGTGGCCTCCAAG



TCCGGCACCAGAACCAGTGGGTCGATGTCTCCCCGGTGCCTGGAGCC



ATCCTAGTCATCATTGGAGACTTCATGCAGCTTGTTAGCAACGACAA



GTTCAAGAGTGTGGAGCACCGGGTCCTTGCCAGGCGGGCTGGGCCCC



GGGTCTCAGTCTTGTGCTTCCTCTTCCCAGGGGAGACGCGTAAGTCG



AAGCCGTACGGGCCGATAAAGGAGCTTCTCGACGAGAACAATCCGCC



CATGTACAGGGAGACCTCTTTCACAGAGTATTTTGGGTATTACCTCT



CCAGTGGCAATGGCCTCAATGGCGAATCTGTGCTTCCTCATTTCAGA



GTAAGCGAGCCCAAGTAGAGAGTAGAAAATGCAACAAAAATCTTTGA



AGAAGGTGTCGGCCTTCACATGAAATCCGATGGCTGTCTTTTCATTG



AATGTAGCGATAGGACCACACCTCGAAAAGAATAATCAGAATCTACT



TTGATTTGATCGAGACTGAAACAAGAAATTGCCAAAATATGATGGCA



TGCTCCTTCAGTCTCTGTGAAAGCATTTGAATCTCTTTCCCCTAAAT



TTATCGCGAGTTTCATCAAAAAAAAAA





77
ATAATGGATGCCGGAGATCTCGGTTCGGAGAAGTCTTCTGAGACCAC



GCGTGAGCTCGTCGTCATGTCGTCGAGATTTTCAGATGGGTCCTGCT



CTCGAGAAGTTTAGTGTCGGATGGATTGAACTGGCTGCCCAGCTTCA



ATGCAATGTTAAAGAAATTAGCTTCCGGGATTTTTATCTCTTCTCTG



CTCATTACCGTTTCAGTGGCTGATAATGGATTCCCACGATGCAATTG



CGATGACGAGGGAAGTTTGTGGAGCGTGGAAAGCATTCTGGAGTGCC



AGAGAGTGAGCGACTTCTTGATCGCCGTGGCCTACTTTTCGATCCCA



ATTGAATTGCTGTATTTTATTAGCTGCTCGAACATCCCGTTCAAATG



GGTCCTGTTTCAATTCATTGCCTTCATTGTTCTGTGCGGATTGACCC



ATCTGATCAATGGGTGGACTTATGCCCACCATCCCTTCCAACTCATG



GTCGCACTCACCGTGTTCAAGATTTTAACTGCTCTCGTCTCTTGTGC



CACGGCGATAACGCTCATCACCCTCATTCCTCTGCTTCTCAAAGTGA



AGGTGAGAGAGTTCATGTTGAAGAAGAAGGCTTGGGATTTGGGGCGA



GAGGTAGGGATCATAATGAAACAGAAAGAAGCTGGTTTGCATGTGCG



GATGCTCACACAAGAGATTCGCAAATCACTTGATAGGCATACTATTT



TGGACACGACCCTGGTCGAGCTGTCCAAGACACTGGGGTTGCAGAAC



TGTGCAGTTTGGATGCCTAACAATGGTAAAACCGAGATGAACTTGAC



GCATGAGAGGGGAAGGAATTACTCAGGAACCTATCACATCCCTATTC



CGATAACTGATCCAGATGTTGTTTCAATTAAGCAGAGCGATCAGGTG



CATATTTTGAGACCTGACTCAGAACTCGCAACTGCAAGTAGTGTAGG



GCCTGGGGAGTCCGGCCCAGTAGCCGCAATTCGGATGCCAATGCTTC



GTGTCTCCAACTTCAAGGGAGGGACCCCTGAACTCCATCCAGCATGT



TATGCGATACTGGTCCTGGTCCTTCCGGGTGGAGAGCCACGATCTTG



GAGCAATCAAGAACTCGAGATTATCAAGGTGGTGGCCGATCAGGTGG



CAGTGGCTCTCTCACATGCAGCAATCCTTGAAGAGTCTCAGTTAATG



AGAGAGAACTGGAGGAGCAAAACCGGGCTCTACAGCAGGAAAAGAGG



AACGCTATGATGGCAAGTCAGGCCCGAAGCTCATTCCAAAAGGTCAT



GAACGATGGGCTAAAGAGGCCTATGCACACGATCTCAGGGTTGCTCT



CGATTATGCAGGATGAGAGTTTGAATGCGGACCAAAAAATTATTGGA



AACGCAATGGCAAGAACCAGCGCCGTCTTGGCAAATTTGATAAATGA



TGTGGTGAACATGTCAACGAAGAATAGCGGGAGATTTCCATTGGAAG



TAAGATCATTTTCTATGCATGACATGATAAGAGAAGCAGCTTGCTTG



GCTAAGTGCTTGTGTATCTACAAGGGGTTCAGTTTTGAATTGGACAT



TGATAGGTCCTTGCCGAACAACGTAATGGGCGATGAAAGGAGGGTTT



TTCAGGTAATTCTGCATATGATCGGTAACTTGCTGAATGACAGTAAT



CAAGGGAAATTAGTTACCCTTCGAATTCTTCGTGAGAAAGCCAGTGG



AAGTCAGGGAAGGTATGATCGAGGTTGGGTGACGTGGAGGTCCGAAT



CAACTGATAGAGGTGTGCGTATCAAATTTGAAGTTGGAATAAGCGAC



GACATTTCTCTGTTGGAGAGGTCAGTTTCGACAATCCAGCTTGGAGG



TCGGAAATACAACAGTGATGGGGTTGAGGAGGACTTCAGCTTCAGCA



TCTGCAAATGGCTAGTACAGTTGATGCAAGGTAACATCTGGGTAGTC



CCGAACACTCAGGGCTTCGCTCAGAGCATGACACTTGTCCTACGGTT



CCCACTCCGAGAGTCCATCTCAGTGACCATTTCTGAACCGGGGCCAT



CTCCAGATTATACACTCTCCAACTCAGTCTTCACAGGCTTAAAAGTA



TTGCTCGTGGACTCTGACGATGCGAACAAGGCCGTCACCCGGAAGCT



TCTTGAGAAGCTAGGCTGCAAGGTGTCCACTGCCTCTTCGGGATTCG



AGTGCCTCGGCGCTCTCCGCCCCTCTGAATCTTCTTTCCAGATTGTC



CTTTTGGATCTTCACATGCCCAGCTTGGACGGGTTTGAAGTGGCAAA



TAAGATTCGCCAGTTCCACAGCAGTACCAATTGGCCAGTGATTGTCG



CCTTGACCACTAGCGGTGACGATATTTGGGAACGATGTTTGCAGGTC



GGAATCAACGGAGTTATCAGAAAACCAGTCCTCTTGCACGGAATGGC



CAACGAGCTTCGGAGAGTCCTGTTGCAGCCAAGCAAGACGCTGCTAT



GAAATGTGGATGAAGCTTCATTCCAAGATGTAATGCCTCAATGTCAA



TAACTTACCCTTCCTCCTTATTACCTACCAAGATTTTCAACATATAA



AAGTTGTCCTACACACAAAAGAAGGCTCAGTCACCATTAGAAATGTA



ACATACTAGTCCTTTTTCATGCCCTTGCTTTTTATGCATTTTGTAGT



GATCAGAGATCCTTTCTAGATTGCCATTTTGGCAAAACATGTCAGCT



CTTCGAGAAAACTAAATTATTGCTTGCTAGTTTTTAAACGATACATG



TATGCAACTCACATTTCAGTGAAATAGATATGAACTCTTGGCCCAAA



AAAAAAA





78
CTCGCCCTCTCCCTTTCTCTCTCTACCCTTCACTCTCTCTCTCTCTC



TCTCTCTAGAGAAAGAAGGAATTGAACGATAGCAATGGCGGGTTACA



GAGCCGAAGACGACTACGATTACCTGTACAAGGTGGTGCTGATCGGG



GACTCCGGGGTGGGCAAGTCCAACCTCCTCTCCCGCTTCACCAAGAA



CGAGTTCAACCTCGAGTCCAAGTCCACCATTGGCGTCGAGTTCGCCA



CCCGCACTCTCACTGTCGACGGCAAGGTCGTCAAGGCTCAGATTTGG



GACACCGCCGGTCAAGAAAGGTACCGTGCCATCACTAGTGCTTACTA



TCGTGGAGCTGTAGGTGCACTCCTTGTGTATGATGTCACTCGCCATG



CAACATTTGAAAATGTGGATAGATGGCTGAAAGAATTAAGGAACCAC



ACAGATCCAAGCATTGTGGTGATGCTTGTTGCGAACAAGTCTGACCT



TCGTCATCTTATAGCAGTCTCAACAGAAGATGGGAAATCCTATGCTG



AGAGGGAATCGCTGTACTTCATGGAAACCTCTGCACTAGAGGCAACA



AATGTAGAAAATGCCTTTGCAGAAGTGCTAACGCAGATCTACCGTAC



CACTAGTAAGAAGACAGTGGAAGGAGATGATGGATCTGCTGCTGCGT



TCCCTTCTCAAGGAGAAAAGATAAATATCAAGGATGATGTCTCTGCT



TTGAAGAAAGTTGGCTGTTGCTCAACTTAAGGTTGGAGGTGATTGTT



GCTTGCATAGATTAATACTTTGATTTCAGTTGTATAACATTTTTCAT



GCCCAAAAGCTGAAGAAAAGTTAGCTAGAAGAAACTTATGAGACACT



AAATTTGTGCAGCAAAAGCTTAGTACATCATGCCTTTGGCATGGCAG



TAGGATAGCTGCATAAGTTAGTTATTTCTCTGTTCTGATTCATGCAA



AGCCATTATTTAGGCAGTTTCATCTTTCTGAGAATTAACAAGATGTT



GCTTTAAAAAAAAAA





79
GCAACCAACCTCCTCCTCCACCTACGCCACCACTACCACCACCATCA



CCACGCAACGCACCGCGGCCGCGGCCGCCACCATGCAACCCTCTCAA



CCTCCTCCTCTCAATGAAAATTACTTGCGAGACGACGTCAAGTCGCA



AGAATGCGAAGACTTGCACTCCTCTCTCCCTTCGGAAGAAGACTGGG



TCCCCACCTCTCTCCCTTCGGAAGAGGACTGTGTCCCCTCCACTCTC



CGCTTGTACCAGGGCTTCTGGTTCCCCTCTTGGGTCTTGAACAGCGT



CGTCGCTTGCCAAAATCACTTCCAAGCTCACCCCTCCGACATCCTCC



TCGTCACCAGCCCGAAATGTGGCACCACCTGGCTAAAGGCCATCCTC



TTCGCTCTCTTGAACCGTGCCAAGTACTCTGACTCCAACTCACAAAA



ACGCCACCCTCTCCTAACCCAAAACCCCCACGACCTCGTGCCCTTCT



TGGAGTTCAGGCTCTATCTCCAGAATAAAAATCCTGATCTCACTGCT



TTTGCATCCCCGAGGCTCTTGGCCACCCACTTGCCTTATTCCTCTCT



TCCACGGTCGGTGAGGGACTCCAATTGCAAGCTGGTTTACTTATGTA



GGAACCCTAAAGACACTTTCATCTCGATGTGGCACTACTTCAACAAG



TTGAGGCCCGAAGAGAAGGGCCAGCTTCCACTCCCGGAGGGCCTCGA



CAAGTTCTGCCGAGGTGTGAACTGGTGTGGGCCTTATTGGGACCATG



TGCTGGGTTACCACAAGGCGAGCTCGGAGATGCCCGAGAAGGTTTTG



TTTGTGAAGTATGAGGAGATGAAAGCGGACCCGAGCGTTCAAGTGAG



GAGGTTGGCCGATTTCATGGGGCGTCCATTCAGCGAAGAAGAACTGA



GAAACGGGACCGTGGAGGGAATATTGAGGATGTGTAGCTTTGACAAT



TTGAGTGCACTGGAGGTGAATAGGAGCGGCAAGTTGCCATCTGGACT



AGAGAAGAAGTGGTTCTTCAGGAAAGGCGAGGTTGGAGATTGGGTGA



ATTACATGAGCGCTGAAATGGGAGAGCAAATTGACGGTGTCATGGAA



GAAAAGTTGCATGGTTCTGGTTTGAAGTTTTAGGACATATGACCCAC



TCGAAGATGTTTGGTTTGATGGTGGAAAAGAAAAATGTGTGTAAAAA



GAAGAAAAAAGAAGCAAAAACGATTCGACTCTCCGCACTTTAGGGGG



TCAATGTCTGGATGAAAGATCTTCAGTGGCATTGTCAGTCCTGGTTT



CGTCTCCATAGTGAGATGCTTTAAGGTTGTGATTCTAGTCTTCATCT



GTGTTTTGTACTATTGGCGTTTGGCAGAAGTTATTTGGCCAGTACGT



AGCTGGCTAAACAAGAGCTGCCTAGCTGCTCCCTGGGAGCTTGTGGA



TGTATCTTCTGTTATTTATTTCAATTCCATTTTTCTTTTTCAAAAAA



AAAA





80
GTTCGCCGAGCATCATCGAAGCGACCGTCCGTCCTCCCCTCCCCTCC



CGATCGCGCATGAGGTTTCCTCCTAGATCCGGCTGATCGACTAGGGG



GGCGATGGCGATTCTGTACGCGGTGGTCGCCCGGGGCACCGTCGTCC



TGGCGGAGTTCAGCGCCGTCACCGGCAACACCGGCGCGGTGGCGCGC



CGGATCCTCGAGAAGCTCCCCTCGGAGGCGGACTCCAGGCTCTGCTT



CTCGCAGGACCGCTACATCTTCCACATCCTGAGATCCGACGGCCTCA



GCTTCCTGTGCATGGCCAACGACACCTTCGGAAGGAGGATTCCTTTT



TCATACTTGGAAGATATTCAGATGAGATTCATGAAAAATTATGGCAA



AGTTGCACACTTTGCACCTGCATATGCCATGAATGATGAGTTTTCAA



GGGTTCTGCATCAGCAAATGGAATTCTTCTCTAGTAACCCCAGTGCA



GACACTCTGAATCGGGTCCGAGGCGAAGTTAGCGAGATGCGAACTAT



AATGGTGGATAACATCGAGAAGATACTGGACAGAGGTGATCGAATTG



AGCTACTTGTTGACAAGACTGCTACAATGCAAGATGGTGCCTTTCAC



TTCAAGAAACAGTCCAAGCGCCTTCGTCGAGCTTTGTGGATGAAAAA



TGCAAAGCTTTTGGCACTGTTAACATGCTTGATTCTTGTGCTGCTTT



ACATTATTATTGCTGCTTGTTGTGGAGGCATCACTTTACCCAACTGC



AGATCTTAACCTCTATAGTTGCTGGTGTTGATCTCCGGTAAGTATAT



ATGCCATGGGTGATATTTGGGTCACATTCAGGGTCCTATTTGTAACT



TGAGAAGCGCTCAAATGGAATTATGATGCGCCACTGTCTGCTAAATA



TCACCCTGTTGGGAGGTGCTATTCTGGTTTTTGGGGAGTCTGATGGG



GTCCATCGCTTCCATTTTCTTGATGAGTTTGTTGTGTATTTTCACGG



GGCATCTCTACACTGATGTAAATAATGTACTTATTTATAGCTGACAG



TCGAGCTTTTGCCAAAAAAAAAA





81
GGCAAAGTTTAGGAGAAGAATATGACAGGAACCATGATCGGAGTCAC



CAACGCCAATGAACAACAAGCCCTCGACAGAGCCCAAGAGGTCCGAC



AATTTGAAGACTCCAACCTTGGAGTCAAAGGCCTCCTTGACTCGGGC



CTCTCCACCCTCCCTCCCATGTTCATCCACCCGCCCGACCTTCTATC



CAGCCTCAAGCCTGTGGTTGGGCTCAAGACCGATTCAATCCCCATCA



TTGATCTCTCCGGCTCCAACTCCGACCGACGACCCTCAGTCATCGAG



GAAGTTGCACGTGCTGCTCGTGAGTTTGGCTTCTTCCAGATAGTCAA



TCATGGCGTGCCCACGGAGGTCCTGGGTCAAACGATCGCGGCAGTGA



AAGCGTTCCATGAGCAGCCAGCGGAGGTGAAGGCTAGGATCTATCGA



AGGGAATCTGAGACCGGGGTCGCCTTCTTCGCCTCCAGCGTGGACTT



GCTTCACTCCAACGTGGCTTGCTGGAGGTAATGTGAATGTCAATTTC



TATGTTGGGTCGACAAGACAGGAACATTAGTGACTCGAAATTAAGAA



AATTACCAAAAAAGGTCTTAAATATGTTGCATGGGAGGCTAATTCAA



TTTTAAACATTTTTGACAGTTTGCAATATAGTCATTCAAGCTAATTT



TGGCAAGAAATTATTAAAGTGGACATCGTTTGTTTTATGTGACACAC



CTGACACTAATATTCGTAATTTTTGTATTTTTTTAACTTCTTTTTTT



TTAATTTTTTTTTTACGTCGGCCATGCCATGTAAAATTGCTTACATC



CATGGCAACGAAGTTCTATCAAAATTTTATATTATCAAATGGTTAAA



AGATTTCAAATTAAATTAATCAAATTGAAATAGCAAAAAAGCCACCA



AAAATTCCAAATTTTACTCATTGTGACAAATATACCTCAAACTTTTT



TTGTGAGATAAAATACCCCAACTTTACCAATTGTGACACATTTAACC



CAAACTTTTTTGACACAAAAGTCCCAAATTTATACATGCATGACACA



TTTACCCCAAACTATAAGGTATTTTCGTTTTTTACTTTTTAAATTTT



TTTTCTCTTTATTTTTCTGCTTTCTTCTCCTTTCTTCCCTCCGCTGG



CATGGTGGAGAGAAGCCGGACTCAGGCGAGGATCCTTAGGTCGGGCG



AGGATATCCCTCACTAGATTCGGCAAGGGCAACCCTCGCCTCACCCA



AGCGAGGGCTGCCCGAGCTAATGCCAAAGAGGCACTCACCGGATTTG



GCCCAAGCGAGGACCACCCTCACCCGCCCAAGTGAGGGTGACCCTTG



CCCGATGCCAGTGAGAGCGGTCCTCGCCTGAGTCCAGCTTCCCTCCA



CTAGCCACGGCGAAGGGAAGAAAGAAGAAGAAAGAGGAAAAAAAATT



AAAAAAAAAAAAAACGAAAAATGCCCTTCAACCATGGAGTTGGGGTA



AATGTGTTACAGTTGATAAAGTCTGGGATTTTTTGTGTCACAAAAAA



ATTTAGGGTAAATTTATCATATTTGGTAAAGTTTGGGGTTTTTTGTG



GCATTTTCCCATTAAAATATTTAGAACCGAATTGATTTTTGTACTAT



ATATATATATATATATATATATATATGACTTTTTCAGTAATTATCAT



CTTGAATTGATGTGAATATTAAATTGTCCTTTTGTATAATCGAAATT



TTCATTGTCCCAAAAGAAGTTTCATACACACACATATTTGCAAATTA



TATGAATTTATCAGTGACAATACAATGAATGGGACGAAGTACTAATG



CGCACCAATTTATCAGTGACAATACAATGACGGGGCACAGAGTATTA



ACGTGCACGAATTTATTTGGTCTTTTTCTTAACCATAAACATCTTAA



ACATTTACACTATATAAATTAGGACACTTGAGTTCATATAATTTTCA



TACTTTTTAAAAATCTATATAATATATTAAATTTGAACAAGCGAGAA



GAAATGTTCCTCGGTGATATACAAGAAGCACAAACAATGTGCAAAAA



GCAAATAGAAAGAGTGTTTGCGTTTTTTTCTTAATTAAGGTGAAGAA



TAAGAAGAAATTAGTTCAGTGCACGAAGTAAATATTACAGGGATTCG



CTCCGGATAAGGTCGGGTCCTGTACTCCCAGACGAGGAAGAAATACC



GGAGGTGTGCAGAAATGAGGTGATGGAGTGGAATCAACAGACCCAAC



ACCTCGGAGTCCTCCTGATGGGTCTGTTGAGCGAGGGGTTAGGATTG



AGTCCGAGCAAGCTCCAGGACATGACGTGCGTGGAGAAGCGAAACAT



GTTGGGGCATTACTATCCTTACTGTCCCCAGCCTGATCTGACTGTTG



GCCTGAAGCCCCACACCGACAAGGGGGTGATCACGGTGCTCCTGCAA



GACCAGGTTGGCGGGTTGCAGGTGAAGCACGGCGAGGCGTGGCTGGA



TGTGACGCCCTCTCCAGGTGTTCTCATTGTGAACATCGGCGACCTTC



TCCAGATCATGTCCAATGACGAGTACAAAAGTGTGGAGCACCGAGTG



TTGGCCAATCCAGGCCCTGAACCACGCCTGTCGGTAGCGGTTTTCTA



CTATCCGCTTGAATGCGAAAACCAGATCGGACCGATCCCAGAGCTCG



TGTCACCAGAGAAACCTGCTGCTTTTCGACAATTCAAGCTTGGCGAG



TACCTGAAGAGATTCCAAACTGAGGTGCTGGATGGGAAAACTTTGAA



AAATCACTTCAAGACATGATATAAGAGGCATCTAGGCTAATATAGAT



GGTGCAAGAATAAGATGCTTCCTTATTTTTAATAAGAAGCAATCGCT



TATTAAGTTGTAAGTTCGGTTTGGATTCGCTAGAATTCCAAAGCCAT



TGTCCTAGTTCAAGGACGCTGTGTGCCTATATTTAAGAACGAGTCAT



CTCGTTTCCTCCACAATAAGTCGGTATGTCTGGTAACAGGAACATAT



ACTACTTCCTCATCCTATTTTAACTGCACTTCTCATCGAAATTGTCT



GTCCTATAACTCTCTTAC





82
CCGCCTTTAATATATAAATATCGTCCCCTCCCTCTCCCTCTCCCTCT



CGTGTCCAAGTAAAAGGAAAAAGAAAAGAGACAGAAAACAGAAAAGC



GGCGGCGATGGTGGTGGCGAGTCCGAACCCACGACGGGCCGAGAAGA



TCCAGGCCGTCGAGCTCCCGGCGATCGACCTCTCGCCGTCGGGGAGA



TCCGCGGCGCCGCGGCTCATCGTGGAGGCCTGCGAGAGGTACGGCTT



CTTCAAGGCGGTCAACCACGGCGTCCCCGCCGAGATCGTGTCGAGAA



TGGACGAGGCGAGCGCCGGCTTCTTCGCGCGGCCCGCCTCCGAGAAG



CGGCTCGCCGGGCCCGCCGACCCGTTCGGGTACGGGAGCAAGAGCAT



CGGGTTCAACGGCGACGTCGGCGAGGTCGAGTACCTCCTCCTCGAGT



CCGACCCCGCCTTCGTCTCCCGCAGGTCCGCCAGCATCTCCGACGAC



CCCACCCGGTTCAGCGCTGCTGTGAATGTCTACATAGAAGCAGTCAA



GGACCTGGCCTGTGACATATTGGATCTTATGGCCGAGGGCCTGGGGG



TCCGGGACACGTCGGTTTTCAGCAGGCTCATCAGGGCCGTCGACGGC



GACTCGGTCTTCCGGATCAACCACTACCCCCAGTGCGCGGTCCTTCA



CGGCGAGGTCGGGTTCGGGGAGCACTCCGACCCTCAAATCCTGACCG



TCCTCCGATCCAACAATGTGGGCGGCCTCCAGATCTCACTCGAAGAC



GGGGTGTGGACCCCGGTGCCCCCAGACCCCGCAGCTTTCTGGATCAA



TGTGGGCGATCTTTTGCAGGCCATGACGAACGGGAGGTTCTCGAGCG



TGCGGCATAGGGCGGTGACCAACCCCTTCAGGTCCAGAACGTCGATA



GCGTTCTTCGGGGCGCCTCCGCTGGACGCGCGGATCGCTCCCCAGCG



GGAGCTCGTCACTCCTCGAAGGCCCCGTCTCTACAACCCCTTCACCT



GGGCCGAGTACAAGAAAGCCGCCTACTCCCTCAGGCTCGGGGACAAG



CGTCTCGACCTCTTCAAGGCCTGCAGAGAAGACGGCGGCATCGATCT



GTGAGCAGATGGAGGAGATGGGTCGTCTCTTTTCTGCCCTTTTCTCT



CTCTCTTGTTGCTGGGCCTGTCGTGAAGGGAATTTTGGGTTTGCGTG



TTCTGCTCCCCTTCCTCTGTTTTTAGCAGCAAAGAGAAGCTCTCCTA



GTGTTGGTGTACTGTTGTAATCAATGGAAAGGTATGTTAGGCGACGA



TATTATGTTTTGGCTTTTATCTATCAATCGACCCATCGGTTGATTTT



ATCTAAAAAAAAAA





83
GTCCAGATTGCTCTCGACATGTACAGAATACAAGCAGGGTCGGCAGC



AGCGGCAGGGGTCGAGCCTGGATACTGTGTTGAGACCGATCCCACCG



GTCGGTATGCTCGGTTTGAAGAAATTCTGGGCAAAGGGGCGACCAAG



ACAGTTTACAAGGCGATCGATGAGGTCCTGGGAATGGAGGTGGCGTG



GAACCAAGTGAAGCTGAATGATTCGTTTCGGTCTCCGGACGAATATC



AGCGTCTGATCTCGGAGGTTCACCTCCTCAGCACCCTCAATCACGAC



TCCATAATGAAATTCCACACTTCATGGGTCGACGTGGATGGGACGGC



CTTCAATTTCATCACCGAAATGTTCACTTCAGGCACCCTCAGAAATT



ACAGGAAGAAATACCCACGATTGCACATCCGAGCCATAAAGAATTGG



GCTGTTCAAATACTTCACGGCCTCGTGTATCTGCACAGCCACGATCC



GCCAGTAATCCACAGAGATCTGAAGTGTGATAACCTCTTTGTTAATG



GACATCTGGGACAAGTTAAAATTGGTGATCTTGGACTTGCAGCGATC



CTTCATGGTTCTCGAGCAGCTCATAGCATCATAGGCACTCCAGAGTT



TATGGCACCAGAACTCTACGACGAGAATTACAATGAGCTGGTCGATG



TCTACTCATTCGGCATGTGTGTCTTGGAAATGCTTACTTGCGAGTAT



CCTTACATTGAATGCACCAATCCGGCTCAAATTTACAAGAAAGTCAC



GTCGGGAAAGTTGCCAGAAGCATTCTACCGTATCAAAGACTCAAAAG



CTCGGAAATTTATTGGAAAATGCTTAGCAAACGTCTCATGTAGAGTA



TCGGCAAGGGAGTTGCTACACGACCCATTTCTTCTAAGTGATGAAGG



TGACCGCCTCCCAGGATTGAAGTTCAAAATGCCGGAGCCATTCTTGA



ATGGGAGAGATGTAGATAATCTGCGTGCAAGGGATAATCCACTCAGG



ACCGACATGATGATTACGGGAAAGTTGAATCCTGAGGGTGACACCAT



TTTTCTGAAAGTTCAGATTGCTGATAGAAATGGTTTGAATCCCAAGT



ATCTTCCTGCAATCCATTAGAACTATTGAGAGCACAGAATCACTGTA



CACAATTTCTCTGATGCATCAGTACTAAGTTTTGTAAATTAGTTAAG



AAGAAAGCATGCAGATTGTGGATTATTATCCGGTACCATTTGCAAAA



AATCGATGCCTCAAACTAGTTATATATTGCCCTAAATAGAAGTTGAA



GGGGAAAATGGCTGAACGCATATAATTCTCAGAACTCGTTAAATTAG



AGACTATAGAAATTTCTGGCCAGACTTATCTTCACAGATCTTCCAGA



GTGATGAAACTAATGAAGGTTGTCTTCATTTCCTTCCCATTACCCAT



GCAGGTTCAGCGAGAAATGTCTATTTTCCTTTTGACGTTCTAAATGA



CACTCCGATTGATGTCGCAAAGGAAATGGTCAAGGAACTGGAGATCA



TGGACTGGGAAGCGGAGGAGATAGCCGACATGATTGGTGGAGAAATC



TCTGCTTTAGTACCTAACTGGACGAAACAGGACATGACAGACTACAA



TCAGGAAAATGACGACGGCTTTGCTCCACCTTTTCTCTCATTCTCTT



CAGGTTCGTCATCACAGGCATCGCCATCGGGCTTTACGGCCTACAGG



GAAAATGAAATCGCGTCTGACTACGGTTGTCTCCAGGATGTGCCAGA



TGATATGAGCTCTCCAAGCTCCATACATTCTGGCACATATTCCCACA



CAAGTTACTTCTGCCCGGAAGATCAAGAAGTGAACCCCGGTCCTTCA



AACCCAGATCAACACCTTATCAGCAGAAGCAACAGACATACGAGGTT



TTGCGCCGACGACTACCAAAGGCCAAGGCAATTCAAGGATAGGAGTC



AGACCTTGCAATGCCAGGTCCTGACAGGGTCAGATAGAGATTCTTCC



TCCGTCATTAACCGGAGGATGGCCGGCCACAGACTTTCACGGAATAG



GTCTCTGGTAGATGTTCATAGCCAGTTACTTCACCTCTCATTGCTGG



AGGAGGTGAGCAAGCGGAGGCTGTCCAGGACAGTCGGAGAAGTTGAG



AACATCGGGTTTCAGGCACCCTTTGAGATATCAAGAAACGCCCCCTG



GATTGGCGGATCTAGTTTCATCAGCAGCTCGAGGAATAAAAAGGGCC



ACAGGATTCAAAACAGAAGAAACTGAAATCTGCCCTCTCTCATGAGC



ATCTAAAGATGGTAATTTGTATCAAAATGTCAGCAATTTAGGACTGT



ATCCACCCTGCAAAAGATCAAAAGTATTAGCCTTGTAGCTTAAATAA



GTTTCAAAAAAAAAA





84
TGTCAGTCTCCCTGTCCCCGCCTCTCCGTCTCATCATCCTCCTCCTC



GTCCCTCGTCATCGCTTTCCTCCATCAAATCAGCGTCTCCCTCCCTC



CCTCGCTCACTGTGATCCCAGACCAGCGCCGGCTGCTCCCGGGCTCG



AAATCTCCGGCGACGTCGCCCGCCCGCCGACCGACCGACCGACCGAG



CTCGCCGGAGCCATGGACGCCGGCTACCTGTTCAAGGAGGAGACCTC



CCTGTACAACCGCATTGTCCTCGGCAGCCTCCTGCCGGCCTCGGCCT



GGGAGCCGATGCCCCGGTTACTCCAGACCTGGCTCCGCAACTACATC



GGCGGAACCCTAATTTACTTCCTCTCCGGCTTCCTCTGGTGCTTCTA



CATTTATTACCTCAAGCGCAATGTTTACGTCCCGAAGGATGAGATTC



CTACGAGGAAGGCAATGTTGCTGCAAATATATGTTGCAATGAAGGCA



ATGCCATGGTACTGTGCTCTTCCAACACTTTCCGAATACATGGTTGA



AAATGGATGGACGAAATGCTTTTCAAGAATAAGCGATGTTGGTTGGC



TTGCTTACCTAGTGTACTTGTCAATATATCTTGTAATGGCGGAGTTT



GGGATATATTGGATGCACAGAGAGCTGCATGACATTAAACCCCTTTA



CAAGCATCTTCATGCAACACATCACATCTACAATAAGCAGAACACAC



TTTCTCCTTTTGCCGGCTTGGCGTTTCATCCTCTAGACGGGATACTG



CAGGCGGTGCCACATGTTATGGCACTATTCCTTGTGCCAACCCATTT



TACAACGCACATTGCTCTCCTTTTTCTCGAGGCCATATGGACAGCAA



ATATCCATGACTGCATCCATGGTAAGCTTTGGCCTGTGATGGGCGCT



GGTTATCACACCATCCACCATACCACCTATCGCCACAATTATGGTCA



CTACACCATCTGGATGGACTGGATGTTTGGAACACTCCGAGACCCCA



TAGATGATGGATCCAAGAAGGAGATGTAATTTATGAAGGGTTTCGTG



CCAATTGTTGTCCAAATTCTTATTTGACTTGGGTACTTGAATTTTTA



TTTGCGTTGCTTCTTAATCGTAGTACTTGCTTGTAAATGTTGGTCCC



TATTGAGATTGTTCAGCATCCTGGACTAGCAAAGACTTTTAAAGTAG



AAGAGGAGATTTATACTACAAAAAAAAAA





85
AAAACAATGAAAAACCCACACTCGCTAGCAAGGGAAAGGTAAGTGCT



TCACTTTCATGTGCTTGTTTCGATTCGTACTCAAAACAACAAGCCTA



GCGGTTCCACCACCATGGCACACCAGCAACTTTGTTCGCAGTCCGCC



ATAGCAGGTACTGAAGAGCATGAGCGGAAGGAGACTGATGAACTCAT



TGCTTCACTTCCCCAAAGGAAAGGCGCGGTTCGTCCTTTCCAGTGCC



TTTACCAAAACTTTTGGAGCCCCATCTTCGTGCTTCCCAACGTGATC



ACGTTTCAACGGCACTTTGAAGCCAAACACAAGGATATTGTTCTGGC



CTCTCAGCCCAAATCAGGGACCACCTGGCTAAAGGCCCTAGTGTTTT



CCATCGTTAACCGCTTCCGCTTCGGCATCTCCAACACGCCCTTGCTC



ACTTCAAACCCCCATGAACTCGTTCCATTCTTCGAGTTCCAGCTGTA



CGGAAGTAAACTGAGGCCCAACCTTGATGGCCTGGCAGAGCCGAGGC



TCTTCGCAACGCACATCCCTTATCCATCCTTGCCGGAGTGCATCAAG



CGGTCTGAATGCCAAATCATTTACATTTGCCGGAACCCGTTGGACAC



CGTGGTTTCCTCTTGGCACTTCTTCCTTGAGAAGGCGCGATTAGAAG



ACCAGCCAGAGTGGTCATTGGAAGAGCATTTCGAGACCTATTGCCAA



GGGACAATCTCGTTCGGGCCCTTTTGGGATCACATCATGGGGTATTG



GAAGATGAGCTTGGAGTGGCCATCCAAGGTGTTGTTCCTCAAGTATG



AGGACCTGAAGGAGGATACTGTAGTACACCTGAATAGGGTGGCCGAG



TTTGTGGGTCTTCCCTTTACTGAGGAGGAAGAGGAGGCAGGTGTGAT



TGAAGAGATAGCCAAAATGTGTAGCTTGAAGACCCTAAAGGACCTAG



AGGTCAACAAATCCGGCAAAGTAGCCTTGACGATCGAGTTCGAGAAG



AGAAGCTTTTTTAGGAAAGGGGAGGTGGGTGATTGGGTTAACCATCT



CACTCCTTCCATGGTGGATCGCCTCAATAGCATCATCCAAGAAAAGA



TGAGCCCCTTTGGGTTGGAATTCAAAACGTGTTGAGCGTTAAATACT



TTCACTTTCTCTACTTGTGTCACTAGAAATAAGTGAAATTAATAATG



GATCTGCAATCTTCCTTATTGATGTAGTATAGAGAACTTAAGAATCC



TTGACTTCTCTGTCGCAAGAGAAGAAACAAGTATTTGAAGCTGGTCA



GGTGTGAAGAAAAAAAAGGAAGCATTGGTAGCATCGGTAGACTACAT



CTATGCTGTAAACTATTCCTATCCTATAATAGTTGCATGTATTGTCT



ACGTGTTCAGTCAATTAGAGATCATGTATTCACAAATTTACTATTAA



TTCATCAACTTTTCAAAAAAAAAA





86
CTCTCGTACCCCCCACCACCAACCATGCCTGAATCCCGTGAAGACTC



TGTCTACCTCGCCAAGCTCGCTGAGCAGGCTGAGCGTTACGAAGAAA



TGGTCGAGAACATGAAGCGCGTCGCCTCGTCCGACCAGGAGCTCACC



GTCGAAGAGCGCAATCTCCTTTCCGTCGCATACAAGAACGTCATCGG



CGCCCGCCGTGCATCGTGGAGAATAGTATCCTCCATCGAGCAGAAGG



AGGAGTCGAAGGGCAATGAGGCCCAGGTCTCCATGATCAAGGGCTAC



AGGGAGAAGATCGAGCAGGAGCTTGCGAAAATCTGCGAGGACATCCT



CGAGGTGCTCGACAAGCACCTGATCCCCTCTGCGGCCTCGGGCGAGT



CCAAGGTCTTCTACCACAAGATGATGGGCGACTACCACCGCTACCTT



GCCGAATTCGCAACCGGCGATAAGCGGAAGGACAGCGCTGACAAGTC



GCTTGAGGCCTACAAGGCCGCATCTGACGTCGCCGTCACCGAGCTCC



CCCCGACACACCCCATCCGTCTTGGTCTCGCCCTGAACTTCTCCGTG



TTCTACTACGAAATCCTCAACTCGCCCGACCGTGCATGCCACCTCGC



AAAGCAAGCATTCGACGACGCCATCGCCGAGCTCGACACGTTATCAG



AAGAGAGCTACAAAGACTCGACCCTGATCATGCAACTGCTCCGGGAT



AACCTGACGCTCTGGACCTCGGACATGCAAGACTCTGCTGACAAGCC



CGCCGACACAAAGGAGGAGGCTGGGGATGCACCGGCAGAGGATTAGA



TATTGCACGCGCTCGTTTCTTGTTACCCCTCACTTCATGCCATGCTA



CATCCCCCCCTTCCGTACACGTCCTCCAATCCAATGTTATTTCTTAT



TAGCGCTAAGACCTTACCTCTGGATCCCTTCGTTGAAAATAATGAAT



CCCTTTCTGCTCTATAAAAAAAAAA





87
AGCGTAGTTCTTTCCCGCAGCTCTCTACTTCGCTCTTCTTCTCAACC



CCTGAAGCCACCATGAGTTCCTCCTCCTCCGGCGGCGACGGCGGCGG



CGGCCCGAAGCTCCCTCACGACGTCGCCGTCGACATCCTGAAGCGGT



TGCCGGCGAGATCCCTCCTCCGATTTAGGTGCGTCTGCCGATCGTGG



CGTTCCGCCATCGACGACCCTCGTTTCGTGGCCCTCCACTTGAGCCA



CTCCGCCCTCCACGCCTCCAGTCGGCATCTCGCGTGTCTAGATTGCG



GCGAAGACGCCGTCCAGAACCGGTGCTCTCTGTTCCCCAACGCCCCT



CTCGCCCTGCCTCCTCCCCCGTTGCAAATCGAAATCCCGTTCGTTGC



TCCTCCCAACCGTTACGCCCTCGTCGGTTCGTGTAACGGTTTGATCT



GCGTCTCGGAGAGTTCCAGTGACGGCACTGAGCGGGCGCTGTATTTT



TGGAATCTATTCACCAGGAAGCATAAGGCGGTTCGGCTCCCCCGTCC



GGAGCGGATGCCACCCCTCTCCGTGGGGGGCGCTCATGTAGTTCTAG



GGTTTTGTTTCGATGCGAAGTCTAATGACTATCGTGTTGTCAGGATT



ATCCGATACCTAGGTATTCGCCGTCGACGCTTCCGCAACAAGAAGCC



TCGAGTCGAGGTTTATTCGTTCCGTACAGATTCATGGAAGACCTTGG



AATGTGAGGTTCCTCTTCTCTGTGACAGTGCGGTCTTCTTGAATGGG



AACCTGCACTGGTATTCTTTCAATGGAGAGGGGGATGGATACGGATC



CATAGTCTTGTTCAATGTCGCAGATGAGGTGTTTGATGAAATAGCTC



TGCCGGAAGGGATCAGTCCCCATTTTGTGTTGTCCGTGGCGGTATTG



AATGACTCGCTGGCTGTGTTCTTTAGTGATGGGGAGGCTTGTTTCGT



TTGGGTTATGAAAGACTACGGCGTGCCAGAGTCTTGGAGTAAGCTGT



ATACTTTCGAGGTTACTGGACCGGTAACAGCATTTGATGGCTTTACA



TGGAATGGCGAGCTTCTTATGGAAATAAATTGCGAAGAACGAGTTTC



TTGGAATCCGATCACAGCACAACTCTCAATTCTTCCATTATTGGCGA



GATACGAATTGCTCCCCGTTGTAGAGAGCCTCGTTCCACCTTAGATA



TGACTCGATTGCTGCTATATCGTCAGGTGCAAGGTGCTGGAGCTCTT



CTTTATTAACAGGAATTCTGGTGATTGGCAATGCAAGTACAGCTGGC



TCTAACAAAAATGGGGGAGTGGCAAAGGACAGCAGAAAGTGATGTTG



AAGTTTCTTCGGAATATAGTTTACGTGGAAGGCAAGAAACAATCTGC



TTCATGGTTAAGCTACTTCTCCCTTCGAGCATGTTCTTAGATTGATC



GATTTGAAGGCTATCTACTTTCAAAAGGATACATGTTGTGCTTATGA



TTATCTATATAATGTAATGATGGGGATAGTGAAAAGCTAAAATGTGT



GAGATTTGCTTAAAAAAAAAA





88
AAGCAGGCTGCGAGAATTTCGAAGTGCTGTCTGCTCACATCTCTCTC



TCTCTCTCTCTCTTCTGCGAGGCAGTGCGATGCCGTCCCGCCGGAGA



ACGCTCCTCAAGGTCATCATCCTCGGGGACAGCGGGGTCGGGAAGAC



CTCTTTGATGAACCAATATGTAAATAAAAAGTTCAGTAACCAGTATA



AAGCAACTATTGGAGCTGATTTCTTGACCAAGGAAGTTCAGCTCGAC



GATAGGCTCTTCACTTTACAGATTTGGGATACAGCTGGTCAAGAGAG



ATTCCAGAGTCTTGGAGTGGCTTTCTATCGGGGTGCTGACTGCTGTG



TTCTTGTGTATGATGTTAATGTTATGAAGTCATTTGACAATCTTAAA



CAATTGGAGAGAGGAGTTCCTCATCCAGGCAAGTCCATCAGATCCGG



AGAATTTCCCATTTGTGGTCATAGGAAACAAAATCGATGTGGATGGT



GGAAACAGCAGAGTGGTATCAGAGAAAAAAGCTCGAGCTTGGTGTGC



TTCAAAGGGGAATATACCATATTTTGAGACCTCTGCGAAGGAAGGTG



TCAACGTGGAGGAAGCTTTTCAGTGCATAGCTAAGAATGCGTTGAAA



AGTGGTGAAGAAGAAGAGATATACTTGCCAGACACCATCGACGTTGC



AAACAGCAGTCAGCCAAGGCCATCAGGATGCGAGTGTTAAGAACTGC



CCGATGCTTCTTCCCAATAAATGAATCCATGAAGGATTACTCAGATA



TTAGCAGGTTCTGCTTGTTTTAGATGATGCTGGGTTGTACATTGCTT



TTGCCAGAGAAAATGGTTGCTGACAGATTCTTTTGTCTGGTTCCTTC



CATTTATTGCCGAATCAAAATGCATTCTTGAGTGATGTCCTACTTAA



TTTGTCTTTCATGACGCGGCTTTTCTCATCAGTGTTGATTTTTGTTG



GTGTAAAAAAAAAAAAAAAA





89
GTGAAGACGAAGGAGGAGAAAAGGTGAGAAGGAGACATAAGGAGAAG



AAGAAAAGGTGAAGGAGGAGGAGAAAAGGTGAAGAAGGAGAAGGAGA



AGGAGAAGGAGAAAAGTTGGTCTCGAGCTGTAAGGGGGTGAGGTTTT



TGAATGGATCATCGAGATAGTGGACCTGATTGCTGGTGAAGTCGCTG



CTCCAGTTCAGGTGTGTTTCCAAACAGTGGTGTTGCTCGATAGACAG



CCCTTGCTTCGTGATGGCGCACCTGAATCAGTTCGTCGGGCGGACTG



CAAACCTCTGCCTCTGCGTCCAGCAAAATTCGAGACTACCGTATCTA



TCTGGGGTACCCAGCGTGGAGGATTTGAAGTACCGTCTCATGGGTCC



CAGCGATCAGATCCGCGTGCTGGGGTCTTGTGGCCGGCTTTGCATCA



TCGACGTGGCCGACGAGATCAATGTATGGGATCCGTCCACTAGGCAA



AGTATGCCATTGCCTCACTCAGCTGTCGAGATAAGGCGTCCATCGGC



TTTGCCTATTTGCGTTTATGGATTTGGGTGTGACGTTAGGAATGGTG



CTTTCAAGTTGTTGAGGCTGATTCAGCTCGCTACTGGGCAGAGAAGA



TCCGAAGTCAGTATCTATAATATGATAGATCAAAACTGGAGGCGGCT



CCCGGAGATCGCTTACAATCTGGTTTATCCGGACAAAATGGGGGTTT



TCGCGTACGGCCGTCTGCATTTAACAGTGACTCCGGAGCGGTTGGCA



TGTTCCCCAGCAAAATTGCTGTTGGCTTTTGATTGTCACACTGAGGA



ATTTGAGGAGGTGGAGCTGCCTGATAATATAGATAAAAAGCGTGACA



TGGTTGTGGCCGTCCTGGACGGGCGCCTTTGCCTCAGCATTGATAGA



ATTGACATGTTTGCCGATGTGTGGATTCTGAGAGTATATGGATCCCA



AGAATCATGGGCTTGGGTGTTCTCGATACCTAAATATGATGATGATA



GGATTCCTCGATTTGTCTGGCCATTGGCTTGCTCCGAGGATCATCAT



CACGTTTTGGTGAGAAAGGACAATAAGGATGTCGTTTGGTATGATTT



ACATGCTAGGTACATCAATAGGGTAGATATAAGGGGCATGCCAAGTT



CCTTTAAAGATGCATATGTGATGTGATTCACTTGATCGGAGGAATCG



TCGAGAAGCAGCAAGAATTGAAAGAGGAAAATAGGGACCACAGGAAA



GTACTCCGTGAATAGTAGGTTCTTTTCTTTTGGACTGTCTCAGATTC



TTCATAGTTAGCTCTTTTCTTTTGGACTGTCTCAGGTTCTCTTCTGG



GAAGTGGTTCTGTAATATATATATTTGAGCAAAGAATAGATGAGATG



ATTGAGAACTAAAAAAAAAA





90
TCAATAGAATCAACAGATATGTAAGCCAGGTTACTTCACTCGTCCAG



AATATATAAGAGTGAGCAAGCTTTCAAGAAACAGAAAGCACATACGA



TTGAATACACCAATGGGAGCGTGGTTGGGTTGTATTCTGGGGCTCAT



CCCACTTCTAGGCTGCTGCTTGTGGTGGTGGAATGAGATTCGGTACG



TGTGGCCAGTAAAGCGAAGATGTTCGGGCACCAATGCGAAGTTGCCG



CCGGGACACATGGGATTTCCCTTCTTTGGAGAACTTTTCACCTTCCT



CTGGTACTACAAGATTCTCCGCCGCCCGGACGAGTTCATAAACTCTA



AAAGAAAGAAGTATGGTGATGGAGTAGGGATGTACAGGACTCACCTC



TTCGGATCGCCTTCCATCATAGCATGCGTTCCATCAGTGAATAAATT



TGTCTTCCGAGCTGAGGACACATTTATCGCTCAATGGCCGAATGTCG



ATATTATGGGCACGAATTCTCTAGGGGCGGTTCACGGAAAGGCACAT



GACAGGCTCAGGAGCTTTGTCTTGAATGCCGTTAACCGACCTGATGC



TCTTCGTCGTATAGCTGCTTTGGTACAGCCGCGTTTGGTTTCTGCCC



TCGAGTTGTGGGCCCAAAAAGGCAGAATTGTTGCTTTTCATGAAACT



AAGAAGGTGACCTTTGAGAACATCGGGAAGCTGTTTGTGAGCTTTGA



GCCGGGGCCACAATTGGAAAAGATCGATGGGTTATTTCATGACATGC



TCAAAGGAATGAGAGCTCAGCGGCTCAATTTTCCTGGAACTGCATAT



CGCTGCGCTCTGCAGGCCCGGAAGAAGGTTGAGGCTATATTCAGAGT



AGAGCTAGAGGAAAGGAAAAGCCGAAGTGAAGAAACTGTGACCGATC



TTATGGATGAGTTACGACAAATCAAAGATGAGGAAGGCAGAAAACTA



TCTGACCAAGAAGTGCTAGATAACATCGTCAGCTTTGTGTTCGCCGG



TTATGAGTCCACTTCACTTGCATCGATGTGGGCAATTTACTATCTTG



CCAAGTCTCCCAATGTTCTAAAGAAACTCCGGGAAGAGAACACGTCT



GTTAGCCAAAACAAGAAGGGGGAGTTCATCACGAGTGAAGACATCTC



GAACATGAAATATACTAAAAAGGTGGTGGAGGAGACACTAAGAATGG



CCAATATTTCACATTTTCTTTTCAGATTAGTCACAAAGGACATCGAG



TACAAAGGTTATAGAATACCAAAGGGATGGAAAGTGATTCTGTGGCT



CCGGTACCTCCACACGAACCCGGAAAACTTTGATGACCCAATGTGCT



TTAATCCAGAGAGGTGGAACGATTCTGTGAAACCGGAGGCATACCAA



GTGTTTGGTGGGGGATCGAGAATCTGTCCAGGAAACATGCTTGCGAG



AATTCAGCTGGCTATTTTACTGCATCACTTATCAGTAGAATACAAGT



GGGAATTGATCAACTCGGATGCAGGCTTTGTCTATCTTCCCCACCCC



GCACCAGTTGATGAAGTTGAAGTCAGTTTCAGCAAGTTATGAGGAAT



GATTTGTTGGAATTTTGTTTGTTAAAACAAAATGAGTGCCTTTTAAT



TTGTCCCACATAGAAAATGTGGGAGCAGGAGGGTTAGTTTATTAATG



TAGGATTTCCCTTTTATAGTTAAAAGAGTGATTAGGTGGGGTTAGAC



CTCACCATGCCAAAAAAAAAAA





91
ACAACGCTCAAGAAGAAAATTTCGAAACGATCTCTCGCCCTCCGTTC



CGCTATAAATAGCACCCGAGCACCAATACTCTTTCCATCATCTTCAA



AACAACTGTCTCTGTCTCTCTCTCTGTCCCTCTCTCTCTCTCTCTCT



CGATTCTCTCCCTAGTCCATTAGTTCTCGTTGCCGCTTCGTAAACAA



GGAAGCACGGCGCACGGCCGTCCGATGGTTGTCCCGTCCAAACTAGC



AATTGAACAGTTCTCCTACGTTATGAACAGCAACGCATTATCATCCC



ACCAAATCCCTGTCGTGGACCTCTCGAAGCCCGACTCCAAGAGCCTC



ATCATCAAGGCCTGCGAAGAGTGCGGCTTCTTTAAGGTCGTGAACCA



CGGCGTCCCGTTGGATTTTATCTCCAGGCTGGAGGAGGAAGCCGTCA



AGTTCTTCTCTCTGCCTCTCCCCGAGAAGGAGAGGGCAGGCCCTCCT



GACCCGTTCGGCTATGGCAACAAGATGATTGGCCGGAACGGAGATGT



GGGTTGGATCGAATACCTCCTCCTGACGACCGATCCCAACTTCAACT



ACCGCAAGCTCCCATCGGCTTTTAACGAAAACCCAGAAAGATTTCGC



TCTGCTTTGAGTGATTACACATCGGCGGTGAGGTACATGGCGTGTGA



GATTCTCGAGTTGATGGCCGACGGATTAAGGATTCAACAGAGGAATA



TATTTAGCAAACTTTTGATGGATGAACAGAGCGACTCTGTTTTCAGG



CTCAACCACTACCCTCCATGCCCGGAGCTTCAATCCTATGTCGATAG



GAACATGATTGGATTCGGTGAACACACTGACCCACAAATCATATCTG



TTCTCAGATCGAACAACACGTCTGGGCTCCAAATATCCATGAAAGAT



GGGACTTGGGTTTCTGTTCCACCGGACCAGAACTCATTCTTCATCAA



TGTTGGTGACTCCTTAGAGGTGATGACTAACGGGCGATTCAGAAGCG



TGAGGCACAGAGTCCTGGCGAACACCTCGAAGTCCAGGGTCTCGATG



ATATACTTCGGAGGACCACCTTTGAGTGAGAAGATAGCGCCATTGCC



GTGCCTCATGAAGGGCAAAGAGAGCCTGTACAAGGAGTTTACATGGT



TCGAATACAAGAAGTCCGCCTACAACACGAGGTTGGCTGATAACAGG



CTAGAGCATTTTCAGAGAGTAGCCGCTTCTTGATGTCGCTCAGAGCG



CCAGATGTCAGCAGCAAGAATGGGTTCTTAGGACAGCAACTTTCATC



TTCATTTTGTTCCTTCCTTGTCTCTCTGTATTTTCCATCGGTACTTT



CTTGTTCAAACGATGTAAATTACTCTCTTCTTGTCAAATATCACAGA



GCGTCCATGGTCTGCCACTATCTCTATTTGACAATTTGTAATATGTA



ATTTTCAATGAAGTCACAGTCACAAGTCACCTTTCAGACAAAAAAAA



AA





92
GACATTTACAGCTCTGAGAAGGAGGGTAGGGAGTGAGTGTGGTGGGC



TTTTTTTTAGCTTCTTGGGAGCAGCAACAATGGCTGTTTACATCTTC



TTGGCTCTTGGGGTGGTGTTGGTGCTCTGTGTATGCACTGCCTTGCT



GAGATGGAACGAGGTAAGGTACATGAAGAAAGGTCTGCCTCCGGGCA



CAATGGGTTGGCCAGTCTTTGGTGAGACCACCGAGTTCCTCAAGCAA



GGCCCTAACTTCATGAAAAACCAGAGTGCCAGGTATGGGAGCTTCTT



CAAGTCCCACATCCTGGGGTGCCCCACGATAGTGTCCATGGACCCAG



AGGTGAACCGGTACATCCTGATGAACGAGGCCAAGGGGCTCGTCCCG



GGTTACCCGCAGTCCATGCTCGATATTCTGGGCAAGCGCAACATAGC



GGCGGTTCACGGCGCGTCCCACAAGCACATGAGGGGTGCTCTGCTCT



CCCTGGTCAGCCCCACCATGATCAGGGACCAGCTCTTGCCTAAGATC



GATCGGTTCATGCGATCCCACCTCGCCCGCTGGGACGATGGCTCCAT



TATTGACCTCCAAGACAAGACCAAACAGATGGCACTCCTCTCGTCGC



TGATGCAAATCGGAATCGACTCCAGCTCCATTTCCCAAGAATTCATA



CCCGAGTTCTTCAAGTTAGTCCTGGGCACTCTCTCCCTGCCTATAGA



CCTCCCGGGCACAAACTACCGTCGAGGTTTCCAGGCTAGGAAAAATA



TACTAGGCATGTTGAGGAAACTGATAGAAGAGAGGAGGGCCTCCCAG



GAAGCCCACAATGACATGCTTGGTTGCCTCATGAGGAGTGATGATAA



CAAATACAAGTTGAATGATGAAGAGATCATTGACCAGATAATCACCA



TCATGTATTCCGGGTACGAGACCGTTTCGACCACGTCCATGATGGCT



GTCAAGTATCTCCACGACAACCCGAGCGTTCTTCACGAATTAAGGAA



AGAACACTTGGGGATTAGAGCGAAGAAAAGGCCGGAGGATCCTATCG



AGTGGGACGACCTCAAAGCGATGCGGTTCACTCGTGCGGTCATATTT



GAGACCTCCAGATTGGCCACAGTTGTCAATGGGGTCTTGAGAAAAAC



CACTAAAGACATGGAGCTCAACGGGTTCTTAATCCCAAAGGGATGGA



GGATATACGTTTACACGAGAGAAATAAATTACAATCTGCGATTATAT



CCCGATCCACTAGCTTTCAATCCATGGAGATGGCTGGACAAAAGCGT



GGAGTGTCAAAACTACAACCTAATTTTCGGTGGGGGCACAAGGCAAT



GCCCTGGAAAGGAACTTGGGATTGCCGAAATCTCCACATTTCTTCAC



TACTTTGTGACCAGATACAGATGGGAAGAGATTGGGGGAGACAAGCT



AATGAAATTTCCAAGAGTAGAAAGCACCAAATGGGCTGCACATAAGG



GTTTCCCCTCAATGCTGACTTCACTCCAATATTCTTATGTACAGAAG



AAACCAAAAGAGGAAAAAACAAGAAGCACGACAAGTACAGATGTATA



TTAATGATTTTTGATAGATTTAAGTAGGAAAGTGCACCAAAAAAAAA



A





93
GGGACACGATATCCTCCCATTTAGTCAGCATGATGTGTCAAGATTAA



AACCCACAGTGACGGGGCTCACAAGTATCTTGGCAAATTTGATGGAT



CCCATTTTTCGTTGGTGCTTCGTGTATGTTTTCTTTGTGAGTGGTAG



CTGCAGGAGCTGTGAGTTTCGATCTCAGTTCGATTAATTTAGCCAAA



GAAAATGAGTGCCGAGAAAGAGAGGGAGAGCCATGTTTTCATGGCCA



AGTTAGCCGAGCAGGCCGAGCGTTACGATGAGATGGTGCAGTCAATG



AAGGATGTTGCCAAATTGGATCTAGAGCTGTCTGTAGAGGAAAGAAA



CTTGCTTTCTGTTGGATATAAGAATGTTATTGGTGCCAGGAGAGCAT



CATGGCGGATTATGTCCTCCATTGAGCAGAAAGAAGAAGCAAAGGGA



AATGAGCAGAACGCGAAAAGGATCAGGGATTACCGTCAAAAGGTGGA



GGATGAACTCTGTAGAATCTGCAATGACATTCTGTCAATTATTGATG



ATCATCTCCTTCCTTCTTCTACCTCAGGAGAGTCCACAGTCTTTTAC



TATAAGATGAAAGGCGATTACTACCGATATCTTGCTGAATTTAAATC



TGGAAATGAAAGGAAGGAGATTGCTGATCAATCTTTGAAGGCTTACG



AGGCTGCTTCAAATACTGCAGCTACAGATCTGCCTCCCACACATCCA



ATCAGGCTTGGCTTAGCACTAAACTTTTCAGTTTTCTATTATGAAAT



TCAGAACTCTCCTGAAAGAGCATGTCACTTGGCAAAACAAGCATTTG



ATGAAGCCATTGCAGAGCTGGATACTCTCAGTGAAGAATCATACAAG



GACAGCACATTAATAATGCAATTGCTGAGAGACAATCTTACATTATG



GAGTTCTGATTTGGAAGATCTTGGAGGGGATGATCAGCCTAAAGGAG



AAGAGGCGAAGGTGGAAGATGGGGAACCCTAATTTTGTTGCAATAGC



GTTTCTTCGGCAGTTGGATTGCTTGGAGGATTTTTGATATTCTTCCT



GGCGTACTTCCTCAGTCTTTTTTGTTTTGAGTGGATGTTTATATCAC



TTTGATGCAATACAGTTTCACTTGCATTGTGAGTTTTTTTTTTCTAG



ATTGACATCCTTCGTTGGTTCTCAAAGTA





94
GAGAGCAGGTTGAGGAGGGCGTAAGTTAAATCAGCCTAGATCTCTTC



GACTCCATCTTCATTCAACATAAGCTCGAACTCATCATGTCGGCCCG



CAGAAGAACTCTTTTAAAGGTTATCATCCTTGGCGATAGCGGGGTTG



GTAAAACCTCGCTGATGAATCAATATGTAAACAAGAAATTCAGCAAC



CAGTATAAAGCAACCATTGGAGCTGACTTCTTGACTAAAGAAGTTCA



GTTCGAGGATAGATTGTTCACGTTACAGGAAAGATTTCAGAGCCTTG



GTGTTGCCTTCTACCGTGGTGCCGATTGCTGCGTTCTTGTTTACGAT



GTTAATGTGCTAAAATCATTTGATAACCTAAATAATTGGCGCGATGA



ATTTCTAATTCAGGCAAGCCCTTCTGATCCGGAGAATTTTCCATTTG



TTGTGCTTGGAAATAAAATTGACGTGGATGGTGGGAACAGCAGAGTG



GTCTCTGAGAAAAAGGCCAGGGCATGGTGTGCTTCTAAAGGCAACAT



TCCCTACTTTGAAACTTCTGCAAAAGAAGGCTTTAATGTTGAAGCAG



CTTTCCAATGTATAGCCAAGAATGCATTGAAGAATGAGCCCGAAGAG



GAAATATATCTCCCGGACACAATTGATGTCAATGCTGGGAGACCACA



AAGAACATCAGGATGTGATTGTTAGTCACCAGGGGATTGTACAAGAC



TTTGATGCTACAAATAATAGTTTACTTGCATCGTAAGATATCGAACT



TGAATCAGGCCATTGGGGTGTTAATCAAACGTTTACTTGTGTAACCA



GTGTAGAGATAGAATTGTACTCTAGTAATGCTCATTAAAAGTTAGAT



TGTTGTTTTGCAATTTCGCAAAAAAAAAA





95
CATTCCCCAATCCCCTTTTTACTTTTTGCGGAACAGGGACCGGGGGC



AGCGATCTATTGACCAGAGACCAGAGAGCAGGTTGAGGAGGGCGTAA



GTTAAATCAGCCTAGATCTCTTCGACTCCATCTTCATTCAACATAAG



CTCGAACTCATCATGTCGGCCCGCAGAAGAACTCTTTTAAAGGTTAT



CATCCTTGGCGATAGCGGGGTTGGTAAAACCTCGCTGATGAATCAAT



ATGTAAACAAGAAATTCAGCAACCAGTATAAAGCAACCATTGGAGCT



GACTTCTTGACTAAAGAAGTTCAGTTCGAGGATAGATTGTTCACGTT



ACAGATATGGGATACCGCTGGCCAGGAAAGATTTCAGAGCCTTGGTG



TTGCCTTCTACCGTGGTGCCGATTGCTGCGTTCTTGTTTACGATGTT



AATGTGCTAAAATCATTTGATAACCTAAATAATTGGCGCGATGAATT



TCTAATTCAGGCAAGCCCTTCTGATCCGGAGAATTTTCCATTTGTTG



TGCTTGGAAATAAAATTGACGTGGATGGTGGGAACAGCAGAGTGGTC



TCTGAGAAAAAGGCCAGGGCATGGTGTGCTTCTAAAGGCAACATTCC



CTACTTTGAAACTTCTGCAAAAGAAGGCTTTAATGTTGAAGCAGCTT



TCCAATGTATAGCCAAGAATGCATTGAAGAATGAGCCCGAAGAGGAA



ATATATCTCCCGGACACAATTGATGTCAATGCTGGGAGACCACAAAG



AACATCAGGATGTGATTGTTAGTCACCAGGGGATTGTACAAGACTTT



GATGCTACAAATAATAGTTTACTTGCATCGTAAGATATCGAACTTGA



ATCAGGCCATTGGGGTGTTAATCAAACGTTTACTTGTGTAACCAGTG



TAGAGATAGAATTGTACTCTAGTAATGCTCATTAAAAGTTAGATTGT



TGTTTTGCAATTTCGCAAAAAAAAAAAAAAA





96
AAGCGGTGGTATCAGCGCAGAGTACGCGGGGACTCCTTATATTGTCT



CTCTGTGTTGAATGCTGTGACCATGAAGCGGGCGAGCTATGGATGCA



TATCGGACGAAGCCCTGGAGTGCGTTATGGGCCACCTGGAGGATCCG



AGAGACCGTGGCTCGGTCTCTCTGGTCTGCAAGAAATGGTACGACGT



GGATGCCTTCACGAGGAAGCACGTGACCGTGGCCTTCTGCTACTCAA



TACACGCCAGCGACCTTACCCGCAGGTTCACCAGGCTGGAGTCCCTT



ACGGTCAAGGGGAAACCCAGAGCGGCCATGTATAATCTGCTCCCTCA



CGATTGGGGGGGTTATGCCAAGCCCTGGATAGACCAGATCTCCTTCA



CCTGTCTCTGCCTCAAGGCGCTCCATCTGCGCAGAATGATTGTTACC



GATGATGATCTCACCACTCTCGTCAGGGGCCGCGGTCACATGTTGCA



GGAGCTCAAACTCGAGAAGTGCTCTGGGTTCTCTACAAGGGGGCTTG



AGGAAGTGGCTCACGGTTGCAGGTCTCTTAAGATCTTAATGCTGGAC



GAGAGTCAAATTGAAGAGGAAAGCGGGGACTGGCTACATGAGCTTGC



TCTTAACAATTCTTCTTTGGAAGTGTTGGACTTCTACATGACAACAT



TAGAAATGATCAATACCAGTGATCTTGAGCTAATAGTAACAAACTGC



CCCTCATTAACATCATTAAAGGTTGGAGAATGTGATATAGTTGAGAT



GAGAGGCGTTCTGAGTAAGGCTACTGCATTGGAGGAGTTTGGTGGTG



GGACATTTAACAACAGTGAAGAGCATGCGACGGAGACCAGTATGATT



ACATTTCCTCCAAAGTTGACATCATTGCTAGGACTAAACTTCATGAT



TGAGGCTGAGATGCCTGCTATATTCCCAAGAGCTTCGGCCCTTAAGA



GATTGGATCTGCAGTACACATTCTTGAGCACAGAAAATCACTGTCAG



TTGGCAGGGCTCTGTCCTAATCTTGAAATTCTCGAGGTTAGAAATGT



TATCGGAGACAAAGGGTTAGAAGTTGTTGCTAATACTTGCAAAAAGC



TGAAAAGACTTAGAGTGGAACGAGGAGCAGACGACCCAACTTTGGAG



GACGAACAAGATAAAGAAGAGCACATCGCTGATTTACCGCTGGACAA



TGGAGTCAGGGCTTTGCTACGTGGATGTCAAAAGTTGAGTAGGTTTG



CATTTTATATCAGGCCTGGAGGGCTGACAGATACAGGTCTTGGTTAT



ATTGGCGAGTACAGCACTAATGTAAGGTGGATGCTTCTGGGTTTTGT



TGGTGAAACTGACCAAGGCATTCTCGAGTTTTCCAAGGGCTGCCCAA



AGCTGGAAAGGCTAGAAATTAGAGGTTGTTGTTTTAGTGAATCTGCA



TTGGCAGCTGCAGTGCTTCAGCTGAAATCGCTGAAGTACATATGGGT



TCAAGGATATAATGCAACTGTTACTGGTGCTAACCTTCTAGCGATGG



CTCGACCTTATTGGAACATAGAATTTTCTCCTGCTTTGCAATCGAGT



GATGTGTTTGCTGAAGATATGGCAGAAGAAAAAAAACAGGATCAGGT



AGCACAACTTTTGGCCTACTATTCTCTTGCTGGAAGGAGGACAGATC



ACCCAGAGTCCGTAATTCCTTTAGCTCCACTTTTCTGGAATTGCCAT



CAAGTAACTGTCTTCTAATGTGAATATCTATATAAAATATGAGTCCC



AAACTTGCATGGAGGTATATAAATATAGAACATGCAAAGATGCTTCT



TTCTCTCCCGTTTCCTTCAGATTTCTTTTGTGATAGTAGTGTGACTA



GCACTTACTATGCCTAACAGTCTGATGGAAGAAAGGTACGTTGAGAC



TTATCTCTCTTCCTAATTCTCTATGGCAGTGGATGTAGTCATTCTAC



CTCATAACGTGTCTGTTTATTGATGGAAACTTCTTCCCAGTGTGATG



AACTCTTCTGGAGAGTTCTAGGGGATGTCTTGGTAGGTTCAATGGGA



TGTCTTCTGAATATCATAATCTTCATATTTCTATCAATGAAGACATT



GCTGAAAGAAGTGGTTACCACAAAAATCCATGTAAGTACAAGGGGTA



TTGCACTGACAAAAAAAAGTTCGTCCTTGGAAAACTGAAATGTTTAT



TTTTTCTTCTAAGCTGGTTACGGATATTTATGGAGTTGAGATGTACG



TAATCGCGAAGGTGTACAGTCAAAACGGGTATGTTTCATACTTTGAC



TTGGTGGGCTACAAGTCAAAACTTACAGTGGACATACCGTGCTTCTT



TTCCTAGTATGCTGGTAACATCAGTGCTGAAGTCAACAGGCCTCTGG



TTTTCAACGACATTAAGTTGTGGGTATGCTTAAGGACATCGAAATAC



CAAGGGCACTAGAGTTCAAGTAGACGTTTATAATTTAACCGGCCATT



CAACATCCTGAGTTTGTAGCATGAGAAGCCACTTGTCTTATTTTCAG



TTCTTGGTAGGGAGTTCAGAATTAGGGGGTGATTTGAGAACATCATA



AATAATGTCATATTTTATATCCAGAGACTTGAACTATTTGTATGTTG



TAATTCATATTGGTTGACATGATTGATATGTACATATGTTACATGGT



ATTAGCATGAGGATGTTGATGTTTGACCTTAAAAAAAAAA





97
GCCGTCGGATCCACTCCCCGGCGGCCACGATCGGTTTGCTTTCCCTT



TTGTCGTCTGACACCTTTTCCCGACCTACAGGAAGCATAGATTTTTA



CTGTAAGATGCGATGAGTGAGCAATGAGCGATGGGCATGTCGCAAAA



TTAGAGATAAGATCACCAAGGAACCAACAAAATCAGAGGCCGAGGAC



CTCGACCAGGGGCTCTCTGTGTATATAGCTTTGAAGTCCATATGAAT



ATATTCACTCCTTATATTGTCTCTCTGTGTTGAATGCTGTGACCATG



AAGCGGGCGAGCTATGGATGCATATCGGATGGATGCATATCGGACGA



AGCCCTGGAGTGCGTTATGGGCCACCTGGAGGATCCGAGAGACCGTG



GCTCGGTCTCTCTGGTCTGCAAGAAATGGTACGACGTGGATGCCTTC



ACGAGGAAGCACGTGACCGTGGCCTTCTGCTACTCAATACACGCCAG



CGACCTTACCCGCAGGTTCACCAGGCTGGAGTCCCTTACGGTCAAGG



GGAAACCCAGAGCGGCCATGTATAATCTGCTCCCTCACGATTGGGGG



GGTTATGCCAAGCCCTGGATAGACCAGATCTCCTTCACCTGTCTCTG



CCTCAAGGCGCTCCATCTGCGCAGAATGATTGTTACCGATGATGATC



TCACCACTCTCGTCAGGGGCCGCGGTCACATGTTGCAGGAGCTCAAA



CTCGAGAAGTGCTCTGGGTTCTCTACAAGGGGGCTTGAGGAAGTGGC



TCACGGTTGCAGGTCTCTTAAGATCTTAATGCTGGACGAGAGTCAAA



TTGAAGAGGAAAGCGGGGACTGGCTACATGAGCTTGCTCTTAACAAT



TCTTCTTTGGAAGTGTTGGACTTCTACATGACAACATTAGAAATGAT



CAATACCAGTGATCTTGAGCTAAGTAACAAACTGCCCCTCATTAACA



TCATTAAAGGTTGGAGAATGTGATATAGTTGAGATGAGAGGCGTTCT



GAGTAAGGCTACTGCATTGGAGGAGTTTGGTGGTGGGACATTTAACA



ACAGTGAAGAGCATGCGACGGAGACCAGTATGATTACATTTCCTCCA



AAGTTGACATCATTGCTAGGACTAAACTTCATGATTGAGGCTGAGAT



GCCTGCTATATTCCCAAGAGCTTCGGCCCTTAAGAGATTGGATCTGC



AGTACACATTCTTGAGCACAGAAAATCACTGTCAGTTGGCAGGGCTC



TGTCCTAATCTTGAAATTCTCGAGGTTAGAAATGTTATCGGAGACAA



AGGGTTAGAAGTTGTTGCTAATACTTGCAAAAAGCTGAAAAGACTTA



GAGTGGAACGAGGAGCAGACGACCCAACTTTGGAGGACGAACAAGGT



TGGATTTCCCACAAAGGGCTTTCCTTGGTAGCTCAAGGCTGCCCCCT



TCTTGAGTACATTGCCGTCTATGTTTCAGATATATGCAACTCAACCT



TGGAGACCTTTGGTCAATGTTGCAAAAATCTCAAGGATTTCCGGTTG



GTCTTGTTAGATAAAGAAGAGCACATCGCTGATTTACCGCTGGACAA



TGGAGTCAGGGCTTTGCTACGTGGATGTCAAAAGTTGAGTAGGTTTG



CATTTTATATCAGGCCTGGAGGGCTGACAGATACAGGTCTTGGTTAT



ATTGGCGAGTACAGCACTAATGTAAGGTGGATGCTTCTGGGTTTTGT



TGGTGAAACTGACCAAGGCATTCTCGAGTTTTCCAAGGGCTGCCCAA



AGCTGGAAAGGCTAGAAATTAGAGGTTGTTGTTTTAGTGAATCTGCA



TTGGCAGCTGCAGTGCTTCAGCTGAAATCGCTGAAGTACATATGGGT



TCAAGGATATAATGCAACTGTTACTGGTGCTAACCTTCTAGCGATGG



CTCGACCTTATTGGAACATAGAATTTTCTCCTGCTTTGCAATCGAGT



GATGTGTTTGCTGAAGATATGGCAGAAGAAAAAAAACAGGATCAGGT



AGCACAACTTTTGGCCTACTATTCTCTTGCTGGAAGGAGGACAGATC



ACCCAGAGTCCGTAATTCCTTTAGCTCCACTTTTCTGGAATTGCCAT



CAAGTAACTGTCTTCTAATGTGAATATCTATATAAAATATGAGTCCC



AAACTTGCATGGAGGTATATAAATATAGAACATGCAAAGATGCTTCT



TTCTCTCCCGTTTCCTTCAGATTTCTTTTGTGATAGTAGTGTGACTA



GCACTTACTATGCCTAACAGTCTGATGGAAGAAAGGTACGTTGAGAC



TTATCTCTCTTCCTAATTCTCTATGGCAGTGGATGTAGTCATTCTAC



CTCATAACGTGTCTGTTTATTGATGGAAACTTCTTCCCAGTGTGATG



AACTCTTCTGGAGAGTTCTAGGGGATGTCTTGGTAGGTTCAATGGGA



TGTCTTCTGAATATCATAATCTTCATATTTCTATCAATGAAGACATT



GCTGAAAGAAGTGGTTACCACAAAAATCCATGTAAAGTACAAGGGGT



ATTGCACTGACAAAAAAAAGTTCGTCCTTGGAAAACTGAAATGTTTA



TTTTTTCTTCTAAGCTGGTTACGGATATTTATGGAGTTGAGATGTAC



GTAATCGCGAAGGTGTACAGTCAAAACGGGTATGTTTCATACTTTGA



CTTGGTGGGCTACAAGTCAAAACTTACAGTGGACATACCGTGCTTCT



TTTCCTAGTATGCTGGTAACATCAGTGCTGAAGTCAACAGGCCTCTG



GTTTTCAACGACATTAAGTTGTGGGTATGCTTAAGGACATTGAAATA



CCAAGGGCACTAGAGTTCAAGTAGACGTTTATAATTTAACCGGCCAT



TCAACATCCTGAGTTTGTAGCATGAGAAGCCACTTGTCTTATTTTCA



GTTCTTGGTAGGGAGTTCAGAATTAGGGGGTGATTTGAGAACATCAT



AAATAATGTCATATTTTATATCCAGAGACTTGAACTATTTGTATGTT



GTAATTCATATTGGTTGACATGATTGATATGTACATATGTTACATGG



TATTAGCATGAGGATGTTGATGTTTGACCTTATTTAAGTGTTCGTAG



GTTGTAATTAAAAAAAAAAAAAAAAAA





98
ATTATCTCATCACAAAAATCTTTAATTTGCTCTTTGAACCATTCTGC



ATCATGTTTACAATAAGTACCTGTACAACTCACGCACAATCTCTGAT



ATACAGTTTTGTTGCGAGGGGCACCGTGGTGCTTGCGGAGTACACGG



AATTCAAAGGCAATTTTACAGGTATTGCCGCTCAGTGTCTGCAAAAG



CTTCCCGCCAGCAACAACAAGTTCACATACAATTGCGATAATCATAC



CTTCAACTACCTTGTTGAAGATGGCTTCGCATATTGTGTTGTTGCAG



ATGAATCCGTTGGAAGGCAAGTACCAATGGCATTTCTGGAGCGTGTT



AAGGAGGATTTTAAGAGGAGATATGGTGGTGGAAGAGCTGACACAGC



TGTTGCTAACAGCTTGAACAGAGATTTTGGGTCAAAATTGAAAGAGC



ACATGCAGTATTGCATTGACCACCCTGAAGAGATCAGCAAACTTGCA



AAAGTCAAGGCCCAGGTTTCTGAAGTGAAAGGTGTCATGATGGACAA



CATTGAAAAGGTTCTTGACCGTGGTGAGAAGATTGAACTTCTGGTTG



ATAAAACAGAAAACCTTCGTTTTCAGGCTCAAGACTTCCAAAAGAAG



GGAACCGAGTTGCGCAGAAAGATGTGGTTTCAGAACATGAAAGTGAA



ATTGATTGTCCTTGGAATTGTGGTGGCCTTGATTCTCATAATTGTCC



TTTCAGTATGCCATGGATTCAATTGTTCGAAAAAATGATCTGGAATA



GATAGAGGTCCATTTGAATTGGAACAACTTTTGATTGGCTATGGATG



GCATTCTTGTTCTCCTTTGTATTTCTCTCTATATTATCAGTTTCGGG



TGAGATAGTTCTATGATGTTTGCCAGAGGGTATTTTGCTTGGACAAT



CACTGGTTGATAGTACATATTGACTAGTATGACAACGAAATGTTCTG



AATATTCAGTGGGGCAGAGACTCTGATTGCGTACAGCAACTTTAGTG



TATTATATCAAGGTCATGCATTTGTTATAAAAAAAAAA





99
CCCAAATTAAAAAGTCGAGCGCTTAATGAAATGATAGTCGTCAGATG



ACGTCCGAGGGGTTTCAAATAATTCTTAGCCGTCCATTTCGTAGAAC



ATCGGTACTCCATCAATTTTCCTGCTCATCTTACCCTCATTTTGTAA



TTCTCTTCCTGGCGGAGGGTTTGGAAGCTGGGGAAATCAGGCGAAAT



AAATAGGGAATTGGGACTGTTTGCTGCAAATATCGTTTTTATTCGCC



GAAAATCAGCTTTGGGTCTGTGATTTGGCCTTCTGCGTTCGATTCTG



CGCGTTTTCAGCTTCATTTCCAAGGCCTTTTCGTCAGGTTTGGCTAA



AAAATGACCACCGAAAAGGAGAGGGAAAATCATGTATACATGGCCAA



GCTCGCCGAACAGGCCGAACGATACGACGAAATGGTGGATTCAATGA



AGAAAGTGGCCAAATTAGACGTTGAACTGACAGTCGAAGAAAGAAAT



CTGCTTTCTGTTGGCTATAAGAATGTTATTGGTGCTAGGAGGGCTTC



CTGGCGGATTATGTCGTCCATTGAACAAAAAGAGGAGGGTAAGGGTA



ATGACGTGAATGCAAAGCGAATCAAGGATTATCGTCACAAAGTTGAG



ACAGAGCTGTCTAGAATCTGTGGAGACATTTTAACCATTATTGATGA



ACATCTTATTCCATCTTCTAGCTCTGGAGAGTCTATGGTCTTCTATT



ACAAGATGAAAGGAGATTACTATCGTTATCTTGCTGAATTTAAAAGT



GGTAGTGATAGGAAAGAAACTGCTGATCAGGCCCTCAAAGCATACCT



GGCTGCTTCAACCACTGCAACAACAGATTTGCCTCCAACTCATCCCA



TCAGGCTTGGCCTTATTCTGAATTTCTCAGTGTTCTATTATGAAATT



CTTAACTCTCCTGAGAGAGCATGTCACTTGGCCAAACAAGCGTTTGA



TGAAGCAATTGCAGAACTTGATTCTCTTAGTGAAGAGTCGTACAAGG



ATAGCACATTAATAATGCAGCTACTAAGAGACAATCTTACCCTTTGG



ACTTCAGATTTGCAAGAAGATGGAGGAGAAGAGCAGCTCAAAGGTGA



AGAGATTAAGCCAGAAGATGGAGAGCATTAACACTAAAAGGGGAGCA



GAACGAGTTTATGCATGAGAAGCTATGATCCCATGGTTATTAGGGTG



TAGGTCATTATTTAATTGGTAGTTCTTTCACATTTTCTGCTGCTTTG



GAGATGTAGATATTACTTCAGCCCATTTGGTTATATGGGATTGAATT



TTAGCTGATTTGGCATTGGACTTGTTTAGCTATATAGGTTCAGATGT



ATAAAACTTTCTATTCTGGGATCTAGGTTTTTTCGGCTGGAACTCGG



GTGTATCTCTTTGGGGATTAAATCTGCATCCGAAGGTGTTGTCCAAT



TTTAAAACAAAGACCACATCGTATAGTTTATATATTTGAATGTGATT



ACTGTTGAAGCATCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA



AA





100
GGGTATATAGAGGAAAAGGCAAGCTTTCTGTTTCAAAGGGAAGATGA



GTTCAAGGGAGAGAAAAGCGAGGGTGGGTTTGAAGCTGCCAATCCCA



GCTCGGGAAGACGCATTTGCTAAACCAATGCCATTGCCGCTTCCACT



GCCGAAGCCTCCTAACATGAATGGTGCCTGCAAGTTGCCCTGCGTTC



CTCTTGAAGAAGTTACACTGGAAGATCTCCAGAAGATTTCAACTTTG



GGGTGTGGGAGCAGTGGTAAAGTGTACAAGGTTAAGCATGCCAAGAC



TGGGAAAATTTATGCCCTCAAAATCATTCAGGAAAAGCACGAGCTTG



CTGTCCGAAAGCAAATAATGAGGGAAATGGAGATTCTCCGAAGGGCG



AATTCTCCACACATCGTGCAGTGTTATGGCATATTCGATCGAGGAGG



AGAGATCTCGTTTGTGTTGGAGTACATGGACGGTGGAACCCTTGCGC



AGGTTCTTCAAGCCCACAAGAAAATCCCAGAACACTATTTGGCTGAG



GTTGCCAGACAGGTGCTGAAGGGCTTGCATTACCTGCACCAGAACAA



AATTGTTCACCGTGATATAAAGCCCTCCAATTTGCTGATCAACAAGA



GAAGAGAAGTGAAGATTGCCGATTTCGGTGTCAGCACTGTGTTGGCT



CACACTTTGGCCCAGTGTAATTCCTTCGTGGGTACTTGTGCTTATAT



GAGTCCTGAAAGGTTCGATCCTGATGGGTACGGTGGAAAGTATGATG



GATGCTCTGCAGATATATGGAGCTTGGGATTATCTTTGCTGGAATGT



GCGCTTGGAAGGTTCCCTTGTTTGTCTCCGGGGCAGAGGCCTGATTG



GCCTACTTTAATGGTGGCCATCTGTTTGGGCGACCCTCCATCCCCGC



CACCTGATGCATCGCCAGAGTTTCAGAGTTTTATCAGATGTTGCCTT



CAAAAGGATGCGTTACTTCGCCATACTGCACATCGGCTGCTTTCGCA



TCCTTTTTTGAAGAAGTATGAACAGCAATCTTGTGACCTGGCTCCCC



TCCTGCAGTCTTTACACTTGTAGAATTTTGAATTCCTTTTTGTATTT



TGAATATTGTACCTGAGAGCATTCATTGACTTGTAATGAATGTACAC



TCTCTTGGTCTCTGGAACTCTATTTTGTAAATCATTTTGCAATGCAA



CTGCAGTCTTCTTTACAAAAAAAAAA





101
AAAAGGTTTCCATCTAGACCGTCCATACCCTCACAGGGACGACGCAC



GGGGTGACGTGGAACACCTGGTTCGGCTGACACGTGTCAGCAATGTT



CATAGCATGACCGGCTACAAAAGGGACTCATTGATCTTTCAGAAGAA



TTGAGCTTTTCTTATTGGGGAGCGAGAGGTGAATTCGTTCACAAATC



ATCGTCTGGTCTGCGATTGGACTTTTGCGATCATTAAATTGTCAGCT



ACGGATCTTCGTTCTCACTCCTCTGTTGATCCAAAAGCTGCGGAGCC



CGGCAATCTGCAGAAATTTTTTTGAAGAATTTGAGTTTTTGAGACCG



GCTATCTGCAGAGAAAAATTCGAAGAATTTGAGTGCCAGCATCGAAT



CCCCGGACTGAATGGCGACCACTGGCACCAATAACATGCAGGCTAAG



CTGGTGCTTCTTGGTGATATGGGTACTGGAAAATCGAGCCTTGTTTT



GCGATTTGTCAAAGGCCAATTTTTGGATTATCAGGAGTCGACAATTG



GAGCAGCATTTTTCTCACAGACACTAGCAGTGAATGAGGTGACTGTA



AAATTTGAGATATGGGACACTGCAGGACAGGAAAGATATCATAGCTT



GGCGCCCATGTATTATAGGGGTGCGGCAGCAGCTATAATTGTTTATG



ACATAACAAATTTGGATTCTTTTGTCCGAGCAAAGAATTGGGTGCTG



GAGCTTCAAAAACAAGGGAACCCAAATTTGGTTATGGCCCTTGCTGG



AAATAAGGCTGATATGGCAGCAAAGAGGAAGGTCGAACCAGAGGAAG



CTGAAACATATGCAAAGGAAAATGGTCTATTTTTCATGGAAACCTCA



GCAAAGACGGCGCAGAATGTCAATGAACTGTTCTATGAAATTGCGCG



AAGATTACCTAAAGCCCGACCAGTGCAGCAGCCTGCAGGCATGGTTC



TCACAGATAGACCTGCAGAGAGTGCTAAAACTTACTCTTGCTGCTCA



TAAGCCCTCGATTTCGTGTCACTGAAAATTTGAAGATGCCACCTTCA



GCTGTAAGCAGTTATTCTATGCACATTATTTGCTACGGCTGTGATAT



CCGGAGGAGATGGTGGGGGGGGGTTCAAGCTTTGTTTAGAACTTGCT



TTAAGGAATTTTAGCGTTTATGGAGAAATGTAAAAATACATATTTTG



GTGCTTAAATTATATCTCTGTAGTGAGTTGCGATGGTCATTGAAAGC



CTTCTGATACAACTCTTTGGTGCCATTTATGATGAGCTTATATTTAA



ATTGAAAAGCTGTGCTCTGTTTAAATACTCCGAGCTCGGAGAGGGTA



GATCTCTTTTGATCCTGCAATGACCTCTTGTGTTTGATTGATTGTAC



TAGACTATACTATGGGACGCCTAACCTGTCATTTAAAAATGTGAGAC



TGTTCGTAACAAAGTCTTGCTATTGCTACCTTGCATTGAAACTAATG



TTTTCTTGAAGCATGATGAATAAATTGGCTAATAGTGTAGTCGTTCT



GAAGAAAAAAAAAATTCTTCAATGGTAGAATTGGATATTTGTGATCT



TTGAACTTGGAATTGATATGATCAGTCATTGTGTATTATATTTCTTT



CTCAGAGGATGATAATCGGTTGAATTTGAATATAAATCTCTCC





102
GAAAGAAGAAGAGTACAACATCACAAAAGGCCAAAGAGCAGGTCGAG



GCTGCTCCCACTGAAATCTTTCGCCATTCGACTGTTAGAAAGCACAA



CAAAGCAGTCGTCAGCTTTTGAATACCAATTCCGTGGGCGATCGGAA



TCCTCCCTGCCCCTGCATCCTTTCGGCAGCTCGCGGAATAACAAGCC



TCTGCAGGTTTGGGGTTCTTGGATGCAGAATTAGAAGACAGCGCCAT



GGAAACGGGCGCTGCGGCAGTAGACGGTCACATACAGGGAATTCTGA



CCCATGGCGGTCAGTATGTGCAGTATAATATATTTGGGAACCTCTTC



GAGGTCTTCTCCAAGTACATACCCCCCATACGACCTATCGGCCGCGG



CGCATATGGCATTGTTTGCTCGGCAGTGAACTCGGAGACAAATGAGG



AAGTTGCAATTAAGAAAATTGGCAATGCTTTTGATAACAGAATTGAT



GCAAAGAGGACTCTTCGCGAAATTAAGCTTCTATGCCATATGGAACA



TGAAAATATCATTGCAATTAAAGACATCATTCGGCCACCTCAGAGAG



AAATTTTTAATGATGTTTATATTGTATATGAGCTCATGGATACAGAT



CTCTACCAGATTATACGCTCCACTCAACCATTAACAGAGGATCACTG



TCAGTACTTCCTATATCAACTATTGAGAGGGCTGAAGTACATACACT



CAGCAAACATTCTGCATAGAGATTTAAAACCCAGTAATTTGCTTCTA



AATGCAAACTGTGACCTAAAAATATGTGATTTTGGGCTTGCACGGAC



TACTTCAGAAACGGACTTTATGACAGAGTATGTTGTTACTCGCTGGT



ATCGTGCACCGGAACTACTATTGAATTGTTCCGAGTATACAGCAGCC



ATTGATATCTGGTCAGTGGGCTGCATTTTTATGGAGATACTAAAGCG



GGAGCCCTTGTTTCCTGGTAAAGATTATGTTCAGCAATTAAGGCTCA



TCACTGAGTTAATTGGTTCACCAGATGACTCTGATCTTGGCTTTTTA



CGGAGTGACAATGCTAGAAGATACATCAGGCAACTTCCACAGTTTCC



TAAGCAACCTTTTTCTCAGAAATTCCCCAACATGGCTCCAGCAGCTG



TAGATTTACTTGAAAAAATGCTTGTATTTGATCCAAGCAAACGCATT



ACAGTTCAAGAGGCCTTGAGTCACCCTTACTTGGCAAGTCTGCATGA



CATCAATGATGAACCCAGCTGCCCCACTCCTTTCAACTTTGATTTTG



AGCAGCCCTCATTCACCGAGGAACATATAAAAGAGCTCATTTGGAGG



GAATCTCTTAACTTCAACCCAGACATGATGCAATAGCTGGAGCAGAT



GGGCTTGATATTTATCTTGTAATTCCTCCTTACTGGTTATGTTATTA



TGCTTCTGCAAGGCAATCCTTCTCTTGGTTTGTTATTGCCTTCTGAA



GGTTTGCAGATCATTGTGCAGGTGTGGAAACTTGTTTTATTAGAGTT



AGGTTTGCTTTTATTCTTTGAAGGTCTGGTAAAAGAAAAGGAATTGA



TGGATATGCTTACAGATCATTGTGAAAATTGTGTATTCCTAATCTGA



GCCAACTATTGGCCTCTACTTTATTATCATTGGACATTAAAATGTAA



CTGGGAAACTTAATAATCTAAAGTAAATGCTGAAGGAATTTGTTAAA



AAAAAAA





103
GGTTTTAAAATCGTGGCATATGCGGGTGACAGAACAACCAGAAGATT



ACCTCTTCAAAATTGTTTTAATAGGCGACTCTGCTGTGGGAAAATCC



AATCTACTTGCAAGATATGCCCGGAACGAGTTCTATCCCAATTCCAA



ATCCACGATCGGAGTGGAGTTTCAGACACAGACCATGGAAATCGATG



GTAAAGAGATCAAAGCACAGATCTGGGACACGGCCGGCCAGGAGCGC



TTCAGGGCCGTGACCTCGGCATATTACAGAGGAGCCGTGGGAGCTCT



TGTCGTGTATGACATCAGTCGGCGCCAGACATTCGACAATATTTCTC



GGTGGCTCGATGAGCTGCACACGCATTCTGATATGAATGTGGTTACA



GTAATAGTTGGCAACAAAACCGACCTAATGGATGCCAGAGAAGTTTC



TACAGAAGAAGGAGCAGCATTGGCAGAGGCTCAGAACTTATATTTTG



TAGAGACCTCAGCACTGGATTCTACAAATGTCCAAGTAGCTTTTCAA



ACAGTTGTCAAAGAAATTTACAACATTCTGAGTAGGAAAGTATTGTC



ATGTCAGGAACAGAAACTTGAATCAAAATTAACTAATGGAAAAACAG



TCATTTTGCATGAAGCAGAAAGTGAATCTACCACGAAACAAACTGGA



AAGTTCTGGTGTTGTTCTGGTTAGCTTTGTTTATTTCAATACTTTCC



AAGGGGTTCGCAAGGTCTTTTGCAATGTCTAGCCAGATTATTCCATG



TGAAAGAATTCTTAAAAGTGTGATGCGG





104
CTGAATGGTGTTTTTCGGATCTTAAACATAAATTCATTATCAACTGC



ATTTCAAAAGCTCGGTTTCTTCCGTAGTATTCTTGCCTCCGTCGAGG



CCTGAATCGGTCGATTGTGGTTATTGAAGATACATTTTAGGTTTTAA



AATGATGTCATATGCGGGTGAAGAACAACCAGAAGATTACCTCTTCA



AAATTGTTTTAATAGGCGACTCTGCTGTGGGAAAATCCAATCTACTT



GCAAGATATGCCCGGAACGAGTTCTATCCCAATTCCAAATCCACGAT



CGGAGTGGAGTTTCAGACACAGACCATGGAAATCGATGGTAAAGAGA



TCAAAGCACAGATCTGGGACACGGCCGGCCAGGAGCGCTTCAGGGCC



GTGACCTCGGCATATTACAGAGGAGCCGTGGGAGCTCTTGTCGTGTA



TGACATCAGTCGGCGCCAGACATTCGACAATATTTCTCGGTGGCTCG



ATGAGCTGCACACGCATTCTGATATGAATGTGGTTACAGTAATAGTT



GGCAACAAAACCGACCTAATGGATGCCAGAGAAGTTTCTACAGAAGA



AGGAGCAGCATTGGCAGAGGCTCAGAACTTATATTTTGTAGAGACCT



CAGCACTGGATTCTACAAATGTCCAAGTAGCTTTTCAAACAGTTGTC



AAAGAAATTTACAACATTCTGAGTAGGAAAGTATTGTCATGTCAGGA



ACAGAAACTTGAATCAAAATTAACTAATGGAAAAACAGTCATTTTGC



ATGAAGCAGAAAGTGAATCTACCACGAAACAAACTGGAAAGTTCTGG



TGTTGTTCTGGTTAGCTTTGTTTATTTCAATACTTTCCAAGGGGTTC



GCAAGGTCTTTTGCAATGTCTAGCCAGATTATTCCATGTGAAAGAAT



TCTTAAAAGTGTGATGCGGTAGGAAGTTTTGCTCTACTACTGGTTAT



ACAGCAGCTTGAAACAAAACTTGGGAATTCTCATTTTTGGCTGGTTT



TGAAGCAATTTCAGATTGAAGGGAAATGCTGATTCATAGCAAAAAAA



AAA





105
ACACGAAAAACCAAAAGGTTGCTCTAACATTGAATGAAAATCCATTG



CTCAACTGCTCATTTAAATGAGGATGCATCACACTACTGTGCCTGAT



CTGTATCGGGAACCCATTTGAGTAGATTTGAAATATACATAACTAAC



CCATTTGAGTAGATTTGAAATATACATAACTAGCGACAAGTCAAATC



TCGTTATCTTCTGACCATCTTCTCGATTTCCCTGAAGGAAGCTTGGA



TTATGGCGACTCGGAAACGGACATTGCTGAAGGTCATCATTCTGGGC



GATAGCGGGGTGGGGAAAACATCACTAATGAATCAATATGTGAATAA



GAAATTCAGCAACCAATACAAGGCAACAATTGGAGCAGATTTCCTGA



CCAAAGAAGTGCAAGTGGAAGACAGACTTGTGACAATGCAGATCTGG



GATACAGCTGGGCAGGAGCGTTTTCAGAGTTTAGGTGTTGCCTTTTA



TCGGGGTGCAGACTGTTGTGTCCTTGTCTATGATGTGAATGTTATAA



AATCATTTGATAATCTGGACAACTGGCACCAGGAATTCCTTATACAG



GCAAATCCTAATGATCCAGATAATTTCCCATTTGTGGTATTGGGAAA



TAAAACTGATGTTGATGGTGGTCATAGCAGAGTAGTGTCTGAGAAGA



AGGCAAAGATGTGGTGTGCAGCCAAAGGAAACATTCCATATTTTGAA



ACATCAGCTAAAGAGGACATGAATGTGGAGGAAGCTTTTCAGTGCAT



TGCTAAGAATGCATTAAAAAATGAGCCAGATGAGGAAATTTATCTGC



CAGAGACTATAGATGTGGGTCACATCGGTGTACAGAGGCCATCTGCA



TGCCAGTGTTGAAGATCCATGAGTAAATGAGGTAAATATGGACAAGG



TGCCAGATAATTTTTACATGTCTAGCTGGTTGGTAACAATGGTATTA



TTCTTGTACCAGAATGTGAAATTTTTGGTAATTCTTGATTCAAGAAT



CAGATTGGAGAAACTTATATATGGTTTGGATTCTGGAATATTCATTA



TAATGGGACCTATGCACTAAGATTGAATATTCCCCTTCAAGAGAGTT



AAGGGATGCCTACAGTAAGTTTCTTGTGGTGAGCTAAAACGAAGTTG



TAACTGCAGTCTTCAGAAAAGGCTGTATCAATCCGGTCTTAACCAGA



CAGCTCAAAAGTGTCTGAATTAGCTTGTGTTTATTCATGCTCTCTGT



ATTCGTATTTTCCAATGCATTATATATGCTCTCTTGTAATAGCTACC



CTGCTTTCACTTGGATACTGTTCGCTGTTAATGCTTGAAATTTAATA



TAAATTTCTCACCTCTGTTTGTCCATGACTCCAAAAAAAAAA





106
GGTTGCTCTAACATTGAATGAAAATCCATTGCTCAACTGCTCATTTA



AATGAGGATGCATCACACTACTGTGCCTGATCTGTATCGGGAACCCA



TTTGAGTAGATTTGAAATATACATAACTAGCGACAAGTCAAATCTCG



TTATCTTCTGACCATCTTCTCGATTTCCCTGAAGATACTGGTCTGAA



ATTGAAGGAAGCTTGGGATTATGGCGACTCGGAAACGGACATTGCTG



AAGGTCATCATTCTGGGCGATAGCGGGGTGGGGAAAACATCACTAAT



GAATCAATATGTGAATAAGAAATTCAGCAACCAATACAAGGCAACAA



TTGGAGCAGATTTCCTGACCAAAGAAGTGCAAGTGGAAGACAGACTT



GTGACAATGCAGATCTGGGATACAGCTGGGCAGGAGCGTTTTCAGAG



TTTAGGTGTTGCCTTTTATCGGGGTGCAGACTGTTGTGTCCTTGTCT



ATGATGTGAATGTTATAAAATCATTTGATAATCTGGACAACTGGCGC



CAGGAATTCCTTATACAGGCAAATCCTAATGATCCAGATAATTTCCC



ATTTGTGGTATTGGGAAATAAAACTGATGTTGATGGTGGTCATAGCA



GAGTAGTGTCTGAGAAGAAGGCAAAGATGTGGTGTGCAGCCAAAGGA



AACATTCCATATTTTGAAACATCAGCTAAAGAGGACATGAATGTGGA



GGAAGCTTTTCAGTGCATTGCTAAGAATGCATTAAAAAATGAGCCAG



ATGAGGAAATTTATCTGCCAGAGACTATAGATGTGGGTCACATCGGT



GTACAGAGGCCATCTGCATGCCAGTGTTGAAGATCCATGAGTAAATG



AGGTGCCAGATAATTTTTACATGTCTAGCTGGTTGGTAACAATGGTA



TTATTCTTGTACCAGAATGTGAAATTTTTGGTAATTCTTGATTCAAG



AATCAGATTGGAGAAACTTATATATGGTTTGGATTCGGGAATATTCA



TTATAATGGGCCCTATGCACTAAGATTGAATATTCCCCTTCAAGAGA



GTTAAGGGATGCCTCCAGTAAGTTTTTTGTGGTGAGCTAAAACGAAG



TTGTAACTGCAGTCTTCAGAAAAGGCTGTATCAATCCGGTTTTACCC



AGACAGCTCAAAAGTGTCTGAATTAGCTTGTGTTTATTCATGCTCTC



GGTATTCGTATTTTCCAAATGCATAATATATGCTCTCTTGTAATAGC



TACCCTGCTTTCACTTGGATACTGTTCGCTGTTAATGCTTGAAATTT



AATATAAATTTCTCCCCTCTGTTTGTCCAAAAAAAAAA





107
GCAATATTTTAAAAAAGATGAACAGTGAGATAAAATGAATAATTGCT



TCTCATGAATCCGAGCAGCTGAATTGTGCAAGGGACATGTGCTTGCT



CAATATAATTTTATTATTGTTCTTCCATAAAGGCTCTCACGAGCCAA



AAGAAACACGAAAAACCAAAAGGTTGCTCTAACATTGAATGAAAATC



CATTGCTCAACTGCTCATTTAAATGAGGATGCATCACACTACTGTGC



CTGATCTGTATCGGGAACCCATTTGAGTAGATTTGAAATATACATAA



CTAACCCATTTGAGTAGATTTGAAATATACATAACTAGCGACAAGTC



AAATCTCGTTATCTTCTGACCATCTTCTCGATTTCCCTGAAGGTTCT



CGCATTTTCTTCTTCTCTAGGATCATTTATTAACTCAGTTGTCATCC



ACATTTGATTGCTGATACTGTGCATGGTTCTGAGAATCTCAGAATTG



ACAATTGGGTATGTATATACTGGTCTGAAATTGAAGGAAGCTTGGAT



TATGGCGACTCGGAAACGGACATTGCTGAAGGTCATCATTCTGGGCG



ATAGCGGGGTGGGGAAAACATCACTAATGAATCAATATGTGAATAAG



AAATTCAGCAACCAATACAAGGCAACAATTGGAGCAGATTTCCTGAC



CAAAGAAGTGCAAGTGGAAGACAGACTTGTGACAATGCAGATCTGGG



ATACAGCTGGGCAGGAGCGTTTTCAGAGTTTAGGTGTTGCCTTTTAT



CGGGGTGCAGACTGTTGTGTCCTTGTCTATGATGTGAATGTTATAAA



ATCATTTGATAATCTGGACAACTGGCGCCAGGAATTCCTTATACAGG



CAAATCCTAATGATCCAGATAATTTCCCATTTGTGGTATTGGGAAAT



AAAACTGATGTTGATGGTGGTCATAGCAGAGTAGTGTCTGAGAAGAA



GGCAAAGATGTGGTGTGCAGCCAAAGGAAACATTCCATATTTTGAAA



CATCAGCTAAAGAGGACATGAATGTGGAGGAAGCTTTTCAGTGCATT



GCTAAGAATGCATTAAAAAATGAGCCAGATGAGGAAATTTATCTGCC



AGAGACTATAGATGTGGGTCACATCGGTGTACAGAGGCCATCTGCAT



GCCAGTGTTGAAGATCCATGAGTAAATGAGGTAAATATGGACAAGGT



GCCAGATAATTTTTACATGTCTAGCTGGTTGGTAACAATGGTATTAT



TCTTGTACCAGAATGTGAAATTTTTGGTAATTCTTGATTCAAGAATC



AGATTGGAGAAACTTATATATGGTTTGGATTCTGGAATATTCATTAT



AATGGGACCTATGCACTAAGATTGAATATTCCCCTTCAAGAGAGTTA



AGGGATGCCTACAGTAAGTTTCTTGTGGTGAGCTAAAACGAAGTTGT



AACTGCAGTCTTCAGAAAAGGCTGTATCAATCCGGTCTTAACCAGAC



AGCTCAAAAGTGTCTGAATTAGCTTGTGTTTATTCATGCTCTCTGTA



TTCGTATTTTCCAATGCATTATATATGCTCTCTTGTAATAGCTACCC



TGCTTTCACTTGGATACTGTTCGCTGTTAAATGCTTGAAATTTAATA



TAAATTTCTCACCTCGGTTTGTCCAAAAGAAAAAAAAAAAAA





108
GGCGATACGAGGCAGCCAGCTTTTTACACCTGTTGATTGGAGAGCCC



AAACAGAAAATAGCCAAACACCCGATGCATTCGCAGGTCGTGGGGAA



TTCGTGAGTGGAGGAAATCGATCCACTCTCTATATGTAAATCGCTAT



CACACACATCGCACTCTGCGAAAAAGGGAGAATTTTTTTCCTTCAAA



ACGAGATGAAGATGGGTTAAAACGGTGGTATGTGGGCCGATCTATAG



CAGAAACTCTGTAAAAACCCTATTGAATTTCAATGGGGCAGGGCGCC



TCGTCTTCTTCCGTGGTACATGCCTTAAAACGCGAAGAAAACGATGT



GAATTTGGGCAGAGATTACAGCCTGAGCCTTCCGGATGAATGCCTGG



CCTGCATCTTCTGCACTCTGAGCTCCGGCGACCGACAGCGATGCTCT



CTGGTGTGCAAGAGATGGTTTCTTGTCGAGGGTTCGAGTCGCCAGCG



GCTATCCTTGGATGCCCGGTTGGATATCTCAGCGGCAATCCCAGGCC



TCTTCAGCAGGTTCGATCATGTGACCAAGCTCGCTCTCAGGTGCGAT



CGCAGAATGGTAAGTATAAAAGACGAGGGCTTGATTAAAATTGGAAT



TCATTGTAAGAGCCTTAAAAAGTTGAAATTGAAGGCCTGTAGGGAGT



TATCTGATGTGGGTATCGAGGATTTTGCTAAGCTGTGTACTGGTCTG



AAAAAATTGTCGTGTGGGTCTTGTACTTTTGGGGCAAAGGGGATGAA



TGCTGTTCTTAAGTATTGTGTAGGGTTAGAGGAGTTGTCTGTTAAGC



GGTTGAGGGGTTTAGCTGACGGGAGTGTCGATGTTATCGGCCCCGGG



TGTGCGATGTTGAAGAGTATTTGCCTGAAGGAACTTTTTAACGGGCA



GTATTTTGGACCCCTGATTGCTGGATCGAAGAACCTGCGTACCCTCA



AGCTGTTTCGATGTTCAGGGGATTGGGATAAGCTGCTTGAGGTGATC



ACTGATCATGTGAGTGGATTGGTTGAGGTGCATCTCGAGAGGTTGCA



GGTAAGCGATCGGGGCCTGATGGCCGTTTCGAGGTGCGCAGGATTGG



AGGTCTTGCATCTGGTGAAGACTCCGGAGTGCACGAACGTCGGGCTT



GCGGCGATCGCCAACAACTGCAAAAATCTACGGAAGTTGCATATAGA



TGGTTGGAAAACGAATCGTATAGGCGATGAGGGGCTTATTGCCGTGG



GGAAAAAGTGTCAAAATTTGCAGGAGTTGGTGTTGATTGGCTTGAAT



CTGACTGCAACGAGCTTGAGTCCTCTGGCTTCCAATTGCCAGGTCTT



GGAGAGGTTGGCTCTCTGTGGCAGTGAGACGATCGGGGATACGGAGA



TCTCTTGTATCGCTGCGAAATGTCTTTCTTTGAAGAAGCTGTGCATC



AAGGGTTGTCCAGTTTCGGATGATGGGATCGAGTCCTTGGTCAGTGG



GTGTCCAAAGTTGGTGAAGGTGAAGGTGAAGAAATGCAGAGGGGTTA



CTTGGGAGGGCGCGGAACGGTTGAGGGCGAATAGAGGATCTTTGGCT



GTTAACTTGGATACGCCGTTGCCGAATCCAGTTGTTGGTCCACCTTC



GGGAGCTGGTGCCGCTGAAGCTAGTGCCCCTTCAACCAGCAAATCAT



CAATAGCCAAGGCAAAGTTTTCTCTCTTTGCTGGAAGAAACCTTGTG



GCCTGTGCTTTTCTGAGATTGTCAAATGGATCCGATGGAGATCATAA



ACGAGTGTCTGCAAATGCATGAGTTGTTTATCCTATTGGAAAAACAA



GGCCAAGTCATGTTATTAAGCTCTGCTGGAGTTGCTTTACTGCTCAT



GGATCTTTTGGCATAGTGTTTCCTGATGCACGGTGCAGATATATGAC



TTGGCATCTAGATCAGGTAATACTAATAATGGAGCAGGAAAACATTG



TTTGCAATGGGCTATTTGCGTTAAGGTTTTCTTGTGTGCTAAGCAGT



TAGTCAATCTGGCTGTTGAACATGTTCTTCCAAAGAACATAAACCGC



TTGTATGCGGTGGACATCCGATGTTTGGCTTTGTCTTATTGGATGCG



TCGTGGAGTTAGTTCCTTTGTCCATTGAACAATCTTCCTTAAGGGAC



TGAGTTGACTTGTTTGCAATGGAATGTGCACAGCCAGGCTTTCAGAT



GAAAGCTCTGTCGGCTGTACAGGTAGGTAGTTTCTGGACAAAGTAGA



TCTCTGGGTTGTCAGCTTGAGATTCTAAGTGCAATGCAAGAGAATCT



GTGAAGGGATGGAATTAATTTGTGCAATGTTGGCAAAATAATCAATA



TGCATTTGTCATACATAATGTCTAAAAGAGCTCTCGTTTCTGATAGA



AACAGTATATTTGAAATGGGTATGTGTGCAGCGGCCAGCCACACTTT



CAGATGAATCTTTCTTTGTTATACCAGTAAACAGGTATTAAGTCTAG



TGAAAAAGGAGATCACCAGATTTTTGTCAAATGTTTAATTAAGTCGT



TTGCTGTAAGTTCTTCAGTAGATCCAATATAATCTGCACAAGGTTGG



AATTAAAAAAAAAA





109
GAGTTGTCCCAGTTGGGTACACAGCCAACTCCAGCTAACGCGCAGTC



CCTGCTAGGTGCCTACCGGATGCTGCTGACTCTGCCGTCAATTTCCC



TTTTATTATATACCACTTTATTGCTTCGCAAGATTCAGCCAAGTGGA



TCTGGCTACAGATTTTCTCATCTCCAAGGCTGCCAGAACTCAAATCT



GATCGCACACGACTCTCTCCTTTGGTCATTTTTGGGGCTTTTGGGTG



TTTATTGCGGACACCCAATGCCCAAAGATCTGGATCCAATACCCATT



TCCTAGATCAGCGTAAACAACGCGTCGGTTTGATATTCAGCGTGTAT



CCGTCCATTCAACGGGAGATTGGGTTTCTGCGATACATTCGTTGTGT



ATCCATCCAACAGTTATTGGGCGTCTGCAGTAGGTTGATATTCATTA



TCTATCCCTTGAACTAGCTATTGGGTTCCCGCAATAAGCCGATATTC



ATCGTGTATCCATTGAAAGGCTATTATTTTTCTGCAATAGCTTGATA



TCCATTGTGTATTCATCCAGCCAGATATTGGATGTCTATATTAGGCC



GATATTCATTATCTACCCATTGAACCGGCTATTGGGTTTCTGCTATA



AGGTGAAATTAACTGTGCAGCTATTCATTCAGGTTTTGGATTCTTGA



GCACACCCAAGAGTTCGTTTGGTGTTGTGTGGAGATGGCTTACAAAG



TCGATGATGATTATGACTATTTGTTTAAGGTGGTCCTGATTGGGGAT



TCTGGTGTCGGTAAGTCCAATTTGCTCTCCAGATTTACTAGAAATGA



ATTCAGCCTGGAGTCCAAATCTACAATTGGTGTGGAGTTTGCAACAC



GGAGTATTAATGTTGATGGGAAAATGATCAAGGCCCAGATATGGGAC



ACTGCTGGTCAGGAAAGGTACAGAGCCATCACAAGTGCATATTATCG



CGGTGCTGTTGGTGCGTTGTTGGTTTACGACATCACTCGACATGTCA



CCTTCGAAAATGTTGAGAGGTGGCTCAAGGAGCTTCGTGATCATACC



GAGCACAACATTGTGGTGATGCTTGTTGGTAACAAGTCCGACTTGCG



CCATTTGAGGGCTGTTTCCACAGAAGATGCCCAGACCTTTGCAGAAA



GAGAAGGGCTCTATTTCATAGAGACATCTGCACTAGAGTCCACCAAT



GTGGAAAATGCTTTCAAGCAGGTGCTGACTCAAATATACAGGATCGT



TAGTAAGAAGGCCCTGGATGTTTCGGAAGATAATGCAGCAGCTCCCG



CACAAGGTCAAACAATAAACGTGAAAGATGATGTCACGGCAACTAAG



AAAGTTGGTTGCTGTAGCACATCATAAGCAGCAGGTGAAATCCCTCA



GGATTCGGATTTCAGTTCAGATGCAGGACTATTATGTTCATTGGAAA



AACTTTGACCGATTTCTGGAATCACTTATAGTTGAATTCGAGCAGGT



TCTCATTTGGTATGATTTTAAGAGGCTTCAAAGTTGGACTCACTTAG



TAACTAGTTTTAGACGGAGAGAAGAGTGTTGTAGCCAATGGTGGGTA



ATCTGAATTGTATATCTTATTCTTGCTGTATTCTCTGCAACTTCTAG



TGTCCCAGTACTATCTTTGTTCTAGTCAGTGGCTTCAGTTTTACATG



CCATCATTTGTATCCATTATTTGATTTTATTCTCACAGTGGAACAGA



TTTTTTTTGATCTTAGTTAATATTAAAAAAAAAAAAAAA





110
ATAATACCCGATGCCAATTGTTTATAGCACAGAGTGCTCTTCTTCCA



CTGCTCTCTAGCTCTCGTGGCACACAAGGAGGAGTTTCAGAGAGGCC



AGGCCAGTCTGCGGATCTGTGTTCAGACAAGATGAGTAGCGACAAGG



AGAGGGAGAATCATGTTTACATGGCCAAACTCGCTGAGCAGGCCGAG



CGATACGATGAAATGGTTGAAGCCATGAAGAGGGTCGCGAAGCTGGA



CGTGGAGTTAACTGTAGAAGAAAGGAATCTTCTCTCTGTTGGGTACA



AAAATGTGATTGGGGCTCGGCGAGCTTCCTGGAGAATAATGTCCTCT



ATTGAGCAGAAGGAGGACGCGAAGGGCAATGATCATAACGTGAAACG



TATCAAAGAGTATAGACAGAAAGTTGAAGCAGAGCTTTCTAAGATTT



GCCATGATATTATGACCATAATTGATGAACACCTTATTCCTTCCTCC



AATATTGGCGAATCTACTGTTTTCTACTATAAAATGAAAGGAGACTA



CTACCGTTATCTGGCTGAATTCAAAACAGGAAATGAGAGAAAAGAAG



CCGCTGATCAGTCCTTGAAAGCTTACCAGACAGCTTCAAGTACTGCA



GAGTCGGATTTAGCGCCAACTCATCCAATCAGACTTGGATTGGCCTT



GAACTTTTCTGTTTTCTATTATGAAATAATGAATTCACCTGAAAGGG



CTTGTCATCTGGCCAAGCAAGCTTTTGATGAAGCTATTGCAGAACTT



GACACCTTGAGTGAAGAGTCATACAAAGATAGCACTTTAATCATGCA



GCTCTTGAGGGATAATCTTACTTTGTGGACCTCTGATCTCCAGGAAG



ATGGAGTTGAGGATCAGACCAAGGGGGATGAGCCTGTAGTTGGGATG



GATGAAGAGCTTTGAGCAGGTACATGTAGAAACAAATGAAGTTGTTA



GATATGGGCTTTTATGTCGGCCTCAATGTACTCTAGAGTACTCCTTT



CTGCTCTGCAGCTGCAATTTACAAATTCGCTCTATTTATCTTGTTAT



TGACACCTGGTTTTGTTTATAAGTTTTAGATTGGAACAAAAGACCAG



TAGGACATTATGGGGTCTTAACTTGGTGTGTATACCATGGCTATTAA



ATGCTTCAATATGTAATAGGGGCCCAGCACTGCAGTACTGTGTAGAA



TTTAGAGTCTTTCGTTGTGCATTATTATCGTTTTGAAGATTAATATA



GGCTTTTGATGGATGAAGTGGCTTTGTTGCCACAAAGGAGCTGAATT



CTTTGAGCTTTCCTCGTTTTCTTTTTTCAAAATTTCTGGAAGTTATA



TCGAATCTAACTTAATAAAAA





111
AGAGTGCTCTTCTTCCACTGCTCTCTAGCTCTCGTGGCACACAAGGA



GGAGTTTCAGAGAGGCCAGGCCAGTCTGCGGATCTGTGTTCAGACAA



GATGAGTAGCGACAAGGAGAGGGAGAATCATGTTTACATGGCCAAAC



TCGCTGAGCAGGCCGAGCGATACGATGAAATGGTTGAAGCCATGAAG



AGGGTCGCGAAGCTGGACGTGGAGTTAACTGTAGAAGAAAGGAATCT



TCTCTCTGTTGGGTACAAAAATGTGATTGGGGCTCGGCGAGCTTCCT



GGAGAATAATGTCCTCTATTGAGCAGAAGGAGGACGCGAAGGGCAAT



GATCATAACGTGAAACGTATCAAAGAGTATAGACAGAAAGTTGAAGC



AGAGCTTTCTAAGATTTGCCATGATATTATGACCATAATTGATGAAC



ACCTTATTCCTTCCTCCAATATTGGCGAATCTACTGTTTTCTACTAT



AAAATGAAAGGAGACTACTACCGTTATCTGGCTGAATTCAAAACAGG



AAATGAGAGAAAAGAAGCCGCTGATCAGTCCTTGAAAGCTTACCAGA



CAGCTTCAAGTACTGCAGAGTCGGATTTAGCGCCAACTCATCCAATC



AGACTTGGATTGGCCTTGAACTTTTCTGTTTTCTATTATGAAATAAT



GAATTCACCTGAAAGGGCTTGTCATCTGGCCAAGCAAGCTTTTGATG



AAGCTATTGCAGAACTTGACACCTTGAGTGAAGAGTCATACAAAGAT



AGCACTTTAATCATGCAGCTCTTGAGGGATAATCTTACTTTGTGGAC



CTCTGATCTCCAGGAAGATGGAGTTGAGGATCAGACCAAGGGGGATG



AGCCTGTAGTTGGGATGGATGAAGAGCTTTGAGCAGGTACATGTAGA



AACAAATGAAGTTGTTAGATATGGGCTTTTATGTCGGCCTCAATGTA



CTCTAGAGTACTCCTTTCTGCTCTGCAGCTGCAATTTACAAATTCGC



TCTATTTATCTTGTTATTGACACCTGGTTTTGTTTATAAGTTTTAGA



TTGGAACAAAAGACCAGTAGGACATTATGGGGTCTTAACTTGGTGTG



TATACCATGGCTATTAAATGCTTCAATATGTAATAGGGGCCCAGCAC



TGCAGTACTGTGTAGAATTTAGAGTCTTTCGTTGTGCATTATTATCG



TTTTGAAGATTAATATAGGCTTTTGATGGATGAAGTGGCTTTGTTGC



CACAAAAAAAAAA





112
CAGAGCTCCTATAACCCCCAATTGTGTCTCCATTTTTGCGTGCGAAC



CATGGCTCAAGCTCCCAAAAATCTGTGTATCATTCTGTTCTTCATCA



CAAGTTCCTTGTACTGCCCTTCATTGTCTTGCGCTGCTGCTTTCACA



GAAAATCCATTAACAGTTCTTGGTTCTGCCAGTTTAGTGTGTTTGTG



CATTGCAGCGGCCGTTTCTTTGAAGATCCAGAGGTGAAGTTGGGTTT



TTATTATTTGTGTACAAATGGCGGCAGCGGCGATGGTGGAGTCATCG



CGGGAGGAGAATGTCTACATGGCGAAGCTGGCCGAGCAGGCGGAGCG



CTACGAAGAGATGGTGGAGTTCATGGAGAAAGTGACAAAAGGCGTGG



AGGTGGAGGAGCTCACAGTGGAGGAGCGGAACCTGCTATCTGTAGCC



TACAAAAACGTGATCGGTGCCCGCAGGGCCTCCTGGAGGATTATCTC



CTCCATCGAGCAGAAGGAGGAGAGCAGGGGCAATGATGAGCACGTGG



TCACCATCAGGGAGTACAGAGCCAAGGTGGAAGCAGAGCTTTCCAAG



ATCTGTGAGGGCATTCTCCGCCTCCTCGACTCCCACCTCATCCCTTC



TTCCACCGCTGCGGAGTCCAAGGTTTTCTATCTCAAGATGAAGGGCG



ATTACCATCGATACCTTGCCGAGTTTAAGACAGGCGCCGAGAGGAAG



GAGGCCGCTGAGAACACTCTGCTTGCTTACAAGTCTGCGCAGGATAT



TGCTGCGGCAGAGCTGGCTCCAACGCATCCTATTAGGCTAGGGCTGG



CTCTTAACTTCTCTGTATTTTACTATGAGATTTTGAATTCGCCAGAC



AGAGCCTGTAATCTCGCAAAACAGGCATTTGATGAGGCAATTGCGGA



GTTAGATACCTTAGGTGAAGATTCTTACAAGGACAGCACTCTCATCA



TGCAGCTCCTTCGTGACAATTTGACATTGTGGACCTCAGACATGCAG



GAGGATGCTGGGGAAGAGATCAAAGAGACTTCTAAGCGTGAGGACGG



GGAGGAGCAATAGTGAAATGTGATAATCTTATAGTGTATTAGGATTA



GGATTAGATTACCAGGCTTTCCTGCATTGTTTGGTAAAGGAGGCCTA



TGTGCACGATTGTGTTTATTAGATCTCATGCTCTGCAGCATTTAGTT



GCTGTGGGTAGCATATTCTTAGTCATATTTTGTTGGCTGCGTTTATG



TTGGCATTTTATATCATCTATTTGCGAATGGTTGGAGACAGTGGCTT



GGTACTGTAATATCAGATTGGTGGAGTCTATCAACAAATCTGTAGGC



CCATTCTGCTTTTGTGTTCAATAATATTTTTTATTGTCTTGATTTAA



AAAAAAAAAAAAAAAAAAAAA





113
GAGAACTAAAACCAATAAAACTTGAAGCTTTAAAAGGGAACAGGTCG



AGGACGAAGCCGAGTCTTGTCCGTGAACAATGAATAAGAAACCAGAT



GCTTGTAGGTTATACGCCAGTCCTTAGAATTATTATCCCTACGATCG



TGGGAAAGCTTTTCGTTCTAGCCTGGAGGAGGAGAAGTCAAGTTATC



GTTGCTATGTCCCACGAGATTGAACACATCGCCTTGTCGCTAGAGAT



TTTGGCGGTGTAGAGCCCTTTTTCCAGTCCACTCTGGTCTTATCAAT



TTCCATTTCTCTCTTTATCGATATTAAACGGAAGGCCACGGTATCCT



CTCTTATTGAATTTCTCCGAAAATCCGGATAAGCAAAATCCGGATAA



AGAGCGATTCAATCATCATCCAATTGCGGCTGATAACCCAGCAGGAC



TAGGCTGGATTCAAACCTCAACAGAACCAGACTCTAAAACCTGGAGG



CGAACTCCACTTTGAAACAGAGTTTGAACCCATGGAGCGCTAGTGGA



CTGTTTATCTATATGTAAATGTAATTATCAGGATTGGAACCTCAGTT



GGACCAGAATCTGAAACCTTGTGATGAACTTTGCCTCGAAACAGTCG



ATTTGAATCCGTTGATCTAACCTTAATAGGCTATTTGTCTATATACA



ATTATCAGAAGTCCTGATTAAAGAGAAATGGATGGAATGTCTACTCG



AGGTGGCAGCAATTTTGATATGTATTTGCCTAATTATAAGCTCGGAA



AGACGCTAGGGATTGGCTCGTTTGGCAAAGTGAAGATTGCAGAACAT



GCATTAACAGGACACAAAGTGGCAATAAAGATACTTAATCGCAGGAA



GATTAGAAACATGGATATGGAGGAAAAAGTGAGGCGGGAAATCAAAA



TATTAAGATTATTTATGCACCCTCATATCATACGTCTCTATGAGGTT



ATAGAAACTCCATCAGATATATATGTTGTGATGGAATATGTAAAGTC



TGGGGACCTCTTTGATTATATTGTTGAGAAAGGTCGATTGCAAGAGG



ACGAGGCCCGATGCTTTTTCCAGCAGATTATATCAGGCGTGGAGTAT



TGCCACAGAAATATGATTGTTCATCGTGATCTTAAGCCCGAAAACTT



ATTGCTAGATTCCAAATGCAATGTTAAGATTGCAGACTTTGGGCTTA



GTAATGTTATGCGCGATGGACATTTTCTTAAAACAAGCTGCGGCAGT



CCAAATTATGCTGCCCCCGAGGTAATATCAGGTAAATTATATGCAGG



GCCAGAGGTAGATGTTTGGAGTTGCGGAGTTATATTATATGCACTTC



TTTGTGGAAGTTTGCCATTTGATGATGAAAACATTCCAAATCTCTTC



AAGAAAATAAAGGGTGGAATATACACACTTCCGAGTCATTTGTCATC



TGGAGCAAGGGATTTGATCCCAAGGATGCTTGTTGTCGATCCCATGA



AAAGGATGACCATTCCAGAGATTCGTCAGCATCCCTGGTTTCTAGAG



AAACTTCCACGCTATTTGGCAGTTCCCCCACCTGATACAATTCAACA



AGCAAAAAAGATTGATGAAGAAATTCTTCAGGAGGTGATTAAAAGGA



ATTTTGACAGGAACCAGTTGGTAGAATCCCTTCGAAGCAGAATACAG



AATGAGGCTACAGTTGCATATTATTTGATGCTGGATAATCGGAGCCG



TATCTCCAATGGTTATCTTGGCTCTGAGTTTCAAGAAGCAAAGGATT



GCATACATCACTTTGTACCAACTGATCGTGCAACACCAACTGGTGAT



CACAGATTAACTGGTTTTATTAATCAGGGAAATGCCTCAAGATCCCA



ATTTCCTATTGAGAGGAAATGGGCTCTAGGACTTCAGTCTCAGGCTC



ATCCTCGTGAGATTATGTCAGAGGTTCTAAAGGCACTTCAAGAGCTG



GATGTCGCATGGAAAAAGATAGGACACTACAATATGAAATGTAGATG



GTTTCCTGCTGTATTAAGGAAAGTTGATTCTTCAATGAATAAATCTT



TGCATGGAAACCATATTATTCAAGACGACTCTACAGCTGGCATCAAC



TGTAGATCTCCGCCAAATGTGGTCAAGTTCGAAGTGCAGCTTTACAA



AGCCAGAGAGGAGAAATATCTTCTTGATCTTCAAAGGGTACAAGGGC



CACATTTCCTCTTTCTTGACCTCTGTGCAGATTTTCTTGCACAACTT



AGAGTTCTATGACATGAAAGACTTTTAGGAATATTTAAGGCTCAAGA



GATTCTAAGGAATATAATGGTAGTTTACCAGATTATATGGTTACTAT



CAACTGTTCGATTGTTCTAGTGTGCAGTAATGAAATATTTTGTATAG



TAGTATGCTCATCATATTCTGTTCTGAGGAGCTGAAAATGAGAGAAG



ATAAATGAATCACCAGTAATCCCCTTCTTGCTGTTGTTGCAACAAGG



TTTGGATTTTCATTATCCCCCAGACAGCTAAAAGTTATTTTTTTCTT



CGCAATTTATGCGATTTAAAGAAAGCTTTGTTTTTTACTCCAAAAAA



AAAAAAAAAAAAAAAAAA





114
GGTTGACAAGTCGGTGCACCTTACCCTTAACGTGCTTTGCCGAATAC



CATCGTAGTAGTAGAACTAGCCGGAGGAAGGGTCGGAAACTTATGGA



AGTTTAAGTTGTATTTAGAGAAAATTTGGCAAGGATTTTTGGATTTA



TAATGGTTAAATTTTAAACTTTTTAATTTTTGATGATGTTGAATCCA



TTTTCCACATGATACAAAAACTTTCTCTACCAAAATTTTGGAACTTT



TACCGGATTCCCGCCACTTTTGACGGTCTAGGCAATTCGTCTGCCTT



GTTAAACGACTTATTTACCATCTCCCAGGACGAGTGAGAAGGTTGTA



TATCTCCCATGAGAAGAAGGTTGTTGGAGTTCCAGTGCATGCACCTA



ACGTTAACCTGCGATTCCCTATTGTTTCCTATTTCCCAGGAGGAGTC



AGAAGGTTGTATATCTCCCAGAACTTAGAAGGAGAAGGTTGTTCGAG



CTCCAGTGCAACAACGATGACAATAGCCAGGAGATGTTCTTCACTTA



TAGTGCGAGGAGTGCGGTCTGCTGGTTCCCGTTCATCTGCTGTTGGA



TCGCCAGCTCTATCAAAACAAGCATCAACAAAGAATTCCAGAATTCA



AAGATTTGGAACAGCTGCAAGTGCTTTAGAGGAACCTATAGCACCAC



CTGTCCAAGTGAAGTACACGCATCTTCTTATTGATGGACAATTCGTT



AATGCAGCTTCTGGGAAAACATTTCCAACCTTTGATCCCAGAACAGG



GGATTTGATTGCTGATGTGGCTGAAGGCGATGCAGAAGATGTGGACA



GAGCTGTAAAGGCTGCACGAAAAGCCTTTGATGAAGGCCCATGGCCA



AAAATGACTGCTTATGAAAGATCGTGTATTATGTACCGGTTTGCTGA



CTTGCTTGAAAAGCATAATGATGAGATTGCAGCTCTGGAAACATGGG



ACAATGGGAAGCCTTATGAGCAATCATCCTTGGTCGAAGTGCCAATG



GCAATACGGGTATTTCGTTACTATGCAGGTTGGGCAGATAAAATACA



TGGCCTTACAATTCCAGCTGATGGACCTTATCATGTTCAAACTTTAC



ATGAACCTATTGGAGTTGCAGGTCAAATCATTCCTTGGAATTTTCCA



TTGCTTTTGTTTTCTTGGAAAGTGGCTCCAGCACTAGCTTGTGGGAA



CACTATTGTATTAAAGAGTGCTGAGCAGACATCATTAACAGCTATTT



ATGCAGCAAAGCTTTTCCATGAGGCTGGACTGCCTTCAGGAGTCCTG



AATATCATTCCAGGATATGGTCGAACTGCAGGAGTTGCAATTGCAAA



ACACATGGATATTGATAAGCTTGCCTTCACAGGATCAACTGAAACTG



GTAAAGCAGTACTAGAGTTAGCTTCTAAGAGCAACCTTAAGCGAGTG



ACATTGGAACTTGGAGGGAAGTCTCCATTTATCGTATGTGAAGATGC



TGATGTTGACCAGGCTGTTGAGCTTGCACACTCTGCTCTATTTTTCA



ACCAGGGTCAATGCTGCTGTGCTGCATCACGAACCTATGTACATGAG



AGCATCTATGATGAATTTGTAGAAAAGACAAAAGCACGGTGTTTAAG



TCGTGTTGTTGGTGATCCCTTTAAAAAAGGCGTTGAACAAGGTCCTC



AGATTGACCAGATGCAGTTTAACAAAATTATGAGTTATATTAAGGCT



GGGAAAGAGAGTGGTGCAAAACTTGTAACAGGGGGAGAGCAAATTGG



TACCAAGGGCTTCTACATTATGCCCACAGTTTTCTCAGAAGTTCAGG



ATGACATGCCCATTGCCACTGATGAAATATTTGGCCCTATACAATCA



ATTTTGAAATTCAAAGATATAAACGAAGTAATAAAGCGGGCTAATGG



TACTGATTATGGCTTGGCAGCGGGAGTCTTTACAAAGAGTATGGATA



CCGCAAACACTCTCACTCGTGCGTTACGTGCAGGATCAATCTGGATT



AATTGCTTTCACATTTTTGATGCCGGTGTACCTTTTGGTGGCTATAA



AATGAGTGGCACCGGAAGACAAAAGGGAATATATGGTCTCCAAAGTT



ACTTACAGGTTAAAGCCGTTGTGACTCCTTTGAAGAATCCAGCATGG



TTGTAGGCTGTTACGTTCCTTCTAATATATTTGATGAATGCAGAACA



TATTTAATCCCTTGTGCTATTGTCAAGTCAGTCTACTTTGAAATAAA



CTCTCTATTACTAGAAATGTGTTACCTTCAGAGGGGTGGGATGGTTC



GTTTAGCTGGGCATCCTATAGTAACGTCTCTGTAAAACTGTGTAGAT



TCAGACGTTAGAACTCTGGTTAGCTGTGCATCCTATAGTAACGTCTC



TGTAATACGGTGTAGATTCAGACGTTGGAAATCAATTAT





115
GTTGGAGTTGCACACAAGGTTGGAGGAAGAAAGTTGTTGGAGCTCTC



AGGTTGAACGAAAATGGCAGCAATGCGAGCAGGCAGGGGATTTTCTT



CACTTCTAACTCGAGCAGTCCGGTCGGCTGGTACACGGTCACCCGCC



GTTGGATTGGCAGCTTTATCACAAGAAGCATCCATAAAGAATACTGG



GATTCGAAGTTTAGGAACAGCGGCAAGTGCTTTGGAAGAACCTATAG



CACCACCTGTCCAAGTACAGTATACACAGCTTCTTATCGATGGACAA



TTTGTTAATGCGGCTTCTGGAAGAACATTTCCAACATTGGATCCCAG



AACAGGGGATTTGATTGTCGATGTGGCTGAAGGTGATGCAGAAGACG



TGGACAGGGCTGTAAAGGCTGCACGAAAAGCCTTTGACGAGGGCCCA



TGGCCGAAAATGACTGCTTATGAGAGATCATGTATTATGCTCCGGTT



CGCTGACTTGCTTGAAAAGCATAATGACGAGATTGCAGCCTTGGAAA



ACATGGGACAATGGGAAGCCCTATGAGCAAGCAGCCTTGGTTGAAGT



GCCAATGGTAGTGCGGCTATTTCGTTACTATGCAGGGTGGGCAGATA



AAATACATGGCCTTACAGTTCCAGCTGATGGACCTTATCATTGTCAA



ACATTACATGAGCCTATTGGAGTTGCAGGTCAAATCATCCCTTGGAA



TTTTCCACTACTTATGTTTGCTTGGAAAGTTGGTCCTGCACTAGCTT



GTGGGAACAGTATTGTATTAAAGAGTGCTGAGCAGACACCATTAACA



GCTCTTTATGCAGCAAAACTTTTCCATGAGGCTGGACTGCCTCCAGG



AGTTCTGAATGTCATTTCAGGATATGGTCCAACTGCGGGAGCTGCAA



TTGCAAGACACATGGATATTGATAAGGTTGCTTTTACAGGTTCAACT



TCTACTGGTCAAGCAGTGCTAGAGTTAGCTTCCAAGAGCAACCTTAA



GCCAGTGACATTGGAACTTGGAGGAAAGTCCCCTTTTATTGTATGCA



AAGATGCTGATGTCGATCAAGCCGTGGAACTCGCTCACTTTGCATTA



TTTTTCAATCAGGGTCAATGCTGCTGTGCTGGATCACGAACCTTTGT



ACATGAGAGTATCCATGATGAGTTTGTAGAAAAAGCAAAAGCGCGGT



GTTTAAGTCGGGTTGTCGGTGATCCTTTTAGAAAAGGTGTTGAGCAG



GGTCCTCAGATTGATCGGGAACAGTTTAACAAGGTTATGGGTTATAT



CAAGTCTGGGAGGGAGAGTGGTGCAAAACTTGTAACAGGGGGAGACC



AAATTGGTACCAAGGGCTTCTATATTATGCCTACCATCTTCTCAGAA



GTTAAGGATGACATGGGCATAGCTACTGACGAAATATTTGGTCCAGT



ACAGTCAATTATAAAATTCAAAACTTTAGACGAAGTAATAAAGCGGG



CGAATGCTACTCGTTATGGCTTGGCAGCAGGAGTGTTTACAAAGAAT



ATAGAGACCGCGAACTCTCTTACTCGGGCATTACGTGTCGGAACAGT



TTGGGTTAATTGCTTTGACATTTTTGATGCTGGTATACCTTTTGGTG



GCTATAAAATGAGTGGCACTGGAAGAGAGAAGGGTATCTACAGTCTC



AATAACTACTTACAGGTTAAAGCTGTTGTCTCTCCTTTGAAGAATCC



AGCCTGGTTGTAGGCTGTTAGTTCCTACAAATGGTTCTATTGTGTGG



GGGAACATATTCAGTTCCTGATGGTCTTGTCAAGTCAGTCTAATTTG



AATTTAGCTTTCTCTGTCAATAATTAATGTATATGACCTTCAGAGAG



GTGTGATGCTCTTGTTTTCCTGTGAACCTTCACAGTTGTGTCTCTGT



AAGATTCTGTGGTTTCAGAATTTGGAACTCAATTATCATGGCCATAT



CAAATGCGAAATGAAGGGTGTCATTGTTTCTGCCAAAAAAAAAA





116
GCTCTTTTTAGAGCCTTGGGCAGCTTTTGGGGTGTTTTTTTTTTTCT



GTGAGTGGAATTGAAGTAGAAGTTGAAGCTGAAGCTCCCCTGGATGC



TCCAGAGGCTTCACAAATATCTCAGTTTCTGAGGCTTCACAAATATC



TCAGTTTCTGGAATAGGTGGAAGAGATTGAGGTTGGTTGTTTGTATG



TATGTACAGTAGGCTTTTGGGTTTTTTTTTGGGTTTCTGGAGTGGCT



ATATGGATCATGAAGGCAGGGGAGGAAGTGGTTTATTGGCATGTTTT



GGGATCAGCCGCCATGAAGCTGGAGTGCATTAATGGCGGACTCGACA



AATTACTGCACCTTGGGATGGAGAAAAAGGGATTTGGGATATTTTGG



ACATAAGGGATTTTTTCAATAGAAATCCCGTGAAATCCCTTGAAATC



CCTTAAAACTCCTTGCTGATTATTTTTAGCAAATTCTCCGAGATCTC



GGATCTCGACTTTACAATTATGAAGCGACAACACTTTCAATTGCAGC



AGCAGCAGCAGCCGCAGCCGAACGGTCATGGCCGCTGCTGCAGCACT



GTTCCGGTCCATCCCAACCCGGTGTCCATGCCAGGGTCCGGGCCACC



ACCACAAGCACCAAGAACAACAGCAACAGCGCCTGCAGCGGGAGCGG



CAGCAGCAGGGGGAGGTGGAAGTTCAGGGTCTTGCAAGGGCAAGGAA



GTGGTATTGAAGGATACTTGTAAGCAGGGTGTAGGTGTGGATATGGA



ACTGGCTTCCATGGGTTACAGTGTGAAATCCTCTGAACTGGAACAAG



TGGCACACAGGCTTGAGCAGCTGGAGATGATGATGTGCAACGGGCAA



GAGGATGGCATCATTTCCCACTTGTCGTCAGAGGCTGTGCACTATAA



TCCCTCGGACCTCGGTGGATGGATTGAAAGTATGCTCAGCGAGCTTC



ATGTCCCTATTCTTCCTCCAACAGATCAGCCGTTTCAGTTCCCTCAG



GCAGCAGCGGATCAATCCTCTACGGTTCGGGAAGCGAGCAATTCGGT



GCCGGAATCATCCACTTCGACTTCGAAGGGCACCAGATCTGTGCAGA



ATGTTGAACAGGACCAACAGTACAGATTAAATGGGTCCGGGGCCGGG



TTGTTTGAGCCGCCTGAGGTCCTGGATCGATCAGAATTCCAGCTTCA



TGGCTATCCGGGCCAAGGGGGAGTACGAGATAATGGGATTGATCGCA



TGTTCGGTAACTATGGCGGCCTTTTTTCTCAAGTATTAGACGTCTCG



GACCTGCTAGTCGATGACCCTGATGTTCTACAGGAACCACCACCACA



GGAGGCTTCGCCCTCAACTCTGCTGCTGCAGAGCTCCAGCAACTCTT



CGCTTGAAGTCCAATCCGGGCAAGACCGTCTGGAAGAGGATGTTACG



GGAAGAGAGCAAAAGCGTTACCGTGTCTGCGACCCGGAGCTTTCGGA



GCGAACCGTGGTAGTAATGGGGGCAGACCCGCACGAATCCGGAGTCC



GTCTCGTGCACACGCTGATGGCCTGCGCAGAAGCGGTGCAGCGCGGT



AATTTGGCCATCGCGCGGGAAATGGTGAAAGAAGTGAGAATTCTGGC



TTCAGCACAGGGCGGGGCAATGAGCAAGGTCGCCACATATTTTGCCG



AGGCTCTTGCCCGGCGAATCTATGGGTTTCTCCCTCAGGACACCTTG



CGGTTCAACCAGAACGACCCCTTGTCCGATTTTCTGCAATTTCATTT



CTACCAAACCTGCCCCTATCTCAAATTCGCGCACTTCATAGCCAACC



AGGCCATTCTGGATGCCTTCTCCGGGCACCAACAGGTTCATGTCATA



GATTTCAATCTGAAACAGGGGATCCAGTGGCCGGCCTTGATACAGGC



ACTGGCTCTTCGCCCCGGCGGGCCACCGGCTTTCAGGCTAACCGGAA



TCGGCCCACCCCAACCCGACGGAACCGATGCATTGCAGGAGGTCGGC



ACGAGGCTCCACCAATTTGCAGAGTCCGTCAATGTAAAATTCTCCTT



CCGTGGCTATGTTGCCACAAGCCTCGCCGACATCAAGCCATGGATGC



TCGACGCCCGGCCCGAGCTCGAGGCTGTTGCAGTGAATTCTATCCTT



GAGCTCCATCGTCTCCTGGAGGACCCCATCCCCGGACGACCCAGTGC



CATCGATCGAGTACTCGCTTCCATCTGGAGCCTGAAGCCCAAGATCT



TGACAGTGGTTGAACAGGAGGCCGACCACAACCGCCCTGTTTTCTTG



GATCGATTCACAGAGGCACTGCATTATTATTCCACAGTTTTTGATTC



CCTGGAGGCGCGCGGGTTGCAGGCCCAGAGCGAAGAGCAGGTGATGT



CGGAAGTCTATCTGGGTCGAGAAATTTGCAACATTGTAGCCTGTGAG



CGATCGGAACGGGTGGAAAGGCACGAACCTCTCTTGAATTGGAGCGT



TCGCTTGAGAAACGCTGGCTTCTGGCCTATTCCTTTGGGATCCAATG



CTTTCAAGCAGGCCAGCATGTTGCTCAGTCTCTTCTCAGGTGGAGAA



GGATATAGGGTTGAGGAGAATAATGGGTGTCTAACACTTGGTTGGCA



CAGTAGACCTCTAATTGCTGCTTCTGCCTGGCAACGCTGTTAATCAT



CTATCTCACACCATCAAGAAGGTGATAGGTGGATCAAATACCCAGCA



ATTATTATTGCAGCAGCATCATCGTTTCAGGGAACCCACAACAGCCC



AATTCAATTCCGGATCAGGTCAGCTAAAGCAAAATTAACGAGTCCGT



AGATTACCTACCAGCGCCGAGAATCTATTCATGTGTATCATACTGAA



GTTCTTGAGTTATTATAAGCAAAATTAGATTACACTTATTATTAGCT



CGACTCAGTGCCCTGTACGACTTCATAAATCACTGAGCGATATAATT



TGTAATCTCTCAAACACTTTGAACTTCAAATGTCAGAAGCATTGAAT



CTCACACGGCCTATATCATAAGTAAGTTATTATTGCTCACAGAGATC



TCTGCCAATGTTGCATCGTCCTGATGTAATCAAGAGAATTGAATGCC



AAGCAACTTCCCATCATCAATTCTTTTAATTCTCAGTGATTCAGTGC



ATGATATTAGATTTTTCATTTACTTCTCTTGAATATGAAATTCCTAA



TTAATGTGGGAATTACCTTCACCGATTTTGCTGAAAAAAAAAAAAAA



A





117
CCCACCTCGTACACACATAAAAATAAAGGGCAGTGAGTTGAACCTGC



CACAGCGTATAAGCAATAGCACTGAAAATGAATAAAAATTAAGGCAC



AGCCTTCTGTTAGCGCCCTACCCAAGTGACCATCCTTGCCCGAGTCT



AGCCGCGTGGAAATTTTTTTGAAGCCTCTATCCACCAATTTGTGCAC



CCTGTTACAACTCGCCAGTATAGGTCTAAATCTGCATTTACACAACC



CACTGGGCTTCTTGCATCAATTCAGACAGGTTTTTGGGTGGCAAAAT



ATTGGGAAATGGCTTATTCAGGCAGGGCTCGGCGTCCCATCTCCTTC



CTTCTGAAGCAGTTGAAGACATCCCACTCATATTCTTCGTGGACTCG



CTGTAATGGATTTAATGGGCAGTCCATGTTTCAGTCAAATGCCATCA



GCAGGTGCAAGGCACCATCATTCAGGCCTACTGCTGAGTTGGGATGG



GTTTTGGGTTTTAGCCATTCGTGCAGAGGGTACAGCGCTGAAGTGGG



TTCCACAGAGCAAGTGGGTCTAATTAAACAACTGAGAGAAAGGACAA



GTGCACCTATGAAGGATGTCAAAGCTGCTCTTGTCGATTGCAACTGG



GATCTCGAGGCTGCATATACAGAATTGAGGAAGAAGGGTATTGCAGG



TGCATCAAAAAAAGGGGCCCGTATTGCTGCTGAAGGGATACTGGCAT



TGGCTCAAGATGAGAAAGTGGCTGCTGTTATTGAACTAAACTGCGAG



ACAGATTTTGTCGCCAGGAATGAAATATTCCAATATCTGGCACATTC



TGTGGCAAAGTCAGCATTGACCATGGAGGCCTTACCTGAACTTCTAT



CAGAATCTGCGACATTAGATCTAAAGCTCCTAGGGGAAATGAACATT



ATCTTAGATCATCCTAAACTAACTAGGGAGATAACTGTTCAAGATGC



AATTATGGAAGTGGCTGCTATCATGGGAGAGAATGTGAAGCTTCGAA



GAGGTTTTGCTTTGTCCTCTGCAAATGGCGTTGTTTCCTCGTATCTT



CATACTTCTCCGCAACCAGGGCTTGGTCGCATAGCTGGCCTGTTGAC



ATTAGAATCTGAAAATGGGGGTGCACCAACAGAAGTGCTTCAAAGGG



TGGGCTCAAATCTTGCAATGCATGTTGTTGCAGCTAGGCCTTTGTTT



CTCTCAAAGGATCATGTTGCAACTAAAACATTAGAGGCTGAGCGTGA



TATCCTCAAAACTCAGGCTGCTGCGTCTGGAAAACCTCAAGCTGCTA



TAGAGAAAATGGTAGAAGGACAGTTAAGGAAGTTTGTGGAGGAAATT



GCACTTTTGGAACAGAAGTTTGTTATGAACGATAAAGTAAATGTCAA



GTCTGTACTTGAGGACCTATCAAAGGAGGTTGGACAACAGATCAGGG



TGGGAAGTTTCCTTCGAGTGGAGGTTGGTGAAGGCATCCACAGGCAA



GAAACTTCCTTTGCTAGTGAGGTAGCAGCTCAAGTCGGATAACTGAT



TACCTTTCAGATATATAATATAGTCTGACATCAATGGTAAAACTGAA



ACCTTCAAGAGTTCAGGAATGCCAATTGGCATTTGCTTATTGATGCT



CGCCAGTGGCATTTCATAGTCCATTTACAATGAAAATGGCCGATTTT



TGGACTTTAGATCTTAGTGGTTGTTCAGTGACTTTGAAAGAGTGATA



GCATTTACATTGTTTTGAATGTAGTAGTATATACTATATTCAAATTG



TTTCTCATGGAGCACAGAAGAGTAGATTGCCTCAGGTTAAGTTAAGA



CATGAACCTTTCGAGTAAATAAACCAAGCAGAGAAGCTGGCTGCAGA



ATGTAAGAATAAAATATATTGCTTTTGTTCAAGTTTTGTTCCGATGC



TTTATGCTGATATTGCTCAGATTTGTATGGTGGAAGTGAGCGCTTCA



TTTTGGGCGGTTTTAGTCAAAACTTTATTCTACATTAAGTAGATTCA



AGACTAAGAATAAGAACTAGGCGAGCGCCATACCTTGCTGTGAAGGA



TAATATGTTATATAAGGGAGAGTCTAA





118
GGGAAGATCTACCCCACCTGGGATGAAGGCGCCGAACCTTTCAAGGC



CACCAAGGACATTCGTCGAAGCCATTCAAATTCCCTTTTGCGATCAG



AACTGTGCTGGATTCCTCCCCGTTCCTGCTGGGTGCTGCGAAGTAGC



AGAAGAAGAAGCAGCTTCTGGAGGAAAGAGAAGCAGAGGGTTTGCGG



TTTGTGGATGCAGAAGAAGAAGGCACCGCCATGGAAGCGAGCGCTGC



GGCAGCTGATGGTCACATACAGGGAATTCTGACTCATGGTGGTCGGT



ATGTACAGTATAATATCTTCGGGAACCTCTTCGAGGTTTCCTCCAAG



TACGTTCCTCCGATACGACTTATCGGCCAAGGCGCATATGGCATTGT



TTGTGCAGCAGTGAACTCAGAGACAAATGAGCAAGTTGCTATCAAGA



AAATTGGCAATTCTTTTGCGAATAGGATTGATGCAAAGAGGACTCTT



CGAGAGATTAAGCTTCTATGCCACATGGACCATGAAAATATCATTGC



AATTAAAGATGTCATTCGTCCTCCTCAGAGAGAGAATTTTAAAGATG



TTTATATTGTATATGAGCTCATGGATACGGATCTCTGCCAGATAATA



CACTCCAAGCAACCATTATCTGTGGATCATTGTCAGTATTTTATATA



TCAATTATTGAGAGGGCTCAAGTATATACACTCTGCAAATATTCTGC



ATAGAGATCTGAAGCCCGGTAATTTGTTTCTAAACGAGGATTGTGAC



CTAAAAATAGGTGATTTTGGGCTTGCACGGACTACTTCAGACACAGA



CTCTATGACAGAGTATGTTGTCACTCGCTGGTATCGAGCACCAGAAC



TACTATTGAATTGTTCAGAGTACACAGCAGCCATTGATATCTGGTCG



GTGGGTTGCATTTTCATGGAGATACTAAAGCGGGAGCCCTTGTTTCC



TGGTAGTAATTATGTCGAGCAATTAAAGCTCATCACTGAGTTTATTG



GTTCACCAGATGATTCTGATCTTGGCTTTTTGCGGAGTGATAATACT



AGAAGATACATCAGGCAACTCCCACAGGTCCCTAAGCAACCTTTTGC



TCAGAAATTTCCTAACATGGACGAAGATGCCCTAGATTTACTTGAAA



AAATGCTTGTATTTGATCCAAGCAAGCGTATCACAGTTGAAGAGGCT



TTGAGTCACCGTTACTTAGCAAGTCTGCATGGCATCAATGAAGAACC



CAGATGCCCTGCCCCATTCAATTTTGATTTTGAACAGGGCACGTTCA



CCGAGGAACACATAAAAGAGCTGATTTGGAGGGAATCTCTTAACTTC



AACCCAGACATGATGGAATAGCTGGAGTAGATGGGCTTGGTATTTAT



CTATTTGTAATCCTTCTTTGGTGGTTATGTTACTATGCTTATACTGT



GCAATCCATCTGTTGGTTTATTATCGGCCTTATGAAAGTTCGCAGAT



CATAGTGCAGACATGGGTGGGCTTGTTTTATTCTTATTCTTGTTTTG



CTCTTATTCTCTGAAGGTTTGGTAAAGGTAAATAATCGGATGGATAT



GTGTACTTTGCATATCCAGACAGAGATTGGAGTTGTGTATTCTAAAT



CGAGGCCAGCTATTGGGCCTTATGCGATTATTATTATTAAACATTAA



AATGTAATAAGTAAATTTAATAATCTAAAGTACATGTCGAGGGAATT



TGTAAAAAAAAAA





119
CTACAACGAAAACTCCTATATATATAGGGTGCCTCGGTCTTCGACTC



CTCATCGAGTCCGCTGTCTGTTGGAAGTATACACAGCTTGCCAGTAC



GCTGTTTTTCTGCTTTTCTGTTTGTGATTTATCAAAGATGGCAGTCC



CCGTGATTGACATGAAGAAGATGTTGAATGGAGAAGAGAGGGAAGTG



ACGATGGCCAAGATACAAAATGCCTGCCAAGAATGGGGCTTCTTTCA



GCTTCTGAACCACGGAATACCTCACGCTCTTCTCGACCGAGTGAAGG



AGCTGTTCAAGGAACATTACAAAAATTCCATGGACGCAGAATTTCAG



AAGTCTGAGATTGTAGGGATGCTTGAAAGTGCTGTCTCCCAAGGCAA



GAATTTCGGTACTACGAAGATAGATGACGACTGGGAAACGGGCTTCT



TCCTCCAGGATGAAACTTATGACACAGTGTCACCTCCTTTGCCTACC



AATCTCAAAGAGACGATGAAAGAATTTAGTGAGGAAGTAAAGATACT



CGCGGAAAGGATATTAGATATAATCTGCGAAAATCTGGGACTGGAGA



AAGGGTATCTGAAAGAAGCCATAGCAGGGGGCAATGGCGACGGCAAA



GCCCCTTTCTTTGGCATAAAAATGGCTCACTACCCGCCATGCCCAAG



GCCAGAACTCGTCGATGGCCTGCGCCCCCACTTGGACGCTGGCGGAG



TCATTCTGCTACTGCAAGATGATGAAGTGGGTGGCCTTCAAGTTCTG



AAGGACGGCACTTGGTTCGACGTCGAACCCATTCGACACGCAATCGT



TATCGACATTGGCGATCAGCTGGAGGTGATGACCAATGGGAAATGCA



AGAGCATGTGGCATCGCGTGCTTTCTAAAAAGGACGCGAATCGAATG



TCGGTCGCAGCGTTTTATAACCCATCGACCAATGCGGAGGTGTTTCC



AGCTCCACAGCTGATCATGAAGGCGACAGAGCAGAATGGCAATGAAA



ATGACAATAATAATATGAATGCCCAAAGTGGCTATAGTTATCCGAAG



TTCGTCTCAAAAGATTATATGAAAGTCTATGGTGAGCAGAAGTTTCT



CGAGAGAGAGCCGCGATTCGAGGCTATGAGAGCACTCTGTTCCCTGA



AGTAATCTTCTTGAGGAGATACTAGCTCCCAGCAATGCTTCACTTTC



AACTGGTTCTGGTTATAAACTTAAAGAATTAGAATTAGATTAATCTA



TATAGGAAATAGAGCTCTTCCCTGTGTATTTTCTTATCGAGTTCCAT



CGCAATATTTAGGATCTTTGTATGGAATAGAATTAGAATAGGATACA



GCAGGTTGGATATTATCCAAGTGGTTATTACTCTTTTGTAATCTCCA



CTCCCAGTAAGCGCGTTAAACTTTATTCGTACAGACTATATTCATAT



CGGAGGACTTTGATGACATATCCTCTTTTAAATTGTGTAAACAGTTA



TGCAGACTTAATTTGAATACTTTATTGAGATGCAACTGTGCATCCAT



TTCTAAGCATTAAAAAAAAAAAAAAAAAA





120
CTCGTGCCGTGACGATGGCCAAGATACAAAATGCCTGCCAAGAATGG



GGCTTCCCTCTCTTCTCCATTCAACATCTTCTTCATGTCAATCACGG



GGACTGCCATGAAGAAGATGTTGAATGGAGAAGAGAGGGAAGTGACG



ATGGCCAAGATACAAAATGCCTGCCAAGAATGGGGCTTCTTTCAGCT



TCTGAACCACGGCATACCTCACGCTCTTCTCGACCGAGTGAAGGAGC



TGTTCAAGGAACATTACAAAAATTCCATGGACGCAGAATTTCAGAAG



TCTGAGATTGTAGGGATGCTTGAAAGTGCTACGAAAATAGATGACGA



CTGGGAAACGGGCTTCTTCCTCCAGGATGAAACTTATGACACAGTGT



CACCTCCTTTGCCTACCAATCTCAAAGAGACGATGAAAGAATTTAGT



GAGGAAGTAAAGATACTCGCGGAAAGAATATTAGATATAATCTGCGA



AAATCTGGGACTGGAGAAAGGGTATCTGAAAGAAGCCATAGCAGGGG



GCAATGGCGACGGCAAAGCCCCTTTCTTTGGCATAAAAATGGCTCAC



TACCCGCCATGCCCAAGGCCAGAACTCGTCGATGGGCTGCGCCCCCA



CTTGGACGCTGGCGGAGTCATTCTGCTACTGCAAGATGATGAAGTGG



GTGGCCTTCAAGTTCTCAAGGACGGCACTTGGTTCGACGTCGAACCC



ATTCGACACGCAATCGTTATCGACATTGGCGATCAGCTGGAGGTGAT



GACCAATGGGAAATGCAAGAGCATGTGGCATCGCGTGCTTTCTAAAA



CGGACGCGAATCGAATGTCGGTCGCAGCGTTTTATAACCCGTCGACC



AATGCGGAGGTGTTTCCAGCTCCACAGCTGATCCTGAAGGCGACAGA



GCAGAATGGCAATGGAAATGACAATAATAACATGAATGCTCAAAGTG



GCTATAGTTATCCGAAGTTCGTCTCAAAAGATTATATGAAAGTCTAT



GGTGAGCAGAAGTTTCTCGAGAGAGAGCCGCGATTCGAGGCTATGAG



AGCACTCTGTTCCCTGAAGTAATCTTCTCGAGGACATACTAGCTCCC



AGCAATGCTTCACTTTCAACTGGTTCTGGTTATAAACTTATGTTCAA



TAAAGAATTAGAATTAGATTAATCTATATAGGAAATAGAGCTCTTCC



CTGTGTATTTTCTTACCGAGTTCCATCGCAATATTTAGGATCTTTGT



ATGGAATAGAATTAGAATAGGATACAGCCCGTTGGATATTATCCAAG



TGGTTATTACTCTTTTGTAATCTCCACTTCCCAGTAAGCGCGTTAAA



CTTTATTCGTACAGACTATATTCATATCGGAGGACTTTGATGACATA



TCCTCTTTTAAATTGTGTAAACAGTTATGCAGACTTAATTTGAATAC



TTTATTGAGATGCAACTGTGCATCCATTTTTAAGCATTAAAAAAAAA



A





121
GTAATTCTCTTTCGTTTTTCCCGTGACATACGGCAGGATTTACTCTG



ATTTTTCACAGGAATTCCCAATCTCGCGGAATTTTATTAAGCAGCCG



CAGATGGTTTCTGTCGCTGTACCGTCATGGCCATTTCAGAGTAGCAC



CGACTGTTCAGCTATCGACAAGTACACGCTAAGCTCCCCAGCATAAT



TTGGAGGATTTTGTGAAGAAAAGGCGAAGATTTGGCGGAAATCACTC



CAAATCTGGCCGGACTGAGTTCACAACGTGGAGTTGCGGGCCATTGT



CAGAATGATCGGGTTTATATTTGCAGAACTGTTCTTACTTGGCAATT



TCGGAGGTCGTCTGCTTATTTCCGTCAGAGATATAGAGAGTTTTGAC



GAGACTTGGCATTCGGTTGTCGATTTCAGAGGTTTTGATTTGCTTCT



TGGTTAGAGGTTTTGATATTTGAGCTGAGTTGGGTTTTTGAGAGTAG



GATGGCGAGTCCGTACGGAGATTACGATCAGAGAATTGATTACATGT



TTAAGGTGGTAGTGATAGGAGACTCCGCGGTTGGAAAATCACAAATA



CTGTCTCGGTTTGCAAAGAATGAGTTCAGCTTGGACTCGAAATCAAC



CATTGGAGTCGAATTCCAGACGAGGACAGTCGCTATTGATAACAAGA



CTATCAAGACACAAATATGGGACACGGCTGGTCAAGAGAGATACAGG



GCAGTTACAAGTGCTTACTACAGGGGTGCTCTTGGGGCAATGTTGGT



GTACGACATAACCAAGCGCCAAAGCTTCGACCATGTGGCCAGGTGGC



TTGAGGAGTTGAGAGGCCATGCCGACAACAATATTGTTATCATGCTG



ATTGGCAACAAATGTGACCTTCGTGATATGCGTGCTGTGCCTGAAGA



AGATGCAAAAGAATTTGCACAGAGGGAAGGTCTTTACTTCTTTGAAA



CATCGGCGCTGGAGGCAATTAATGTGGAGATGGCCTTCATAACAGCT



CTGACTGAAATTTACCGGATAGTAAGCAGAAAGGCCCTCACAGCAAA



TGAGGATGAAAGGAATGGGAATGCGGCTGCATTAACTGGCACTAAAA



TCTCTCTATCAAGCCCAGAGCAGTCTGTGATGGCTGTGAAGAAAAAG



AGCTGTTGTTGATCATCTTTATTGTTTATCGTTTCACTCTGTTTGGC



AATGACATGATCCCTTTTGTAAAATCGATTTGCATTTTTCAGTCATC



CTAAACTGCAGGTCTACTTCCGAGAGTTGTTGAAACCCGTTTAGATT



CTAAAATTTCGTTGCCGAAGCACATCTTTGCATCCATGTATTTACAG



TATAAGAGATTTTCTCTGCATTCTGATTTGATATCTTGAATATTTTA



CAGCGTTTCACTGGTATCAAAATGGAAGCCCATATCTGTAATTAGTT



TAGCATTTTCTCAGTCGCTGGCTGAAGGGGTCACATACATTGCTCAT



TTCCACTGGCTACCAATGGAATTGCAAGATTTCCCCTTGAACAAAAT



GTCACACGTTCTCCGTTGTGAGATCCATGTGAGGAAGTTTTGCCATC



ACAAATATTTTTATATGTATTTCATTATTTTGTTATTAAAAAAAAAA



AAAA





122
TCCAGCTTCAGTTTGGGAGTACTACCAGGGATTCACAGGCGAGCAAA



ATGGATCGACTGATCAGCGGCCAAACCACGTGCAATTCAGTCGAGAA



GCAGAGCAATGGAGATTCGAACCTCGACTATTCAGTTTCCGATGCGG



TCAGAGACAAGCTGCGGCTTATGAGAGACAGAATTGAGAAGGAAGAT



CCCGCCTCCAAGGTTACAGATGATGGTACTCTTCTACGTTTCTTGTA



TGCTCGGGAATCAAATGTGGAAAAGGCTTGTGAGATGTTTGCAAAGT



ATAGAAAATGGAGACAGACTTATGTACCCCTTGGATACATCCCAGAA



ACAATGGTCGGCAATGAGCTCAAGCACAAATTTGTCTACATGCAAGG



ATATGACAAAGTGGGAAGGCCGATAATGGTTCTTCGTCTGGCAAGGC



ACATTGCTTCCCAGTCGAATATGGAGGATTTTAAACGTTTTGTTGTC



TATGCCTTTGATAAAATGTCTGCTAGTGCTACAAAAGGACAGACAAA



GTTTTCCATTATAGCAGATTTTGCTGATTGGGCATACAAGAATGTGA



ACCTTCGTGGCACTATTGCAGCTGTTCAAACCTTGCAGGACTTCTAT



CCAGAGCGCTTAGGGAAGGTGTACCTTATTAATCGACCATACATATT



TTGGGCAGCATGGAAGATAGTTTCTCCTTTTATTGACAAAGTAACAA



GGCAAAAGATTGTTTTCACCGACGATAAATATGTCAAAGAAACATTA



CTGAAGGATATTGATGAAAATCAACTACCTGAAATCTATGGAGGGAA



ATTACCTTTAGTTGCAATTGATGATTGTGTTGTACCAAATTGGCCCC



CAATAACCTCATTTTAGGAATCTAGAAGAACTTTAATAGCGATGATC



ATATTGAAGTATATTAGTTGTTCTTTAATAGCGATGAGCATATTGAG



GTATATTGGTTGTTCTTTAGTGTTTATACCGAAATCATAAATTGTTC



CTCAAATTTATTTCAACTTCTTACAAGAACAAAATTTTTAAAACAAT



TAAATTGTTCAATGTTAACTATTTAGAATAACTTTTTAAAAAATGTT



CAATGTTAACATTTTAGAATAAAAAAAAAA





123
CGCCTCGGAGGGTTTCTTTGCGCGAAGATCACAGGTCAGAATAGCCA



TTTGGTGAAGGGAATCTGTGGTTTCTTATTTCAGAGCACTGGTATCA



GTGTTAGTCGTTCGGTTCACGTCATTTTGAGCCCAAATTTGAGGTCT



TTCTGTGCGGATTCGGTAAAAAATGACGGAGAAGGAGAGAGAAAATC



ATGTTTACATGGCCAAGCTTGCCGAGCAAGCCGAGCGATACGATGAG



ATGGTGGATTCAATGAAGAAAGTTGCTAAGTTGGATGTGGAGCTTAC



TGTGGAAGAGAGAAACTTGCTCTCAGTTGGCTACAAGAATGTCATTG



GTGCAAGAAGAGCTTCATGGCGGATAATGTCTTCCATTGAGCAGAAA



GAAGAGGCAAAGGGTAACGAGCTCAATGTCAAACGGATCAAGGAGTA



CCGTCACAAAGTTGAAGATGAACTCAGTAGGATTTGCAACGACATTC



TTACAATAATTGATGAACATCTCATTCCCTCTTCTAGCACTGGCGAG



TCTACAGTTTTCTACTACAAGATGAAGGGGGATTATTATCGGTATCT



TGCAGAATTTAAGACAGGAAATGAAAGGAAAGAAGCTGCAGACCAAT



CTCTCAAAGCTTATCAGGCTGCTTCAAACACAGCGACTACAGATTTG



GCACCTACCCACCCAATCAGGCTTGGGCTGGCATTGAACTTCTCAGT



TTTCTACTATGAAATTTTGAACTCGCCTGAGAGGGCCTGCCACTTGG



CCAAACAAGCTTTTGATGAAGCAATTGCGGAGCTTGACACTCTCAGT



GAAGAGTCATACAAGGACAGCACATTAATCATGCAACTACTGAGAGA



CAATCTTACTCTCTGGACTTCAGATTTACAAGAAGAAGGAGGGGAAG



ATCAACCCAAAGGTGAAGAGGATAAGATAGAAGAAATTGAGCACTAG



TTTCAGAAGGGCAGTGTAATGACTACTTTCAGCATAACAACTGCCAT



GGCAGTTGTATGCTGGAAGGTAGTTTATATTTGCTATGTTTCTTCAT



TCCTCCGTGCTGGTCGAGGCGCTCTGCATAGACTAAATTGTATTCAT



GATTCCTGTTGCCAGTTTTTATTTTTTATTTTGGTGAAGTGGGTTTA



AGTTAGGTTGGAACTTTGAAGTACATTAGTGTTCTGCACTTTATATC



CTAAGTTGGAGGTCTTTTGAATTTTTAGTTCCACATGCATGGAATGT



TGATGCACGATTTTCTGTTTCGTCACTATTAAGTTGATAGGAAGTTT



TAATTTGTAAGCCATGAGTTGGCTGATTGGGCTCAAATTTTGGACTT



GCCTGCTTTATTTGAGCAGAAGTTGTGGACGTGTCTCTAAATGTAAG



AGGTGAATGTATTTGACACTGGACCGTGTGGATGATGCAGATTACTA



AAAACCTTGCGTTATGAAAGATGCTACCTATAAAATGTGGTTTGGCT



GTTGGTTTTAAAAAAAAAA





124
CAAGCGAATTTTTTGTTTATTTTAAGTGAAGTCAGATAGTGGTTTGA



GCTTCGGTGCGGGATACACAGATCCACGTCTGCATTGAATGCAAACA



AAAATCAAGGGTGGTAACCTCGTGTGATCCGCGGGGAGAACCGTCAA



ACCACCCTCCCAAATTTTGGTCCCAGTTGTCGCTTTGATTTGATTCG



ATCCAGCCGTTTTCGCTCTTCAATTCAACCTTCTTCGCGGTCGGAAA



GGTTCAATTTGGAGCAACATCGGACCAAATTGAGAAGCGTTCCAAGT



TCCAGTATAAATGCGCAAGGGGACAGCCAACTGAATTCAAGCTCACG



AGACCGTGTAGATTTGCCCTGTTGAAGTCTTGGGGGTTCTTTTACAA



GCTTCTTCAGCAAAAATTATAATTGACTGCAGAGATGGTCAAACTGA



CGATGATTGCTCGTGTTACTGATGGTCTTCCTTTAGCGGAAGGCTTG



GATGATGGGCGGGAACAAAGAGACCTGGAATTTTATAAACAGCAGGC



CAAGGCATTGTTCAAAAAATTGTCACACGGTCAACATGAACCTTCAA



GGATGTCCATTGAAACTGGCCCATTTATATTTCACTATATCATTGAA



GCTCGTGTTTGTTACTTAACTATGTGTGATCGCTCTTATCCAAAGAA



GCTTGCATTTCAGTACCTTGAGGAGCTAAAAAATGAGTTTGAAAAGT



TGTATCAGTCTCAAGTAGAAACTGTTGCAAGACCATATGCTTTTATT



AAATTTGATACATTTATTCAGAAGACAAGGAAACTGTACTTGGACAC



ACGAACACAGCGGAACCTTGCTAACTAAATGATGATCTATATGAAGT



TCAGCAGATAATGACACGCAATGTTCAAGAAGTGTTGGGAGTTGGGG



AGAAGCTTGATCAAGTCAGTCAGATGTCTAGTCGTCTGTCATCAGAA



TCTCGGAAATATGCTGATAAAGCAAAAGATTTAAGCAGACAGGCATT



TATCAAGAAGTGGGCACCTGTGGCCATTGTTCTGGGAGTTGTTTTTG



TGCTCCTGTGGATGCGATGGTATATTTGGCAGTGATTTTCTTTCAGT



CATTATTACATTACCTGGGTAAGAGTGGAGTTAGCTGCTCAGAGGCA



GATAGTAACAAGCAGGTAATATTTTTGAGGGAGGGCATTTGGGGTAG



CATTTTGTTTTGGCTTGGTTGCTTTTTATTGAATGCAAATTCGAAAT



GAGGAAAGAGAGATCTTACTGAGGGCAGTGACCAGTTGTATGCCGAG



CTTGATTGGTACAGGTGAACGTGAAACAAGTTTCACTATTTGATGGA



TGAGATGAGTAAGATTTTATTTTAGTTGTTAGAATTACAATCTTAGA



GGAAGATAATAATATTGTTCTGGTCAGATAGCTTATTCATCAGGGAG



ATGAAATTTTAAATATTTACCTTAGGGTTTCTCTGTGATCAGTTGTC



ATTGGGGCCATTTTTTCTTTTTACAGTTATTGTAATTATTTGTTGGT



ACTTGTCTAGTTATAAAACCAGTATTTGAATATTTCA





125
AAGAATTCGGCACGGCTTTTTCAAAGGGTACTACTCATTTACCCCTT



CAAAATTGGCAGTTGCAATGAACGGAGGAGTTCAGATCTCTTCATAG



AAGACGCCGCAGCAGCAACCAGCACGCAAACACTCCATTTAGACACC



AACACTCCTTTCATTTGCCCCACGAACGAGAGTCTGTGTGCTCTGTG



GTCGAGAGAGAAGTTTTATTATTAAATGGCGAGGAGAACGGACGATG



AGTATGATTATCTATTCAAGGTGGTCCTGATTGGAGATTCAGGAGTA



GGGAAGTCCAATCTGCTCTCCAGATTCACGCGCAATGAATTCTGCCT



CGAGTCCAAATCTACAATAGGCGTGGAGTTCGCAACTCGCACAGTGC



AGGTTGAAGGGAAGACAATAAAAGCACAAATCTGGGATACTGCTGGC



CAGGAGCGATACAGAGCAATTACAAGTGCCTATTACCGTGGTGCTGT



TGGGGCTTTGCTCGTTTATGATATTACTAAGCCTACAACTTTTGAGA



ATGTTGGAAGATGGTTGAAGGAGCTTAGAGACCATGCAGACTCCAAC



ATAGTGATTATGCTAGTAGGTAACAAATCTGATCTAAAGCATCTACG



AGGCGTATCAACAGAAGACGCTCAGAGTTTTGCTGAGAAAGAGGGTC



TGTCATTTTTAGAGACATCAGCGCTTGAAGCTACTAATGTTGAGAGG



GCTTTTCAAACAATTCTGGCAGAGATACACAGGATAATCAGCAAGAA



GGCCCTTGCCTCAGAGGAGGCTGCAGGAGCTGGCATCAGAGAAGGGA



AAACTATTCTTGTCTCAGAGCCTGATTCTAATACAAAGAAGGCTTGT



TGCTCATAGCAAGATTATATAATGCCTGAAAATATGATATTAGAGCC



CAATCTCATTTTTGGTGAGTTTTGGTTAGGTTTTGTCGAATGATTAC



TTATAACGATATTTTGCTCATTCTTGATGGTAACTTACAGTTGCCTC



TTTTGTTTAGTATTTTGTTGCTGCAAGCTATTATTTGTTTGAGGAGC



AATGGACATGACACCTACATATTTATTTAAGGTAGGGAATATTTTCA



GAAGAAAAAAAAAAAAAAAAAAAAAAAAA





126
GTTGTTTGTTGTTTGATTCTTCTGAGAGTAGGCCCTGCGTGTTCTGA



GACTTTTTTGTCGTTTTAATTTCTATTGAACTTGGCTCGTCATTTGT



TCATTTTCAAGTATTGATTTGATGTATAGGAGGTGACAACTTCTGTA



AGTTTTTAGATGGATCAGGACCAATCCATCTGCAGATTTGCAGCTCA



GAAGGGAAAAGGAGAGATTCAGTCTTCTTCATTCCCAGACGAAGTTT



TGGAACATGTTTTGGTTTTCCTGTCCTCCCAGAAGGACAGAAATTCT



GTTTCCTTGGTATGCAAGGCCTGGCACAGGGTTGAGGCGTGGACGCG



CCAGCAGGTGTTCATTGGCAACTGTTATGCTGTCTCCCCACAGATTA



TGATAAAAAGGTTTCCCAAGATCAAGTCTGTCTCACTCAAGGGGAAG



CCCAGATTTGCAGATTTTAATTTGGTGCCACCAAATTGGGGGGCCCA



TCTCACTCCATGGGTGTCGGCCATGGCAACTGCTTATCCATTACTTG



AGAGGCTGTACTTGAAGAGGATGACTATCACAGATTATGATCTCACA



TTGCTTGCAAATTCCTTCCTATATTTCAAGGAGCTTGTTATGGTTTG



TTGTGATGGATTCAGCACAGGTGGCCTCGCTTCGATCGCAAGCAAAT



GCAGGCAATTGACCACACTTGATTTGAATGAGGACGAGATACATGAT



AATGGAGAAGATTGGCTGGCTTGCTTTCCTGAGACTTTGACGTCTCT



AAGATCTCTTTGTTTTGATTGTTTGGAGGGCCCAGTAAATTTTGATG



CACTAGAAAGATTAGTTGCAAGATGCCCCTCTCTGAAGAAGCTCAGG



CTAAATAGAAATGTTTCTATAGTGCAATTACAAAGGTTGATAATAAA



AGCACCACAGCTTACTCATCTAGGAACAGGCTCATTTTTCTATGAGT



TCCAACTGGAGCAAGTAGCAGATCTTCTCGCAGCCTTCAGCAATTGT



AAACAACTTCAATGTTTGTCAGGATTTCGTGAAGTTGTGCCAGAGTA



TCTACCTGCGGTATATCCAGTTTGCTCTAATTTAACATCTCTAAACT



TCAGCTATGCTGTTATTGGCAGCAGAGAGTTGGAAGGAATAGTCTGT



CACTGTCGTAAATTGCAGCTACTCTGGGTTTTGGATTCGGTAGGAGA



CAAAGGTTTGGAGGCAGCAGCTACAACGTGCAAGGATCTGAGGGATC



TCCGTGTATTTCCTGTGGATGCACGTGAAGACGGTGAAGGTTGTGTA



TCTGAACGGGGCCTTGTTGCAATCTCCGAGGGGTGTCCAAATCTTGA



GTCCATTCTATACTTTTGTCAGCGTATGACCAATAAAGCAGTTGTGA



CCATGTCGCATAACTGTTCCAAACTTGCCAGCTTTCGTCTCTGTATC



ATGGGTCGACACCAACCTGATCATTTAACTGGTGAACCTATGGATGA



GGGATTTGGGGCAATCGTAAGAAACTGCAAAAGCCTAACAAGGTTGG



CAGTATCCGGTCTACTCACTGACAAAGCATTTCAGTATTTTGGAGCC



TATGGTGAAAGATTAGAGACCTTATCAGTAGCATTTGCCGGGGAAAG



TGACCTCAGCATGAAGTATGTGCTCGATGGATGCAAGAACCTTCGGA



AGCTGGAGATTAGAGACAGTCCATTTGGAGATGTTGCCCTCTTGTCT



GGTTTACATCACTATGAAAATATGCGGTTTTTGTGGATGTCTGATTG



CAGACTCACTCTACAGGGATGCACAGAGCTGGCCAAGAAGATGCCTG



GACTTAATGTTGAAATAATCAGAGAAAATGAATGCAATGATTCTCTT



GTTGAGAAACTTTATGCTTATCGCACTGTAGCAGGTCCACGGAAAGA



CATGCCGTCATTTGTAACCATCTTATAGCCACTTCACATGAATTTCG



TGGTTATGGCTCTGCTACATATGGGCAACCTGTTAGGGCTATCCTAC



TAAATTAATCATGCATCAATGTTACTGATGAAAAAGCCCATGTCCAT



AATGCCTTTACTTCACCAAAGGAGGAGCAATAGAGCAGGCCAGGTTA



TTGCCATTTTACTTTGGAAACTTTCTTCAGGTTGTAGCTGCCACCTG



AAGGGTTGGAAGAATGTACGATTCACTGATGCAGACTGCTAATTCTT



GTTGCTCCCTAAAGTTGAATCTAGTTAAATGCCAAACAATAAACTGG



TGATAGAAATGCTGAAGGTGATGAAAGGTGGAGAATTACAGATGAAT



CCCTTCTGCGTGCATTGGATAGTGTTTTAAGGGACTGAATGCCTCAA



TTGGTCTGTTTGTTTTAATTTCAAACAATTGACCTGTCTTTGATGCA



ATCTGTGCTTTGACTTGAATTCAATCTGTGATTTGACTTGAATTTTA



TTTGCTATATGACTGATCCGGAGCTTGTTGAGGAGGTTTGGAATTGT



TCCGAGGGAAAATTTCTGAGTTTATCATGTTATACTGATTAATTGCT



TGAATTATCAAAAAAAAAA





127
GGAAAGAGCCCACCTGGGGCTGGCTATTTCATTCATTTTGACGTCAA



TTGCCGCATTACAACGGCAGCCGAGCAGAACGGAACGAAATCGGCAA



TGCAGATATCTAGCGAGCGCAGTCGATGGCCTGCTGCTTCCCTCCAT



TAGCCGGTAGACGACGACAAACCATTTCCCCTCCAAGGAATTCCCGT



CAAGAAGAAGGGCAATATTGCCGTCAAGAAGACGAGCAATTTCCCCT



TCAAGGAATTTCCATCAGAATTCAGCCCTGGGGGACAATTGGAGGCT



CAGGACGGACAGCGGTTTCGTAATCCGCAGCAGAGGTAGATGGGGTA



AATGCGGTTAACCGGATTCCGGTGGCCTCAGCTCAACTCATGAAAAA



TTTCAGTCGGATCTGATCTTTCTTTTTTTCTTTTTTCTCCCTAGATT



TTTGTCACTCGAGGCCGATTCAAAGGGCGTCGTAGCTTTGGAGATCT



CGAGCGTTCGAGATATCGAACCCGAGCGGCAGCGATGCAGCAGGACC



AGAGGCGAAAGAACTCTTCTGAGATAGAATTTTTCACAGAGTATGGA



GGGGCTAGTCGCTACAAGATTCAGGAGGTGATTGGCAAAGGAAGCTA



TGGTGTTGTATGCTCAGCAATTGATACACATACAGGGGAGAAAGTTG



CAATTAAGAAGATAACCAATATTTTTGAGCATTTGTCTGATGCAACC



CGGATTCTACGGGAAATCAAACTTCTCAGGTTGCTGCGCCATCCTGA



CATTGTAGAAATCAAGCATATCATGCTACCTCCCTCACAGAGAGAAT



TCAAAGACATTTATGTGGTATTTGAACTTATGGAGTCTGACCTACAC



CAGGTTATAAAGGCTAATGATGACTTGACACCAGAACATTATCAGTT



CTTCCTGTACCAACTTCTTCGAGCATTAAAATACATACACACAGCAA



ATGTGTTTCATCGGGATCTCAAGCCAAAGAATGTCCTTGCCAATGCG



GACTGCAAGCTCAAAATTTGTGACTTTGGCTTAGCAAGAGTTGCCTT



CAATGACACTCCTACAGCAATCTTCTGGACTGATTATGTTGCTACAC



GATGGTATCGGGCTCCTGAGTTATGTGGTTCATTTTTCTCAAAGTAT



ACTCCTGCCATTGATATTTGGAGTATTGGTTGCATATTTGCTGAAGT



CTTGACTGGAAAGCCGCTTTTCCCAGGCAAAAATGTTGTTCATCAGC



TAGATTTGATGACGGATCTTCTTGGCACTCCTTCCCCAGAAACAATT



GCAAGGGTTCGTAATGAAAAAGCTAGAAGATACTTGAATAGCATGCG



CAAGAAACAACCTGTACCTTTTACACAAAAATTTGTGGGTGCAGATC



ATTTAGCACTTAAACTTTTGGAAAGATTGCTTGCGTTTGATCCGAAG



GATCGTCCTACTGCAGAAGAGGCTTTGGCCGATCCTTATTTTAGGGG



GTTAGCAAAAGTAGCCCGAGAGCCTGTAGCTCAGCCAATAACTAAAA



TGGAGTTCGAGTTTGAGAGACGGAGGGTTACAAAAGATGATGTGAGA



GAACTTATTTATCGTGAAATACTTGAATATCATCCGCAGATAATGAA



AGAATACCTGAATGGAACAGATCGCACAAACTTTATGTATCCTAGTG



CTGTTGATCAATTTAAGAGACAGTTTGCTCACCTGGAGGAGCACTAT



GGGAAAGGTGGATCAGTTCCTCCATTAGAAAGGCAGCATGCATCTTT



GCCAAGACCCTGTGTTGTCTATTCAAACTCTGGTGGGCCCTCATCAG



AGCAGGCATCTTCAGGTCCTTCCAGGGATCGTGCTTTAGAAGTTCGT



GAAGAAGCTCCAAGGTATAGTAGAGAAGGAGAGAAGCAGCACCAAGA



CAGGAGCTCCGGAAATGTGAAAGTGCCCTTGCATGCAAGTCATAAAG



TTTTGCAAGGAAGTACTGCAAAACCGGGAAAAGTAATTGGTCCTGTA



TTACCCTGTGAAAATGGAAGCATTAAAGAAGCATATAATCCAAGAAG



GTTGATCAGAAATGCTGGTGTTGCACCATCTCAGTGTCCTGCTCCAA



TTTATTCCTATCCAAGACGAAATTCCACAGCGAAAACTGAGGTTGAT



GATAAGAGGGAAGATGGAATTAATCAGTTTAATGTATCACAACATAA



GACTCAGTATGTTGGAATTGGTGCAGCAAGGAAAGTGGCTGCTCTTG



AAAGCAGGTCATCTCATTTGTATTAAATAAGGTGGATTATTAAATCG



CGTATTTTTAACTTATCTAATATCTATTTACTGACTCGATTCTTTAA



AAAAAAAA





128
CTTTCTTCGACATCTCCGCTCTTTAGTTAATGGGTCTCTCATTTCCT



GAACGTCTAGGCAGGCCTATCCAGAATAAACTAGAGCGGAATATCAT



CTTTTGCTTTGCTGGACCGGGATGTAGAACTCCTGAACGGTAGCCCT



CGCTGCGAATTTGATGTGCTAGGATTCCTTTATTAGTTGTTGTTACT



TAGTGCTTGAAAGTGGCTTTCCTAGGAGTATTTTCTTGTTCCAACAA



TCCCAGTTAGAAGGATCATTCTACAATGAAAATTTCATCTCAGCGAT



ATGAGAGATTGTGAAGGTATTTAAAAAACCTCGGAGCAGCGAGACCA



ATCCCTCGCAAAATCCCGACCAGCAATCGAATTACGGCAATGGCAGA



CGATTTGGGAGAGTTTTACGTTAGGTACTACGTGGGTCACAAGGGCA



AATTCGGCCACGAGTTTCTCGAGTTCGAATTCCGTCCCGACGGCAAG



CTCCGCTATGCAAACAATTCGAACTACAAGAACGACACCATGATTCG



CAAAGAGGTGTTCCTTACACAGGCTGTTCTCAGGGAATGCCGACGAA



TCATTGCCGAAAGCGAGATAATGAAGGAAGACGATAACAACTGGCCT



GAGCCTGATAGGGTTGGACGTCAGGAGCTGGAAATAGTTATGGGGAA



CGAGCATATTTCCTTTACTACTTCCAAAATAGGATCTCTTGTTGATG



TCCAAAGTAGCAAGGATCCCGAAGGCCTTCGGATTTTCTATTATCTT



GTTCAGGACCTCAAGTGCTTTGTGTTCTCTCTCATTGGTCTTCACTT



CAAAATTAAGCCTATCTAGCCATAAATGGTGGTTGCATATACGTGCA



AATGCATATTATATGATTGAAGATTTACATTAAAGAGCACAATGGAT



CTTTTTGTACGCTAGTAGCTCCGGAAGGATTGATTAACATGGATGCG



AAGTTTTTTTTTTTTTTTTCCAAATATTTATTAATACTAAAGAGCAT



AACATACCTTTCTAACCGAGGAGATCCCGATGGACTGATCACGATGT



GTATGTGAAGCGTGTTTTAAAACATTAGATTTATCGTAGTCCAGTCA



TTTCTATAATTTCGAGTTTTAGCTCGTCGGTTGATTCGTTTGTGTTC



ACGTGAATTTTGTGTGGCTTCTTAACTGTTGTAATTATCCGGCATTC



CAAGTTGCATTTTTTGGTGGCGCGTTATGCTCTTGGGTCATAACACG



TGGGTGA





129
CCTTGGTGTTGGGAGCACTGTCCACGGTAATCAAAATTTCATCTCAG



CGATATGAGATTGTAAAGATATTTCAAAACCCTTGGAGCAGCGATAC



CAATCCCTCGCAAAATAGCTGAAATTGGTATTTACAAACCCTTGGAG



CAGCGATACCAATCCCTCGCAAAATAGCTGAGATTGGTATTTACAAA



CCCTTGGAGCAGCGATACCAATCCCTCGCAAAATGCCCCCGACCAGC



GATCGAATTCCGGCAATGGCAGATGATCTGGGAGAGTTTTACGTTAG



GTACTACGTGGGTCACAAGGGCAAATTCGGCCACGAGTTTCTCGAGT



TTGAATTTCGTCCCGACGGCAAGCTCCGCTATGCAAACAATTCGAAC



TACAAGAACGACACCATGATCCGCAAAGAGGTTTTCCTTACTCAGGC



TGTTCTCAGGGAATGCCGACGGATAATTGCCGAAAGCGAGATAATGA



AGGAGGACGATAACAACTGGCCTGAGCCGGATAGGGTTGGGCGTCAG



GAGCTGGAAATAGTTATGGGGAACGAGCATATTTCCTTTACTACTTC



CAAAATAGGATCTCTTGTCGATGTGCAAAGTAGCAAGGATCCCGAAG



GCCTTCGGATTTTCTATTATCTTGTTCAGGACCTCAAGTGTTTTGTG



TTCTCTCTCATTGGTCTGCACTTCAAAATTAAGCCAATCTAGACATA



AATGGTTGCATATACGTGCAGATGCATATTATATGATTTGAAGATTT



ATATTAAAGAGCACAATGGATCTTTTTGTACGCTAGTATCTCCGGAA



GGACTGATTAACATGGATGTGAAGTCTTTTTTCCAAATATCTATTTT



GTACTAAAGAGCATAACATGCCTTTCTAATCGAGCAGATATTGATGG



ACTGAACACGATGTGTATATGGAGCGTGCTTTAAAACATTAGATTTA



TTTTACTCCAGTCATTTCTATATTTTTGAGTTTTAGCTCGTCGGTTG



ATTCGTTTGTGTTCACATGATTCTTTTGTCGCTTCTTAACTGTTGTA



ATTATCTGGCATTTCAAGTTACATTTTTTGGTGGGGCGTTATGCTCG



TGGGTGGATGTATACTGGTTTTTAACCTTTCTCTAAAAAAAAAA





130
   1 gcgccagtcc gggcacgaac gacaagagga ccatcaccgt ttccgttccg gacacggcgg






  61 gagctccctc tctccttcct ccatttaaag ggctgaagag aagtcgatcg gtgtacgttg






 121 ttgtcgtcag gttgcaggtt cgaaccccat acccgctagc cattgccaga ttgcacggcc






 181 cacctgttcg acgtgcgtga cagtcttcaa gtcaggtggc tggtagattc acgattttca






 241 ttttaagtgc ggtgaacagg taaaaacgca aaaacgcatc gcaatcataa ttccatcgtg






 301 ttggcaaccc agctctcgcc gaccagtggg aatgaccgaa agactgaagg tctagttttt






 361 ggggttttgg ataaattttt gcgtttaaca gggcggcatt tgatttttct gctttaaaac






 421 ggacattata gattggttcg gttcagtttt ctggatctcc gtgcttcggc ccgcagagat






 481 ccatgattag aaattcgtct cctatatctc ctgcttgacg gaaacactgg aagtgtgaat






 541 tgacgggaat aaacgagtct ctagagtctg ctggttcatg atggggcaca acacttctga






 601 agccatcaaa cagatgaccg ctttcatcga tggagtcgac gagccattga agaagtcttt






 661 ccagactatg catcgaggat atgcacagca aactctagag aggtttctaa aggcacggga






 721 agggaatgtt cagaaagcaa acaaaatgtt gctagattgc ttaagttgga gagttcaaaa






 781 tcacattgat aacatcttag cgaaacctat agaaccaaga gaagtttata atgctgttcg






 841 ggaatcacag ctcatgggga tgacagggta ctgcaaaaag ggacgtcctg tttttgctat






 901 tggagtgggg cttagtggat atgacaaagc atctgctgac aaatatgtgc agtcacatat






 961 acagataaat gagtaccgag accaagttct attgccaaat gcatcaaaga aatatgggag






1021 ctacattgga ccatgcttga aaatcttgga catgacgggg ctgaaacttt ctgctttaaa






1081 ccgcattaag atattgacta cgatagctac agttgatgac cttaattatc cagagaagac






1141 ggagacatat tatattgtta atgctccata tgttttttct gcctgttgga aggttgtgaa






1201 acccttgttg caagaaagga ctagacgaaa agtacaggtg ttgcaaggtt gtggtaggga






1261 agagttactg aaggtaatgg actatgatgt tcttcctcat ttcagcaggc aggagggctc






1321 agggtcatcc aaacatcata atggcaagac gatagattgc ttttctccag atcatccatt






1381 tcatgtagaa ctttataatt atattaaaca gcaagcagcg attataaagc ctgttgcccc






1441 ggaaaaaatg cgatcttttc atgtggatgt tccagagcag gatgatgaag gaaccattat






1501 tgtacagaca ctagaatctg cattacataa tttaggtgat gaagaggcag ttgagaatgg






1561 tgttgctaat ttgaatgtca atggggatca atctctgaga caccgaaaag cagctagaaa






1621 tgaggttcaa ggttgagtat gctgaaagtc gattggatat ttaaataact ggcccacata






1681 tctggaaatc tgagttgaca atgtgtgaca ttgtgttgtt atccttcagt atcagggtta






1741 atattgtata caattctcca gtttgacaat ctgatctcaa actggtgttt tgcctcataa






1801 tgtaattgca ttagattatc ttattttgtg ggagcggttg ccactcccat attctgcaaa






1861 atgtcaaaaa tgaaatcctt attttaaaaa aaaaa





131
GGGATAGTTGTGCTCCGAGGAAAGCATTGAATTGGGGATAATGGCGG



AAACTGTCACATATTCATGGCCGGTGGGTTTCGTCTGTTTCGTTCTG



ACGATGTTACTACTTCAACTCTACAGAATAGTGTGGAGGGAGGACAG



TCGAGGCTACAATTTGCCTCCCGGTTCCAGTGGGTGGCCATTGATTG



GAGAGACCTTGAGCTTCATGCGAGGGATTATTCCATTTCTAAACCAC



GCCAATTCATTCAAGATCGAGAGCAAAGGTATGGGAAGATATTCAGA



ACAAATTTGTTTGGAAGATCTCGAATGATTGTGTCTGTGGACCCAGA



ATTCAACAAGTATATTCTGCAACACGAAGGCAGGCTGGTTCAATCCA



GCTATCTGAGACCTTTTCGAAAACTCATCGGCAAATACGGTTTGCTT



TCGGTGTACGGAGATCTCCAGAAGAAGCTCCACGGAACGGCCGTAAA



TTTCCTGAGGTTCGAGAGGCTGAGTGTGCACTTCATGGAGGACATAC



AGAACCTTATGCACACCACCTTCGCCCAGTGGCAAGCCAAGGGGCAT



ATCCATCTTTATCATGAGTGCCATCAGTTTGTTCTGAACTTGATGGC



AAAACAATTGCTGGACTTATCGCCGTCCAAGGAGACGGAAGAGATCG



GTAAAGCATTCGGCGATTTTTCTAAATCTTTCGTTGTCCTTCCCATT



AGAATCCCGGGTACAGCGTACTGGAAAGGATTGAAGGCCAGAGATTT



TCTGATGAAAAAGATTTATGCGAGTATAAAGTACAGAAGGGAGCATC



CAGAAGTTGTCCATAATGATTTCTTAGGAGAACTCTTGAAAGAAGAC



TTGCATTCCGAAGAAATTATAGCAGATTTTGTACTATTCCTGCTCTT



CGCTGGTCACGAGACGTCAGCCTCAACGATGGCATTTGCTATCAAAT



TTCTCACGGACTGTCCCCAGGCACTTCGGGAGCTGAAGGCGGAACAC



AACGCTCTGTTAAAGAGAAAGGGGAGTCCAAGAAACCAAAACCTCAC



TTGGGATGACTACCAGTCACTGAATTCACCCAATGTGTCATAATGAA



ACACATCGTCTCGCCAACGTTGCTCCAGCGGTTTTCAGAGAAGCAAT



AGCAGACATTAAAATTAAAGGCTTTGTCATCCCAAAAGGGTGGTCAG



TCTTGGTGCTTATGAATGGCATCCATTTGGACGACAAGTACCATTCT



TCTCCGCTCAAGTTTGACCCATGGCGTTGGCAACAGATTCTGGAAAA



TAATGAGCTCTACAAGAACCCCTCTTTTATGCCATTTGGAGGGGGGC



TCAGGCTCTGTCCAGGAATGCATCTGGCAAAACTTGAGCTGGGCCTC



TTTCTCCATCACTTCATCACCAAATTCAGATGGGAGCCACTAGATGA



TGATAAGATCTCCTACTTTCCTGTTTCCCACTTGACTAAAGGCTTTC



CGATCCGTCTACATCCTCAAGAACAAATGGATGATTAATCGCAGTAT



AATAGGATTTGATTGATGCAGTATGGAGTATTAGTAACAGTAAATAA



GTTTGAAAAAATGGATAATTAATCGCATTATAATAGGATTTGATTCA



TGCAGTGTGGAGTATTAAAAACAGTAAATAAGTATGAAGCTTAAAAC



AATAATTGCCCCGCTGTGGACATATAAATATCATGTCCGTTGGTGTG



AGTAGATATCATGTCAGTTGGTGTGAGTAGATTTCAAGGATATTTAT



GTATTTCCTGTATTGAAGCGTGAGGATAATGTATTAACCATAAAAAA



AAAA





132
ACACGGAGAGGGATCATAAGCTCAAATGTCTTCGGCCTGGGAGTGCC



GCCACGAACAAAATGGATCGACTGAGCAACGGCCAAACCACCTGCAA



TTCAGTGGAGAAAGGGAACGATGGAGGTCTGAATTTCGATAATTCAA



TTTCCGACGCGGTCAGAACCAAGCTGAGGCAAATGCGAGATGTCATT



GAGAAGGAAGATCCCAGCTCCAAGGTTACAGATGATGATACTCTTCG



ACGTTTCCTGTATGCTCGGGAATTGAATGTGGAGAAGGCTTCTGTGA



TGTTTTCAAAGTATCGAAAATGGAGACAAACTTTTGTACCCCTTGGG



TACATCCCAGAGACAATGATCCGTGATGAGCTCATGAAAAATTCTGT



CCACATGCAAGGATTTGACAAAAGAGGGAGGCCAATTGCAGTCATCT



TTCTAGCAAGGCACATCCCTTGCCGTAAGACAATAGAAAATTTAAAA



TGTCATTTTGTCTACATTTTCGATAAAATGTCTGCTAGTTCAAGAGG



ACAGACAAAGTTTACCATTATAGCAGATTTTGATGGTTGGACGTACA



AGAATGTAGACATTCGTGGTGCTATTGCAGTCCTTGAAATCTTGCAG



GATTACTATCCAGAACGCTTAGGAAAGGTGTACCTTATTCATCGACC



ATATATATTTTGGGCAGCATGGAAGATTGTGTCTCCTTTCATCGATC



AAGTAACAAGGGAAAGATTGTTTTTGTTGAAGACAAACATTTGAATG



AACACTACTAAATGATATCGATGAAGTCAACTTCCTGAAATCTATGG



AGGGAAATTGCCTTTAGTAAAAATTCAAGATTGTGTTGTACCAAATT



GGCCCCCAATTACCTCCACATAAGAATATAGAGGAATTTCAATATGA



TCTTATTGAAGTATATTAACCCCTATTTGGCTATTATATTGTAATCT



TGAATCCTTCCTTAAATTATGTGGTCCTCTTATATGAATTGTAATGT



TCTTAAAACATAAAATGAGAAAGGAATGTTAAATGAGGAAACTTTCA



TTTATATTTTAATAAAAAAAAAA





133
CTTTGCTTTGACGGGAAGACAGGTATGTTTTCTGCAAGACCCGATTT



GCTTTTATGAGGGCTTTTTTAGGCGTAATCGCTTTGTTTGGATCGCA



CTGGACTATAATTGTTCGGTCCTTTTCCATTTTTTTGGCTGTTTAAG



AACCCTGTTGTTCATAATATTTGTTTTCTCTTTGCCTCAAACCCTTT



CAGCGCTTGTTTGTTTATTGGTATCAGACCTTTTTCGTGTTTGGTTT



TCTAAATTAACGTATAAATTCATATCGGATTGCCTCTTTTTAAATCT



AATTATTGGTTTCCAATTTCTGGATTTATAATCTTGTTTTGGGCTGC



TTTTTTATTCTGGTGGCTTGGCCTTTTCAGCATCTCTGGAGAGAAAA



TGTTATTGGTATCTTCAGTAACCCCCATGGTAGCAAAGTCTTCCGTC



TTTGCTATCTGTTCGTCATCTGAATTCAGGGAACATCTCCTTTCTTC



TATCTTCATTTAACCCTACAAGGGTTTCTGTTAATGCAATTCAAACA



AACTGTTTGAATTCCGGGGCTGGGGTTTGTTTCTTTTCCCTGTCCTT



TATAGGAAGAAAAGGAAAAATGACTGGTGTAGAATATGACGCCAGTG



ATAAGGACAGGGAACCCTTTGTGGAAGTGGATCCCACTGGCAGGTAT



GGTCGCTATGAAGATGTGTTGGGTCGTGGTGCCATGAAGACGGTATA



CAGAGCTTTTGACCAGGAAGATGGTATTGAGGTTGCTTGGAACAAGG



TGTCTCTGCAAATCTTGATGATGTTTCCCTTGAGAGGATCTATTCAG



AAGTCCGTCTGTTGAAGTCTCTCAGGAATGGAAACATCATTATGTTC



TACAATGCCTGGTTGGATAGAAAAACAGGGCATGTGAATTTCATTAC



CGAAGTTTGCACCTCGGGTACCCTGAGGCAGTACCGTCAGAAGCACC



GCCATGTCTCCATGAAGGCCGTGAAGAACTGGGCACGCCAGATACTG



GATGGATTGCATTATCTGCATAGTCATATCCCTTGCATAATTCACAG



AGATTTGAATTGCAGCAACATTTTCGTGAATGGAATACTGGCATTCT



TAAGATTGGGGATCTGGGTCTTGCTGCTGCCCTGGAAAATGATCATG



CTGCACACACTATTATTGGTACACCAGAATTCATGGCCCCGGAATTA



TATGAAGAGGATTACAATGAGCTTGTCGATGTTTATTCCTTTGGCAT



GTGCTTGCTGGAGATGGTTACTCTGGAGATTCCTTACAGTGAGTGCC



GTAGCGTTGCTCAAATTTATAAGAAGGTGAGTTCTGGTATAAGGCCC



GCAGCACTGGAAAAAGTTACCAATCAAGAAGTGAGGCAATTTATTGA



AAAATGTCTGGCAGTTACATCGGCAAGGCCTTCTGCTGCCGAACTTC



TGAAGGACCCATTCCTCAGCGAAGTACAATCGAGTAGCTAGTACATA



TGCATGTTTGAGTGCTCAATTATTTTAAGATTGAGTTGGGGGTTTCT



GCCAGCGTCTGTAGGAACTGTTGGTGGAAATATGTGATGCCAAATGC



TAGGAAAAATTATTTAGATATTATTGCATGTATCTGTGGGATTTTGA



TTATTTTTAAGCAATTATCGGGATTAAAAAAAAAA





134
GACAACTTCTGCAACTCATACATTAGGAATACCGTCTTAGCAACAGC



ATCGGCTACCATCATGCCGTATTACGTGCTTCAACGAGAGGTTGAAT



CAGAATTTCTGGAGGTTGATCCCACTGGTCGCTATGGCCGGTACAAT



GATGTGCTTGGCAAGGGAGCATCGAAGACTGTATACAGAGCCTTTGA



TGAAATAGAGGGGATTGAAGTGGCGTGGAACCAAGTGAAAGTGAATG



ATATTCTGCAGTCACCTGAGGATCTGGAGAGACTTTATTCAGAGGTC



CATCTTCTGAAGACTCTGAAGCACAAGAATATCATCAAATTCTTTTC



ATCATGGATCGATACCACGACAAGGAACATCAACTTTATTACAGAGA



TGTTCACATCTGGTACTCTTAGGCAATATAGACAAAAACACAAACGT



GTAGACTTAAGAGCTGTGAAGAATTGGGCTCGTCAGATCTTGAGAGG



GCTTCTATACCTGCACAGCCATGATCCTCCCATAATACACAGAGATT



TGAAGTGTGACAACATATTTGTCAATGGGAATCAGGGGGAAGTTAAG



ATTGGAGACCTTGGGCTTGCTGCAATTCTGCGTAAATCTCATTCAGC



TCACACCGTTATCGGAACCCCGGAATTCATGGCCCCTGAGCTGTACG



ACGAGGAATATAATGAATTAGTTGACATCTATGCATTTGGGATGTGC



CTATTGGAAATGCTCACCTTTGAGTATCCTTACAGCGAATGCTCCAA



CCCAGCTCAGATCTACAAGAAAGTAACATCTGGGAAAAAACCAGCAG



CTCTGTACAAACTGAAGGATCCTGAAGTGAGACAGTTTGTTGAGAAA



TGCTTGGTCACTGTTTCCAGAAGGCTTCCTGCAAGAGAGCTCTTAAT



GGACCCATTTCTTCAGACTGATGAGCACGGCTTAGAATATTCCTTTT



CCAGATTAGATTTCTGCAAAGATGATGTGGGGGAACTTGGCCCGTTA



TTAAGAGAACCTAACATTGAAGCTTTTCAAAATGGTGCTCATAAATT



ACTCCAAAGCATTCATCTTGTGCATCCTTGTAGCAAGAATGAGATTT



CTGTCCACCATGAGAACAAAAAACAACAAAAGGTTGTACCTTTGCCC



TCATACATTAGAGAGGACAGTATGTCTCACAACATGGATTTCACTGT



CAAAGGCAAGAAGAGGGAGGATGACACAATATTTTTAAGACTTCGAA



TTGCAGACACTGAAGGGCGCATTCGTAATATCTATTTCCCATTTGAT



GTGGAAGAAGATACAGCCATGAGTGTGGCCAGTGAAATGGTTGCGGA



GCTTGACCTTGCTGATCAGGATGTTACAAAGATTGCAGAAATGATTG



ATGAAGAAATAATGGCATTGGTACCTGATTGGAAGGCAGGGGTAGCA



ATAGATGATCACCATTCCTTCTATGACCATTACCATTCCTCCAACAA



AACAAGTGAAACTTGCTGGTGGAATCATAACGATCATGCCTCCAGTA



TCTCTTCTCAGAGTTCCCTGTTGGAATACCTGAGGTCTCATTACCAC



GTTGACAACAAATCAGAAATAGTGCCTTGTACTCAAGTTGAATGTGC



AGCCATGCATGGCCGGTTTGAAGAAGTCACATTCCAGTTTAATGCAA



CAGATTTTTATTCATATGTAGAAGAGGAGGCTCCTACAATTTCAAGC



GGATCATCAGATGTTCTTCATCACGATTGGGTGAATGGAGAGGATCC



AGTTTCACCTATATCTTTAATATCACATGGTTCAGGGATTAGCAATT



TTGAAGATCCCCAAACTTGTCTAATATCCTCAGGTACTGGTAACAAA



GAGGATGTAGTTCCAAGCAAACCTGCAAAACCTCCAGAAACTACAGG



ATATGTTGGTAACTTTGAAGAAAGTTGGAGCAATGGATTGTCTGAAG



GGTTCAGTCCTGTCACTGACTCTAATTGTCTTAGCTCAGTCCCCAAA



CCTATGTTCCATCCTCAATCACCATCATCAGTCAATATTTTATCTGA



TGAAGATGAAGATTCCACCAGCAGAGAGTTGCGACTTTTAGCAGTCA



AACATCAGAAGGAATTAATGGAACTTCAAAGAAAACATGAGCATTCC



CTCTTAGGAATTGAAAATGAATTGAAAAACAGAACACCTTTGGGAAC



ATCTTTAGATATGAAAAATTCCAGTCCTGGAATAAATTTTCAGGATC



AGAAATTGAACGTGAATGGGCAGCGAGAGCAGCGGGAAGATGACTCG



GTTAGACATGGTACAACTGGTAGGGATAAGGAGTTTGTAGCCATGAA



ACAACTTGGATCCGATGCTCGGGGAACAAGGCTTTCCAGCAGTCCCA



GTCATAGATTATCACCGATGGAACCAGCAGTCAGTTCTGATCTTCCA



GGTCCAAGTAAACTTGCAATGCATTCTTCTACTCTCCCTTCTGTTAG



GCCAATTAATAGAAATATAGCACCAAATCAAAGGCTAATGAAAATGC



ATTCTTTTAGTGGTGTTGACAGTCAGCGTTCTATTAATTCTCTGGCC



AAAGAAGTTAGTAGGCAGAAAAATTACCAGACAATTGGAGCATTTCG



AACAGGAAATGTCGATGAAAAGAAACATAGTCTTGAGGGGATGAGAC



GATTTCCATCTATATCTCAGAAATCTTCTTCAAGGAACTGCAAGGAA



GGTAAAACTAAAATAGTCTGAGAGAACTGAAGCACACTTGTAACATA



AATTTATTGCCCTTAGTTTAGAATATAGATTGGATACTGCACTGAAA



ATTTATCAATTGTATATATGAGCTTTACCTTCTGGAAGAGGTAATGG



TTGGTGGTAATGCTATGCAAGGTTCTTCGGAAATTATTCCTTCGCCT



TGGCACCTTTATGGTCTCCCAAGAATTTTGGTAGTAAGGGCAGCATT



TTGAAATTATACAGAAACAAAGGAAAAATGTATGCATCGTCTTTCAT



TAGGAGAGGCTGCAACTGCCACGGGCTACTACATTGTTGACATGTAC



TATGGATTCACCAGTTCAGCTGATGGTACAATTCAGATGAATTTGTG



GGTTATAATCCAAATAAGTGCTTCTTGGCTGGATAGAACCCAATTCC



TCACCAGCTTTTCCAGTTAACAGAGAATTCATGTTTTTATGGCCTTT



TAATTTTATGTCAAGCTTCTGGGAAAATTTGTATCTTTGTAGTATTC



AAGATTTTACGGAGAGCATAAGCTATAAAAGCAAATCGGTCTGCAGT



GTATTATCGACATCCCATTGTTTTCAGAAATCGATCAATAAGATAAG



GCGGATGCAGACTAGAAGACATGCAAGTATTGCATGTCTAAATGGCT



TGATTTTCTCATCAAAAAAAAAA





135
ATGGGATCGGGCATCATGACGGAGACTCTTACAGATTCATGGCTAGT



GGGCTTGCTCTGTTTAGTGCTGGGCTTCTTACTGCTTCAGCTCTACA



AATTAGTGTGGGGGGCGAGCAGTCGAGCCTATAAGTTGCCGCCGGGT



TCTACAGGGTGGCCACTGATTGGAGAAACCATCGGCTTCTTTCGAGG



TATTATTCCACTGCTCAACCACGCCAGTTCATCCAAGAGCGAGAGCG



AAGGTATGGGGAGATATTCAGATCAAATTTGTTTGGAAGATCTCGAA



TTGTTGTGTCCGTGGATCCAGAATTCAACAACATGTCCTGCACACGA



AGGCAGGCAATTTCAGGCCAACTATCCCAAACCTCTTCGAAATCTCA



TTGGCAAATATGGGTTGCTTTCGGTACACGGAGATCTCCAGAGGAAG



TTACATGGGGCGGCTGTAAATTTGCTGAGGTTCGAGAGGTTGAGCGT



GGACTTCATGGAGGACATACAGAACCTTCTGCACATCACCTTGGCCA



AATGGGAAGCCAAGAGGGATATACATCTTCAAGAAGAGTGCCATCAG



CTTGTTCTGAATTTGATGGCCAAACAATTGCTGGACTTATCGCCATC



CAAGGACACTGAAGAGATTTGTGAAGCGTTTGGCCATTTCTCTGAAG



CTCTCCTCGCTGTTCCCATCAAAATCCCGGGTACCAAGTATGCAGAG



GATTTAAGGCGAGGGAATTTTTGATAAAAAAGATTTACGAGAGTATA



GAGGATAGAAGGCAGCATCCAGAAGCTGTACATAATGATTTGTTAAC



AAAACTCTTGAAAGAAGACACGTTTTCAGAAGAAATTATAGCAGATT



TTATACTGTTCCTGCTCTTTGCTGGTCACGAGACATCGTCCAGATCC



ATGTCATTCGCTATCAAATTTCTCACAGACTGTCCCCGAGCACTCGA



GGAACTTAAGGCTGAGCACGACGCTCTGTTAATGAGGAAGGGGAATC



TAAAAAATCAAAAGCTCAATTGGGATGATTACCAGTCGTTGAAATTC



ACCCAATGTGTCATACATGAAACACTTCGTGTGGGCAACTTTGGTCC



AGGAGTTTTCAGAGAAACAAAAGAGGACATTAAAACCAAAGGAGGCT



TTGTCATTCCAAGAGGATGGACAGTGTATGTGTTTCTGACAGGCACC



CATCTGGACGAGAAGTACCATTCTTCTGCACTCAAGTTTGACCCATG



GCGCTGGCAACCGCATCTGCAAGATCAAGAGCTCTTAAAGAACCCCT



CGTTTATGCCTTTTGGAGGAGGTGCCAGGCTCTGTCCAGGAATGCAT



CTGGCAAAGATGGAGCTGGCCCTCTTTCTTCATAACTTCGTCACCAA



ATTCAGATGGGAGGCACTGCAGGATGATAAGATCTCCTACTTTCCTT



TTCCTCGCTTGATCAAGGGCCTCCCAATCCGACTACGTCTTCGAGAG



TGACTAGACGATTAATGTAGGATTTAATTCATGCAGGCTGGAGTTAA



AAGAAAACTATATAGAATAAAATAATTGCCATGATGTGGACGCTAGT



TCCGATCTAAATAGCCTGGGTTTGTGTGAGTAGATTTCAGAGATATT



TATATTAGCTTTCCTTGTGTATCAAATCGTCGAGATTATCTTCCTCT



TTGACTTTTATCGAGGAAGACAAATCTATTATTTTATTATTAATAAT



TTTGAGGTTTATCAAAAAAAAAA





136
GGGGAATGATCGTTACGGCCAACATAAAGGAGGGAGTGGCATTAGCA



TTCAAACGGGTAGCAGTTGTTCTGTGAAGAAAAACATTGCAATGGCA



ATAATGGGGGAAACCCTTCATTCGTTGCTAGTGGGCCTGGTCTGTTT



TGCGCTGGGGATGTTACTGCTTGAGCTCTACAAATTAGTGTGGAGGG



TGGACAGTCGCAGCTATAAGTTGCCGCCCGGTTCTACAGGGTTGCCA



TTGATTGGAGAAACCATCAGTTTCTTCCGAGGCATTAATTCCACTGA



TCAACCACGACGGTACATTCAAGAACGAGAGAAAAGGTATGGGGAAA



TATTCAGATCAAATTTGTTTGGAAGATCTCGGATTGTTGTGTCCGTG



AATCCAGAGTTCAACAAACATGTCCTGCAGCACGAAGGCAGGCAGTT



TCAAGCCAACTATCCCAAACCTCTTCGAAATCTTATCGGCAAATTTG



GTTTACTTGCGGTGCACGGAGATCTCCAGAAGAAGCTCCACGGGACG



GCTGTAAATTTGCTGAGGTTCGAGAGGCTGAGTGTGGATTTCATGAC



GGACATACAGAACCTTCTGCACACAACCTTGCCCAAATGGCAAGCAA



AGAGGGATATCCATCTTCAAGAGGAGTGCCATCAGCTTGTTCTGAAT



TTGATGGCAAAACAATTGATGGACTTATCGCCTTCCAAGGAGACCGA



GGAGATTTGTGAGGCGTTTGGCCATTTCTCCGAAGCTCTCCTCGCCA



TTCCCCTCAGAATCCCGGGAACCGCGTATGCCAGAGGATTTAAGGCC



AGGGAATTTCTGATAAAAAGGATTTATGAGGGTATAGAAGACAGAAG



GAAGCATCCACAAGTTGTCCGTAATGACTTGTTAACAAAACTTTTGA



AGAAGACTCGTTTTCAGAAGAACTTATAGCAGATTTTATACTATTCC



TGCTCTTTGCTGGTCACGAGACCTCGTCCAGATCCATGTCATTCGCT



ATCAAATTTCTCACAGATTGTCCCAAAGCATATCAGGAATTGAAGGC



TGAGCACGACGCTCTGTTACAGAGAAAAGGGAATCGAAGAAACGGAA



ATCTCACTTGGGATGACTACCAGTCGATGAAATTCACCCAATGTATC



ATAAATGAAACACTTCGTCTCGGCAACTTTGCTCCAGGGGCTTTCAG



AGAAGCGAAGAAGACGTTAAACCAAAGGAGGCTTTGTGATTCCAAAA



GGATGGACGGTGTATGTGTTTCTGACGGGAACCCATCTTGACGAGAA



GTACCATTCTTCTGCTCTCACGTTTAACCCATGGCGTTGGCAGCAAC



TTCTTCAGATCAGAGCTCTCAAAGAACCCCTCGTTTATGCCTTTTGG



GGGAGGTGCCAGGCTCTGTCCCGGAATGCATCTGGCAAAGCTTGAGC



TGGCTCTCTTCCTTCATAACTTCGTCACCAAATTCAGGTGGGAGGCA



CTGCAGGATGAAAAGATCTCCTACTTTCCTTTTCCTCGCTTGATTAA



AGGCCTTCCAATCCGTCTACATCCTCAAGAGCGACTCGGCGATTAAT



CTCATTGAGATAGGATTTAATTCATGCAGCATAGATAGGATTTAATT



CATGCAGCATGGAGTGTTAAAAAGACTAGATTTACTTGAAGGATAGA



GCACTTGGCACCCTGCGGACACAAGTCCTAGGTTTAATCGCATATGT



TGGCGTGACTAGATTTGAACGCTATTAATATGGCTTTTCTTCTGTCT



GGATGTGTAGGGATTAGTCTTCACTTCCCCTCTGATTTTCATGGAGG



AAAACTACTGAAAGTGCTCAGTGACATTAATTACTTGTTTTTAATTT



TTTTAAAGTTTTGTTTGGTTTTGTGATCTAATAAGTTATTAAGATTA



CTTTTAAAATTTTGTATGGTTTTTAAGAGCTACAATGTTA





137
GCTACTTCCGAGGACGCGGACGAGGAGAAAGAAAAGAGTTTGGAGGT



CCCGGGGATTAATTTCTCTCCGCGCATCGAAAACGAATTTCGCCTGC



TTCTGCACAGATCCAGGTTCGAATCCTCGGGGCTTCAAAGAGGATTC



GGACGGACTGAAATGCGAGCAGGAGAACAGGAGCATCATCACACATA



TGGGAGGGACGGTAGTAGATAGCGTCCGTAGGTGGTATCAGCGTCGC



TGGAGTCATTCTTCAAGCGCTCACGAATCAGGAAAAGAGAAACAAAC



AGTTGATTCCCTCTCTTCTTCTTCGGTCTCTCCATTACCTGTGGAAA



CCAAGGCGGTGGAGGGCCGTGGCTTGAAGCCTGTGCGCGTGCAGTTG



AGAAGCAAAATGACCGGGCCCGATCGCTCCAGGAAAAGCTCGCTGGA



GACGGAGTTCTTCACCGAATATGGTGAAGCiAAACCGATACCAGATA



CAGGAGGTTGTTGGCAAGGGAAGCTATGGTGTAGTAAGTTCTGCGAT



TGATACTCATACTGACATTGTTGAGATTAAGCACATTATGCTTCCTC



CATCTCGACGGGAATTCAAAGATATATATGTTGTATTTGAGTTGATG



GAGTCTGATCTTCACCAAGTTATTAAAGCAAATGACGATCTCACACC



TGAACACTATCAGTTCTTTCTGTATCAGCTTCTTAGAGCTCTAAAGT



ACATTCATACAGCAAATGTATTTCATCGTGACTTGAAGCCAAAAAAC



ATTTTGGCAAATGCTGACTGCAAATTGAAAATATGTGACTTTGGGCT



TGCTCGTGTCTCCTTCAATGATGCTCCATCTGCCATTTTCTGGACGG



ATTATGTGGCAACCAGGTGGTATCGAGCCCCTGAGCTTTGCGGTTCT



TTCTTTACTAAGTACACTCCTGCCATTGATATCTGGAGCATAGGATG



CATATTTGCTGAAATGCTTACAGGAAAGGCATTGTTTCCTGGGAAGA



ATGTTGTACATCAACTGGATATCATGACTGATTTGCTTGGCACTCCG



TCAACAGAAACACTTTCTAGGATCCGCAATGAGAAGGCCAGAAGATA



CTTAAGTAACATGCGGAAAAAACAGCCAACACCCTTCTCACAGAAGT



TCCCAAATGTAGATCCACTTGCTCTTCGTCTGCTTGAGCGTATGCTT



GCATTTGATCCAAAAGACCGACCTACAGCAGAGGAAGCATTAGCTGA



TCCATATTTCAATGGTTTGGCAAAAGTTGAGCGTGAACCTTCAACGC



AGCCTATTTCAAAGCTGGAGTTTGAGTTTGAAAGGAGAAGATTAACA



AAGGATGATGTGAGAGAGCTTATATATCGAGAGATTTTAGAGTATCA



TCCTCAAATGCTACAGGAGTATCTATGTGGTGGCAACAATGCCACCT



TTATGTATCCAAGTGCTGTAGATATGTTCAAGAGACAATTTGCTCAT



CTAGAGGAACACTATAGTAAAGGTGAAAACAGCACACCCCTTGGGAG



GCAGCATGCCTCTTTACCAAGAGAGCGTGTCATTGAATTCAGAGAGA



ATCCTACAAAGCACAGCAAGGATTCTGAAAAACAACAAGAAAGAATC



ACTGCGTCTGTAACTAAGGCTACCCTTCAAAGTCCACCAAGAAATCA



GGGAATTGTGATTGATTCTGCAGTTTCACTATCTAATGGTCCAAGTA



GAGCAGTTCCAGATCCACGAAACCTAGTGAAGAGTGCTAGCATCAAT



GCTTCCAAGTGCACAGTTGTTGTCAATTCCTGTCAAAGAAGAAACTC



CACAATGAAACCTGGGGATGAGAAAAAGGAGGACTTGAGCAGTGAAT



CGAGTGCTGTCACATACAATACAGATTCAATGGTTGCTGGTTTGACA



AGTAAGATTGCTGCAATGTCCAGTGGAGTGGCACATTCATGAATACT



TCATTGTGTTCAATCATTCAGGGCAGTGGTTACTAACCTCTAACTGA



TTTGGTTACAACATATTCTGAAGTGTCCTAAGCCAAGCATAGACTGA



ATGGCTGCTGGCCTGGTAAAGAAGGTTACAGCGATACCTAGTGGTTT



GCCTTATTTTCATGAATATGTTAATGGTCATCTAATTTTTATATTGT



ATCGATTGTGACCTGTTTAAAAAATATATTTTACTTTAACTGGCTTC



TTTTGTGTAATCAATAATTAATCTGTCTCAGTCAAAAAAAAAA





138
GTGGCCTGCCTTCCCAAATTGTACAATCATTTTAAACCCAACATCCT



ACAAATAGGATCATTTGGAGCGTCATTTCACTCGGTTTTTCTCTTTC



AGTTTGAAGCGGTGGAGAAATGGTCTGTAGGCAAACTAACCATTTCT



GAAGAGCAGGCCTTAGAATTGTAGGGTAATTTGCAGTGGACAAGATG



GCTTACAGAGCAGATGATGACTATGATTATCTCTTCAAGGTGGTACT



GATTGGGGACTCTGGTGTGGGCAAGTCCAATCTGCTGTCGAGATTTA



CTAGGAATGAGTTCAGTTTGGAGTCCAAATCCACCATCGGAGTGGAG



TTCGCGACTCGGAGTATAACAGTCGATGATAAGGTCATAAAAGCTCA



GATTTGGGACACAGCTGGTCAAGAAAGATACCGGGCCATAACAAGTG



CATATTATCGAGGAGCAGTTGGTGCACTGTTAGTTTATGATGTAACT



AGACATGTAACCTTTGAGAACGTGGAGAGATGGCTTAAGGAGCTTAG



AGACCACACTGATGCCAATATTGTCATAATGCTTGTTGGTAACAAGG



CTGATTTGCGCCATCTTAGAGCTGTTTCTATAGAGGATGGAAAAGCA



TTTGCAGAACGAGAAAATACATATTTTATGGAAACATCAGCTTTGGA



ATCAACAAATGTTGAGAATGCATTCACAGAAGTACTTAGCCAGATTT



ACCGGATTGTGAGTAAGAAAGCTCTTGATGTTGGGGAAGACCCAGCA



GCGGTGCCCAGTAAAAGGGCAGACGATACATGTTGGCAATAAGGATG



ATGTGACAGCAATGAAGAAAGTTGGGTGTTGTTCTTTATAAGCCCAA



AGTGCAGTGCTCTAAAGTGTTGTCGTCTGAAGCTTTTGCTTCTAAAG



CGATTCTTTTTGAGGAATTGATTTAATGTCAAAAGAAGGATTGATGG



TTGCATGTCAGTTTTAAGAGACAAGCACCCTGCTATTGCTCTGTATG



ATTTATTAGTGAACCTTTGCTGCTCTTGGATGCCTCCAAAGCGCATT



GTTGTCATATAGCTTTTGTTGCTACTATACGTTTTAGCAAATATTTC



AATGATTTGTATTGTGGTTATTTTGGACAGATCATGTCAAAAAAAAA



AAAAAAAAAAAA





139
AAGTCTTAGTTGACTCCACCCACCCCTGGGCCAGCTTCGAATCTTTC



ATATGTGATAAATCAGGCGAGACTTACCATAAGTAAGCCTAAACGCA



TTTATATCAAAGTTTCACCTGAGAGTTCCCCAGTGGACACTTACTCA



AAATATGAGTTTATCAAAGTTCTACCTGTGGATTCTCCAATTCACCC



TTAATCAACCCATCCCAAAATAATTGGGAGTTTCTGAGTATCTAGGG



TGAGTGGGTGACTCCATTCATCTCTCTGACAGATGACAGATGAGGTT



AAGATGCTGTTGTTGGTGCTGCCGCTGCCATTAGCATTGGGTTTCGT



TGTGCTAGGCTGGAATCTGGATGTGGCCTTATTTTAATGAAGCCCCC



GTATCCCGATGGTCTTCACTCTCTCGGCCCCGCTGGGCATCCTTCAT



AAATATCTATGTTCGCTGTAACAAATTGCTCAGGCCTGTGACCAAGG



GGAAATGGAGCCCACGCCCAGCGCTCGTAATTAGCTCGAACTAAGAA



CCAAAGTGTGGACCATCTGACCATCCATCCATTCATTGCCTCTCCGG



CTCTGGAAGTTTGAGGGGGGCGAGATTTGTCCACTAGACCAACGTGG



ATTCGGGATAGGCTGTTGTTTTCGAGAGATCTGAAACAGCGGGGGCT



GCAGGAATGGAACTGGAGACCTCCTACTGAAGGCCAACAGTGCGAAG



GGGTTCGGAATGATGAAGAAGAGAGGGGATTCTTCGTCTTCATTCCC



AGACGAGGTGCTGGAGCACGTGTTGTTGTTCGTGGTTTCGATCAAGG



ACAGGAGCGCGGTTTCGCTGGTATGCAAGGCCTGGTACAGAGCCGAG



GCCTGGAGCCGCCGGAAGGTCTTCATTGGAAACTGTTATTCCGTCTC



GCCGGAGATCTTGGTGAGGCGCTTCCCAAAGATAACAGGCATAACTC



TCAAAGGAAAGCCGCGCTTCTCAGATTTCAACCTCGTTCCTCCCCAC



TGGGGGGCGGATATTCACCCCTGGCTCCTGGTCATACGCGGGGCCTA



TCCATGGCTCCGGGAGCTGAGGCTTAAGCGCATGATCGTCACGGATG



AAAGCCTTGAGCTCATAGCGCGTTCCTTCTCCGATTTCCGCGCTCTC



TCGCTCACCACTTGCGAAGGTTTCAGCACCGACGGCCTCGCAGTCAT



CGCAACTCATTGCAGGAACCTGCAAGAGTTGGACCTGCAGGAGAGTG



AGGTAGATGATCGAGGCGGTTACTGGCTGAGCTGTTTTCCAGAGAGC



TGTGTTTCACTAGTGTCACTGAATTTTGCTTGCTTGCAAAGTGAAGT



GAATTTTGATGCCCTTCAGAGGCTTGTGGCTAGATGTATTTCTTTGA



GGAGTTTGAAACTAAATAAAACTCTTTCTTTAGAACAATTGAAGCGG



CTTCTTGTAATAGCTCCTCAGCTGATGGAGCTGGGTACAGGTTCATT



TTTTCAAGAGCTCAGTGGTCCGCAATTTACTACAGATCTGGAAAATG



CTTTTAAGAACTGTAACAAACTTAGAACTTTGTCAGGGATGTGGGAA



GTAGCACCTCTGTATCTTCCTGCCTTGTATTCTGTGTGCTCAAACTT



GACATTTTTGAATTTAAGCTATGCGGCCAATATCCGAAGTATGGAGC



TGGGCCGTCTTGTTTCTCATTGTCCTCAACTCCGGCGGCTTTGGGTT



CTTGATACTGTTGGAGACAAGGGTCTGGAAACCGTATCATCAAACTG



TAAGAACTTGAGAGAATTGCGGGTTTTTCCATTGGATCCATTTGGCC



AGGATCGAGTTGGTGTCACAGAAAAAGGCATCCTTAAATATCTCAAG



GATGCCCTAATCTTAGTTATGTTTTGTATTTCTGTAGGCAAATGACA



AATGCAGCAATTATTGAAGTGGCTCAAAATTGCCCCAGGTTAACACA



TTTTCGCCTTTGTATAATGAATCCCTGCCAGCCAGATCATTTGACAG



ATGAACCTATGGACGAGGCTTTTGGAGCAATTGTAAAGATATGTAAG



GGATTACAACGATTGGCAATATCAGGTTTGCTTACTGATAAGGCTTT



TGAGTACATTGGTCTTTATGCAAAGAATCTAGAAACCTTGTCTGTGG



CCTTTGCTGGAAGTAGTGATTTGGGCATGGAATGTGTATTGCGGGGA



TGTCCAAAGCTTCGGAAGCTTGAGATAAGGGATAGTCCATTTGGCAA



TGCTGCCCTCCTATCAGGTCTTGAACAATATGAATCCATGCGTTCAT



TATGGATGTCTTCTTGCAAGGTTACGATGAGTGGTTGTAGATACCTT



GCTCAGAACAAGCCCAGGCTTAATGTGGAAATAATAAAGGAAAACGA



TGAAGATGACAATGATGCAGACAAATTATATGTCTATCGGACAATTG



CTGGGCCAAGAAGGGATGCTCCAAATTTTGTGCTCACCTTATGATCA



GATTCTTCTTTTCATCGTTATGGACAGTCTGGTTAGCTGCCTGGATT



ATCATGAAATGATTACAGGGAAGAATCATCTTGTATATATCTGTGAC



TTGCTCAACATGTAGGATGGGATACCTGCTGAATTGAGACACACCAT



TGTAAGGCAAGGCATCTGTCATTAGATGTGGATGACTGTTGGTTTTT



TCTCATTGGTGTGTACTATCCATTAAAGGTGGCACCACCAATTCGTC



AGATTTGAGTCCTTCGTTTATCGGACTCACAAGTTTCATTTCATAAT



AGGTCTAATCTTGGTTAACTTGTGAGTCCCTCGTGCCGAATTCGGCA



CGAGGACGGACTGTGCTGCTGGAAAACTCGTGTTTTCGTAAATGGTA



GGGAGCTCCATCAAAAAGACTTGGATTTGCTTGCTGGCAGAGGTCTA



CCAACCACAAAAGACAAGTATTACCACGTTGAGATCAGCGGAAGAGT



TGTGGATAAGGATACTAATAAAGAGCTGAAGAGTCTTGGCAAGCTTG



CACCAACGTAGGTCACCAGTTAATATGCATTCTTCTTTCAGAAATTC



AAGGAAGTAGAGCAAATTTTATTTTCCAGTATGTCAAATTTGGCTTT



GGGCTACCAGGTTTTTGTAAATTGATGTTTGAAAAGTTATACATGTT



TTTCAATGCATTTCCGGGCAATAACACTTCTCGTGCCGAATCGGCA





140
CATAACTACAAACCGTAACGCATGCCTGGAGCAGTGTCCATAACGTC



AGTACGGTCGTGAGCAGCAGGAAACTTTTTCCGTGCTCCTTCTCACA



TCTTCTTGTTTGCTTCGGGATTCGATATCCTGACCACTTTACTCATC



AGCCCGCTGAATTCTTCTCTAGACTTGCTCTTTTCCTGTCATTGAGG



GCCAACACAGCCAACGGCTTCGTTCAAAATCGGGCCACAAGAATGGT



CGATCACTCGCTCATTTACAGTTTTGTTTCGAGAGGGACGGTCATAT



TGGCCGAGTACACGGAATACTGGGAATTTTCCCACCATAGCTTTCCA



GTGCCTCCAGAAGCTCCCGGCCACCAGCAATAAGTTCACATTTGACT



GTCAACACCACACCTTTAATTATCTCGTTGAAGATGGATTTACATAT



TGTGTCGTGGCAGATGAATCAGCTGGAAGACAAGTACCGATGGCCTT



CCTGGAGCGCATTAAAGATGAGTTTAAGAAGACGTATAGTGATGGAA



GAGCTGAAGTAGCTATTGCCAACGGTCTTCACCAGGAATTTGGGCCA



AATTGAAAGAACACATGGACTATTGTGCACAGCATCCAGAACAGATC



AATAAGTTAGCCAAAACCAAGGCTCAGGTTGCAGAGGTCAAAGGCGT



TATGATGGACAATATTGAAAAGATCCTTGATCGTGGTGAGAAGATAG



AACTGATGGTTGATAAAACAGAGCAACTTCAATTCCAGGCTCAGGAT



TTTCAGAATCAGGGTGCTAAGATACGCAGGAAAATGTGGTTCCGGAA



TACAAAAGTCAAGCTAATTTGTCTTAGTTTCTTGCTTTTTGTAGTTC



TCATGATATGGATCTCTCTATGCCGTGGATTCAAATGCCATGTCTGA



ACTAATAAGTTTGTAGCTATCAACATGACTAAGCTTTAGTGAAGGGC



TATACAATGCATCTTTATTCTTCTATTGTTGTTCTCTCTACATGTAA



ATGGTGTTTGCTGGAAAGGTAATTCTTTTTCCTGTTTCTTCAGAGTA



AAAAAAAAA





141
CTGCAATGTCCGGTCTCATCCTTTTTCAATCAATTCCATTGCCATTT



CCCTCCCAAACCCAAAGCATAGGGTTTCCTTCATCTCGGCGGATCTC



GAGTTCAATCCCTTCTGCCCATGAATTTTTGCCTTTTTCGATCCCAT



AGTTGAAGCTCGACGCAGGACGAACAGATCGGGGCAATTAACATACT



TATTCATTCGGACTTTCATTCGCTTCAAACATCGGTGGTTCGAACGC



CGGGGCGTCTGGATATAGCAGCAAAAAGATTACGCAAAGGCAGCGGC



TCTCATGGCGATACTGTATGCCCTGGTAGCCCGTGGTTCCACAGTTT



TAGCGGAATTTGACGCGGCTCACGGCAATGCGAAAACCATAGCGCGT



CAAATTCTGGAGAAAATTCCAGGTACCGGGGACAGCCACGTCTCTTA



TTCGCAGGATCGCTATATTTTTCATGTCAAGAGGACTGATGGATTGA



CAGTTCTATGTATGGCTGACGATACAGCCGGAAGGAGGATTCCTTTT



GCATTTCTAGAGGATATTCATGGAAAATTTGTGAAGACTTATGGTCG



AGCTGTTCATACGGCACTTGCTTTTACTATGAATGATGAATTCTCAA



GAGTCCTGAGTCAGCAGATGGATATTATTCAAGTGATCCAAATGCAG



ACAAGATTAATCGTATACGAGGAGAAATGAGCCAGGTTCGCAATGTA



ATGGTGGAGAATATTGACAAAGTACTCGAGAGAGGTGACAGATTAGA



GTTGCTGGTAGATAAGACTGAAACGATACAAGGGAATACTTTCAAAT



TTAAGAAGCAAGCTCGTCGTTTCAAAAATACAATGTGGTGGAGAAAC



ATCAAACTCACGGTCGCAGTGATAGTCGTGCTTTTGATCGTCATCTA



TGTCATCCTCGCTATAGTTTGCAAAGGTGTTACACTACCGTCCTGCA



GAAAGTGAATCGAACCGTTTGAATTTGTGGTCAGTGTCGTGTGTATT



TTTAGAAGGCACAAAGGTTTTTATTTTGGGAGGCTATTGGTTAATAC



ATATAAAGGGTGGTAAAGCGCTGTTCATATTTTTCCTAGAAGTATTG



GTCATTTTCTGTGTAAATTAGATTCATTGCCGTCAAAGAAATGAAGA



TTATTTGGAACATGAGGAAACATATTTTTTTCCAGGCTTTGAGCACA



AGCATTACTCTTATGGTAATGACATGGCATGGAAGATTAACAAACAT



GATTTTTATTATCTATATTTATTCTGTTATCAGTTCAAGCACTCGGA



ATATTTGTTCATGAGCCTTTTTCATTTAGTTTGGAAGTGATCATTTG



TAACAGTTTTTTGACACTTTTGAATTGTTTTGTAAGATGTGCCCATC



TACTTTATCGGAAGAAGGGAGACACTCTTACTCATCTTTGGATATTT



TCAGTAATTTTTAATAATAGATCAGAGAGTTCAAGATGGATTAAAAA



AAAAA





142
GGAAGAACTTTGCGTTTCCCTGCATTTCTACTTGTACCCTTATTCAT



TCATTCAAGAAAAGAAAAGGGCAATGGCTGTAGTTGCTTCCAATTCT



CTACAACTGCAGCGTGAAGAGGAGGCAGAGACGATGATATCAGATCA



ACAGCAAGAAGCTGGGGCGGAGATAATGGCATCAGAAGAAGAGTCGA



TTATGGAACCAGAAAACCCGTCATTGTCTCATCCCAATATTGTGTCC



AGCTGCGGGATGAGGTTCCAAAAGTACCAGAGTGTTTGGATTGACGC



CAACTTAGTCCCCGCAGTGAATTTCATCCAAAACGAATTTCAACCAC



GCCCCGACGACATTTTTTTCGCTTCCCTTCCAAAGACTGGAACCACA



TGGGGTAAGGCGTTGCTGTATACCATCTTGGAATTTACTTCCACAGG



CAATAACCCTCCAGCAAGCCCGAATGGTAATTCTGCTGCGGATGAGA



AAAGATTTGGTGTGGATGAGAAAAATCCGCATGCTTTGGTCCCAACC



ATGGAAAACTTATCTCTTCAATTCAAGTGACAGCGAACAGTATGATA



TTTCCTGCTTCTCTGATTTTCCGTCTCCGCGTGTGCTCCACACACAT



TTGCCAATCCATACGCTGCCTCTTCTTGTGAGATCTTCTCCGACTTG



CAAGATAGTTTACATTGCCCGCAACCCCAGAGATTCCTTCGTTTCCC



TTTGGCAATTCTACGCCAGACTTCGCGGAGCGGGGTCTCATTATTTG



GACGGAGATCTCGGCAAGGAAACGGTGTTTGATGCATTTTGCTCTGG



CTTCTACTATGGCGGCCCCTTTGCCGAGAACGTTCTGAGTTACTGGC



ATGAAAGCAGGCGCAATCCGAATCAGGTGATGTTTGTGACGTACGAG



GACCTGCAGGCCGATTGCGTGGGATGGGTTAAAAGAATGGCTCTTTT



CTTGGGTTGCTCTTCTCCTCTTCTGGAAGACAACGCCCAGATAATTG



CAGAAAAGTGCAGTTTCGATACCCTCTGCAATCTGCAGGTGAACAGA



AAAGGAAAAGTGGGGACGCTTAAATACGGAATGAAAAACGCCTTCTT



CTTCCGCGAGGGCAAAGTGGGCGAGTGGAAGAAGCATTTTACGCCAC



AGATGGAGGAGCGTATTTATTTAGAGATCGAGCAGAAATTGAGCGAT



CAAGGCCTTCGTTTCACTAATAGCTTGTAGAAAGCCATTTCGTTTGT



GTTGAATTTATATTAGCTAGATAGCTATCAGGTCCTCGGATTCTGAA



ATCTTCCTGAACTCTACAGTTAAGATAAAGAAGTCACATCCATTTCC



ATCTACTTATTACTTTTATTGACCATCAGTTGCAGTGAAGTTCCTTA



GTGCAATAAAAAAAAAA





143
TTGGGTTCGGGGTCCTGTCCTGGACTGGGAATTTTTGTTTCACTCGT



TCTGCCCCGTCTGGATTGGGCTGCACTGAAATACATTGAACATTGGA



GTTGTCGAGCGCGAGATATGGGTCAGCAGTCCCTCATTTACAGCTTT



GTTGCAAGGGGCACGGTGGTCTTGGCCGAGTACACCCAATTCACGGG



CAATTTCACAACAATTGCCAATCAATGCCTTCAGAAGATTCCTGCCA



GCAATAATAAGTTCACCTACAATTGCGATCGTCACACATTCAATTAT



CTCGTCGAAGATGGTTACACATACTGTGTTGTTGCAGATGAATCAGT



TGGAAGACAACTACCAATTGCCTTTCTGGAGCGCATTAAGGATGACT



TCAAGAAACGATATGGTGGTGGAAAAGCTGACACAGCTGTTGCTCAC



AGCCTCAACAAAGACTTTGGACCAAAATTGAAAGATCATATGCAGTA



TTGTGTTGATCACCCAGAAGAGATTAACAAACTTGCAAAAGTGAAGG



CTCAGGTTTCTGAAGTTAAAGGCGTAATGATGGAGAATATTGAGAAG



GTCCTTGATCGGGGTGAAAAGATAGAACTTTTGGTTGACAAAACAGA



GAACCTTCGATTTCAGGCTCAAGACTTCCAGAAGCAGGGAACACAAC



TTCGCCGAAAAATGTGGTTTCAGAACATGAAAGTCAAACTGGTTGTT



CTTGGAATTGTCTTTGTGTTGATTCTTATAATCTGGCTCTCAATTTG



CCATGGATTTAAGTGCCATTAATCTTGATTACTTGGCAGTCCTTTCT



AGATACAATCCTTTCGAGGCATTTATATTCATTTTTTGGCAGCTTGG



CTTATAATAGATGCAGGCTCTCTTTGAAAAGAGTATCTTTTGTGTTG



TGTCTGAGTAATGTATTTCATTCACTTGGATACTCTCATCATTAGAT



ACTGATTATCTATGTTTTTCTCTGACGAGGGACAATGCCTCGACTCT



TCATAGTTTAGGTTATTGGCACTACCCATCAGCTGTGATGTCAATCT



CTTTTATAAATATGAATCCCTGCTTTTGGTTTTCAAAAAAAAAAAAA



AAAAAAAAAAAAAAAA





144
GCATATGCGAATAGCACATCAAATCGGGTTGCGACTGCCTGCCACGT



TCGATATCTCAGGCTCTTCGATGAAGCTGAGTGCCAGAATCAATTTA



ATAATCAATGAATAATAACAAGGGAAATTACTGTAGATTGCGAGACG



TTACAGTTTACTTAGGATGACCCCAATGATTTCTCATCTTTGCTTCA



ATTCAGTGTCGCAGAGGGTGCTCTTCCATGTCTGAAGAAAAATGTGA



ATGATGCTCTGCAATACAAAATTTTCTCGCATTGTGGACGCGTGGTA



AGTGCAAGAACGAGTGAAGGGGAGAAGGGGGGGTTTTGCCTGTAAGA



AAGGATCAGAGAGAGCAAGCATCCAGTAGCCATGGAAAACATGAGGA



AGAAGTTGGGGCCACTGTTCAACTCCGGGCAGAGTTTCCGTCCTGAC



ATCTCTGTTGATTCCTGTACTTCATATAAGGTAACAGCGGGTGGAAC



TTTACACTTGCTGAGTAATTCGTGTGGAGAATATAATATTAATGAAC



TTGGCTTACAAAAGCGCACTTCAGCAGGTATTGATGAATATGATACG



AATGAGAAAACATATCAGTGTGCTTCGCATGAGATGTGCATATTTGG



TGTCATTGGACGTGGTGCAAGCAGTGTTGTCCAAAAGGCTATTCATA



TACCAACTCATCGGATTTTAGCACTGAAGAAAATAAATACTTTTGAG



AAGGAAAAACGGCACCAGCTATTAAATGAGATTCGAACACTATGTGA



GGCACCACATGTGAAAGGCTTAGTGGAGTTTCATGGGGCTTTTTACA



CTCCTGCATCTGGACAAATCAGCATTGCTTTAGAATACATGGATGGA



GGCTCACTTAGAGATCTTGTGCAGTCAAAGAAGCGTATTCCTGAGCC



AATTCTTTCTGTTATTACACATGAAATTTTACATGGATTAATTTTTT



TACATCACGTGAGGCATCTGGTGCATAGGGACATAAAACCTGCTAAT



CTGCTTATAAACCTTAATGGAGAGCCAAAAATTACAGATTTTGGCAT



TAGTGTTGGTTTGGAGAACACCGTTGCAATGTGTGGCACATTTGTTG



GGACCGTCACATACATGTCACCAGAGAGAATTGGTAATGAATATTAT



TCATTCCCAGCAGATATCTGGAGCCTAGGACTTTCCATTTTTGAATG



TGGTACAGGAGAGTTCCCATACAATGCAAGCAAGGGCCCTGTGAATC



TCATGCTACAGGTCATAGATGATCCATCTCCCTCACCTTCACGAGAT



TGCTTTTCAGAGGAGTTTTGCTCATTTGTTGATGTCTGTCTACAGAA



GGATCCAACTGCAAGGCCTACAGCAGAACAGCTCTTATCACATCCCT



TTATTAAAAAATATGAAAATGCAGGAGTTGATCTGTCAGCATATGTA



CAAAGTATTTTTGATCCTATAGACCGTCTAAAGGATTTAGCTGATAT



GCTTACTGTACATTATTACATGCTTTTTGATGGCACCGATGATCAGT



GGCATCACATGAAAACTATGTACCGTGAGAATTCTGCTTTCAGCTAT



GCAAACCAGGTTGCAGCTGGAGCAAATGATATCTTTAATACTCTATC



ACGAATACATAGCATGTTGGTTGGTGATAGCCCTGATGAAAGGCTTG



TTCATGTAGTTGAAAATCTTCAATGCTGTGTATATGGGCAACATGGT



GTTGTGATCCGTGTATCTGGATCATTTGTTCTTGGAGGCCAGTTTAT



ACCAACTGGGGGTGGGGTGCAAGTTGAGGGGGTTTCACAAGGACCTT



TGTTGGACATAGCATCACAAAGAATGGGGACCTTTAATGAGCAATTC



ATCATGGAACCAGGAGAGCAGATTGGATGTTATTATATATATAAGCA



GGAGCTGTGCATCCAACAGTGAAAAAAATGCATACAACCAAATTGTC



TTTTTGCTTCCGTACAGTCTATATTCTCTGGTACAGGAGTGCTGTAA



AAAAGCAGCCCAAGAACAGGAAGCTTGTGAAGGGAGTTTCCATCATA



GCAGTTGTAGCAGGGGTTGGAAGATTCCTTGATGTTATAACTTGTAT



GCACCATGTATCACCATCAAAGAAAACCCACATCTGCCTTCAGATTG



ATTGACTGGGAAGTAAAACAGGCATGGGAGACAACTTACTGGAAGCA



GATGAACAGCTAATATTTCAGTGAAGATTTGCTCAAGAGATTATTAG



AGACTGATGAACTAATAACTCTAAACAGATCAATACATCACTGAAGT



TTGTGTTGCAACCCTCATGAAGATGGAGAATAGCCTATGCATATTTT



GATGCATCTATAGTTTACTAAATTTGGAATCTGTAGCTGTTGTGATG



GTGTTCTGATTAGAGTAGCTTTATGCAGCCTTGAGATAATTTTAAAT



GGCTGAGAGTTTTGTTGATAAAGAGGAAGAGTAATACTGTTGCCTCA



ATGACTGAATAAGGTAAAGAATTGTGATAGTTGGACAAAAAGGTTTG



GTAGTTTAAAGGCAAACACTTGCAGTTGTCATGGTATGGGCCTTCTT



AAAAGGTTGTTATCATGTCAGATGCCATTACTCGATGCTTTCTAATG



TTTGGTTAGTATAAAGATCTAAAAAAAAAA





145
AAACGCGGCCGATTTTACCGGACGGGCGAAATCACCATGATCGATAG



ACACAGTTCGAGGTGAATGGAAGCTTCGCCGTTGATCCAAGCCACCT



CCGTGGAGTGACGTGTATTGTCTTGACTTATAGCTGTACAAAAGAAG



AAGTATCGAGGAATCCGATAAATATAAAATTCAGGTTCAAATTCTCA



GGAAATAGCTTAAATTTCGCTTTCGATCGCTATCAGAGCCTTGAAAG



TTCAGAAAAGATTGAAACGCGGTCTTTTGGCAATTGAAGAAACGGAA



ATACTTCGGAAGGATTCGGTAATCCCGCACGTTTGACATTCTTAGGT



CAAGGCTTAAAGTTTTGTGGCTATGCATGGGGATAACTTGCTTTCAG



GTGATTGAAAATTGAAAATTTACTAAACTTTGATGGCTTTGTTTTGA



GGCTCGGCGAATTGATCTTTACGGTGCTTTATGTGAGAAATTCTGTG



GAAAAATCTGGTCTTCAGAGATCTTTAATGGTTTTTCCTGAAGAAAT



GATCATGCTCCAAAAGGATTCCACAGTTCTGCATTTCTTAGCTGAAG



CCTAACAGCTTTCCGGGTATGCATCGGAATATCTTGGTTTCATTTGC



TGAAAATTTTCAAAATTTACTGAAATTCGAAGGATTTGTTTTGAGGC



TCAGTGAGTTGATCTTAACGGTGTTCTTTGTGAGAAATTCTGTGGGA



CAAATTGGACTCGAGAGACATTTAATGGTTTTTGCTACAGAATTGTG



GAATTATCTCGTGTGACCTTAAAGGCTCTTGCGGTCTTCGTTCTTGC



ACGAATTTTGGCTAAAACTGCTGAAAGAAGTCCAGTTTCAACGCATT



TAAGAAAACTACTCAACATCGGTGAATTCAGTGGAGTCTTCCAATCG



AGGAGGCTGCAACAAGAAATTGTTCCTGCTGGGACTATTTATATCGG



CAAATTAACCGAAGTTGTGAGGATATGGAATTGGTTCGGAAATAGTT



CATTAGCGGGACAATTTGACAGGAATCATCAAGCTAAGCTTTTGCTT



GGAACGCTTATAAAATTTTCTGTTAAAGATCGGTCAATTTTGAACTC



CGGCAGATAAAGGTCTGGTTTGTGGTGTGGAGCGGAGGCGGCTGCTG



TTGCAGTTAAATCTAACGATCCGGTAATGGCCCAGACAGCCCAACCA



GCTTTAGATCCCAATATTCCCGGCGTTCTTACTCATGGAGGCCGGTT



TGTGCAGTATAATATTTATGGCAACATGTTTGAAGTTACCGCAAAAT



ATGTCCCTCCCCTATTTCCTATTGGACGAGGAGCATACGGTGTGGTC



TGCTCAGCACTGAATTCAGAAACCAATGAGCAAGTTGCATTAAAAAA



AATATCCAATGCCTTTGACAATTTAATAGATGCAAGGCGGACCCTAC



GAGAAATAAAACTGCTTCGACACATGCAGCATGAAAATGTTATTTCC



ATCAAGGACATAATGCTTCCCCCTCAACGAGAAGCTTTTGATGACGT



GTACATTGCATTGGAGTTAATGGATACTGATCTCCATCAAATTATCC



GTTCAAATCAGGCTTTAAGCGAGCAACATTGCCAGTACTTTTTGTAT



CAGATATTGCGAGGATTAAAATATATACATTCTGCAATGTCCTGCAT



AGGGACTTGAAGCCCAGCAATCTTCTTCTGAGTGCAAATTGTGATCT



CAAATAGCTGATTTTGGACTAGCCCGAACTACATCTGAAACTGACTT



CATGACAGAGTATGTGGTTACACGATGGTATAGAGCCCCAGAATTGT



TATTGAATTCACCAGATTATACTGCAGCTATTGATGTGTGGTCAGTA



GGTTGCATTTTCATGGAATTGATGAATAGGAAACCCTTATTTCCCGG



CAAAGATCATGTGCATCAGCTCCGTTTAATAACAGAGTTAACTGGTA



CCCCAACTGATGCTGATCTAGGTTTTATTCGGAGCGAAAATGCAAAA



CGACTTGTTCAGCTGTTGCCTCAACTTCCAAGACAATCATTAGCTGA



AAAGTTTCCACATGTACATCCTTCAGCTATAGACATTTGTGAAAGAA



TGTTAACATTTGATCCAACCAGAGAATTACAGTGGAGGAAGCATTAA



ATCATCCTTACCTGGGTAGTCTGCATGATGAAACTGATGAGCCTACC



TGTCCAGTTCCATTCAACTTTGACTTTGAGCAGTATGCATTGACAGA



AGAACAGATGAGAGAGCTGATATACATGGAGGCTCTTGCATTCAATC



CAACTTAGAAGACTGAGTGGTGGTCTTTTTTCTTGTTTCAGATTGCA



CAACTGGTTGTTTTGTTTGATATTAAGATAAATGTTTGATTTAAATT



TTGAGCTGTTATTCTCCAGTTGAGAAGCATGTTACCTTGCACAAAGG



AATCAATATATAAAACATAAATTTGATATTTGAACAGCAATATGCCA



GAACCTACTAAACTGGATGCTAAATGAGCCAGACGTTCCAAATAATA



GACAGTTAACTAACACCATTATTTAGTAAAAAAAAAA





146
GAAAGATGAGTGATCATCGGCCTGTGTCAAGGTGCCTAGAGAGGTAA



TGGGAATTGGAAATATTTATAATAGTAATGGTAATTGGAAATTGACA



GAGAGGACGCGTTAGGCTTTTAGGCAGCCATGAAGAGATGTGAGGGA



TGCTTCGAGGTCGGCAGGTTGGAGGCCCTAGGCGACGACATTCTGCT



GCAGGTTCTTGACAATATTACGAAACTCGAGACAGGAATTCATGGTC



TCTTGTCTGCAAACAGTTCTATCGACTCGAATCGGCCTACAAGAGGA



AAATCCGGTTGCTCAGAGGCGAAATGCTGCCAAGAATTCTCAAGAGA



TACCGAGCTGTAGAGCACCTGGACTTGTCCCTCTGCCCTCAGATCAG



CGATCAGTGCCTGGGGTTCGTGGCCGCAGCGGCTGGGTCTAGTCTGC



GCTCCATAGATCTTTCGAGGCTCGTCCGGTTTAGTCATCTGGGGCTC



TCCGTTCTGGCTAAGGGCTGCGAGAATCTGGTGGAGATTGATGTTTC



TTACTGCGCGAGATTTGGGGATATGGAGGCTGCTGCCGTTTCCAGTG



CCAAGAATCTGCAGACCCTGAAATTAGTGAGGTGCCAGATGGTTTCT



GACTTGGGTTTGAGCTTAATAGCCGTGGGGTGCAGGAAGCTCCAGAA



TTTGAATCTCAAATGGTGTGTGGGAGTTAGTGATTTGGGTGTTGAGC



TCGTGGCTATAAAGTGCAAAGAATTGAGGTCCCTGGATGTTTCTTAC



TTACAGATAACAAACAAATGTATTGCATCCATCACACAACTTTTTTA



CCTAGAAACTTTTGTATCAGTTGGTTGTGTCTGTATAGATGACGAAG



GCCTTGCTTTGCTCAAGAATGGTTGCAAATCATTGCAGAGGCTTGAT



GTTTCGAAATGTCAGAGTATGAGTTCGACTGGTATAATTTCCCTTGC



AAACGGATGTATAGCCTTGCAGCAACTAAACTTAGCCTATTGCATCC



CTGTCACAAATGCTCTTCTTGCGAGCTTCGACAAATATGACAGCCTG



CAATCCATACGATTTGATGGCTGTGAAATTTCTAGCTCAGGTTTGAA



GTCTATTGGGAAAAGCTGCAAGTCTCTGATGGAATTGAGCTTAAGCA



AGTGTACTGGGGTGACAGATGAAGGAATCTCTGCACTAGTGGGAGGC



TGTACAGGGTTGAAAATTCTAGATATCACCTGTTGCCGTGATCTCAC



TGATGTTGCTATCACAGCTGTTGCAACATCCTGTGGAAATCTTTCAT



GTCTTAAGATGGAATCCTGTGCCCTGGTCACTGAGAGAAGCTTATAT



ATGCTGGGAGATAGCTGCCCCTTTCTAGAAGTACTAGATCTCACCGA



TTGTAGTGTAAGCAATACAGGACTGAAATCCATTTCCAGGTGCACTG



GATTGACTACCTTGAAACTAGGCCTATGCGAAAATATATCCAATGAG



GGTTTAACCCATATTGCTGCTCACTGTTCAAACCTCCAAGAGATTGA



TTTATACAGGTCTGTGGGAATTGGTGATACTGGATTAGCAGCACTTG



CCAGTGGTTGTCCAAAGCTCAGAATGGTCAATCTCTCATATTGTATA



GGTATCACAGATCATGGGCTGAAATCTCTGGCCCAACTAGAAAAACT



TTACAACCTTGAGATTCGGGGTTGCTTCCTTGTAACATCTGCAGGGA



TTTCTGCCATTGCCTCGGGATGTAAGCGTCTGGTAGAGTTGGATATC



AAGAGGTGCTACCGTGTTGATGATATGGGAATGATGACTGTAGTTCA



ATGTTGCATAAACTTGAGACAGATAAATGTTTCATACTGTCCAATTT



CAGATGCTGCCTTTTTGGCATTGGTGAATCTTAGTTGCTTGCAAAAC



GTGAATCTAGTGCATCTCAGAAATGTTTCTTTGGATGCCTTTGCATA



TCTTTTGCTAGCTTGTGAGAGCCTAAAGAAAATCAAGCTTTTGAAAC



AATTAAAATCCTTACTTTCATCCAATTTAATTAGACATGTAGAATAA



AGGCTGCAGAATCCGATGGGTGGAGAAGCCTCTTTTTATTTAATTGT



AGAAAATAGCTAAACTTTGATCCATGAAGACCTCTTAATCCATGGTG



AGAGCATGAGGTCTAATAAGTTCGGAACCGTGTATTCATCATCTCAA



AATTGCAAAAGAATTTTCAAGTCCTGGTTTTTTGACCAGAAATTTTG



TAAGGTAAGTTCTTGTCTATATGAAACTTTTTATTAGGATATTTAAG



TTTCAATGGGTAATATTAAGTTTCAATGCTAAAACTTTTTATCAAAA



AAAAAA





147
GTCAAGGGTTCGATCTACGCTCGGACATCTTTGGCTCTGTTTCCCTC



AGATTTCAGTGATGGAGGCCGCAGCAGCTCCAGTTCAATCGACGGAC



ACGCTCATGTCCGACGCGCCGCAGGCCGCCGGGTCGAATCCCATGGA



CAGCATCCCTGCAGTACTCAGTCACGGTGGCCGCTTCGTGCAGTATA



ATATCTTTGGGAATATTTTTGAAGTCACAGCCAAGTACAAACCACCT



CTGCTGCCTATCGGGAAGGGGCTTACGGGATCGTCTGTTCTGCAATG



AACTCTGAGACAAAAGAGCAAGTTGCCATAAAAAAGATAGCCAATGC



CTTTGACAATCGCATAGATGCAAAAGCGAACTCTTCGGGAAATCAAG



TTGCTCCGACATATGGATCATGAAAATGTAGTTGCCATAAGAGACAT



AATACCTCCTCCACAAAGAGAAGCCTTTGATGATGTATACATTGCAT



ATGAGTTAATGGATACTGATCTCCATCAAATTATTCGCTCCAATCAA



GGCTTATCTGAGGAGCACTGTCAGTACTTTTTGTATCAGATTTTGCG



AGGATTGAAATATATACACTCTGCAAATGTCCTTCATAGGGACTTGA



AGCCCAGCAATCTTCTACTGAATGCAAATTGTGATCTGAAGATATGT



GATTTTGGGCTGGCTCGGATTACTTCTGAAACCGATTTCATGACCGA



ATATGTGGTTACCAGATGGTATAGAGCTCCAGAATTGCTGCTGAATT



CTGCAGATTATACTGCAGCCATTGATGTCTGGTCAGTAGGCTGTATT



TTCATGGAATTGATGAACAGACAACCCTTATTCCCTGGAAGGGATCA



TGTGCATCAGCTGCGTTTATTGACAGAGTTGATTGGCACACCAACTG



AGGCTGACCTTGGATTTGTTCGGAGTGATAATGCTAGAAGATTTATT



CGGCAACTGCCACAGTATCCGAGGCAGTCATTTACTCAAAAATTTCC



TCACGTGCATGCATTAGCAATTGATCTTTGTGAAAAAATGCTGACAT



TTGATCCAAATCAGAGGATCACAGTGGAAGAGGCACTTGCCCATCCG



TACCTGGCAAATCTACATGATATCAGTGATGAACCCATTTGTGCCAT



GCCATTCAGCTTTGATTTTGAGCAGCATACCTTAACAGAGGATCAGA



TGAAAGAGCTGATCTATAGAGAGGCTCTGGTTTTTAATCCAGAGTAT



GCACAGTAAAGTAACATTTTGTGCAGACAGTGGTTACAACTTTGAAA



ATTGGAAGCTGGGCTATTTTCTTGTTTGTAGCAGTCATAGTGTTATA



AATATTTATTGAGTTTTGGGAGCAATGTAAATATGTGTATTAAAACC



ACATTTGAGTCCAGGGCAAGTTGTAAGGGGGATAATGATTGAAGGGG



TGTAAAGCATTTATATTGGAGTATGTCAACCTGATATGCTACAACTT



GGTGAGATGCATTGTGCATGTATGAGTCACAGACCTGAACACTGCGG



TAAAACTGTATTATGCTTTATTCTTCTTTATCTTCAAACTTCAAGGG



GTTGTATGAAGATAATTTTTGTTAGAATATAAGTGAAGAAAAGTTGA



GTCTGGCAGTTTGCCACTTTTGTCTAATTCTCCTTTCAGATAAGTGA



TGAACTTGGACCTTTGGCTATTGTGTA





148
GTTGAAGAAGATAAAAAATGGCAAAGAAGCAGGCAGGGAAGAGCAAC



GATAGCACTGTGAATGACAGTGGAAGTGAAAATGAGACGAAGAAACC



CGCCGGTTCGAAGGAGGATGGGAGTATTCATTCTCCTCTGGTTGCAT



ACGCCTCCATTCTCAGCCTTCTCTCATGTACCCCTCCATTCGTCATA



TTCCTGTGGTATACAATGGTTCACTTGGATGGATCTGCATCTCAATT



TTGGGATTTATGCAAGGAGCAAGGTCTTCAGGGTTTCCTAAGAATCT



GGCCAAAACCAACTCTCATAGCATGGAAACTAATTGCATCATTTGCA



GCTTTTGAAGCAGCACTCCAACTACTTTTACCTGGTGAAAGAGTAAC



TGGACCTGTTTCTCCTGCAGGAAACATTCCAGTCTATAAGGCAAACG



GAGTGCTGGCTTACTTTGTCACATTGACAACTTATATTGCTATCTGG



TGGTTTGGCCTATTTAATCCTGCAATTGTCTATGACCACTTGGGAGA



GATCTTCTCAGCACTTATCATAGGCAGCTTTATCTTTTGCATCTTTT



TATATATTAAGGGACATGTTGCACCGTCTTCGACTGATTCAGGCTCC



TCTGGAAATGTAGTTATTGATTTCTATTGGGGTATGGAGCTTTATCC



TCGAATAGGTAAAAACTTTGACATCAAGGTCTTCACAAATTGTCGGT



TTGGAATGATGTCTTGGGCAGTTCTTGCAGTAACATACAGCATAAAA



CAGTATGAAGAGTATGGAAGAGTAGCGGATTCCATGTTAGTAAGCAG



TATATTGATGGTGGTGTATGTAACAAAGTTCTTCTTGTGGGAATCTG



GCTACTGGAACACCATGGATATAGCTCATGATCGAGCTGGATTTTAC



ATTTGTTGGGGATGTCTAGTTTGGGTTCCATCTGTATATACATCTCC



AGCAATGTATCTTGTGCGTCATCCCATTAGTTTGGGTCTTAAGCTGT



CACTGGGCATACTTATTGCTGGCATTGCATGCATATTCATCAACTAT



GATTGTGATAGGCAACGGCAATTATTCCGTAAAACAAATGGGAACTG



CTTGATCTGGGGCCGACCACCATCAAAGATAGAGGCTTGGTATGAAA



CCATGAGTGGGGAGAAGAAGTCGAGCCTTCTTTTGACGTCTGGCTGG



TGGAGTGTGTCACGACATTTTCACTATGTGCCCGAAATTCTTGCGGC



ATTTTTCTGGACTTTGCCAGGACTTTTCAATCATTTCCTTCCTTATT



TCTATGTCATCTTTTTGACAATCCTCCTATTTGATCGAGCTCAAAAG



AGATGACCAAGATGCCGAGCAAGTATGGCAAATACTGGGATATATAC



TGCAAGCAAGTTAAATACAATATTATTCCAGGAATTTATTGAGCAAT



TGGATAGTTTAGTTATGCTATGACTGGATTTCTCGGTCATTACTTAA



TGCAGCCTGTAGCTTAGTGGTAAGGCTGGTGACCACCGGCGTTCGTA



TGGCTTAATTGAGCATGTGAAAATATCGGAATCGGAAAAGCAGAATA



CATGTAGCAACATATATTTTCGAAAGCTCATCGAGCAGCTATAGAAA



CATTAATGCATGAAAGAGATCTAAATATTTAAAAAAAAAA





149
AAGATCAGTTCTGGTAGTAGCTCCAACAATGAAGTTCCCAGCTCCGG



CTAGGAATTTGTTGATAGTGTTGATAGTGTTTCTGGAGAGAATCCTT



ACCAGGTGTATGGTGAGTGATAGCTCAAATCATGAACCTCCAAGCTC



ATGTACTGCAACAAGGATCTCACCAGCTAGCTCTGGTATTATCAGTA



ACACAAAGCCAGCTGATTGCAGCTCGTTAGCTTCTTTGGATTTGCAT



GGGTCTATCTCCTTGCCTGGAACAGCAATTACAACCGAGGATTTTGG



AGGAATCTACCACCACAAGCCACTTGCCATTGTGCATCCTGCGTCTG



TGGAGGACATTGTGAAAAGTAGTTACAATGGTGAATGCTTCTCCTAA



TCTCACACTTGCAGCCATGGGAAATGGGCATTCCATAAATGGTCAGG



CCCAGGCCTTGAATGGGTTGGTTTTAGACATGAGGTCTCTCAAAGGA



ATTGAGATTTTCCAAGGAAGCCCAACGGAGGGTCCCTATGTCGATGC



CTGCGGAGACGAGCTGTGGATTGATGTCCTCAAGGCTACTCTTCGCG



TGGGCCTTGCTCCTCGTTCGTGGACTGATTATCTGCCTCTTTCTGTG



GGTGGGACACTCTCTAATGGCGGGGTTAGTGGCCAGACTTTTAAGTT



TGGCCCACAAATCTCCAATGTGTTGAATCTGCATGTTGTTTCAGGTA



AGGGAGAATCCATGACTTGTTATCCCGAGACGAATCAAGATCTCTTC



TATGGAGCTCTAGGAGGATTGGGGCAATTTGGTATTATCACCAAAGC



CAGAATAATGCTGCAGAGAGCTCCTCACATGGTGAGGTGGATAAGAG



CTGTATACGCAGATTTCGAGGAATTCAGAGCCGACCAAGAGCTGCTG



ATATCTTTACCAGAGGAGGGAACTTTTGACTATGTAGAAGGATTCGT



TTTGACAAACAACGATGACCCAATCAATGGCTGGCCCTCAGTACTAC



TCTCGCCCTCAAATTCTTCCTTTGACTTCAAGCTCATACCCCAGACT



GCAGGCCCAATGCTGTATTGCCTCGAGGTTGCCTTGCATTATGACCA



CGACGAAGATTTCGTCACTCTCAATAAGAGAATCGAGAGCATGCTAG



CCCCACTCAGATTCATCAAGGGATTGCATTTCAGCTTTGACTTGCCC



TACTTTGATTTCCTGAACCGGGTCCACGCTGCGGAAGTGGCAGCCAG



ATCGAGTGGAATATGGGATGCCCCCCACCCGTGGCTGAATCTCTTCG



TCCCCAAGTCCAAAATCTCAGCGTTTGATGCTAAAGTGTTTAGAGAG



ATTCTGAAAGATGGTGTGGGAGGACCCATCCTGGTATATCCAGTCAC



TAGAAACAAATGGGACTCTCGCATGTCTGCAATTATTCCAGAGGAGG



ACACTTTCTACTTAGTGGCTCTACTCCGTTTTAGTCCACCGTATCCA



AGTGGACCGCCAATTCAGAGCATTCTAGCACAGAATGAACAGATTCT



CCATTACTGTACAACTGCAGGCATTGACATGAAATTATATCTTCCCC



ATTATAAAACAGAATCTGATTGGAAAGACACTTTGGCAGGAAATGGC



AACAGTTCCTGCAAAGAAAAAGCAAGTATGATCCAAAGGCTATCCTC



GCTCCAGGACAGAGGATTTTTTCCAGGTCCACTGATTCAACAGCATT



CACACGCTTATACTCATCATCGTGAAGACCACTTTTGCCCACCAATA



TATTCCCAAAGATTCAATCAAGATTTCATTACCCTTTGTACAGTCCT



GAACCCCATCTTTTTAGCTTTACACAAACCATCCATTATTCGGTCCT



TGACTTTCTTTTTCTTGGGTCTGCGATTCAGACCTTTTCTCGTATGG



ATGGATGCTACATTCAAACGGGCATATTCCACATGACATTCTCTTGC



ATGGAGTTATCTTGTTGACTATGCTGCAACTGTTTTAAGGTGGGATG



ATGCTGTAACATCCATCACAGATTTCCAAGGAAGGTTATTTTGCAGG



CAAACTGAATTTTGGCAGCTGCTGGAAGATGCAGTCGTGAATGATGG



GAGGGATCAATGCAAATTAGTACCATTCGACAGCTGCCACCTGCCCA



TTGTTTGATTCCACGTGGCACAGAAGCAACCACATACTAGAAAATTG



GACATCTTTTTTGGTTTATTGTAATTACAACCAGGTTCATGGTTGTT



GGCTGCAAAAAAAAAA





150
GGAAGTAAAGAGCCTCGGGTAAAGCCTCACACCATGTCACCTTAAAA



CGCTGACAATTGGAAAGCGTCACTATTAACTATTCAGCGCTATAATC



AGCTCAATGACGTGGCAATGACACGTAAATTTCAATGACGTGGTTAG



TCACCATTCGGGTAACATCGAAGCAACAGTACTCCGTGGGTTCTCTC



AATCAAAGACATCATTCTCAAGCAATCTCGAAATCCCTGCATCCATA



CCTAAAACCGTCGCATAACATATATTGTCCCCGTAATTTGTCACAGT



GGATATCCGGATAATTTGTCTCCGAGTGTCGATTGATTTACAGCAAT



ATGATGATTTTAAGTCTGGAATTCGGCGTCAGTGGTTATGATCAGGA



ACGGGTGAGAAAACAGCCCGGAATTCTCAGGCGTTAGGGCAAAAAAA



TGGCGGGGGAATTGACCCAAGCGGAGAAAGAAACCCTTGCTGCCGTT



AATGTCGGGGCATCGGCATTATCGTTTGCAGGATCGGCTTTCATCGT



GCTCTGTTATGTGCTTTTCAGAGAGCTTCGCAAGTTTTCGTTCAAGC



TGATATTCTACTTAGCATTATCTGACATGTTTTGCAGCCTTTTCAAT



ATACTTGGGGATCCAGGAAAGGGATTCTTCTGCTATGCACAAGGCTA



TACAACACATTTCGTTTGTGTTGCATCTTTTCTTTGGACAACTACTA



TAGCTTTCACTCTCCATCGTACTGTTGTGAGACATAAAACTGATGTT



GAAGAGCTCGGAGCCATATTTCATTTGTATGTATGGGGAACTTCACT



TGTCATGACAATTATACCTTCGATTGGTGATGGCTATGGGCAAGCGG



GTGCTTGGTGCTTGGTTAAAACAACATCAAGGGCTACAAAGGTCCTC



CAATTTATTACTTTCTATGCTCCTCTATGGGGAGCAATTCTATTCAA



CGGTTTCACATACTTTCAAGTTAGTCGCATGCTTAACAATGCCACTC



AGATGGCAGCAGGCATGTCAGATCGGCAACAACAAACCGATTCAAGG



GTTGATATGAAGGCAATGAACCGATGGGGCTATTACCCATTGATATT



GATAGGTTCTTGGACATTTGCCACTGTCAATCGTATACATGATTTTA



TTGAACCACAAGAAAAGGTTTTTTGGCTTTCTTTTCTTGATGTTGGA



ACAGCAGCCTTGATGGGCTTGTTTAATTCAATTGCATATGGGCTAAA



TGCTTCAGTACGACGCACTCTTCAACAGAAAATTGATTTGTGGTGGC



CAGAATGGTTTAGAAAGTGGCTACCTGGATTTATAATGCTGAGGGAT



CAGGCACATGAAAGTGAAATGATCTCACTTAAAATTCCAGTTGAACA



GTGATATCGTGTATTGTGTCTAGCTTTTACAGTATTAGGTCTCAACT



TATTTTCAAGAAATTACAATCAATCCTTTTGGGAATTCGCTAAGGTT



CAGCAGGTGCATCAAGATCAGATGATTCTAATTCATCCTTCACTTGT



TGAATTTCATCCATTTGTTTCCAGTCCCCTACGCTGACCTGAATGTA



AATGGAAGCCTCTCTATATATTTTAGAGTGTAGACTTTCATCTCTGC



AGTGTCCAAGTGTTACAGCTTATTATTTTGAAGTGAGTAACACCTAG



ACATGACATTGTACAACTTAAAGAACAATAGAAATTTGCTCTATAAT



TGAAGGCAAAAAAAAAA





151
CGCACGAGGATTTTGTGTGACTTTATTTCTGAACTCTGTGAGGAGTC



ACTATTTTCAATGTAAAGAGGTGGAGTCCAAAATCCATTTTTAATTT



TTCCCATAATAATAGTTTAGCCAGATATCATCTGTCGGATGTATTTT



TCCAAAAGCAAGAACTGAACCACTAAATGATTTTTTTTTTTCATGAA



ACGCTGCTATGAAAATGGTTTCAGTGATCCTTTTTAATTTATACTTG



GCTTGGTAATGTATTCAGGGTTTCCCCATTATATTTTGTGTTTGTTG



GAGGTTTTTCCGGTTCAACATTTAAAAAAAAAAACTGCACACTAATT



TAATGAAACCCGATACTTTTTGGTTCTGGAGACGTTCATAATGCACT



GTATGCTTTACAATACACAGCCATTCATACCCAGGGATCTCTTTATA



TTGATTCACACTCTTATACCTCCATGCCCTCTTACCCATATGGTAGG



TTGTTGGGAATAAAAACTTAACGGTCCCATTCTGGCCTCTCACTATC



ATACCCAGTGAAAAATATATATCAGAGAGGGCACCCAATAGATAGAT



TGAGAGGATCATGGCATACAAAGCAGATGATGACTATGACTACCTGT



TCAAAGTGGTGTTGATAGGAGATTCAGGTGTTGGCAAGTCAAATCTG



CTGTCCCGATTTACCAGGAACGAGTTCAGCTTGGAGTCCAAGTCGAC



TATTGGTGTGGAATTTGCAACTCGCAGCATCATTGTGGATGGGAAAA



CGATCAAAGCCCAGATATGGGACACTGCAGGCCAAGAGAGGTACAGA



GCCATCACAAGTGCATACTATCGGGGGGCTGTGGGTGCTTTATTGGT



GTATGATATAACTCGGCACACTACTTTTGAAAGTGTGGAGAGATGGC



TGAAGGAGCTTCAGGACCATACAGATAACAACATTGTTGTAATGCTC



GTGGGTAATAAAGCTGACCTACGCCATTTGAGGGCTGTTTCCACTGA



AGATAGCCAAGCCTTAGCTGAGAGAGAATCTCTCTATTTCATGGAGA



CATCGGCTTTGGAATCGACAAATGTTGAGAATGCTTTCACGCAGGTT



CTCACTCAAATCTATAGAATTGTTGTCAAGAAGGCTCTTGATGTTAG



TGAGGAGCCTTCTGCCCTTCCGCCACAAGGACAAGCAATAAATATCA



AGGATGATGTTACAGCTACCAAGAAGCCAATGTGCTGTAATTTCTAG



CAGGCAGAGGCAAGTTGTTAGATGATGCGGATATTTGAGCAGATTCT



TTACAGTTGTAGTTGTTTGCACGAATTGTTGAGTAACTTCTTTACTC



ATTTGAGGGTTTCTCAGTTCTGATGACATATTTGGAGTCACATGAAT



GCTCTATTGGCTGAGTTGACAAAATTAATTTCATCGGGTGTCTAGAA



TAGAATCAAGGAACATAAATTTGTAACTTATGATGAGTGATTTCAGC



GATAAAAAAAAAAAAAAAAAAA





152
CAAATTTCAAGAAAAGGTTACTGTTTTCGCTTCCCAGGACGGACGGG



CGGTCGGTCTGCAACACGCTTTAGAGTTTCAACTGAGATGCTTTCAC



ACCCTTAATCCATGAATTGCTTCACTTCCCTTCATTCCGCCATTCGT



AGAGGTGCCTCGTTATATCTTGACGTTTTTCATTCAGGTTTTATGAG



CTCAAGAAAGGGAAGAACCCATTCATTTTCTCTTGTAAGCAGCGGGC



GAAGGCGGGATTGGGGTTTTTGTGTTAAAGGCATGCCGGGCAAGGGT



TTTGTTAGGGACACGTACTTGACTGCTGCCTTGCAACACCTCGCATG



CGATGACTCAGGGAATTAGAGCTTCTTGGTATTGCACTTGGGCAGAG



CAAGGAGCATTCGACTACCTTTGCTGAAACAACTTCGTTGTGAGACA



AGCTTTGCAGTGATTGTATTCTATCTGATTTTGGACATGCTATGGCC



TCTTGATGCACTGCATTGAATGTTGTTTCATGGGACATTGGGTTTTT



ACACATTCTCGTGTAGGAATGCGGAAGCAAGAGTAACTGATTACTAA



AATCTCATCAAGATGGAGTCATGTAACTGCATAGATCCGCCATGGTC



AGCAGATGATCTGCTAACAAAATATCAATACATATCGGACTTCTTTA



TTGCACTTGCATATTTTTCTATTCCACTTGAACTCATCTATTTTGTG



AAAAAGTCAGCAGTTTTTCCTTACAGATGGGTGTTAGTTCAATTTGG



TGCATTTATTGTGCTTTGTGGAGCAACACACATGATAAACCTCTGGA



CTTTTCATGTGCACACAAAAGCAGTTGCAATGGTTATGACTATATCT



AAAATATTGACTGCCGTTGTATCCTGTGCAACGGCTCTCATGCTTGT



ACATATCATACCAGATTTGTTGAGTGTAAGACCCGAGAACTGTTTTT



GAAAAATAAGGCAGCAGAGCTTGATAGGGAAATGGGTATAATACGGA



CACAGGAAGAAACTGGAAGGCATGTGAGGATGCTGACTCATGAAATC



AGAAGTACCTTGGACAGGCATACAATTTTGAACACCACCCTTGTTGA



ACTGGGGAGAACTTTAGCTTTGGAGGAATGTGCTTTGTGGATGCCGA



CTCGAACTGGTTTGGAGCTTCAGCTATCCCACACTCTTCGACAGCAA



AATCCTATGACTTTTACCGTACCCATTCAACATCCTAGCATCAACCA



AGTATTCAGTACAAATCGAGCAGTGATGATTTCTCCAAATAGTCCAG



TAGCAATGATTCGACCACGGACAGGCAAGTACATGATTGGAGATGTG



GTTGCAGTTCGTGTGCCCCTTCTGCATCTCTCAAACTTCCAGATTAA



TGATTGGCCAGAACCCTCAAAGAGATGGTATGCACTTATGGTCCTTA



TGCTGCCCTCTGATAGTGCTCGCAGATGGCATGTTCATGAGTTGGAG



CTTGTGGAGGTTGTTGCAGATCAGGTAGCGGTGGCTCTCTCACATGC



GGCAATTTTGGAAGAATCAATGAGAGCACGAGACCTGCTCATGGAGC



AAAATGTTGCACTTGAGATAGCTCGACAGGAGGCAGAAACAGCTATT



CGCGCTCGCAATGATTTCTTAGCAGTTATGAACCATGAGATGCGTAC



TCCGATGCATGCAATTATTGCTTTGTCATCGCTTCTTCAGGAGACAG



AGTTGACTCCTGAACAACGATCCATGGTTGAGACCATCTTAAGGAGT



AGTAATCTCCTTGCAACACTCATCAATGATGTTTTAGATCTTTCAAA



GCTCGAGGACGGGAGCTTGGAGCTAAACATTCGGATATTTAATCTCC



GCAGTATGTTTCGTGAGGTTCACAATTTGGTAAGCCAATTGCATCTG



TGAAGAAGTTGTGTGTATCAATGAATCTCGCTTCAGACCTGCCAGAA



TACGCTGCCGGTGATGATAAACGTCTTATGCAAACTGTTTTAAATGT



GTTAGGGAATGCTGTGAAGTTTTCTAAAGAAGGTAGTGTTTCAGTGA



CGGTTTTATTAGAGAGGCCAGAATGCTTGCGAGATCCACGTGCCGAA



TTTTACCCAGTGCAGGGTGATCGCCATTTCTATTTGAGAGTGCAGGT



AAAGGACACTGGTGCTGGAATCAATCCTCCGGATATTCCAAAGCTTT



TTAGCAAATTTGTGCACTCTGACACAATGACAACCAGGAATTATGGT



GGCACTGGTCTTGGACTAGCTATTTGTAAGAGGTTTGTGAACCTTAT



GGAGGGTCATATTTGGCTTGAGAGCGAGGGATTAGGAAAGGGCTCAA



CTTGCATATTTATTGTTAAGCTTGGGATTCCAGATCCTATACATGAA



ATGGAGCATCAGTATGTGTTTCCCATTCCATCAAATTCTACCCGTAA



AGATTTTCCTGGGCTGAAAGTTCTGGTGACAGATGATAATGGGGTGA



ACCGGATGGTTACAAGGAGCCTTCTTGCTCGTTTAGGGTGTGATGTG



ACAGTGGTGGATTCTGGTCATGAGTGCTTGCAAGCAATGTCACAGGC



TGGGCAGAATTTCAAGGTATTATTTCTTGACGTATGCATGCCGGGTA



TGGATGGTTATGAAGTGGCCATTCACATTCAGGAGATGTTTCCTAAT



CGGCATGAAAGACCATTACTTGTGGCTCTTACCGGAAGTGCTGACAA



AGCAACCAAGGAAAAGTGCATAAAGATTGGAATGGATGGCGTGTTAT



TGAAACCAGTGTCTCTTGAAAAAATGCGTAGTGTACTAGTTGATCTC



TTGGAACACGGGTCAGTATGTGACAGTATACAGAGGTTATGACCGTG



TCTAAAAAGTGGAAGTTGGTACACGTAATGCTGTGCCATTGATCTTA



TGGATCTGACAAACAATGCACTGATTTATTCGTATGAGACCAAAAAT



CTCTGCAATCAATTTAACACAACAAAGTTTTGAGATTTACTAGATGC



CAAATTTAGTGATTTGCTAGCTCAGTAGTGAGCATATTTGGTCTTCT



TCGAGTTGATGTACACTTCCCAGCATCCTTTACATTGGCTAGTTGCT



GATAACTGTGGGCTATTCTGCTTTGTCAGCAGTTACAAGAACTGTTC



AACCTTCTAGCAAATCTGTTGCCCTAAAATATTGCACTGTCTTTGAA



GTGCCACGCATGACATATGGAACTGTACAGTATAGTGGCTATATGCG



ACCTGAATGA





153
CGAAATCTTCTCCCCGCCTGTCAAGTAACGGACGTGGGCGTCCATGT



AAAGAGCAGAAGAAATGATGGCGATTCGGCTTTGATCAGAGAGGTCC



CTATTGCTCAAATTTATCCCGCTGCGCCGACCCAATTCTTTGAAAAT



AAAAAATGTCGTTTCGAAAGCGCGCCCTGTTCAAGGTTATTGTTCTC



GGTGACAGCGGGGTTGGAAAAACATCTTTGGTGACTCAGTATGTACA



TAAGAGATTTAGTAGCCAGTACAAAGCGACTATTGGTGCGGACTTTA



TGTCAAAGGAACTTCAGGTTGATGACAGACTTGTAACATTGCAGATA



TGGGACACTGCTGGGCAGGAGAGATTCCAGAGCCTGGGTGTTGCTTT



CTACAGAGGTGCGGACTGCTGTGTACTTGTGTATGATGTAAATGTGC



TCAAGTCATTTGACAAACCTGGAAAATTGGCACAAGGAGTTTCTGAA



TCAGGCCAGCCCAACAGAACCGGACACTTTTCCATTTATGTTGCTGG



GCAACAAAATTGATGTGGATGGGGGAAACAGTAGAGTGGTTTCTGAG



CTCAAAGCTAATGACATGGTGTAAATCGAAAGGTATCCCCTATTTTG



AAACATCAGCTAAAGATGATTACCGCATTGATGCAGCATTCTTATCC



ATAGCCAGATCTGCACTTAAGAATCAACCTGAACAGGAAATCTATTT



TTTAGGCCTTCCTGAGGCTCTTCCTGAATCAGAGCCGCCATCACGCA



GCTTTTGTGGATGCTAATGTCAGTGCAGGAGTATTGTCTTTTACATT



GATAAACAATTTTATAGGCATCTTCTTCTTATTCCCAATGGGAAATT



TTTGGGCATTAACGGGTTGGTAGATTGTGTCTCAGTGAATAAGACCA



CCAAAATCATGACAGATGATCCAAGGTATCTCGTCATGTCCTTAAGA



GCTTGGTTTCTCTTTCTATCCCAGTTTTTGTTCTTGGCCATTCGGTT



T





154
GCGGTACATATATACACAGATACAACTAGATACCCTCTGAAGATTTT



TGGGGTAATCTGCGATCATTTTCGTCCGGGAATTTTTTTGTTTGTTT



TTAATTTTTGTGGGCTTTGATGCATTTGAAGGTACGTAGGACGTTTT



AGTTTTTCCCTGTAGCTCCAAAATCGGCCATGGGGTCTGAAATCTAA



GCGCTGTATGCATGAGGCATATTTGTTATTATTAGGATTGCAATTAT



TATTATGGTGGTGAGAAGGATGAGCTCGTTCCCTGATGAACTGCTGG



AGCACGTATTGGCATTCCTGTCGTCGCACAGGGACAGGAACGCGGTT



TCCCTGGTCTGCAAGTCGTGGTTTCGAATCGAGGCGGGCAGCAGGCA



GCGGGTTTTCATCGGAAATTGCTACGCGGTGAGCCCCGCTATACTCA



TCAGGAGGTTCCCAAGGATAAAGTCCGTTGCGCTCAAGGGGAAGCCC



CATTTTGCGGACTTTAACATGGTGCCCCCTGGCTGGGGCGCTGATAT



CCATCCCTGGCTGGCCGCCATGGCGGAGGCGTACCCTTGGCTGGAAG



AACTCAGGCTTAAGCGCATGGTGATCACTGACGAGAGCCTTCAGCTC



CTCGCGCGTTCTTTTCCCAATTTCAAGGTTCTCGTGCTTACCAGTTG



CGACGGCTTCAGCACGGATGGGCTCGCTGCCATTGCTGCGCACTGCA



GGCATATTACAGAGCTAGATTTGCAGGAGAGTGACATTGATGATCGT



GGTGGCAATTGGCTAAGTTGTTTTCCGGACTCATGCACATCGCTTGT



TTCCTTAAACTTTGCATGTCTGACTAAGGAGGTGAACTTTGAAGCAC



TTGAGAGATTAGTAGCAAGATGTACTTCTCTGAGGAGTTTGAAATTG



AATCGTTTGGTGCCATTAGAGCTACTACATCGCCTTTTGGTTCGTGC



CCCACATCTGGAGGATTTGGGTACAGGTGCATTCCTTCACGAGCCAC



GCACTGAACAATATTCCAAGCTTAAGGTTGCCTTACAGAATTGCAAG



CGACTTCAAAGCTTATCTGGTTTTTGGGAGGTTGCACCTGGTTATCT



TCCCTTGGTTGAGTCCCTCTGTTCAAATTTGACTAGTCTGAACTTGA



GTTATGCAACAATTCAAAGTGCAGAACTTACCAACCTCCTTGGTCAC



TGCCACAAACTACAGCGCTTATGGGTGTTGGATTATATTGAAGATAA



AGGGCTTGAAGTGGTTGCCTCAACCTGCAAAGATTTGCAGGAACTGC



GTGTTTTCCCGTTAGACCCTTATGGTCAAGGAGCCGTGACAGAGGAA



GGCCTTGTGACTATTTCAAGGGGCTGTCCTAAGTTGACCTCTGTACT



ATATTTTTGTTGTCAAATGACAAATGCAGCTTTGATTACTGTTGCAA



GAAATAGCCCTCTTCTCACCTGTTTCCGCTTATGTATATTTGATCCC



ACAAGCCCAGATCATTTGACAAAGCAACCCCTGGATGAAGGGTTTGG



AACAGTTGTTCAGTCTTGCAAAAGTTTACGGCGTTTATCTATGTCTG



GCTTGCTTACAGACAAGGTCTTTCAGGTGATTGGTACTTATGGCAAG



TGTTTGGAGATGCTTTCTGTTGCTTTTGCTGGTGATAGTGATTTTGG



GATGCAATGTGTACTATCAGGCTGTATAAATCTCCGTAAGCTTGAGG



TAAGGGACAGCCCATTTGGTGATTTAGCTCTTTTAGCAGGTTCAGAA



AAGTATGAATCAATGCGATCCCTTTGGATGTCATCCTGCTCTGTTAC



CGTGCATGGTTGCAAGGAATTGGCTGCAAAAAATGCGTAACTTGAAT



GTTGAAGTTATCCATGACAGGGATCAGTTTGAAGATATAAGTACCAT



GACTCAACCCGTAGATGGACTCTATGTGTACCGGTCAGTTGCTGGAC



ATCGGAAGGATACACCACATTTCATATACACTATGTAAGTGGTCATG



TCATTTCTCATGTACCATGAATGAAGCTGGCATGTTCTTGCTAAAGC



AGCAGAGTACCAAGCATGGATGGGATTTTCCTCTCATACACCATGGA



TTATGCCAGAAAATTCTTGTGATACTGACACTTTCACCTTCCATCGC



AAAATTTGTATGCCTTGTACAGACAAATTTCAGCATTCAAATACTGT



TTGGCATAGAGTTATTACTGTCATTTCAGCACTATGCGGCAGTATCC



TCTAATCTAGGACTGTTCGATTGATCGTTGGACTCCCTTAATTATGC



TACAGATTATTTAAATGCAGCAAATGAACAGCCTGGCAGATTCCTAG



TCTGGAATTAGGCAGTAAATAGTTATTTAATTATATAGGCATACAGT



GTGATTTCGTTTCATTTTTTAGAGAACCCTTCCGGTTACCGCTATTT



AAGACTGCCATGTTCAGAAAATCTTATTTGATTGAAGAGAAGACAAC



ATTCTCTGCACTATTTCTTTCTAAAAAAAAAA





155
AAATCACATAAAAACAGGGAGATTCGAAAGACGGTTTTCCTGTTGTC



GGCACCATTGGAAAATTGAGCCAGGGTTCGAACAAGGGTTTGCAGGT



TTCTCATCTCTTTAAGAGCCGTTTGATACAAGACTTCGCCAATTTAA



ACAGCAGATCTCTGGAGCTTTCAGGCCCGGAATTGTCCCAGCAACTC



GTGCTCTGCGTAATGAAAAATGAGGAACCTTCTCCTAGATCAATGAG



GAGAGACGACGCCAGGCCATAATTTGGCAATACATTCGACATAGTTT



ACAGTATATTACCAGTTCCATCGATTCCAGAATTTATATTTTGACAA



AATCAAGAACTAACTCCCAAAGGCAATTGCATGGTTTGATTCTGGGA



TAGTAGTTCTCCAACTCCATCTGGACTGAACACTAAATATAACCACG



TCAAAAGTCATGGCACAGCAATCCTTAATATACAGTTTTGTGGCCAG



GGGAAACATTGTACTTGCAGAGCATACATCATTTTCGGGGAATTTTA



GTATTATTGCTGTCCAGTGCCTGCAAAAGCTGCCCTCAAACAGCAAC



AAGTTCACATACACATGTGATAACCACACATTCAATTACCTCGTGGA



TGATGGATTTGTGTTTCTTGTTGTTGCAGATGAAGCTGCAGGAAGGC



AGGTGCCTTTTATTTTCTTGGAGAGAGTAAAGGAAGATTTTAAGCGG



CGTTATGGAGGAAGGGCTGAGACAAGCATGGCGCACAGCCTTGATAA



GGACTACGGGCCAATACTGAGAGACCACATGCAATATTGCATGGACC



ATCCAGAGGAACTAAGCAAGTTTTTTAAATAAAGGCTCAGGTTTCAG



AAGTGAAAGGAATTATGATGGACAATATTGAGAAGGTTCTGGACCGA



GGTGAAAAGATCGAACTTCTTGTAGATAAGACAGAAGGCTTGCAATT



TCAGGCTGATAATTTCCAGCGCCAAGGAAGACAGCTTCGACGGAAGA



TGTGGCTCCAAAATTTAAAATTCAAATTGATTGTGTTGGGTATCGTA



CTAGTTATTATGCTTATAATATGGTTGTCCATTTGTAAGGGATTTAG



TTGCCATTGACATCTAAGTGGTTTTATGTACATATAAGAAACTGGCA



TGTTTATGAGTGGAACAACTTTTTGTATATCATGAAGGTGAATAAGA



ATTAAGAACACAACGAGCTAAATGAATTGATAGGGGAGGAAATGCTC



ATATTGAGTCACATTTGATGTAAAAAAAAAA





156
GAGATTCTGAGTCAGGTTCAATACTAAATCATTTCTGTACGAGCGAG



TTATGTGTGGTTTGCGGAAAATGACAGAAGATTAGAAAACGAAAGAG



CAGATTTCAATGACTGGACGACGAGGAAAAGGAGATAAACAACGTCA



CACAAAATGAAAATGTGGAGGGGATGGCATTTTACTGGGTGAGGTCT



CCCACAAGGAGAATTGTAGCAGCTCTTCTTCTGGGGGGCGGAATTGG



GTGTTTTGTGTGGGGTGCTCACCTCTCCTACCAAAACGTGGCTCCCC



AACAGGCTCGCATACAGAAGCGCAACGAGTTCATCCGAAAACGCCTG



CAGGCGCGACGATCGGGCAACTAGCCTAACGACCGACTAATGTTTGA



TTCCAACTAGCCTACGGTGAATAGAATCGTCGTAATTATCGTCATCA



TCAGCAGCAATGTCTATTATAAGCATCCCCGAAGTGGAAGTTGAAAT



GGGCTCGGCATCGCCTAACGCCAGGACTCTTCGAGCCACTGTTGTTC



AGGCCTCCACTGTCTTCTACGACACCCCTGCTACTCTCGATAAAGCA



GAAAGATTGATAGCAGAAGGTGCTGCTTATGGGTCACAGTTGCTTGT



GTTTCCTGAAGCTTTTATTGGTGGCTATCCTCGAGGTTCTAATTTTG



GTGCTGTAATTGGAAATCGCACTTTTAAGGGTCGGGAGGAGTTTCGT



AAATACCATGCTTCTGCTATTGATGTGCCAGGTCCAGAAGTAGAGAG



GATATCAGCTGCAGCTGCAAAATATAAAGTGCATGTAATAATGGGTG



TGATAGAGCGAGCAGGCTTCACACTGTATTGCACTGTTCTTTTCTTT



GATTCTCAAGGAAGATTCCTAGGGAAGCACCGTAAACTGATGCCAAC



ATCTTTGGAGCGTGTGATTTGGGGTTTTGGTGATGGATCTACCTTAC



CTGTGTATGACACATCAATTGGGCGTGTGGGTGCACTCATATGCTGG



GAAACCGAATGCCTCTTTTGAGAACAGCTTTGTATGGAAAAGGAGTG



GAACTCTATTGTGCACCAACTGCTGATGCAAGAGAGTCATGGCAGGC



ATCAATGCTTCATATAGCTCTGGAGGGTGGATGCTTTGTGCTCTCAG



CTAATCAGTTCTGCAGAAGAAAGGACTACCCTCCTCCACCAGACTAT



GTCTTTGGAGGTTCAGAGGAGAATATGTCTCCAGAGAGTGTTGTATG



TGCGGGTGGAAGTGTTATTATTTCTCCTACTGGTACTGTATTGGCAG



GGCCCAATTTTGAAGGGGAGGCTCTAATTACTGCAGATCTTGATTTT



GGTGAAATAGTGCGAGCAAAATTTGATTTTGATGTGGTTGGGCACTA



TGCAGACCTGAAGTGTTGAAATTGACGGTAAATGACTATCCATTGAA



TCCTGTCACATTTTCTTCAGGGATAGCAGCATCAGAAAAAAGGACAG



TGAGAATGTGTAAATTTAATCTGCAAGCATGGCCAAGGCCCAGTACA



TTCAGATGCTCCCTGAATGGATTTCAGAATTGTCTTAATGGCCAACT



ATGCTACCATATGGCATGATGAATAGGCTCGAGCATGAGTAGAAGGA



ACTATTTGTTATTGAAAAACAGTTGTTTAAGTATCCAAAATGTATAA



CTACAGAGACCATCTTTTCTGTAAAACTTATCTTTGTATATAACAAG



ATTGAGCATGCCTAGAATAGAAAGAACAATTTGTTATTGAGTAATCA



GGGAAACATTTGTATAAGTATTCAAAATGTAGAACTACAGACACCAT



AGCTTTGTAATGATTTATATTTGCATATAGCAAAATATAGACATTAT



TTTACGGAAAAAAAAAAA





157
GCGCTCCCGTGGGAAACAAATGCTCAGAGATCCCCACACTGCCCTAC



ATTGAGCCGTTCAGCAGCTAAAGTCCCTTACATTTCACTTTAAGCTC



TACCCATTTCATTTCTGCGCTTTAACAAGCCCCCTGTGTGCGTTTCT



AGTAGCAATGGAGGACGATCCTGGTGAAGATTACTTGTTCAAGGTGG



TGTTGATAGGGGATTCTGCAGTGGGGAAGTCGAATCTGCTGTCGAGG



TATGCCAGGAATGAGTTTCACATGAATTCCAAGGCCACAATAGGTGT



GGAATTCCAGACTCAGAGTATGGAGTTTGATGGGAAGGAGATCAAGG



CACAAATATGGGACACTGCAGGCCAGGAAAGGTTCCGGGCTGTCACT



TCTGCTTACTATAGGGGAGCTGTTGGTGCCCTCGTTGTTTATGATAT



CAGCAGGAGGCACACATTTGAGAGTGTGGGTCGTTGGCTTGATGAGC



TCAAAATGCATTCCGACATGAATGTTGTTACAATGTTGGTTGGCAAC



AAATGTGATTTGGAGTCTCTGAGAGAGGTACCAGTTGAAGAAGCAAG



CCCTTGCTGAAGCAGAGAAGCTGTTTTTCATAGAAACTTCAGCATTA



AATGCGACAAATGTGAATGATGCCTTTCAGATTGTAATCAAGGAGGT



TTACAATAACATGAGTCGTAAGCCTTAACTCAGGTTCTTACAAATCT



AAATTGCTATCAAACGGAAGCACTAGTGTCAACCTTGTGCAGAATGG



GGATGCTGCAACAAAGACAGGGTTAAAAAAGTATGGTTGCTGCTGAA



ATCAAATCTCTTTTTTCCTCATGGGTTCCAATTTACTTTATTTAATC



AAATCTGCAGTGTTAACCACCTGTTATCTACATGGGATTCTTACAAG



CTATTCTTCATTTTCAGTTGTAATAAAAATGGAAGCATCTTGGATGT



ATTGTGTTGACAGTCAAGCTTGTAGGGTCCTCTGTTTTTGATCTGCA



TGTGGAGAGGAATCGGAAGTTTTGTTTGTCTATTTGTGGAGGATCTA



TGACATTTGCTGGATCCTAATGCTCCATGTATTCATCAGTGTTTTTA



TAGAAGTAATGT





158
GATCTGCACTCCTCTGTGATTGCTTCTTTTAAGTGTTTTTTGGGTTT



GAATTTGCCTTTATACAAAGATGGCAGTGCCCGTTATTGACATAAAG



AAGCTGCTGGATGGAGAAGAAAGGGAGATGACCATGGACCAGATACA



CAAAGCCTGCCAAGAATGGGGTTTCTTTCAGCTTGTTAACCACGGCA



TACCGTACAGTCTTCTTGATAGAGTGAAGGTATTGTTCAAAGAGCAT



TACAAGAATTCTATGGACGCGCAGTTTCAGGATTCTGCAGTTGTGCA



ATGCTTGGTTCTAACTCCCAAGGCATGAATCTCAGTGCCACTAAAAT



AGACGCCGACTGGGAAACGGGCTTCTTCCTCCCACTCTCGTCGCATA



AAACAGAAACAGTGACACCGCCTCTGCCTGCCAACTTCAGGGAGACG



ATGGAGGAGTTTGCAGAGGAGGTGAAGGGATTGGCGGAAAGATTATT



AGAAATAATGTGCGAAAAATCTGGGACTGGAGAAAGTATATCTGAAG



GAAGCCCTGGCAGGTGGCAATGGTGATAACAATAGCCCTTTCTTTGG



CATAAAAATGTCTCACTATCCACCATGCCCAAGGCCAGACCTTATTG



ACGGCCTCCGAAACCACACGGACGCCGGTGGACTTATTCTGTTGCTA



CAAGATGATGAAATCGACGGCCTTCAAGTTCTGATGGACGGCACTTG



GTTCGACGTACAACCCATTCAACATGCAATTGTTATCGACATAGGCG



ATCAGCTGGAGGTGATGACGAATGGGAAATATAAGAGCATGTGGCAT



CGTGTGCTTGCTAAAGAGGACGCAACAAGAATGTCAGTAGCAGCGTT



TTATAACCCTTCGAGTGATGCAGAGGTGTATCCTGCTTCGCAGCTGA



TGTCAGCAGAGCAGAATGGAAGTAACAATGTTAATGCAGAAAGTGGT



TATGATTATCCAAAGTTCGTATCCGCAGATTACATGACAGTGTATGC



TGCGCAGAAGTTCCTGCCCAAAGAACCGCGATTTGAGGCGATGAGAT



CAGTAGGTCATGCCGTGAATTGAGCAGCAATCCACATGGAATTTATA



AGGATAATAAAATCAAACTAAAGTAATTAAAAAAAAAA





159
GTTCTACTTAGCCCTGTGGCTTCTGCCTACAGGATCAAGTATCCATC



TTTGTTCTCTTCTGCTTTGGGTATATTTGTTGAGTATCCATCTTGTC



AGTTTGTAATTTGGTTTTTAATATTTTTTGACTGGAGGGATTAGGGA



TGGCCACCAAGGTGGATCCTCCGAATGGGGTTGCTGCAGAGGGGAAG



CACTACTATTCCATGTGGCGCAACACGTTTGAGATAGACACCAAGTA



TATTCCCATCAAGCCCATTGGGAAGGGTGCATACGGGATTGTGTGCT



CGGCTAAAAACACAGAGACCAACGAGAAAGTGGCTATTAAGAAGATC



GGCAACGTATTCGAGAACCGGATCGATGCCATGAGGACACTTCGGGA



AATCAAGCTTCTCAGGCAGCTCGCTCATGATAACATAATTACCTTGA



AGGACATCATGACCCCTGTTGGCAGGTCTAATTTCAGGGATGTTTAT



CTGGTTTATGATCTCATGGATACTGACCTTCACCAGATCATCAAGTC



TTCTCAGGCCCTCACTGATGATCACTACCAGTACTTCATCTACCAGT



TGCTGCGAGGCCTAAAATATTTGCATTCTGCCAACGTGTTGCATAGA



GATTTGAAGCCAAGTAATCTATTATTGACTGCCAATTGTGACCTTAA



GATATGTGATTTTGGTTTAGCTCGAACAAACTGTGAGACAGGGCAGT



TCATGACTGAATATGTTGTCACTCGATGGTATAGGGCTCCTGAATTG



CTTCTGTCCTGTGATGAGTATGGTCCATCTATTGATGTGTGGTCTGT



AGGCTGTATTTTGGCAGAGTTGTTGGGCCGACAGCCAATATTCCCTG



GTAAGGATTATATCAATCAACTTAAACTGATCATCAATGTTATTGGC



AGCCCAGCGGAAGATGATCTTTACTTTGTCCAGAGCCAGAAGGCCTG



CAGCTACATCAAATCACTTCCTCATGTTCCCTCTGCTTCTCTGCAAC



GTTTATATCCTCAGGCAAATCCTACTGCCATCGACCTACTAGATAAG



ATGCTAGTTTTTGATCCTTACAAGAGGATCACTGTTACAGAGGCTCT



TGAGCATCCATACTTCTCTGCGTTACATGATCCAAGGCTCGAGCCTT



CTGCAACAGCACCTTTTGAATTGGACATGCCTGATGAGGAATTGAGA



GTACAGGAATTGAGGGAGATGGTCTGGAAAGAAATGCTATATTATCA



TCCAGAAGCTGCAAATATATTATAGATACACAAAATTATCCATTTGT



TTTTTGTTGGATAACTTCATGGATGAGAAGATGAGATGTAGAGATGG



ATAAAGTTTGAATATATCTCAAAGCACGGCCTTGAGTTTTGTTCAAA



AAAAAAA





160
GAAAAGACATTCCCGTGTATTGAATTGGGAAGCAATGGGAATCGAAC



TAGAGATGGACAGACCCCAGGAAGAGGGCTGGGTGAGGGGTGCCATT



CTTGGGGCCGGAGCTTACGGAACAGTCAGCCTTGGCGTGAGCAGGTC



CAATGGCCAACTCTTTGCAATCAAATCTGCAGCCGGCTTTAGTGTCG



CTTTGGAAAATGAGTACCAGATTTTGCGGTGCCTCGATTGTCCATAC



ATCGTTCGCTGCCTGGGGCACAATTACAGCTTCGAAAACGGTGCAGA



GGTGCACAATTTATTCTTAGAGTACATGCCAGGTGGCAGCTTGGTGG



ATCTACTGGGAAGGTTTGGAGGGACGCTGAACGAAACAGTGATCAGA



GCATACACACGCGGCATCCTGCGTGGACTCGATTACCTACACAGTCA



GGGGATTGTGCACTGTGATATCAAGGGGAAGAACATTCTTGTGGATT



CCAATGGTGTGAAGCTTGCTGACTTTGGTTCTGCTAAGAGGGTTGAT



GATGAGGAGAAGTGCGAGGAGGCCATGCAATTGAGGGGAACCCCTCA



GTGGATGGCTCCAGAGGTGGTGAATCAGGTGGAGCAGGGGCCTGCTT



CTGATATTTGGTCTCTCGCCTGCACTGTGCTTGAAATGGCCACTGGC



AGGCCTCCATGGAGCCACGTTTCCAGTCCCCTTGCCGCAATGTATCG



AATTGGATGCACAGAGGAGCTGCCTGGGTTGCCTGGATGTCTTTCAC



CTCAGATTCGGGATTTCCTAGAGAAATGCTTTCGGAGAGATCCTAAG



AAGAGGTGGAGCAGTGCAGAGCTGTTGAACCATCCTTTCTTAAAAAA



GGACTGCTCTGTTATTGAGGCAGAGGAGGCCATTAGGGGTCCGGGAT



CTCCCACTAGTCATTTGGATTTTAGGAATCACATATGGGATTCCTAC



TGTTCTCAGACGACTCTCATTCCGTCACTCAGTCTCCCAAGCCCAAC



TAGGGAACGCAATGCAGAGGTGAATAGATCAGTTGAGCAATGCCCAA



GGCGTTCTCCCAGAGACAGATTGATGGCACTGGCCGCAGCTTGTAAA



TTTGAAAAAGTTGCGAACAGGCCTAATTGGATCACAAGCCTCCATGG



TCCATGGACTGTTGTGAAATCTTCCAGAAGTAAATCTCCAACTTCAG



ATAAGCCTCTGTTAAAATCAGACATTAGTAATGGCTCCTCCATCCAG



GAGCTTCCATTTACGGAAGAAAGGTGCAGTACCAGCTTCAAAGCTGT



CAATTGGAAAGGGTTGCAGCCAAGAGGTGAACTAGATCAATGCTCAC



AGGCTATGCTCTCTTCAGCCCAATCTCAACATCAACCATCTTCCAGC



ACTTCTTCCAAGACTCCGCATCATAACTTGTTTTCGCTGGCTGAGAC



ATCCAATTTGACTGGTGAAGCTTGGGAATCGGATGGAAATTCATCTC



AGAGGATTGTTGGTGGTGATTAGTAGTTGAAGAAACGCTTTATATGT



TTGATGATAAGCGTAAGTCTACGACTTGTGCAGGAGCAACTTACTGC



CCCTGTCGCTGTATGCGAACTCCACAATTTTGTCATACAAGTATCAG



AAATCTGTAGTTGTATAGTAGCCGCAGAGCAGATACATGCTCTTGTA



ATTTTGATTCAAAATTAATACCGGTTGAGTTTGTTCGGTTACACTAG



CCGCAGAGCAGATACATGCTCTTGTAATTTTGATTCAAAATTAATAC



CGGTTGAGTTTGTTCGGTTACACAATATATGACTTCATGATTAGCCA



TTTAACTTAAAAAAAAAA





161
GTCGCTGCTCCTCCCGCTACGGAAATTTCTTCCCTATTTGAACCCCT



TTCGAGCCACTGGTTTTCCAAGGACCATACTGCGCCTTCTGCTGCTT



CGCTTCTTGTGATTTTGCATTTCAGACTCTAATCAAGTTTGTATCCA



TTGAACAACAACAAAAATGTCGGGTCGCAGAAATCCGCTGTTGAATA



TCCCAATTCCTGCTCGGCAACAGACTCAGCTGTATCGACTTCCTCTG



CCTCCGCAGAGCACATCTGTGTCCAGAGACGTTTCGGATCTTGCAGA



CTTGGAGCGAATTCAGATTCTCGGCCATGGAAGCGAGGGCAATGTGT



ACAAGGTCCGACACAGGAGGACTTCGGAACTTTATGCCCTGAAGGTC



ATCCATGGCAATCACGACGAGACTGTGAGGCAGCAGATAATCCGACA



AATGGAGATTCTGAAGAAAACAGAGTCCCCGTATGTGGTGAAATGTC



ACGGGATTTTCGAAAAGGGGGGAAGAGATCCACTTCGTGCTGGAGTA



CATGGACGGAGGGTCGCTGGAACAGAGGAGATCCGACACCATGTCGG



AAAGATTTCTGGCAGAGGTAGCAAGGCAGGTCTTGGAGGGTTTGAAA



TATCTGCACCGTCACAAGATCGTGCACAGAGACATAAAGCCCTCAAA



TCTGCTCATAAACAGGAGACAAGAAGTGAAAATTGCAGACTTTGGGG



TTAGCAGAATTCTGTCTCAGACATTGGATCCCTGTAATACTTATGTG



GGTACCTGTGCCTACATGAGCCCCGAGAGATTCGACCCCGAGACCTA



CGGCGGACGGTACGATGGATACGCGGGCGATATATGGAGCTTGGGGT



TGAGTCTGCTGGAGTGCTATACTGGGCATTTCCCGTTTCTGGCAGCA



GGGCAGAAGGCGGACTGGCCGGCCCTGATGTGCGCAATCTGTTACGG



GGATCCCCCGGCTCCTCCTCCCACGGCATCTGCCCATTTCCGGAGCT



TCATCACATGCTGCCTGCACAAAGATGCCCGCAACAGATGGACCGCT



GCTCAGCTCTTGGGGCACCCTTTTGTGCTGTCAAATCCCCCCCAGAC



ACCCTCCATTCCTATGCAGAGGCTCTCCATCTGATCCAATGTTCCCC



ATGCGCAATTACTCTGAACACATGAGATGAAATAAAACTGCATGTGT



ATGAATCTATGATCTGTCTAATAACTTGGGTAAATTTTGTTCAAATA



CCTGGTTTTGGTTTTCGTTTTGTTTAAAAAAAAAA





162
CATTCATCCATCATGCATTCTGCCTATCCATCTTCCCCGAAACCGTT



GCATCCCTGCCTCTTCATTTCATAGTCTCCTTCCATGCACATCTTAA



CTAACACATACACATTGTATATACATCTTTTCCGTAGTACCCACTTC



TCTGCCCTGCTGCTGCTGCTACTGCAACATCCTCCCGTGCACAGCCC



TTATACGACACACACACATCGAGTAACCAGACCCTCGGCTCCCGTTT



TAGGCATATGCACGTCGAGTATCGATCCATCTGCTCAGTCTGCAGTT



TGAAATTTTCGATTATTTGTTTCTGATTCGGAAGGATGGCCACCAGG



GTGAATCCGCCTAACGGAGTGTTTGTGGAGGGGAAACACTACTATTC



GATGTGGCGCAACATATTCGAGTTAGACGCCAAGTATATTCCCATCA



AACCTATTGGGAAGGGCGCCTATGGAATTGTTTGCTCGGCCAGAACG



CAGAGACCAACGAGAAAATTGCCATTAAGAAGATCATCAATGCATTC



GAGAACCAGACCGATGCGAGGAGGACGCTCAGGGAAATCAAGCTTCT



CAGGCTGTTCGCCCATGATAATATAATTGCCTTGAAGGATATCATGA



CCCCTGTTACTAGAACTAATTTCAATGATGTTTATCTGGTCTATGAT



CTTATGGACACTGACCTACACCAGATCATCAAGTCTTCTCAGGTCCT



CACTGATGATCATTGCCAGTACTTCATCTATCAGTTGCTGCGAGGAC



TAAAGTATCTGCATTCTGCCAATGTGTTGCATAGAGATTTGAAGCCA



AGTAATCTATTATTGAATGCCAATTGTGACCTTAAGATATGTGATTT



TGGCTTAGCTCGAACAAACTGTGAGAAAGGACAGTTCATGACTGAAT



ATGTTGTCACACGATGGTACAGGGCTCCTGAATTGCTTCTGTCCTGT



GAGGAATATGGTACATCTATTGATATTTGGTCTGTAGGCTGTATATT



TGCAGAGTTATTGGGACGAAAGCCCATATTCCCTGGTAAGGATTATA



TCAAACCAACTTAAACTGATTGTCAATGTACTTGGCAGCCCAGATGA



AGATGATCTAGAATTTATCGAGAGCCAGAAGGCCCGCTCCTACATAA



AATCACTTCCTGTTACTTCCCATGCTTCTGTACAACGTTTATACCCT



CGAGCAAATCCTTCTGCCATCAGCCTACTAGACAAGATGCTAGCTTT



TGATCCTCGCAAAAGAATCACTGTTACAGAAGCTCTTGAGCACCCTT



ACTTTTCTGCACTTCATGATCCAAGCCTAGAGCGTTCTGCAACAGCT



CCCTTTGATTTGGACATGCCGGAGGAAGAACTGAAAGAGGAAGAATT



GAAGGAGATGTTCTGGAACGAAATGCTACATTATCATCCGGAAGCTG



CAAATACATCATAGATAGGTGTAAAAATGTCTATTGTCTTGTGTTGG



ATGACTTCATGGAGGAGAAGATGAGACAGAAAGATGGCCTGGCTGAT



GGGACAGAAAGATGGCCTGGCTTTGAATTATATCTTGAAGTGTGGCG



AGAAGTTTTGTTCAATATTGTACATGTATACAATTTCAATTTGTGCT



TTCTCTCTGGAATTTTTCTGAGAATTGCGGACTTTTATTTTCAATGC



TCTGAAAGTATGAAGAGAGAGCGAGTCTTTTATAACAGGTTATTTTA



TTGTAAGAAAGCACACTTGTTTATGTGTAATTTATTCATCATATTCC



CATTGTAAATAAGATGGACTGCTAGTTGTCTAAATCAATAATATACT



CTTTGATAAAAAAAAAAAAAAAAAAAAAAAA





163
GCTCCAGAATCCACTAGTCTTTTCCACATGCACGGTCCAGTCCTCAG



TGTTCACCCATAAGGACACCCCATGTTTGTTAATGTATCCAGCAGAC



TATCTGCCTTATCTTGCCTTGCCGAGCCTGCTGTAAAGCCACTATCC



CAGACCATGACCATGTTTTCTTTATTGTTTTCTTGTCTGCTAGCTCG



CCCATAAGACCTGCCTGTCCCCTTCCGAGCACTGCATGTTTTTTGTC



TCATCCCCTGTATCATGAACCACAATCTTTTAGAATATACAACTCTC



GCTCTGCTCTTTCTCAGCGCCTGCAACACCCACCTTGATTTCTGCAA



TCTCCTCTGCTGCATTTCTTCTTATCTTCTGAACTTCATTGAAGGCC



TACTACACTTCTACATATGAATGGCTTCATGTCTTTGCTCCCCTCTC



TCAACTGCATGAACTGTTGTTATTCTTGGGAGGATTGAGGAGATCTA



GGTTCTTCTTGACCATACTACTCAGCTTTGTTGAAATGTACTCGAGA



ACTTCATAATGGACTCCACCATGCCCGGTCTTGTCCCCACCCGTCGA



GTAGGTACTGCTTATTGAGTATGCTATCAGATTCGGCCCCAGAATCT



CATCTCCACGCTTTCCAAGGCTTCAGAAAGCTATAACTGATGTGGGT



GTGGTGAAATCTCATCCCCATACTTTTAAAGGCCGTTCACAGAGCTC



GGGACTGATGTGGGTGTGGCGAAATCTCATTTCCATACTTTTAAAAG



GCCTGTCACAGAGCTTGGGACTGATGTGGGTCTGGTGAAATCTCGTT



TTCATACCATCACTGAGCTGGAAACTGACACGGTTATGGTGATAGAA



GCCATCCATGGTGCTAAAAGTCAATACTAAGGAGACCCACCAGCGAA



AACAATGCTGGTAGTTCTTGCAAATGGTTGTTGGCTTTAGCTTTTCA



GTCATTCGATGACTACAGACGATGAGAAGGGTGCCCAGATGGCCCAA



ATGAGACAGGAACATTCAGAAAACCCTGAGGAGGAGGAGGAGCGTGT



GAGCTTTGATCTGAACTCCATGTGCAAGTTTTCATCCCAGAGTGACA



CAGAACCCATTGAAACCTCCTTCCCCGATGAAGTTCTCGAGCATGTG



CTTGTGTTTCTGACAGCCCACAAGGACAGAAATGCAGTTTCTCTGGT



CTGCAAATCGTGGTACAGAGTAGAGGCTTGGACTCGACACCAGGTCT



TTATAGGGAACTGTTATGCTCTTTCGCCTGGGACTATGATTAACAGG



TTCCCCAAGATAAAGTCCGTGACATTGAAGGGTAAACCTAGATTTGC



GGATTTCAATCTGGTGCCTCCGAACTGGGGAGCCCATCTGCATCCAT



GGGTTTTGGCCATGGCTCCGGCCTATCCATGGCTGGAGAAGCTGTTA



TTGAAGAGGATGACTGTTACAGACGAAGATCTGGCTCTGCTTGCCGA



CTCTTTCCCAAACTTTAAGGACTTAGTACTGCTTTACTGTGATGGAT



TCAGCACCAAGGGCCTTGGTATAATTGCAAGCAAGTGCAGACAATTA



AGACGACTTGATCTGAATGAAGATGATATTGTCGATAGTGGAGTTGA



TTGGTTGAGCTGCTTTCCAGAAACAACTACCACTTTAGAATGCCTTA



GTTTTGAATGTTTGGAGGGCCCGATAAATATTGATGCACTTGAAGAT



TGGTGGCACGTTGCTTGTCTCTAAAAGAACTAAGGCTGAATAGGACT



ATCTCTATAGTGCAGCTGCATCGACTTATGTTGAGAGCCCCACAACT



TACACATTTAGGAACAGGCTGTTTCTCCTATGATTTTATACCGGAGC



AAGCAACAGTTCTTCAGGTTGCCTTCAACAATTGCAAGTCACTTCAG



TGTTTGTCAGGATTTCGGGAAGTTGTTCCTGAGTATCTACCAACAAT



CTATTCTGTTTGCAATAACTTACTGGAGCTGAACTTGAGTTATGCTG



TTATGGGTAGCAGGGAGTTGGAGCAGATTGTCTGCAATTGTCCAAAA



TTGCAGCGTCTTTGGGTTTTAGACTCAGTGGAAGATGCAGGTCTACG



GGCTGCTGCTGCAACCTGTAAGGACTTGAGGGATCTCCGAGTTTTCC



CCATGGATGCAAGAGAGGATGGGAATGGTTGTGTATCTGATGAGGGT



CTGGTTGCCATTTCAGAAGGATGTCCAAATCTCCAGTCGATACTTTA



CTTTTGTCAGCGTATGACAAATGCAGCAGTTGTGACCATGTCAAAAA



ACTGTCAGAACCTTACCAGCTTTCGACTCTGTATCATGGGTCGGCAC



AAACCTGATCATATTACTCATAAACCAATGGATGAAGGATTTGGTGC



CATTGTAATGAACTGCAAAAAACTGACGAGGTTGGCAGTGTCTGGCC



TTCTGACCAATAAAGCATTTGAATACATTGGGACATATGGAGAATCA



TTAGAGACCTTATCAGTGGCATTTGCTGGGGAGAATGATTTAGGCAT



GAAGTATGTTCTTGATGGATGCAGACGTCTACGGAAGCTTGAAATAA



GGGACAGCCCTTTTGGAGATACTGCCCTTTTGTCTGGTTTACATCAT



TATGAGCAAATGCGATTTTTATGGATGTCTGATTGCAAGGTCAGTAT



ACAGGGTTGCATGGAGCTAGCAAGAAAAATGCCCTGGCTGAATGTGG



AAATAATCAGAGAAATAGCTACGATGACCGCCTTGTGGAAAAACTTT



ATGTATATCGTTCTGTAGCAGGGCCTCGTAAAGACATGCCACCAATC



GTAATTACTCTGTAGCCATTTCCTGTCCAATTTTGTGGCAATGGCCA



TTGTACTATTTGGGTGAATCTGTAAGCGACCGTGCTTTCAGTTCTTC



ATGTCCAGTGGTTGTAGGGGTCAAGTCCTTGTACATATTTCTTTTAC



AAGTGCAGTGGAGTAGGAGGTCAAATTGGCAATATTCTTTGGCATTT



CCTTCAGGGTGATGCTGAAAGGTGGAGGACGACCAATGAATGCTCTA



TGCACACGCATTGGGCACTATTTTAGGGTCCCCAACTGACATGATTT



TAAATTGAAGTTATTGTTAAGTAATGACTCTTTTAATGAGTCTTTTT



GCCATGTCACTTCAATAAGCTTTTGAAGTGAATTCTACATGGATAAT



TTTAGTTGTTTTTATTAAGAAGGTTTGACTTACACTTACTAAAAAAA



AAA





164
CCAATAGCACCATCTGAAAATGCTCGGACACAGTAAATTAATTCACT



CGAGAATAAGTTCCTCGCCATTCACAATAAATGCGCAGAGCATTGCC



ATCCATGCTCTTCATCTACTTCCGTCCTGGCTATCCTATCATGCCAA



ATTTGCAGATAGGTTTTAGGGTACCTCCAAATGGGTTCAAGCAGTCA



TCGGGAAAATGGAGCAGTGAAAGGCGGTCAGCTGTTCCAAAGAGGAT



AAATTAGAGCAAAGCAGAGTGAATTTGATGAGAAGTATTGTTGAAGC



TAAGGACTCATCTGCAAAGGCTACAGATGATGCTACTCTCAGACGTT



TTCTGCGTGCACGAGATTTGAATGTGGGAAAAGCTTCTGAGCTTTTC



TTGAAATATCTAAAGTGGAAGCGAGCATTTGTGCCCCTTGGCTATAT



TCCAGAGTCAGAGGTCTCCAATGAACTCAGGAAGAATAAGATTTTTA



TTCAAGGACTGGACAAACAAAGGCGCCCCATTGGAGTGATTCTCGCT



GCAAGGCATAATGCCTTTGACAGGGATCTAGAGGAGTTCAAACGGCT



AGTTGTCTATGGTTTTGACAAATATGTGCCTGTATGCCAAGAGGACA



GGAAAAGTTCGTCATGTTAGCAGATCTCGAGGGTTGGGGGTATAAGA



ATGTAGATATCCGTGCCTACCTTATGGTACTTGAAATTATGCAGGAT



TGTTATCCGGAGCGGCTGGGAAAGTTATTTATGATTCACGTCCCATA



CCTATTCTGGGCAGCATGGAAGACGGTTTATCCGTTCATTGACAAAG



TGACCAAGAAAAAGATTGTTTTTGTTGAAGATAAACACCTTAAAGAA



ACATTATTGAATGATATTGATGAAAGTCAACTTCCAGAAATTTTTGG



AGGGAAATTGCCTTTAGTACCTACTCAAGATTGTGTCATACCCAACT



AACACTAGATACCTTGAGTTAGGAATGTGGAAGGTTTAATAGCAATG



GTTACCAAAAAGTAGATTAGCTTTTCTTTAGACATATATTGCAAATC



CTATTATCTTTCCATTTTTTTTTACCTTTTTCATATGTATAATATTG



GTTTTGAAAACATTGAGAATGGTCAATGTTTTGACATTTATAACAAA



TTTATTAATAATTTAAAAAAAAAA





165
CAGGGGTTGAAAATTATCTCGGTAAAAATTAGGGTTTTGTTTGATGA



GAGGGCGCGAGAGGCCAGTTGATTAGATTGCCCCATCAGATTCCCAC



GTCCGACTCTCTGGCCGATGACAGAGCTTCCATTTAATAATTCTGCT



CATTACCGTGTCGCTATTGAAGTAAGAGAACCCAAAGGCTCTGACGA



TGCTCTTGATTCCCTCTGTGGACGCGCTTTAGATTTGTTCATTTCTT



CTAAAATGGAGAACGTTGGCGGTGAGGAGTACCTGTTCAAGATCGTG



GTTATCGGGGACTCTGCGGTGGGTAAATCGAATTTGCTGTCAAGGTA



TGCTCGCAACGAATTCAACGCCAATTCCAAGGCAACGATAGGCGTAG



AATTCCAGACCCAGGTGATGGATATCGATGGGAAGGAGGTCAAGGCT



CAAATCTGGGACACAGCAGGCCAGGAGAGGTTCCGGGCGGTCACATC



GGCATACTACAGGGGAGCTGTGGGAGCCCTCATTGTGTATGATATCA



GTCGCAGGCTTACTTTTGATAATGTCGCCCGCTGGCTCGAAGAGCTC



AAGATGCATGCTGATGGCAATGTCGTGAATGCTTGTGGGGAATAAGT



CTGATTTAGCTCATATCAGGGAAGTTCCTGTGGAAGATGGGAAGAAG



CTTGCCGAATCAGAGGGGCTGTTCTTCATTGAGACCTCGGCTCTGGA



TAATACAAAATGTATTGCCTGCATTCCAAATTGTGGTCAAGGAGATT



TACACTAATGTGAGCAAGAAATGCTGAATTCGGATTCCTATAAGTCT



CAATTGTCTCTCAACAGAGTTAATATTACGGATGCATATGGAGATGG



AGATGGAGTGGATCCACCCAAGACAAAGAATTCTTGCTGCTGAGGAT



TCAGAGAGAATGCTCCTTTGTTTCTGGGCTCCTTGAATATTATTTGC



TTCATATGACCTCTTGTTGATTGAGATCCTTAAGGCTGCCTTATGCT



AATTTAATTTTTTTTTGTTTATTAGGAAGTTTCAATATGTTGGATAA



TTTTTTTTCAATTTTATGAAGAAACCAGTAAGGGTCCCCAACTGGGC



TTCTTAGGCTTGAGCCCTAGATGCT





166
GATTGGAATTCATGAGACGAAATTACGGTACAGATGAATGGCTGGAA



ATAATGAATCCCAATAAAATGAGACCTTGAGATTCACCCAAGAGAGT



ATGGCCTTTCCTGGTCTGGTTTTGGTAAGGGCAGAGTCGTATAAAGA



AGGCGGAAGGGAGGAGGGCAGAGTCGTATAAAGAAGGCGGAAGGAAG



GAGGGCAAGTGAGAATTCCCTAGCAAAATCGCGTGGACAAATGGTCA



ATTCGTATATGTGGAATGCACCCAGCCAGGAATTTCGTTGCGGGCAG



AGGGCAAAGACAAGGGTTATGGCTTTTTTCGAAATTCATTCGGTTCA



AATTTGACCTGAATACGGTTTCTAACAGGTTAGAATATACGATTCTA



GACGCTTTTACTTGGTCGCTGCACGCAGTCCTAATTGTTGTTTTCCT



GTTCTTGTGGTTTTCCAACATTTTTAGGATCATATACCGGAGTACCC



TTACATGAATTTTAGCTCCAGAGGTTCGGATTTGGGTTGATGCCGCG



AGGCTTGTGATCTGTGATACATTGTCGTCGTTTGACCCAAGAATCGA



CCCAAATCCATTCTTTATATGTAATATGCAGGAAAGGTCCGAGGAGT



AAGGATTCCCAGCCTAGAACCCAAAAAATAAGGTCCAAGGTCGAAGT



CAGAGGCTTGTGCTACATCCCAGTGTTTTTTGGGATTCTGTCGAGTC



CTCAAGAGGGCTTTTTGCTTTACGGAGTACCCATCTGGAATTAGTGA



GTTCAGTTGCCTGCCTAAGAGTTCCCGCATAGGGCAAGGATTTGTTT



GAGATTGAAAAAGGAGGGCTTTTGCAATGGGGCATGCGGCATCTGTG



GTCATTCCCCCACAAGAAACAAAACAAGAGGATGAGGATTCCCAAGA



AGGCGTAGACTACACCCTGAACATTCCTGATGAATGTCTGGCACACG



TTTTCCATTACCTGAAGCCTGGTGATAGGAAGCCCTGCTCTTTGGTG



TGTAAGAGGTGGCATCACGCGGAAGGGCAGAGTCGGCGTCGGCTGTC



TCTTGATGCACGGGCGGAGATTGTGCCGGCCATTCCTAGTTTGTTTT



GGCGCTTTAATTATGTTTCCAGGCTCGCACTCCGAGGCAATCGGAGG



ACGATTGGTATCAACGATGACGGACTGCTTCTGATCGGCATTCATTG



CAAGAACTTGAAAATCTCAAATTGAGATCCTGCAGAGAGATAACGGA



CATTGGAATGAGTAGGTTCGCACAGTTGTGTGGTTCCTTGAGGAAGT



TTTCTTGTGGGTCATGTACATTTGGTACTCCGGGGATCAATGCTATC



ACGACCCATTGCAAATCTTTGGAAGAGCTCACTGTAAAACGGTTGCG



AAGCGCAGGGGAGGTCCCTTCTGAACCAGTTGGACCTGGAGCGGGGA



ATCTGAAGAGGATTTGTTTGAAGGAATTATACTACGGACAGTTCTTT



GTCCCACTGATTGCAGGGTCAAAAAAATTACAAACTCTTAAGCTTTC



TAAATGTTCTGGGGACTGGGATACTCTTTTGGATATCATCACTCAGG



ATGTCACAAGCCTTGTTGAGGTTCTTTTGGAAAGATTGCATGTGAGC



GACACGGGTTTGCTAGCAGTTTCAAAATTGGCAAGCCTGGAAATTTT



GCATTTGGCTAAGACGCCAGAATGCTCTAATACTGGGCTTGCAGCTA



TTGCAAATGGTTGTAGAAAACTGCGAAAATTGCATGTAGACGGATGG



AGAACAAATAGGATTGGTGATGAGGGTCTTATTGAGATAGCTAGAAA



GTGTCATTATCTGAAGGAGTTAGTATTGATTGGAGTCAATCCCACTA



TAACAAGCTTAAGTATGTTGGCTTCCAATTGCCATGTATTGGAGAGA



TTGGCTCTCTGTGGCAGTGCGACTATTGGTGATGCGGAGCTTTCTTG



TATAGCAGCCAAGTGTTATTCACTAAAGAAGCTGTGCATTAAGGGCT



GCCCAGTCTCTGATCAAGGCATGGAATCTTTAATAAGTGGATGCCCC



ATGCTCGTGAAGGTGAAAGTAAAGAGATGCAGAGGTGTAACCAGTGA



GGGTGCGGACTTGTTGAGAGCTAATAAAGGTTCCCTGGATGTAAGTT



TGGATACTATAACCTCACCTAGTCTGAATGGGTTATCAACTCAAGCC



AGCTCGAGTGTGCCAAGAGCATCTGCCATTTCTTCAGCTGGTAAATC



AACTCTATCTAAGGCAAGATTGACCCTTATAGCAGGTGGAAGCTTTC



TTGCCTGTGCCTTTTTAAAGTTGTCAAATGGCTCATAAGTGAACCTC



TAAGGCTCATTATGCGGAGGTCTAATTGACCAGTATTGTTGAATAAA



GAATACTGCATTTGCTGTTTATCTTATCAAACCATTTACTGATGGAT



ATCTGAGGTATTGATGTTGTACGATCCTCAGATCTACCTTTGATGCG



TTATGCTGATTATTCATTTGGTACATTCTGAGATTGCGCATGGGTTT



CTGAATTGGCAGAAGCAAACTGGGTTGAATCAATACAGCTAATTTTC



TTTTTTTGAAATTAATGTTTTTTGGGATTGGATTTGACCAAAAAAAA



AA





167
TGGCTATGCAGCGCTCCAGCGGAGCCTGCTTTGATGCAGCCATTCCT



TCAACAGCTCTGTTCTTTGGTTGTTCAGAAATTCCTTGATGAAGTCT



GCTCCGTTCCAACCTCATGGTTTGGCAGTGGTCCAAATTATTTACAG



GTTGTTGGGTTCGGTTTTAGCCCGACTTACTTGGTGGGGGCGACGCA



TCTACAGCGACGGACTTCACCGGTTACGGTCTTGAAGGATTCAAGAA



ATTCGAGTTGCATGAAAGAATGGCCGGCTTAGATAATGGGGTAGTTA



ATGGTATCGTGTCTGTGAAATTCACCAAACTCTTTATTGATGGAAAA



TTTGTGGACGCAATTTCAGGGAAGACTTTTGAAACTTTGGATCCTCG



AACAGGAGATTTGATAACGCGCGTCGCAGAAGGTGATAAGGAGGATG



TGGATTTGGCTGTGAAGACGGCCCGGGAGGCTTTCGATAAGGGACCT



TGGCCTCGAATGTCTGGCTATGAAAGGGGTCGCTTACTGAATAGGTA



CGCTGATTTGGTAGAGCAGTATATAGATGAACTAGCAGCTCTTGAAA



CACTAGATAATGGACAACCACTCACCCTTGTCCGTGTCATTGTGACG



GGGTGTATCCAGATTCTCAGATACTATGCAGGAGCGGCTGATAAAAT



ACATGGGGAAACATTAAAAATGGGAGGGCAATATCAGGCATATACTT



TGCATGAGCCTATTGGAGTGGTCGGTCAGATTATACCATGGAACTTC



CCACTTTTCATGTTTTTCATGAAAATCTCTCCAGCTTTGGCTTGTGG



ATGCACTATAGTTATCAAACCTGCAGAACAAACTCCTCTAACTGCAC



TTTATTGTGCACATCTGGCCAAGGAGGCAGGGCTTCCACCTGGTGTT



CTTAATGTGATAACTGGTTTTGGAGAAACGGCTGGTGCTGCAATAAG



CAACCATATGGATATTGACAAGGTAGCCTTTACAGGGTCTACTGATA



TAGGTCGGGTTATCATGGTGGCCGCTGCCCACAGCAACTTGAAACCT



GTAACCCTTGAACTCGGGGGAAAATCTCCGTTGATTATCATGGATGA



CGCTGATATTGAGGAGGCCGTGAATCTTGCCCACAAGGCCATATTTT



TTGGCAGTGGACAAGTATGCTGCGCAGGATCCCGGATATATGTTCAA



GAGGGCATCCATGATAAATTTGTGAAGAGAGTAGTGGAAAGAGCGAA



GAAACAGGTGGTCGGCGATCCTTTCACCCAGAAGTTGACCATGGTCC



TCAGATTGACAAGACACAATTTGAAAAAATATTAGAATACATTGAGC



ATGGGAAGCGAGAAGGAGCAAAACTATTGACAGGCGGTAGTCGCGTG



GGTGAAAAAGGATTTTACATTGAACCAACCATTTTCTCCCATGTGCA



GGAGGACATGAAGATTGGGAAAGAAGAAATATTTGGACCAGTCGTGT



CCATTTTCAAGTTCAGGACCATTGAAGAAGCCATAGAACTGGGCAAT



AAAACAATATATGGTTTAGCTGCTGGAATTGTGTCGAAGAATATAGA



TACAGTCAATAGGCTTTCGAGATCTATTCGAGCAGGAGTGATTTGGG



TTAACTGCTACCACGTAGTATTTCCTGATGCTCCGTTTGGAGGGTAC



AAGATGAGTGGGATCGGTAGAGAGCAGGGTCTCGATGTTCTTAAAAA



TTATTTGGCAGTCAAGTGTGTCATAACTCCTCTCCATGATTCACCTT



GGTTGTAGAACTATGCTTTAACCTCTTTCAAATGTGTTTGTCAAATG



CTTTCATAGCTTTATATATTTAGGTTGAAGCTTCAATAAATCTTTGT



ATGTAAAAAAAAAA





168
CAATTTCGTCGCAAGTCGATGGAGACCGACAGTCCTCTGGTCGCAAT



TTCGTTTCAGCCGCCGCCGGTTGCATTTATTGGGCAAGAATTTGATA



ATTTTTTATTTTTGAAATTGGACGAATTTCCGTGCATTTCATTTCAT



TTCAGGTCTGAACAGTCAGACCAGCGAGCTCTACAAAAGCTTCAGGT



ACTGTGAGGGAAGGGCAGCTCGGCGCACCAAAGAGCGGCGAAATAAT



GGTGAGGAATTTGCATTGGTGCAGAGCAATTGTTACTATCAGCTCGG



CCGTTCTTTTATGTACATTTTGAGCCGTTTTACGATCAATTTCGCCA



GCTCTTACGATCAATCCGCTGAGCAGTCTAGTTTAGAATCGGGGCGC



CATGAGAAAGAAGGATCTTAAGAAGTTGAAGCTCGCGGTTCCCGCAC



CGGAAACCCCTATGTCTGACTTCTTGACTGCAAGTGGTACATTTCAG



GATGGTGATCTCCTTCTAAATAGGCAAGGTTTACGGCTTATTTCCCA



AGAAGATGATGAGAGTCCATCTCCAATAGAGCCACTTGATAACCAGT



TTACTCTGGCTGACCTAGAGACTGTGAGTGTCATTGGAAAAGGAAGT



GGTGGTGTTGTTCAACTGGTTCGTCATAATGGACAGGGCAATTTTTT



GCTTTAAAGGCCATTCAAATGAGCATTCAAGAGAGTGTTCGTAAACA



AATTGTGCAAGAGTTGAAAATAAATCAAGCTTCACAGTGCCCAAATG



TTGTAGTTTGTTACCATGCTTTCTATAACAATGGTGTTATCTCTATA



GTTTTGGAGTACATGGATTGTGGCTCTCTTGCAGATGTGATGAGTCA



AAACATTTACAGAGCCTTATCTTGCAGTTATTTGCAAGCAGGTTCTC



AAGGGATTGATATACTTGCATCGGGATAGACATATCATCCATAGAGA



TATCAACCATCAAACTTGCTAGTCAATCACAAAGGTGAAGTGAAGAT



CACAGACTTTGGTGTTAGTGCAACGCTAGCAAATTCAATGGGCCAAC



GCGATACCTTCGTTGGTACCTACAACTATATGTCGCCAGAGCGGATA



AGTGGAAGCACATATGGATTTAGCAGTGATATTTGGAGCTTGGGCCT



GGTTGTGTTGGAGTGTGCTACTGGTCGTTTCACATACTTACCTCCTG



GACAAGAAGAAGGGTGGCTCAATTTTTATGAGCTTCTGGAGACAATT



GTTGAGCAACCAGCACCTTGTGCATCGCCAGATGAGTTTTCACCAGA



ATTTTGCTCCTTCATCTCTGCATGTGTTCAAAAGGATCCGAAAGACA



GAATGTCGGCCACAGATCTTTTGAATCATGCCTTTATCAGGAAATAT



GAAGACCAAAATGTTGATCTCGCAGCTTTGCTCAGCAGCTTGTCATC



ACCTGTGTAATCATAATAGACATTCAAGTGATGACACCCTATGGTAA



AACAATGGTTTCCAGATTCCATGATTGGAATTTAGTTCTGTATAAGT



CATAGCTTATCTCAAACTACGTAAATGAGTAAAACCAAATGGGCATT



AATATATGCTAGAATTAAGCTGTTGATGTAGTATTGCTTAACTGGCA



ATGGGGAGTGAATCTCCACTCAATTATGTGATGTCCTTTATTTAAGA



AACCCTAATCATAAAACATCTGTCGTGCTCTATTTAGTCTAAAAAAA



AAA





169
TAGGAGCCGGCTCTGGTTAGTGCTACTGGAGAAGAGGCAGGGAAAGG



GGCAAGGGCAGGGGTAGGAGCAGGAGAATTGCTTAGATTGAATATGG



CGCTGATGATGGAGTTTGGGGATGAGCTGGTATTGGTGAGGAGTGGG



AGGATAATGAGAGCCAGAGAATGGAAATTGACACGGGGAAGGGATAG



AAACCCATTTCAATGACATCCCAGAGGTGATAATGAGCAACATATTC



AGCGCCATCAAGGACACTCGATCGCGGAACCGGATGGCTCTTGTCTG



CAGGAAGTGGCATGAAATGGAGAGGGCGACTCGCGTGTATCTGTGCA



TAAGAGGTAACATAAGCAACAACTTGTACCGGCTGCCCATGTGCTTT



CAGTCTGTTACTAAATTGGATCTCTCGCTTTGCTCCCCCTGGGGTTA



TCCCCCTCTGGATTTCACCACTCCGCACGGTAACTTCATAGGGCATC



GGCTCAAACAGGCATTCCCCAGAGTGAACAACATAGTGATCTATGTA



AGAAGTGCGAGGAATATAGAGAAGTTGTCCTCTCTGTGGCCTTGTCT



TGAGCATGTGAAATTGGTGAGATGGCACAGGCGTGCCATGGATCCTG



AGTCTGCAGTCGGTTTGGGAATGGAGCTTAAGCTCCTGATGCAAAAT



TGCACAGCGTTGAAGAGCCTAGATCTCTCTCAGTTCTATTGTTGGAC



CGAGGACATACCGCTTGCCTTGCAGGCCGAGCCACATGTGTCGGCCA



ATTTGTCAAGCCTCAACTTGCTAAAGCTTTCCGCGGAGGGTTTCAGG



GCCCAGGAGCTTGCAGCCATATCAGGGGCATGTAGGAACCTTGAGGA



GTTGCTTGCCGTTTGTGTTTTTGATCCAAGATACATGGATTGTGTTG



GGGATGAGGCTCTTGTTGTACTTGCCAGAAACTGTTCTAGGGTCAGA



ATTCTTCATTTGGTCGATGCCACTGCATTTGAAGCTCTCAGAGGCGA



TCCGGAAGATATTTTCTCCAGCGAGAATGCCAAGATTACCCGCCAAG



GTCTGGAAAGCATGTTCTGGAATCTACCTCTTTTAGAGGATCTTGTG



CTGGATATCTCTCACAATGTCGCAGACTCGGGCCCCGCTTTGGAATT



CCTAAGCTCCCATTGCAAGAACATCAAGTCTCTGAAGTTGGGTCAGT



TTCAAGGCATATGCAAGGGCCCTGAACCCGATGGTGTTGCCTTGTGT



ACAAATTTGGAAGCTCTCTTTATAAAAAACTGTTCTGATTTAACTGA



CACGGGCCTCGCAGCCATTGCAGCTGGGTGCAGTCGTTTGGGTAAAT



TAGAGTTACAGGGATGTAGGCAGATCACCGAGGCTGGTCTCAAGTTT



TGTACTAGTCGACTTAGTAAAACTCTTGTAGAGGTCAGGGTTTCATG



TTGTAATATCTTGATACTGCTGCCACTTTAAGAGCCCTTGAACCAAT



ATGCGAGAGCGTGAGAAAGCTGCATATTGATTGCATTTGGGATAAGT



CCATTCTTGATCAAGAAATTGCTTCTCCTAGTCGGAGGTTGAATCCA



GTTGGATCTTCTGCCATTTCCACAAGGGAAATAGCTAGCTATGGAAT



GGGAAAAACCATCTAGTTTCTGCTGGAGATTGCAATGTCAACAGATG



GGACCAGAATCCGGAGAGTGCTTGGGGGCCATCCTTGCAGTTGGCTC



CTCCTCAGTTTTGCCCTGACCTCAACTGCGCATTTCGATTTTGGTTC



AAGCCCTTCGGATGTACCGATGACAAATTGGGGCCTGGATCTTACCT



GACTGCAAGCTCATGCTCAGGGCCTTTAGAAAGTTCCGAGGAAAGAG



GCTGTTTGCCTATAGAAATTTCTTCGAAGAACATGAAAAACCGAATT



CCCTTGGTTCTGACAGGTACGTGCCTTCCGATGGTGTCATGTTTAGA



GGCATGGATGTGAACGGAAAAGCTCCACAGATGGAGCGACTGTGTCA



TTCCAATACCGGCACAGTTTCGGATTCGTCATCCACAGAATTTGTGG



ACTTTTTGGGGATAAATGACAAGCATCAAGAATGGCAGAAACTTGGA



GCAGATATTAATTATGGTATGGAAGTGATGGTCAATTCATCTCAAAT



ATGGGGTGTAACAGGGGAGGCTAAAAGAACCTCCTCAGCAACTTAGA



AGGTGAGCAGTCATGGACAGAGATCCCCAATCAATACAGTTATAGTG



ATTCGAGCAGTCATATCAGATCTATAACTTGGAAAAATCTGCAATTC



TTGTCATTGTGGATTCCCGTAGGAGAGCTGTTGTCACCTCTTGCAGC



AATGGGTTTAAAAGTATGCCCGCTGCTTGAAGAGATTAGTATCCAAG



TAGAAGGGGATTGTAGGCTCTGCCCCAAACCAAGAGAGCGTGCATGT



GGTTTAAGTTCACTGGCATGCTATCCTTCTTTGTCAAAGCTCGAGCT



CAATTGTGGTGAGGTGATAGGTTTTGCATTGAGCGCACCTGCTGGCA



AGATGGATTTGAGCCTGTGGGAACGATGGTACCTCAATGGTCTTCGA



GAACTACATCTGTCAGAACTGAATTACTGGCCTCCACAGGACAAGGA



TATGAATCGGAGAGGGCTTTCACTTCCAGCTGCAGGTCTTCTTTCAG



AGTGTGCAGCTCTTCGGAAACTCTTTGTTCATGGAACTTGTCATGAA



CATTTCATGATGATGTTTATTCGCATTCCAGACTTAAGAGATATACA



GTTGCGGGAGGATTATTATCCAGCCCATGAAGATGATACAAGCACTG



AGATGCGTACTGATTCATGCAGGCGTTTCGAGGAAGCTCTAGCTAGT



CGCGGATTTACTGACTGAATTAGGTTTTGTGAAACAGGGTTTATTGT



TGATTGATCTTTCCAAGGTCAACTGTGGAGTTTCAGAGGAAGTAGTA



TTGTATGATCCTCGTGAAATAACATCCTGAAGGTAGAGCCTGCTTGT



GGTGTGCACGACTTGCAAGACAATAACCAGAAATTTGTATGTCAAAG



CATCAGAAGACATACAAAAGGATCACTGCCTTTCGGTGTCAGGGGTC



TCAGCCATGGATTTTAATATTAATTGTGTCAGTGAAAACTTCTGCCT



TGATATTTGGTTCGAGTAATTGGAGATAAAGACTGATTCTTCTTTTA



AAACCATTTGGCTGAAGACTCTGAAATAAAGTATAGAATATTACAGT



ATGTCCACTCACTCTTCCAGGGTTTCCCCGATGGATTTATGTTCAGG



TGCAGCATTCCTCGTCTAATGTGTCAGTGGTTATACTTCCTTTGGAA



TGTATCTTTCATGAGACTCACTGTTCTTTTGGTGAAGGGGAATCATA



TGTCAATCACAATAGGCTGCTGAGGACACAGTAGAACCTAGATTATT



TAGTGTAGATGTACCCATTGTATCAATGTCAAATGTCTAATACTCAT



TTGATTTTATTGACTGGCCCATACTTGTAACCGGTTCCTTGTTTCAA



CTGTTGCTCTTTTGTCCACGGTTGAAAATGTAATTGATGGGAGAAAT



AACAACATAATAGAAATACTTGCCTCCAAAAAAAAAA





170
AGGAGATCGGAATACCACTCAGGTTAACCACATTAGGTAAATTATTT



TATGTTTTTAATTGTGAAGGCAGTTAACTTGTCATCTTGTTGTTTGT



CCCAGTTAATCATCGTGGGGCTGAACGATTTCAGGGCCATGGTTTTC



ATTTCCATTCTTTCCACCCCATATTTTTCCTGGTTTCTGAACTCAGA



ATGACTTGATTTCCCCATTAGCGTGGAGTCCTAGGTTGCACACATCC



TCAAACTCTCATTCTCAACTACGCATTTGTTTAAGACCCTCACTTCC



CAAACCCCAATTTGGGTTTCTTTTCAATATTTCCCCTGCGATCGAGT



ACATTGGAGATCAGTGAGTGACGGGCAGCACAGGGGCCGAAAGGACA



ATTTTCCTGCTTTTTCTTGTTTTTCTGGCAATGCAGATATCAGGCAC



TCGCAGGCCTTGCAGGCCATGGGCTTGTGTTGGTTCTCTATGACTGA



GCGCAGGAGAATAGATCTAGAATTGTTTATTAATGGGAGGATCAAGA



TAAACAGTGGGTTTTTTATCAGAAGCAGAGGCAGATGGGGCAAATGT



GGTTGACGTACAGACCAAGCTGAGAAAAGGCTGATTTTTTCCTCTCA



TTTGAAGCGCTCCCCATGTGAAAAGATTTGGTATTTGTGGTTCCAGG



CAGATTCGCAGATAGTTGAGGCATTGGCCTTGTATCAGGACATAAGA



ATACAGCGTGGATCTGTGAACGGAGACAAAGAACTATGCAGCAAGAT



CAGAGAAGAAAAGCCCCTACAGAGGTTGAGTTTTTCACTGAATATGG



TGAAGCAAGTCGCTACAAGATTCAGGAGGTTATAGGAAAAGGGAGCT



ACGGTGTTGTATGCTCTGCAATTGATACTCACACTGGGGAGAAAGTT



GCAATAAAAAAAATAAATGATATCTTTGAACATATTTCTGATGCAAC



CCGGATTTTACGTGAAATTAAGCTTCTGAGGCTGCTGCGGCATCCTG



ATATTGTCGAAATCAAGCACATTATGTTACCGCCCTCTAGGCGGGAA



TTCAAAGACATTTATGTGGTATTTGAACTTATGGAATCAGATCTACA



CCAGGTTATTAAGGCAAATGATGACTTGACACCAGAACATTATCAAT



TTTTCTTGTACCAGCTTCTACGAGCTTTGAAGTACATACATACTGCA



AATGTGTATCATCGGGATTTGAAACCGAAGAATGTTTTGGCAAATGC



TGATTGCAAGCTAAAAATATGTGACTTTGGCTTAGCAAGAGTTGCCT



TCAATGACATGCCGACAACAATCTTCTGGACGGATTATGTTGCCACA



AGATGGTATAGGGCTCCAGAGCTGTGTGGATCCTTTTTCTCCAAGTA



TACACCTGCCATTGATATCTGGAGCATTGGTTGCATCTTTGCCGAAA



TTTTGACTGGGAAGCCCCTTTTCCCTGGTAAAAATGTAGTTCATCAG



TTGGATTTGATTACCGATCTTTTTGGAACTCCTCCCATCGAAGCCAT



TTCTCGGGTTCGCAATGAAAAAGCTAGAAGATACTTGAGCAGTATGC



GCAAAAAACAACCTGTACCCTTGTCCCAGAAGTTTTCAACTGCAGAC



CCATTAGCGCTTAAACTTTTGGAAGATTGTTATCTTTTGACCCAAAG



GATCGTCCAACAGCAGAAGAGGCTTTGGCTGATCCTTATTTCAAGGG



TTAGCAAGTGGAGCGAGAACCTTCAGCTCAACAAATAAGTAAGATGG



AGTTTGAGTTTGAGAGGCGAAGGGTAACAAAAGAAGATGTGCGGGAA



CTCATTTTTCGGGAAATACTCGAATATCATCCGCAGATGCTAAAAGA



GTACCTAAATGGATCAGATAGATCCAATTTTATGTACCCTAGTGCTG



TTGATCAATTTAAGAAACAGTTTTCTCACCTTGAGGAACATTATGGT



AAAGGTGCACCTGTGGTTCCTTTAGAAAGGCAGCATGCATCTTTGCC



AAGATCATCTGTTGTTCATTCGAACACTATGCCCCCCTTGCCAGAGA



AAACAATATCAGGTCCTTCAAGGGACCGTACTTCAGAATCCCGTGAT



GAATCTTCTAGGTATATTAGGGAAACAGAGAAGCTGCAGCATGATAG



GAGTGCAGGAAATGCACTGAAGGCTCCCTTGCAACCACCTCAGAAAA



TCTTGCAGGGGGGTGCTGCAAAACCAGGGAAAGTTGTTGGACCTTTG



CCTTATGAAAATGGTAGTACGAAAGAAGTCTATGATCCAAGAAGGTT



GATCAGAAATGCTGTTCTAACAACGTCTCAGTATGCCGCTCCTATTT



ACTCATATCCAAGAAGAACTTCAAACACAAAAATTGAACCGAATGAA



AAGGAAGACGCTGAGTCAACTTTAATGCCACCCAAGGCCCAATATGT



TGGAATTGGTGCAGCAAGGAAGTAGCTGCAGTTCAGAGTGCTTCCTC



TCGCTTATATTAAGCAAAATCAATTTCCTGGTAATTGCAATTTGTAG



CCCATTTAGACATTGTTGACTGACATCATTCTTTATTACTTGGCATC



TTCCAACACTGAAGCAAATTGAGCAACATATCATATCTAGCATGTGA



AGAAGATGCTCATGTACAAAAGGTTTTCCCTTTTCATGATGACTGAA



TATGGTTCAGTATCAAGCCCAAAAGGGACAACAACCATGCAGTCCCT



CTGTACTGTAAGAAGAGATGAACTCGATGAAATTAGTATTTTATGGA



AAATGTAAATGATTTGACTGTAAAAAAAAAA





171
ATCTCTGCTGCTCTGTGTTGGGGATTTTGTCTCGATGGCGCAGCAGG



AACAACAGTAGTAGCAGCAGCAGCAGCGGCTGCTTTCAGAGATAAGG



AGATCCGCATAGATTTTTTAGTGTCGAGTTAAAATATCTGAATTTCA



GTACACACATGCGCGCGTATGCACATGGGGAATTCGGAAGCATCCGC



CAATTATGACCACTTACGCGTCCCTCAGTTGGTCCTCTAAGCTATTG



CTACAGGGGGTTCAGACGTCTGGAGCACAGTACACTAGAGGATCCCG



TTTAGCAGACTAAATCTCAACAGAATTTTGCCTGCTTTTCTCCCTAT



ATAACCTCCTCTCTCTCACCGGCTTCGGTTCTGATTTTTCCCGCAAT



GGGGCCTTGCAATGGCCGTTTCTCAGCTCTGATTTTGATTTCCATGA



CTCCGCCTCCTTCTCGTGTCGGCGTCCTGATCTCGCTCTTTATAATG



TCTCTGTTACTGTGTATTTCGGCGCCCTGCATGCACAGCCCTGCGGC



TGCCCTGATCGGCTTGAGTCGCTCTGAGAAATACAACACAGACGGGC



AAGATCCGTGCCGTCTATCGTTCCTGGACACGGCGGCGGCTGCCATC



GACTTCGGCAGGATTTACCATCACAATCCCGCGGCTATCCTCCGGCC



GGTGTCCGCTGAAGAAATAGCCCGTTTTCTTCGGGCTATTTATGCGT



CGAGGGCGCTCGCGACCGGCTATCGCCAGGAATACCTCACCGTTGCT



GCCAAAGGCGCCGGTCACTCCATCCATGGCCAGGCGCAGGCCCCCGA



TGGGCTCGTTATTGAGATGTCTTCTCTCAGAGGCGTGCGCATTCATG



TGGCGGACCGCGCCGGCGGCTACTCGTACGCCGACGTTGCTGCCGGA



GAGCTCTGGGTGGACTTGCTCGCAGAGGCGATGAAGCTCGGCCTCGC



GCCTCGATCGTGGACGGATTACTTGTATCTCAGCGTCGGCGGGACTC



TGTCGAATGCAGGTATCAGCGGGCAGACATTTCGCCACGGGCCTCAG



ATCAGCAACGTCCTGCAACTTGACATAATCACAGGGACCGGAGAATT



AGTCACTTGCTCTCCTGCTGAGAATGCGGATTTGTTCTACGCTTCAA



TGGGAGGCCTTGGCCAGTTCGGCATCATAACCCGAGCTCGGATTATC



CTCGAACCAGCTCCTCAGAAAAGTGAAATGGGTTAGAGCCTTATACA



GTGATTTCGAGCAGTTCACAAGGGACCAAGAGCTCCTGGTGTCCATG



GACGATGGCGCCGCATCTGTAGATTACTTAGAAGGCTTCGTGGTCGT



TAACAACGAGGCAATGCGCAGCTGGTCGATCTCGTTCCGCACTGACA



CACCGCTCGATGACAGCGTCTTCAACGACGCTGGAACCGAGATTCTG



TTTTGTATTGAGATAGCAAAGTACTTTACACAATCCGACGACGAGAC



AGCCGATGTCGACAAGGTCACGGGGCGGATTATCTCGAGATTGAGTT



TCATTCCTGGGTTGATTTACAGTGTGGAGGTACCCTACGCCGATTTC



CTGAACCGAGTACGAGTGGAGGAGCTGAACCTGCGATCTCGAGGCCT



CTGGGACGTTCCGCATCCATGGTTGAACATGTTCGTCCCACGGCGCC



AAATTCAACGTTTCACCACTTCTCTGCTCAGGATCATGTCTCCGGAC



ACTGTCAAGGGCCCGATACTCGTCTACCCTGTGAAGAAGCAAGTGGA



ATACCAACATGTCTGCAGTAATACCTGAGGACAAAGACGAGATCTTT



TACGCAGTGGGCGTTCTTCGATCCGCAGACCCACTGTGCTTGGCCGG



GTCTTCCTGCTTAACGATTTGCTATCACAGAACCAGCAAATAATCGA



TGTATCGACAAACGCAAACGAGATTGGCAACGATAAGACCGAACCAG



GCATGGGCGCGAAGCAATACTTAGCCCACCATTCCCAGCAATGGCAG



TGGAAGAATCATTTTGGGAGCAAATGGGGAATATTTCTGCAGAGAAA



GGCGAGATACGATCCTCTGAACATTCTCGCTCCAGGACAAAGGATTC



TCAATAGAAACCACCGAGAATGACCTGACCATGATGATCTGTCCAAG



GAAACCAGAGATCTCGCTAACAGCAAGGCCAGTAGTATAATGAATAC



AGTAGAATATTATATTTTTATTTCTGTCCTCCCTGTAAGATCCCTGG



CACATAATTACAATAAATTTATACTGAACTAAACTTTTTGGCATTAC



CCCAAGGTTTTCTCCATACTTTGGTCCATTTATTAGGCCAGCTCACA



GTGTGGGTACAAGCCAGTCTGCAATTGCAGTTCAGCAGATGCATCAT



CACCTGTAAAAACAGTTTCACCGATTTTTTTTTACAGTGTAGAGCAT



CTTCAGGCACAAGGACTACAGTATTACGGCGGATGATCAGTATAGCT



GCTGAGCTGAAATTCGCGGATGATTTGTACAGGAGAATTAATGTAAT



ACGGATATTTTTACTAAAAAAAAAA





172
GTTGTTTGTTGTTTGATTCTTCTGAGAGTAGGCCCTGCGTGTTCTGA



GACTTTTTTGTCGTTTTAATTTCTATTGAACTTGGCTCGTCATTTGT



TCATTTTCAAGTATTGATTTGATGTATAGGAGGTGACAACTTCTGTA



AGTTTTTAGATGGATCAGGACCAATCCATCTGCAGATTTGCAGCTCA



GAAGGGAAAAGGAGAGATTCAGTCTTCTTCATTCCCAGACGAAGTTT



TGGAACATGTTTTGGTTTTCCTGTCCTCCCAGAAGGACAGAAATTCT



GTTTCCTTGGTATGCAAGGCCTGGCACAGGGTTGAGGCGTGGACGCG



CCAGCAGGTGTTCATTGGCAACTGTTATGCTGTCTCCCCACAGATTA



TGATAAAAGGTTTCCCAAGATCAAGTCTGTCTCACTCAAGGGGAAGC



CCAGATTTGCAGATTTTAATTTGGTGCCACCAAATTGGGGGGCCCAT



CTCACTCCATGGGTGTCGGCCATGGCAACTGCTTATCCATTACTTGA



GAGGCTGTACTTGAAGAGGATGACTATCACAGATTATGATCTCACAT



TGCTTGCAAATTCCTTCCTATATTTCAAGGAGCTTGTTATGGTTTGT



TGTGATGGATTCAGCACAGGTGGCCTCGCTTCGATCGCAAGCAAATG



CAGGCAATTGACCACACTTGATTTGAATGAGGACGAGATACATGATA



ATGGAGAAGATTGGCTGGCTTGCTTTCCTGAGACTTTGACGTCTCTA



AGATCTCTTTGTTTTGATTGTTTGGAGGGCCCAGTAAATTTTGATGC



ACTAGAAAGATTAGTTGCAAGATGCCCCTCTCTGAAGAAGCTCAGGC



TAAATAGAAATGTTTCTATAGTGCAATTACAAAGGTTGATAATAAAA



GCACCACAGCTTACTCATCTAGGAACAGGCTCATTTTTCTATGAGTT



CCAACTGGAGCAAGTAGCAGATCTTCTCGCAGCCTTCAGCAATTGTA



AACAACTTCAATGTTTGTCAGGATTTCGTGAAGTTGTGCCAGAGTAT



CTACCTGCGGTATATCCAGTTTGCTCTATTTAACATCTCTAAACTTC



AGCTATGCTGTTATTGGCAGCAGAGAGTTGGAAGGAATAGTCTGTCA



CTGTCGTAAATTGCAGCTACTCTGGGTTTTGGATTCGGTAGGAGACA



AAGGTTTGGAGGCAGCAGCTACAACGTGCAAGGATCTGAGGGATCTC



CGTGTATTTCCTGTGGATGCACGTGAAGACGGTGAAGGTTGTGTATC



TGAACGGGGCCTTGTTGCAATCTCCGAGGGGTGTCCAAATCTTGAGT



CCATTCTATACTTTTGTCAGCGTATGACCAATAAAGCAGTTGTGACC



ATGTCGCATAACTGTTCCAAACTTGCCAGCTTTCGTCTCTGTATCAT



GGGTCGACACCAACCTGATCATTTAACTGGTGAACCTATGGATGAGG



GATTTGGGGCAATCGTAAGAAACTGCAAAAGCCTAACAAGGTTGGCA



GTATCCGGTCTACTCACTGACAAAGCATTTCAGTATTTTGGAGCCTA



TGGTGAAAGATTAGAGACCTTATCAGTAGCATTTGCCGGGGAAAGTG



ACCTCAGCATGAAGTATGTGCTCGATGGATGCAAGAACCTTCGGAAG



CTGGAGATTAGAGACAGTCCATTTGGAGATGTTGCCCTCTTGTCTGG



TTTACATCACTATGAAAATATGCGGTTTTTGTGGATGTCTGATTGCA



GACTCACTCTACAGGGATGCACAGAGCTGGCCAAGAAGATGCCTGGA



CTTAATGTTGAAATAATCAGAGAAAATGAATGCAATGATTCTCTTGT



TGAGAAACTTTATGCTTATCGCACTGTAGCAGGTCCACGGAAAGACA



TGCCGTCATTTGTAACCATCTTATAGCCACTTCACATGAATTTCGTG



GTTATGGCTCTGCTACATATGGGCAACCTGTTAGGGCTATCCTACTA



AATTAATCATGCATCAATGTTACTGATGAAAAAGCCCATGTCCATAA



TGCCTTTACTTCACCAAAGGAGGAGCAATAGAGCAGGCCAGGTTATT



GCCATTTTACTTTGGAAACTTTCTTCAGGTTGTAGCTGCCACCTGAA



GGGTTGGAAGAATGTACGATTCACTGATGCAGACTGCTAATTCTTGT



TGCTCCCTAAAGTTGAATCTAGTTAAATGCCAAACAATAAACTGGTG



ATAGAAATGCTGAAGGTGATGAAAGGTGGAGAATTACAGATGAATCC



CTTCTGCGTGCATTGGATAGTGTTTTAAGGGACTGAATGCCTCAATT



GGTCTGTTTGTTTTAATTTCAAACAATTGACCTGTCTTTGATGCAAT



CTGTGCTTTGACTTGAATTCAATCTGTGATTTGACTTGAATTTTATT



TGCTATATGACTGATCCGGAGCTTGTTGAGGAGGTTTGGAATTGTTC



CGAGGGAAAATTTCTGAGTTTATCATGTTATACTGATTAATTGCTTG



AATTATCAAAAAAAAAA





173
CTGCAATGGCTTCAACACCTGTGTCTTCCTCTGCTTCTCAGCCCAAT



TTACTTCGCCATTACACTCCCACTGTCACAGATTGCTCCTCCTCAGG



CTCCTCTATCCCCGTTGTGGATTTGTCTGCACAAAAAACCAGTGTCG



TCCAGGCCCTGGTTAAAGCCTGCGAAGACTATGGGTTCTTCAAGGTT



GTGAACCATGGAATCTCGCAGGTTTTAATTGATGCCATGGAGGCAGA



AGCGGAGAAGTTATTCGCTCTGCCATTGTCTGAAAAGGAGAGAGCAG



GACCTGCCGACCCGTACGGGTATGGCAACAGAAGTATTGGTCGCAAT



GGGGATGTGGGTTGGATTGAATATCTGCTGTTCAGATCTGATTTTCA



ATATGTTCAGCAGCGTTATAAGGCAATTTCGCCAGATAATTATATCA



ATTTTTGTAATACTGCCAGCAAATACATAAGTGCAACCAAAAAGCTT



GCATGTGATATACTGGAACTGCTAGCAGAAGGGCTTGGGCTTCCTGA



AAATATATTCTCAAGTTTTCTAACAGCCGAGGGGAGCGACTCTGCAT



TCAGACTCAACCATTATCCGCCATGCCCGGATCCTTCTAACATAATA



GGATTCGGAGAACACACCGATCCCCAGATTTTAACCGTTCTGCACTC



CAACGATGTCGGAGGATTGCAGGTTTTATCCAGAGATGGAAAGTGGG



TTACCGTGTCCCCGGACCCGTCCTCGTTTTCTATAAACATAGGAGAC



TGCATGCAGGTACTGACAAACGGGCGGTTCAAGAGCGTGAGGCACCG



CGCGGTGACAAACACGCTGCGTTCGCGGATTTCAATGATGTTTTTCG



GTGCTCCGGCGTTGGATGCGACCATCGTCACTCCTTCCCAGCTAGTG



GACGAAGATCGTCCCGCCCAGTACATGCCATTCCTCTGGTCTCAATA



CAAGAAATCCATCTACTGCTTGAAGTTGGGACAAACTCGTGGCCTGC



TCCAGAAATTTCAGGCTTCAATGGTAGGAGTAGGTGTGGCTTAATCC



ACTCACCAAATTTTATTCCGGTGGTTACAATCCGATGATATAATGGA



GGGGGAGTTGCTTGATCAAATAGCAAACACAGTCAGATGATACAGCG



GAGAATTGTTGTACATTTAAGATTTTTAATACAAAAAGTTTTGGAGT



AATTGAGTAAATTATCCAATATGGTATTTGACCTCCTAACAAAATAT



TTACAAATCAAAAAAAAAA





174
TTCCGCCCTGCCTATCCTACTATCCTCCCGTTTCAGATCCGTTTCAG



TTCAAATGGGTTCAAGCGGTCGCCATGAGAATGAAGCAGAGAAGGTG



GTTAGCTGTTATGAAGGGGATACAATAGAGCAAAACAGGGTGGATTT



GATGAGAAGTATTATTGAAGTTAAGTACCCATCTGCAAAGGTGACAG



ATGATGCTACACTCAGACGTTTCCTACGTGCACGAGATTTAAATGTG



GAAAAAGCTTCTCAGCTTTTCCTGAAATATCTAAAATGGAGGCAGGC



GCTTGTACCCCTTGGTTATATTCCAGAGTCAGAGGTCTCCAACGAAC



TCAGGAAGAAAAAGGTTTATATTCAAGGGTTCGACAAACAAAGGCGC



CCTATTGAAGTGATTCTTACTGCAAGGCATTATGCCTCTGACAGGGA



TCTAGAGGAGTTCAAACGACTCATTGTCTATGGTTTTGACAAATTAT



GTGCCAGCATGCCAACAGGATTGGAGACATTTGTCGTCATAGCAGAT



TTCGAGGGTTGGGGCTATAGTAACATGGATACCCGTGCCTACCTTGC



GGCACTTGAAATTTTGCAGGATTGTTATCCAGAGCGCCTTGCAAAGG



CATTTATGATTCATGTACCATACCTATTCCAGACAGCATGGAAGATG



ATTTCTCCGTTTATTGACAAAGTAACCAAGAAAAAGATTATTTTTGT



TGAAGATAAACATCTCAGATCAACCTTACTCAATGATATTGATGAAA



GTCAATTGCCAGAAATTTATGGAGGGGCATTGCCTTTAGTACCAGCT



CAAGATTTTGTCATACCCAATTGGTCTTAGATAGATCTAGTTAGGAT



AATTGTTATCTTTTCTTTGGTTGCATAATTTTATAAATTTAATTTTT



TTTTATCCTTTTACATTTAAAAACTGGAAAAGCTCGAACCTTTTTAA



TCTCACTAACAATTTCACTTAAACATGTTGGAACCTGCCATGCTTCT



GTGTTATCTAAACTTGTTATTATAACAACCATGGAAATCTAATATCC



ATGCATTGCCTTCCCTATCATAGGCTAATATTAGGAAGTCTTTTTGG



TATACAGTGATATTCAATGTTAAAATGGAGTGTATGATAAGTAATAA



AATATATAATATTTCCTCATATCACATGATTATATGATATTGTATCA



TAAAAAAAAAAAAAAAAAAAAAAA





175
CTTGAGGAGAGATTTGAGAGTGTTTGTGAAGGGAAGTGTTGTTGTTT



GTGTGTGGGTTTGTTATATTTTTCAAGAAAGATGGCATTCCAGTCAT



TGAGATGGGTAGTCTGATTGGAAATGACAAAGAGAGATTCATGGCAG



AGATGGGAAGGCATGTGAGGAAGTGGGCTTTTTCCAGCTTAAAGGCC



ATGGCATACCAGTTGAGCTCATGGAGCGCGTTAAGAAAGTGTGTTCC



GAGCATTATAACCATGTCAGAGAGCCAAATTTAAGACCGAGTCGGTG



CCAGTAAAGTTGCTTAACAAGTCCCTCATGGAAGCAGAGCTTTCTTC



TAGCGAGCCAAAGAAGGTAGAAAATGTGGACTGGGAAGATTGCATTG



TCCTCCAATACGCCCAAGAAGACTATCCATGGCCCTCTGACCCAAGC



GAGTTCAAGGAAACAATGATGGAATTTGGCAAGAGATCACCAAATTG



GCTGAGAGCCTGCTAGAATTACTAAGTGAGATTTTGGGTTTGGAGAA



AGGGTATCTCAAGAGAACCCTGTCAGGAGGTGATGGCCCTGATGACA



AGGCTTTTTTTGGCACCAAAATCAGCCACTATCCACCATGTCCAAGA



CCAGACCTCGTGGAAGGTCTGCGCGCACACACTGATGCAGGTGGCCT



CATTCTGCTGTTCCAAGATGACGAGGTGGGAGGTCTCCAGGTTCTTG



ACAACACTGGTCGTTGGATCGATGCACCACCAATGAAAGACACGTTG



GTTATTGATATTGGTGATCAATTGGAAGCCATCAGCAACGGGAGATA



CAGGAGCGCATGGCATCGTGTGTTGGCTACTGACAGTGGCAACAGAA



TGTCAGTGGCATCGTTTTACAATCCATCGCTTGATGCAGTCATTTCC



CCAGCTCCAGAGCTCCTTTCGCAGCCCAAGAAAGGCTCGGAGCTATC



ACTGTACCCAAAGTTTATGTTCGGGGATTACATGAATGTTTATGCTC



AGCAGAAATTTCTTCCCAAAGAGCCACGATTCCAAGCTGTGGCAGCC



TTGCAGTACTGAGATCAAATAATATTCACAAAGCTTATGTTTATAAA



TACAGTGTTTCTCGGATTTTCGTATGTTTTCTCAAAGTCGTAATAAT



TTGTTTAGAAATTGTTGTACTGTTAATGCCCAACCGGTCTAGGCCAT



GGCCATGAATGAACCAGGTGTGAGGCTCCAGTAAGCTATGTCGTCCA



ATCTAGGTCAGGTTGCTGCATTTCTATGTCTGTATTGAGTCAAGTTG



CTGCTGTCATACTAAATGTTATGTTGGTTTTCTTGGTAGGCTTGGGA



AACGTTCTGTACAAAAGACCATTTTGTATTCCTAGGCTGGTTCTGTT



TACATGGATTTGGATTTTCTGGTTAAAAAAAAAAAAAA





176
CAGGAATGGCGTCCTATATTCACATCAAGTCTTGAGGCTCCATTCAA



ACGAGCATTCTGGTACTGAGTAATTTCAGGAGATTTGGCTACATGTA



CGCAATCTGCCACTGGAATTAGGCTTGAGGATGATGGAGGCTTTACC



AGATCAGGTGGTGTGGGAAGTACTAGATCGAATTAAAGAAACACGAG



ACAGAAACACTGCAGCCCTTCTGTGCAAACGTTTCTATCAAATCGAG



AAAAACCAGAGGGAATATTTAAGGGTGGGGTGCGGTTTAAGCCCAGC



AATTGAAGCCTTATCCGCGCTCTGTATGCGGTTCCCTAACTTAGTGA



GAGTGGAGATAGGGTATTCTGGATGGATGTCGAAGCTAGGCAAGCAG



TTGGATAATGAAGGGCTTAAAATTCTGTCACAGCATTGCCCTAACCT



CACTGATCTCACTCTTAGCTTTTGCACATTTATTACAGATGGAGGTC



TGGGGTACCTAGGTTCCTGCACTGGGCTTAAGGCCTTAAGGCTGAAT



TTCACTCCAGGAATAACAGGTTGTGGAATACTGTCCGTGGTTGTAGG



TTGCAAAAAATTGTCAACTCTTCACCTGACTAGGTGCCTCAATGTAA



GCAGTGTAGAATGGCTGGAGTATCTAGGTCGGCTTGAGAGTTTGGAA



GATTTGGCTATCAACAATTGCCGGGCTATTGGAGAAGGTGATCTAGC



AAAGTTGGGGTACGGTTGGAGGAACCTGAAAAGGCTTCAATTCGAGG



TGGATGCAAATTATAGGTACATGAAAGTATATGGACGTTTAGCTGTC



GAAAGATGGCAGAAACAATGGGTAGCATGTGAGGCTCTGGAAGATTT



GAGTCTTGTTAATTGCCTCATCAGCCCAGGTAGAGGACTTGCTTGTG



TGCTTAGGAAATGTCAAGCTTTGCAAAATCTTCATCTTGATATGTGT



GTTGGGGTAAGAGATGATGATTTGATAAGCCTTGCCCAGCAATGCCC



CAAGCTGAAAACCTTGTCATTACGAGTTCCTTCAGATTTCTCCGTTC



CTATCCTAATGAGCAATCCACTGCGGTTGACAGATGAGAGCTTGAAG



GCCATAGCTCAGAATTGCTCTGAATTGGAATCAGTTTCAATATCATT



CTCTGATGGAGACTTCCCTTCCTCATCTTCCTTCAGTCTTGCTGGCA



TAGTTTCATTAATTGAAGCATGCCCTATCCGGGTTTTAGTTCTTGAC



CATGTTTATTCATTCAATGACAGTGGCATGGAGGCTCTTTGTGCAGC



TCACTTTCTAGAGATCCTTGAACTTATACAATGCCAGGAGGTCACTG



ATGAAGGGCTGCAACTGGTCAAGCACTTTCCATGTTTGAGTGTCATG



CGACTTTGTAGGTGCTTGGGTTTGACAGATATTGGACTCAAGCCTCT



AGTAGCTTCTCATAAATTGCAAAGTTAAAGGTGGAAGATTGCCCTCA



AATCTCAGAGAAAGGCACTCAAGGTGCTGCAAAGGTTGTCTCCTACA



AGCAAGATCTCTCATGGATTTACTGATGGATGGTTGACCTTCATTTT



CTGAATCGTAGAATGGTCCATCCATGGATATCATTTGAAGAAATCAG



TGCTTATTGACAGGCATTTTATCAATTAGAGGACAACTTTTATGAAA



GCAGGATAATTCTAGGTGTAGTGCTATATGTATTATGAACAAATTTT



TTGTCTCAAATTTGCTTCCTGACAGAATATGCTTGGAGTGGCCTTTC



GCATATATGTACATGCAAGGCTGTCTAGTGGTTAGCTCTTATCCATA



TGCTGGACTGTTGAGCGTTTCAAGAGATCAGCTTTCCTTGACTTGTA



TATTTTCTATGTTTGATTTCAGGTTCATAATGTAAATACCTTTCCCG



TTGAAAAAAAAAA





177
ATAGCTATGGCTCTTCAGCTTATGGAAATGGATCTCAAAAGCAGCAC



CGACATGGAAATGGTGGAGGAGGTATAAGTTATTGGAATAAGCTTCC



CAAGGTCGGGTGAAGAAGGTATAATGGACCCCATGGAAAGGGCTGCC



AAGGTCCTGGGATCGAGTCCAGGGCACAAAAATATGATGGGCTGTTC



TTCGTCAGGTGTGAAGGTAGAACCTGAGATTGATGGGCTTCTGGCAA



ACGCTGGGTATACTGTAAAGGCCTCTGATTTAGCCCATGTTGCACAG



AGGCTGGAACAACTGGAGAGCATTATGGGGACGGTTCAAGACCCGGG



AATATCTCACTTGGCTTCCGAGGCTGTGCATTATAACCCATCGGATT



TAGCTGGCTGGATCGAATCAATGTTCGGGGAGCTTAATCCAGGCGCA



GACATGCCAGTTCCGTTTGGGGACAGGGGATCTCTGATCGATTCTTC



ACAGGTTCATAAGCCGATTCAGGATGATCCCAGTCTTTCTGCTATGG



ACTTGGCGCTCATTCATGAATATGGCTTGCAGTTTAATGGAAGCCAA



GCATCTAACCCTCAGGGTTTTTCCCCGGATTCTGATCCCTCTGTTAG



ATGCAATATTTTCTCTGGACCGCCTCTGCGTTCTGGGGATTCTACCA



CACACACGAACTTTCAGGCGCGGAGCTTTAGTGCCCAGTCCAGCGAC



GAGGGTTCGAGTCTCTCTACTACCCGCTTGGGAACCGCACAACAGAG



CATAGATAATGGAGCGCAAGAATCAGGGATTCGCGTGGTGCACTTGC



TTATGGGATGCGCGGAGGCTATACAGAGAAACAATTTGAAGGTAGCC



AGCAATTTAGTCAGAGAGATTCGAATGACGGTGAATTCTGCCCCCTG



TGGAGCAATGGGCAAAGTAGCTTCCCACTTTGTTGAAGCTCTGGCGC



GGCGGATTTGTGGATTGAATGGCGCAGAATCGAATATGTCACAGGCA



GATGCGCAATCGGAGATTCTCTACCACCATTTCTACGAGGTTTGCCC



TTATCTCAAGTTCGCTCATTTTACCGCAAACCAGGCCATTCTTGAAG



CTTTTGAAGGGCACGGCAGCGTCCATGTGATAGACCTAAATTTGATG



CACGGCTTGCAATGGCCGGCTCTGATTCAGGCCCTCGCTCTCAGGCC



CGGCGGGCCGCCTCTTCTGAGATTAACAGCCATTGGACCCCGGCAGC



CCGATGGCAGAGACGTGCTGCAAGAAATAGGCATGAAGCTGGCTCAG



TTCGCCGAATCTGTTAACGTAGAGTTCGATTTCAGAGGTGTCATGGC



CGATAAGCTGGAGGATATAAAGCCCTGGATGTTCCAGGTGAAGCCTG



GAGAAGTAGTTGCTGTCAATTCTGTTCTGCAGCTCCATCGTTTGCTT



TACATTGATGCCCCTACAGGGTCTTCCCCCATTGATGTAGTCCTCAA



GTCCATCGGCAGCCTGAGGCCCAAGATTGTGACAGTTGTTGAGCACG



AGGCCAATCACAATGGACCTGTTTTTCTGGACAGATTCGTGGAGGCA



TTGCATTATTATTCAACCATGTTCGATTCTCTAGAAGCATGCAATGT



GCTTCCAAATAGTATGGAGAAATTTTTGGCAGAGTTGTATATTCAGA



AAGAGATTTGCAATATTGTTGCGTGTGAAGGTCGTTATAGAATAGAG



AGACACGAAACCCTTTCTCATTGGAGGATACGCTTGGGCAGAGCAGG



TTTCAGGCCATCACATTTGGGCTCCAACGCATTTAAACAGGCAAGGA



TGCTCTTGACCTTATTTTCTGGAGAAGGTTACACTGTTGAGGAGAAT



AACGGTTCCCTAACACTGGGCTGGCACAGCCGGCCCCTCATAGCTGC



ATCTGCATGGCAAGGCTCCTAGGGCTTAGGGTTCAGTTAGTTGTATC



ATTTCTTAGCATCTTGCAGGCTCAGTAACTGTATAAGAGGAGAATAA



ATCTCAAAGTTTTCAAAGTTTTTAAGACAGTTAAATACTCCTATCCT



GTGGTGTCTGGATAAACATACCAGAATCAATGAATGCTTCACAACAA



TGTGATACGTCTTTCTCTCTGGATAAGCACATTAGCGTTCAGGATGA



AATGCTGGCTCGTAAGATAAATGCTACCAGAATGATTCAAAATGGCC



ATGGCTAGGCTAGGCTCATCTAAGCACTGATGTAAAGATAATGAGTC



AATCATTTGATGTAAAAACAATGAGTCAATTATTTACTTATTGTATG



GTGCTTAACATGGGCAGAAACTCATGCTTACACCTCTTTCTTTTTCT



GAATGTATTTTCTTCTCCTTCAAAAAAAAAA





178
ATAAGCTTAAGCTTATAGGACAGGGGAGAGGAAGAGGAAGAGGGGCG



AAGGGGGAAAATGGCGTCATAGCAGGTATACGCAGAGCCAATCAACA



GGAAGCAACAATAGGAGAAGCAGCACTAATACTAACACTACCACCAA



CAAAGCAAACGGCGATGGCTCAGTACAATGCGGACGCGAGATTACTC



CAAGTCTTCGAACAGTCCGGGGAATCGGGTAAGTCTTTCGATTACAC



GAGATCCGTCAAGTCCACAACAGAGTCTGTTCCAGAACAGCAAATTA



CCGCATATTTATCTCGAATTCAAAGAGGGGGAAGAATACAGCCGTTT



GGCTGTGTACTAGCAGTGGAGGAGACCACTTTTAGGATCATTGCTTA



CAGTGAGAACGCAGTGGAAATGCTGGATCTGGCGCCCCAATCTGTCC



CGAGCATGGAACAACCTCAACAAGACGTTCTGACAATCGGGACCGAT



GTTCGAACCCTGTTCACTGCTGCTAGTGCTCACTCATTGGAGAAGGC



AGCAGTAGCCCAGGAAATAAGCCTCATGAACCCTATCTGGGTTCATT



GTAAAAACTCCAGAAAACCCTTTTATGCAATTGTGCATAGGATTGAT



GTAGGCATGGTGATAGATTTGGAGCCCTTGAGGACTGGGGATGCGTT



CATGTCAGCGGCTGGTGCAGTCCAATCTCAGAAGCTCGCTGTGAGGG



CGATTTCTCGGCTGCAGTCACTTCCTTGCGGTGATGTTGGCTTGCTG



TGTGATAGTGTTGTGGAGAATGTGAGGGAACTGATTGGTTATGACAG



GGTCATGGTTTACAAGTTTCATGAAGATGAACACGGGGAAGTTGTTG



CTGAAATCAGGCGTTCAGACTTGGAGCCCTATCTTGGGTTGCATTAC



CCTGCCACAGATATACCTCAGGCTTCTCGCTTTCTTTTTATGCAGAA



CAGGGTGCGGATGATCTGCGATTGCATGGCTACTCCCGTGAAGGTTA



TCCAGTCTGAGGAATTGATGCAACCTCTATGTTTGGTGGGTTCGACG



CTTCGGGCACCCCATGGGTGCCACGCCCAATACATGGCCAACATGGG



TTCCATTGCTTCGCTTGTTATGGCTGTGATTATTAATGGGATGATGA



GGAAGGGGGAGGGAGTGGACGAAAATTCCATGAAGCTCTGGGGTTTG



GTTGTGTGCCACCATACCTCCCCGAGGGCGGTTCCGTTTCCTCTCCG



CTATGCTTGCGAATTTCTGATGCAAGCATTAGGTCTTCAGCTGAACA



TGGAATTGCAATTGGCAGCTCAGTTAACAGAGAAACACATTCTTAAG



ACTCAAACGCTTCTCTGTGACATGCTTCTCCGAGATGCCCCAATGGG



AATTGTAACTCAGTCTCCCAGTATCATGGATCTTGTCAAGTGTGATG



GTGCTGCTCTTTATTATGGAGGTATGTGCTGGATGTTGGGAGTGACC



CCAACTGAAGCTCAAATCAAAGATATTGCAGACTGGTTGCTTGAACA



CCACGGGGATTCTACAGGCCTGAGCACGGATAGCTTGGCAGATGCTG



GTTATCCAGGTGCCGCCTCTCTTGGGGATGCAGTCTGCGGCATGGCT



TCAGCTAGAATTACTTCAAAAAGATTTTCTTTTTTGGTTCAGATCCC



ACACTGCAAAGGAGATGAAGTGGGGAGGAGTAAAACATCATCCGGAC



GACAAGGACGATGCTCGACGGATGCACCCTCGTTCCTCTTTCAAGGC



ATTCCTTGAAGTGGTCAAAAGAAGCTTACCATGGGACAATGTGGAAA



TTGATGCAATTCACTCGCTACAGCTTATTCTACGAGGCTCGTTTCAG



GATATTGATGACAGTGGTACTAAAACTATGGTTCATTCTCGGCTAAA



TGATTTGAGATTGCAGGGCATAGACGAACTTAGCTCCGTGGCTAGTG



AGATGGTGCGTTTGATTGAAACAACTACAGCACCTATTTTGGCTGTA



GATTATAATGGACTTGTAAATGGATGGAATGCAAAAGTGGCAGAATT



GACGGGCCTCCCGGTTGGAGAAGCCATGGGCATGTCCCTTGTTCAGG



ATCTTGTTTTTGAGGAGTCTGTGGAGAGGGTTGAAAAAATGCTACAC



AATGCCTTAAGAGGGGAGGAAGAGAAAAATGTTGAGATGATGCTAAA



GACCTTTGGCCCACAGAAGGAGAAGGAGGCTGTTATTTTGGTCGTTA



ATGCTTGTTCAAGCAGGGATTTTACAGACAATATTGTTGGAGTATGC



TTTGTGGGCCAAGATGTTACCAGTCAAAGTGGTCATGGATAAATTCA



TCCGAATCCAAGGTGACTATAGGTCCATTGTGCAAAGCCCCAATCCT



TTGATTCCTCCCATATTTGCTTCGGATGAATATGCCTGCTGCTCTGA



ATGGAATGCAGCTATGGAAAAAGTAACAGGCTGGACTCATGATGAAG



TTATTGGGAAAATGCTTGTTGGAGAAATTTTTGGTGGTTGCTGTCGT



CTGAAAGGTCAAGATGCAGTGACCAAGTTTACAATTGTGCTGCACAG



TGCAATCGATGGACAGGAAATAGAGAAGTTCCCATTTGCATTTTTTG



ACAAACAAGGGAAATATGTGGAAGCACTTCTAACAGCAAACAAAAGA



ACAGATGCAGATGGGCGAATTACTGGGTCGTTTTGTTTCTTGCAGAT



TGCCAGCTCTGAACTGCAGCAGGCATTAGAGGTTCAGAGGCAACAAG



AGAAAAAATGTTTTGCAAGATTAAAAGAGTTGGCGTACATACGGCAG



GAAATAAAGAATCCTTTATATGGAATGATGTTTACCCGGAAACTGTT



AGAGGAGACTGATCTGTCTGATGATCAGAGCAATTCGTTGAAACAAG



TGCTGTTTGTGAGAGGCAAATGCAGAAGGTTATGGATGATATGGATT



TAGAGAGTCTAGAGGATGGTTACATGGAGTTAGACACCGCTGAATTT



ATTCTGGGAACTGTCATCGATGCTGTTGTAAGTCAAGGTATGATTGT



ACTAAGAGAGAAAGGATTGCAGCTGATTCGTGAGATTCCTGGCGAGG



TAAAGACAATGCGTCTTTATGGAGATCAAGTAAGATTGCAGCAGATC



CTGGCAGATTTCTTGCTGAATGTGTTGCGGTTACTCCTTCACCAGAG



GGATGGGTAGCAATCAAAGTATTTCCAACCTTGAAACAGCTTGGTGG



TGGTTTACATGTCGTTCACCTAGAATTCAGACTTTGTTGTATGAAGA



GAGCCTTGATGCCAAGATCATTCAAGAACCCACTCTCTTTCCTCCAG



ATAAAGATATAGGATAACACATCCGGGACCGGGCCTTCCAGCAGAAC



TTGTCCAAGATCTGTTTGATAGATCACAGTGGGCCACACAAGAGGGG



GGTTGGACTAAGCATGTGCCGGAAACTTCTCAAATTAATGAATGGTG



ATGTGCAGTACATAAGGGAATCAGGAATATGCTATTTCCTTGTGAAT



GTTGAATTTCCAATGGCACAAAGAGAAGATGCAGCCAGTATAAAATA



GACGTGGATTCCTTGTATCATGTTCTGCCAAACAACTCTAAGGGTTC



CTTTTCTTCAACTGTAGTGCCTCTCCAGATTTGGTGCAAGCACAGCA



GAGAACTCCATGTATATCAATGGTATGAATGCAAGACTGAGCTTCTT



TGGCTTCACAGAGGATTCCACTTGTAATGTATGCTCCATTTTTCTGC



TTGGCTAATGCTGGAAACATCGAAAAGCATTGTATCACTTGACTTGA



GAATTCACGGCACTGGGACGGCTTTTGTAAAAGCTTCAAGTTGTTAA



ATCTAGTGACACAACCTCTCTACATGTTCCTCATGAATACTGGTAAT



CTGTGCTTCTGAAGGCTGGTAAACATTATTATTGTGTAATCCATTAG



CAAGGTCCTTGACAGCATTTTAAGCTGTAAGTTTAGAAGGTTTCAAA



TTAACTGTTGTAAAACTAGCAGAGATCCATCATAGTTATAGATATAT



TAAGCACTGAAAGGGATAAAAAACTGAACATGCAAAACTCCAAGTTT



TTGCACCCTCAAATTCTATTTAATAAACAGAGGTTTGCACGGCAAAA



AAAAAA





179
CGAGGCTCCACCCTTCAAAAAAACCACCATTTCTTTTGATTAGTAAT



TTTGGGGTGGAGTGCAGGCATCGAATAATTGAATAGGAGTAAATCGA



TTTGGAGCGTGGCCGAACGGAAAACGATCAATTTGGTTTCGTGAAGA



GAACAGAAAGAGAAACGATTTGCCAGCCCATCCTCTCCGTAACTTTT



GACTTTTGGAATCCTGATCGGAGCATCTTCGGACGGACGTTAATGGC



GACTGTGGGCAACAAGAATGTGCAGGCCAAACTTGTGCTTCTGGGTG



ATATGGGGGCTGGTAAATCTAGCCTCGTTCTGAGATTCGTCAAAGGT



CAATTTTTTGCCTATCAGGAATCGACAATAGGGGCAGCTTTTTTCTC



TCAGACACTAGCTGTGAATGAAACCAGTGTGAAATTGGAGATCTGGG



ACACTGCTGGGCAGGAAAGATATCATAGCTTGGCTCCGATGTATTAC



CGTGGTGCTGCAGCAGCAATAATTGTTTACGACATTACAAATCTAGA



CTCATTCGTTCGAGCAAAGAAATGGGTTCAGGAACTTCAAAGACAAG



GTAATCCAACATGGTGATAGCACTTGCAGGAAACAAGTCTGACATGA



TAGAGAATAGCAAGGTTTCACCAGAGGAAGCTAAAGTTTATGCTCAA



GAAAATGGGCTATTTTTCATGGAAACCTCAGCAAAGACTGCACAGAA



TGTGAATGAGCTGTTCTACGAAATAGCACGGAGATTACCGAAGGCCG



AGCCAGTGCAGCATCCTGCTGGTATGGTGCTTGCTGACAGGTCTGCA



GAAAGAGCAAGAAGCAATTCTTGCTGCTCATAATATAAGGGACATAA



ATATCAATGATCAGAGGCCTGGAAACCAAGCTGGGATAATATTTGTA



TTGTGCTATGCTTGAATTTAAGTAGATTGGAGCTGTGAGACAGATGA



TTATATTCTCGACTTTTCTGTTGCTAGACTGGCTTTATTTTGGGGGA



AAATCATTACTATCTGCATATCTTTGCATTTTCCTTAGGTTACTATT



TTTTCGTAGATCCTGGGCACTGTTGAAGACTTGCCCCGAAGATCCCT



GTAGTTAAACTGTACATAATGTATGCCAATGTATGTAAGAAATTGAT



TTTATCATTTGCAGCTTCTTTAATTTATGCATGTGAGTAAATGCTTG



TAATAATAAAGTTTTGGTCAGTTCTGCTGCTTTCCAGGTTAATATTT



TGGAACTGTGAAAAAAAAAA





180
GTCGCGGGTTCGGATTCTTTTCCCTTTCGTCACAATGGCGGATTCCT



CAGTGCGCAGCGAGAGCGTGTACATGTCGAAGCTGGCGGAACAGGCC



GAGCGGTACGACGAGATGGTGGAGTACATGGGGAAGGTAGTGAAGGC



CGCGGACGTCGAAGAGCTGGCGGTGGAGGAGAGAAATCTGCTGTCTG



TGTCGTACAAGAATGCCATTGGGTCACGTAGGGCCTCCTGGAGGATC



GTCTCTTCCATTGAACAGAAGGAGGAGAGCCGAGGGAACGAGGACCG



CCTGCCCCTCATCAGGCAATACAGGCTCAAGGTGGAGGCCGAGCTGA



GCGGCATTTGTGACAGCATCCTGGGGTTATTGGATGGCTATCTCATT



CCCTCTGCTTCTTGCGGGGAGGCCAAGGTCTTTTATCTCAAGATGAA



GGGAGATTACAATCGTTATCTCGCGGAGTTTAAGACCGGGGATGAGA



GGAAAGAGGCAGCGGATGGCACACTGGAGGCCTATAAGAATGCACAG



GGTATTGCTCTGGTTGAGCTGGCCTCAACACATCCTATAAGGTTGGG



ACTTGCACTCAACTTTTCTGTGTTCTACTATGAGATCATGAATATGC



CAGAGAAAGCATGTGCCCTTGCTAAACAGGCTTTTGATGAGGCCATT



GCTGAGCTGGATACATTAGGTGAAGAATCTTATAAGGATAGCACACT



GATCATGCAGCTTTTGAGATAATCTGACACTCTGGACTTCTGACATG



CAAGAACAGTTGGATGATTCCTAGTGAAACAGATAACTAAGAAGGTG



CATGATCCTCTGGTTCAAGTTGAGATAGAGGTGCCGCACTCATTAGT



AGGTTTATCATATGGAGGTGGACTCAATGACAGTTTGGTGGTTTTAT



TCATTTTAGTGAGTGGAAGGAGAGGACATTTTTATGGGTCTGCCACA



GAAATTGATGGTCCGGCCAATTGTTTGGATGATGTATTAGTGGTACA



TTGCTGCATACTTTAATCCAGAAATTCATTACTAAATGATAACTAGA



CACATGTGGAAGGATTATCAGATTTTGTTGGATTACACTGGTTTCAG



TGTAGTTTGAGACTTTGTGATCCAAATCAAGTTTTATAATATTCTTA



TTCATAGACAAAAAAAAAA





181
GGGAATTCCCATTCTGCACATGCAATGGACAATGGAATGATGGTATG



GATAGTTTTAGCAGGGGTAGTGGCAATGGCAGTGTGGTATCTTTTGG



TACAGCACCAACAGCCTAAGCAGAGCCACAATGTTCCTTGGGAGACT



CTTCCACCGGGGGCTGTGGGATGGCCCTTTCTCGGAGAGATCATCTC



TTTCTATTTCCGAACACCGGATTTTGTGAAGCAGCGGCGGGGAAGGT



ATGGGAATTTGTTTAGAACGTTCCTGATAGGATATCCAATGGTAATC



TCAACAGATCCTGAGGTTAACAAGTTTATTCTGAATAATGATGGCCG



GCTGTTCGTTCCTGCATATCCGTCGCATTGGTCACAGATAATCGGAG



AGTGCAATATCTTTGCTGCTCGTGGAGACTTTCACAAGAGAATGCGG



GGAGCTTTCTTGCATTTCATCAGTATTTCGGTAGTCAAGAATCGGCT



TCTTTCAGAAATACAAAATATCATAACTTTCTCTCTCGCAGGGTGGG



AAGGTAGAATGTGAATGTGTTGCATGAAGCGGAAGAGATGATATTTT



CGGTCATGGCCAATCACATGTTAAGTCTTTCAGCGGGCACAGCACTG



GAGAGTATGAAACGCGATTTTTTGGTTATGATGAAGGGACTTCGCAG



CCTTCCGTTGAGAGTCCCTGGCACAACGTTTTACAAAAGCTTGCAGA



AAAAGCAGGTGTTGTTTAACCAAATCAAAAGCATTATTGAGGAGAGG



ATAATTGAATATGTCAGCCTATGATTCATATGACGACTTGTTATCAT



CCATACTAAGAAGTGCATCAGAAAAAGAATTCACAACAACCCAGATC



GTAGATTTAATTGTGCAGTCGGTGATTGGTTCGCTTGAAACTACACC



AAAGATAATGGCTTCAGTGGTGCGGCATCTATCTGAAAATCCACATA



TCATTATATATCTCAAGGAAGAACACGAAACGATAATCCAAGCCAAA



GAAAACAACCAGAGTCTATCATGGGATGACTATAAATCAATGGTCTT



TACTAAAAGTGTGATCAAAGAGACTTTAAGATTTGGGATGCAACCTC



TCAACAATATAATGTTTAAAAAGACTCTCCAGGATGTAAAAATTGAA



GGATATACAATTCCCAAAGGATGGACATGCATAATATATGATTTAGT



CTCCGACATGGATACCAAGTACTGCAAAGACCCTCTTTCCTTCAATC



CTCAGCGGTGGCAGAGTAAGGAAATGAATGAGGTGCCCTTTTTAGCA



TTTGGAGGTGGTCCTAGACTTTGTCCTGGATATGAGTTGGCTATGTT



GACTATGTCATTTTTCTTACATCATCTTGTGACAAAATTCAGATGGG



AATATCTTCCTTCGAAATCTGAGTTAAGGTGGTTTGATTCACCCTTG



AACTCAGTATTCGATTGCAGGATCCACGTAGAGAATCGTTGAATCTA



AAGTTAGTGAGATGAACAAGCACCAAAGTTTGGTAGTTGGAAAGACT



AAATGAAATCATTATGAGTATATTCTTTTTTTATTGATATTTTTAAA



TTAAAACTGATGAGATGAACCTTTGATACTCCTTTGTTGACATCAAA



GAGTAGATTGAAATAATTGTCAATATTGTTTTATTATTTGTAGATAA



TTTTTTTGGTTAGCTGATATTTTAAAGCTAAAGTTAAAAAAAAAA





182
CTTGAATCTGCCATAGCCTTATCTTCAGCTGCAGTTGAAGCTGGGGT



TTTGCAGATTTGGGAATGGCGATATTATACGCATTGGTGGGGAGGGG



AACAGTGGTTTTAGCCGAATTCAGCGCAGTGGGTGGGAATGCAGGAA



CAGTTGCCAGACGAATCATGGAGAAGCTTCCTCTCCAAGATCGCGGA



GAAGGAGAAAGTCGCCTATGTTATTCTCAGGATCGCCACATCTTCCA



CATATTAAGAGGATCCGATGGATTAACCTTCCTCTGCATGGCCAACG



ACACCTTTGGCAGACAAATTCCATTTGCATATTTAGAGGATATTCAA



ATGAGATTTATGAAGACATATGGCCGTGTGGCTCAAAAATGCACTTG



CTTATGCAATGAATGATGAATTTTCTAGAGTTCTGCATCAGCAGATG



GAGTATTTCTCTAGCAACCCCAATGCAGACACCTTAACACGTGTTAG



GGGGGAAATGAACGAGGTACGCACAGTTATGGTTGAAACATAGAAAA



ATCCTAGAAAGAGGGGATAGAATTGAACTTCTGGTTGATAAAACATC



AACTATTCAGGACAGCTCGTTTCATTTCAAGAAGCAGTCCAGGCGAC



TACGGCAAGCACTTTGGATGAAGAATGCAAAGCTTTTGGCTTCATTG



ACTTGCTTGATTGTTGTGCTTCTGTATATCATAATTGCTTTGTGTTG



TGGTGGTATAACTCTTCCATCTTGTCGATCATGATTTTCACAAATCT



TGGCCATGGAACTTTCGGATGATGTTCTGTTTGCTTGTCCGTCTTTC



AAGGCTATCTATGAAAACATCATCAGTTGTGTGCCAGACCCAATCTA



CAGCTTATGATGGTGTAAAAAGGCTGTTTTCTTGGAGATCAGTTAGA



CTGATGCAATGAAATTTTGCTCAAGAATCTCAGGCTACTTGGAAGCT



TGGTGTGTGGAGGAAGGCTTCTGTATTTATGAGAGATGTTTTCATTT



GTAATGTCTGCTCTTTTGCAGATTGGTATAGTGCACAAGGTATTAAT



ACTGCACGCGCTTCTGATTCATTGATTAACCCATGGATATAATTTTA



ATGGCATTGATAAAAACAACAATTTGATCGAGTTGTATGGCTTAATG



GATAACATATTCCGATAATTGATTGAGTGTAATTTCTTATTTGAAGG



AAATTCTGTCTTAGAGGCCCCATATTCATTGTGTTTATCAAAAAAAA



AA





183
GCCACGGTTGCGGTGGTGGGATGCTCTCCAGCGCTACCTGAGAAGTC



TCTTCTTTACAGTATATTTAAGAGGGAAATCGCAAAATCTGGCATCC



CATTATGCGGCGAAGGGTTTGAGCTGAGAGCATGGGCATTCTGCCAC



GGATACTGAAGTCGTCCCGCCTTTTCTGAGATCAATTGATACACAGA



AATTTTATTCGCCCCGTGTTGAAGGGTCTGGAGGAGCTTTATGTGGT



AGGCAAGATTGAATTCCGCATCAAGCTACTGATCAGCAGGGTTTATT



GGTTTCCAGAATTGGCAAAGAAATGGGGGAATTTAAGAAATGGAAGC



GGTGTAATTCACTTCCATCACCGATAAATTCCTTGGACGATGGGTGC



CTAATGCGCATATTTTCTTTTCTCTCCCCTTTGCCAGATCGATATAG



TGCTGCAAGGGTTTGTTCTAGGTGGAGACATCTGGCATCTGACCCTC



GAATGTGGTTACGTGTGGAAAAATCGTGCAATGCATTGGCTGAGTCG



GGTATCTTTTCAACGATTGAAGATGCAGTTGTTGCTGCAAGACCAGG



AGATACCATATTAATTGCTACAGGAGTAGTTCATATGGCCTGTAATA



TTCAAATAGTCAAGCCCATTTGCCTGGTTGGTGGAGGTTCATCACCA



GATGAAACTGTGCTTGTTTGTCCGCGGGGCTTTGATAGTGCCCTAGA



GTTTCTATCCACTGGAAAAGTTGCCAATCTTACCATAAAAGCAGAAC



TTGGAAGCTGCTTGCTACATAGAAATGGACGTCTTACAGTGGAAGGC



TGTGTACTACAGTGTGAAGAACATCCCTTGGAGCACTTATGTTGTCC



AATTGTCAGCACTGCTGATGCTTTAGCCCCTCCTAGTACCTTGTCCT



CTGTCATGAAGGGGGGAAGTTCCATGTCTGTTATACATACTCGAATT



AAGGTGGTGCTAAGCAGTTTTAACCAATGGGAGCCTCACTCTGCAGC



AAGTCAGAGTTATATATTCACCGACTGCCCTGTTTTTCTGGTTTAAT



GTTTCACAAAAATCCCTGACAGATATTGATTTGCCACCATTTATATG



CAAAGCTTGAGTTGTCTGTCGAGGTTGTCAGCATTTGCAGTTTCTAG



CTTATTAGGTGCGACTTCATATTTGTAACATTAAATCCTGTTATCTT



ACAATTTACATAGTATCCTGGGAGTCTCTTTTAATTTCAAATATGGC



TGTGGGCATGGAGGTGTACAAAAAAGTTATGGATCTGAAACTTTTGT



TTTCTTTGAATATACAAACTCTGAGTTGCCTTTAAGCCCGGAGGCAT



AATTTGGGTGTCTCTGAGTTGGTAGATCATCAGGGCATAGCTTTCAT



AACCGGTAATGGAGTATATGTTCCATGCCTAACAGGTATTGAGATTC



AGGTCTATGTAGTAGTTTATCGTATACATCAATCTCTTTGGAAAAAG



AGATGCCAGACTTTAAATGATTCAAACGAGCACTTTCATCAAGAAAA



AAAAAA





184
GCCAACTTCTAACTTCTTGGAATCTTCTTGGAATGCCCTAGATGCGT



TTTAGTTACCTTCCGCCGCTATCTTTGGCGCCTTCCACTGTGGGTTT



GCAGATACATTAATCTGTAGTGCTGGGGACGAAGGATTGTTAGCGCT



TGTATCCCTGAGAAGTTCGGATACCTTGCATCACTTCAGAGGCATTA



CTCTTTTGTAATTCCAACATCATGGGATCAACAAACAACCAGTCAGA



GAGAGCATTCTCCATCAAGCTATGGCCTCCAAGTGAGAGTACACGCT



TGATGCTGGTAGAACGCATGACTGATAATCTCTCTTCAGTTTCATTC



TTTTCCAGAAAATATGGCCTTTTGAGCAAAGAAGAAGCTGCAGAAAA



TGCAAAGAGATCGAAGAGACAGCATTTCTTGCTGCAAATGATCATGA



AGCCAAGGAAACCAATTCAGATGATAGCTCCGTAGTGCAGTTCTATG



CAAGAGAAGCCAGTAGACTCATGCTAGAGGCCCTTAAGCGAGGACCC



ACAAGCCAGAAACAAGAATCTGAGAAGGAACTAACGGCTGAAACTGT



TGAAGTGAAGGAGACCATTTTTGACATATCAAGAGGTGATCGAGGGT



TTGTCGATGGAACCCTTGCTGAGGAGCTCCTGAGACCATTGACAGAG



GAAGGGAATAGTTATACCAAGATATGCTTCAGCAACCGAAGCTTTGG



TCTCGATGCTGCTCGTGTTGCAGAGAGGGCTTTGATGGAAGTTCAGA



GAAATCTGACTGATGTTGATCTTTCAGATTTTATTGCAGGAAGACCT



GAGGTCGAGGCCCTTGAGGTAATGACCATATTTGCGTCTGTTTTACA



AGGGTGTGAGTTGAGGTCCCTGAATCTTTCTGATAATGCACTGGGTG



AGAAGGGTGTAAGGGCATTTGGGCCTCTGTTAAAATCTCAGAAACGT



TGGAGGAACTGTATTTTATGAACAATGGAATCTCTGTGGAGGCTGCT



AGAGCCATCTGTGAGCTTCTGCCCTCTGTTGAGAGGCTTAGGGTTCT



GCATTTCCATAATAATATGACAGGGGATGATGGAGCAGAGCCCCTTT



CAGAGCTCGTTAGGAACTGCACTGCATTGGAGGATTTCAGATGCTCA



TCTACTAGGGTTGGTGCTGTGGGTGGTATAGCTTTAGTAGGAGCTCT



AGGAGCAGGAAATAGATTAAAGAAGTTGGATTTAAGGGATAACATGT



TTGGGAAGAAGTGCGGGGTTGCTTTGAGCAGAGCCCTCTCACCGCAT



TTGGGTCTTACAGAGGCTTACTTGAGCTATCTGGGTTTTCAGGATAA



GGGGACAATAGCTCTTGCCAACAGCCTGAAGGAAGGGGCTCCGTCCC



TCAAGGTTCTGGAGCTTGCAGGCAATGAGATTACTGTGAAAGCAGCT



ACGGCGTTGGCAGAGTGCCTTGGTTTGAAAAGAATGCTTACAAAGTT



AGTTTTGTCAGAGAATGAACTCAAGGACGAAGGATCAGTGTTGATCT



GCAGAGCACTTGAGGAAGGTCACGAGCATCTGAAGGAACTTGATTTG



AGTTCAAATTCTATCAGTGGAGTAGGGGCGAAGGTTGCAGCTGAGTT



AGTTGTCAATAGCCTGACTTCGATCTGCTGAATATTGATGGAAATTG



CATTTCGGAAGAAGGGATTGATGCTGTCAAAGATGTCCTGAGAAGAG



GTGACAAGGGTGTTACCGTGCTTGGGTCTCTGGAAGATAATGATGCA



GAGGGCGAAGGTAATGACTATGAGGACGGGGACGAGGATGATGATGA



AAATGAGAGCAGTGATAGTGATGGTGATTTAGTGGCCAAGGTTGAGG



ACCTGAAAATGCAGTAGCGCCACGCATAGTCTTCGACATACATTACA



AGGACAAATTTGGGTCTTCATTTGCTGTGAAACGCTGATCCCGTGAA



GGCAAACTTTCAGAGTTTTAACTGCTGCAGATAAGTCCCTTTACATT



AATGATTGGAAATTCTATACCCGGCTAAATGTTGTTTTGTGAACAAA



TGAGAAATTTGATTGTGCAGCTTTTGACTGCCCTAGCTTAAGTTCCG



TTTCTAGTATTTCACGTTTAATTATGGTTCAGTTAGAATATGTTTAT



CAAATTCTTCATCATTCCTAATGATGATGGTTTTGGGTATTCAAATT



CCTTTTAATTTTCTTGCTTAAAAAAAAAA





185
CGTTCTTTAGCCCTTTTGTTGATTGTATGTGTTGCACAGCCTTTCAG



GAGGAGGAGAAGCTAGCGGGAAAAGGCGCGCCGTTGCTGCCGAGGTT



TGGCCTTTTGGAAACACGGATCTCTGCGTCCCTTGACGGCATTGAGG



ATTTTGATCTTTCGGTTTAGGTTTTATTTTCAGGGAAAATGTCGCCT



GCGGAGTCTTCTCGTGAAGAAAGTGTGTATATGGCCAAGCTTGCTGA



ACAGGCAGAGCGCTATGAGGAGATGGTAGAGTACATGGAGAAAGTTG



CCAAGACAGTAGATGTGGAGGAACTTACTGTCGAGGAAAGGAATCTG



CTGTCAGTGGCTTATAAGAATGTAATTGGAGCTCGCCGGGCTTCATG



GAGGATAATTTCCTCCATTGAACAAAAGGAAGAGAGTAGGGGAAATG



AAGAACACGTTACTATGATAAGAGAATACAGAGGCAAGGTTGAGTCT



GAGCTCAGTAATATTTGTGATGGCATTCTACGTCTTCTGGATACACA



TCTTATTCCGTCATCCACATCTGGTGAGTCCAAGGTATTTTATCTTA



AGATGAAGGGTGATTACCATCGATATCTTGCAGAATTTAAAACTGGT



GCTGAGAGGAAGGAAGCTGCTGAAAGTACATTGCTTGCATACAAGGC



AGCCCAGGACATCGCGACTGCAGAGTTGGCTCCAACTCACCCTATCA



GACTGGGACTGGCCCTTAACTTTTCTGTATTCTATTATGAGATTTTG



AATTCACCAGATCGTGCCTGTACACTTGCCAAGCAGGCCTTTGACGA



GGCAATTGCAGAGCTTGATACGTTAGGTGAAGAATCTTACAAGGATA



GCACTTTGATCATGCAGCTCCTTCGTGATAACCTCACGTTATGGACT



TCAGACATGCAGGAGGAGACTGGAGGAGATGAAATCAAAGAAGCTCC



GAAGAAAGAAGAAGGTGATGGACACTGAAGGTGATGGACGCTGACAT



CTTTTTTATGAATGAAATCGATTAGGATGGTGAAGGGGATGAACGTC



AATGTTTATCCGTAAATGACTGTCAAGTAGGTTAGATTCATGAGATA



TGGTCAAATATGTTGTATTAGAGGTTTTAGAGTGTTTTTGTGGTTTT



CTGCACGATTGTGTGCTAAGGGGGATTCAGCAAATTCTCCTATAAAA



TCTGCTGCCCTGCAAGATTTTATTGTTGCAGGGTACTGCTTTGTACT



CCAATCATACCATGGAGGGCACACTTAAAGTTGTTATTTAAGTGTTA



TTGATGTCATTTGGAAGGATCCCTGCTTGTCAGTGGATGGATATGGT



ACCCTGCAGACCTGGGATTGTAATAACATAGTGGATAAATTACTGCA



AGTTCTAATATTATACTGTGATGTGCACCAAAAAAAAAA





186
CAGATTTTGCATGCTCTGTCTTGATCTCTGTGCATTGGCCAACCCAA



AGCCAGGCCATTTTCATCTGTATAGGTGTTGGGTGACGTGAAAGGGG



CTTTCTCCGGTAAATCTTATATTTACCCTTTGAAGGCCTAAACCTTT



CGCACTCCTGTACTCAAATTTGATTTTTACCATTTGGGTCTGTAATG



GAGTGTCATTGATTCTGAAACCTTTGGGGGATTTACATTTTACAGTG



CAATTTTACTGAGTTTTGTGTGTGAGCGCTGGGTTAAGGTTACTGTG



AGGATGGCACGCAAGGTTGATGATGAATACGATTTCTTGTTCAAAGT



GGTGTTGATTGGAGATTCAGGAGTCGGGAAGTCGAATCTTCTTTCCA



GATTTACTCGAAATGAATTCTGCCTGGAGTCCAAATCTACCATCGGT



GTGGAGTTTGCAACTCGAACAATCCAGGTAGATGGCAAGACAATCAA



GGCACAGATATGGGATACAGCTGGCCAAGAGAGGTATCGGGCAATCA



CAAGTGCTTATTACAGAGGTGCTGTGGGAGCTTTGTTGGTGTATGAT



ATTACAAAGAATGCTACTTTTGATAATGTGAAGCGGTGGCTCCGAGA



ATTGAGAGACCATGCAGATTCAAACATCGTTATCATGTTGGTTGGCA



ATAAATGTGACCTGAACCATCTGAGAGCTGTGCCAATAGATGAGGCA



CAGGATTTTGCTGAAAAAGAGGGCCTTTCCTTCATGGAAACATCCGC



ATTGGAGTCTACAATGTGGAGAGCTTTTCAGTCAATTCTCGCTGAAA



TCTATCAGATTGTGAAAAGGAAATCTCTTGCAGCAGAAGAGGCAGCC



TCTTCTGGGCCTAGTCAGGGAACTCCAATTAATGTCACTGATGCTGA



AGCAGTTGCAAAAAAGAGAAGTTGCTGCCTTTAAGTTTATATGTGTT



CCATGTAATCTAGACATTTTAAGTCCATCCAAGTTGTCTAGGATTAA



TTGCTGTTTAGCCAAATATATGTTCTCCGAATTTCCTTGTGTGCTTT



GGTTTGTGGTAACTTCTAACATTGGTGAGATTATTTTTATGTACTTT



GAGTGTCTGACTAGAGAAGCATCATCGCTAGAATTAAGGAGGATGCC



TTGTAAGCTCTGAAAGTTAT





187
GCAACATTAAAACCTCCGGCACAGGTGCCTCTGTTCAGTGAAGTTCT



GTTGCATTCTGTTCGCAGTGAAGAAAAATGAACGCGGGGCCTCTCAT



AGCAGCTCTAAGGGACTGCCCATTGCTGGCATTTCCCTCATGGACCG



CGGCCGGAATTATTTTGGCATATTTTTGTTATATGGCTTTAGCTCAA



TTTATCCTTCCCGGAAAGCAGATTCCTGGGGTCGTGCTTGCTGATAA



GACGAGGATTTACTATCGCTGTAATGGTTTTATCACTCTTTTTCTGC



TGGTTACTCTTTTAGGAATCAGTATGGCAGCAGGGATCTTGTCACTA



GCAGTGGTGGCAGACAAAGGTGGGGAGCTACTTTCTACAACACTGAT



ATTAAGTGCTTTGATTTCATTATTCTTATATGTTGCTGGTCACTTAT



CCCAAAGCAAAATGACTTCTTTAAAACCACATATTACGGGGAACTTT



ATTCATGATTGGTGGTTTGGGATACAATTAAATCCACAATTCTTGGG



CATTGACCTCAAATTCCTTCTCATTCGTTCTGGGATGATTGGTTGGG



CCGTCATAAATCTATCAGTTGCAGCAAAGGCCTTCCAACTGAAGGAT



TCATTAAACCTTTCAATGATCCTTTATCAGATATTTTGTTTGTTATA



TGTGATGGATTACTTCTGGTATGAAGAATATATGACATCCACTTGGG



ACATAATTGCGGAGAATCTTGGTTTCATGTTGGTCTTTGGGGACTTG



GTTTGGATTCCATTCACTTTCAGTATTCAGGGTTGGTGGCTTTTAAC



ACACAAACCTGACCTTACAAAAGCTGCTGCCATCCTTGATCTTCTAA



TCTTTATAATTGGGTATGACAGTCTACGAGGCTCAAATAAACAGAAG



CATATTTTCAAAAAAGATCCAACAGCTTGTATATGGGGTGAGCCTCC



GAAGGTTATCGGGGGGAAATTGCTAGCTTCAGGTTATTGGGGCATAT



CCAGACACTGTAATTATCTTGGTGACTTACTTCTAGCCTTCTCTTTT



AGTTTGCCTTGTGGAGCTAGCTCTTTCGTTCCTTACTTTTATCCTAT



GTATCTGCTGTTCCTACTACTTTGGAGAGAGCGAAGAGATGAGGCAA



AATGTCGCGAAAAATACAAGGAAGATTGGGTTACATACTGCAAACTT



GTACCGTGGAGAATAATACCATACTTGTATTAGTTGTCTCCGACTTT



GAATTTTTCGTTATTCAATGCATGTTTTCTCCTTACAGGAATTGCGA



GCCTCTCGAGTCTTTGGAGAAATTTTCATCTTTATGGGCATTGTTCT



CTAGACTGTGGGGTTCCGACCTGGGTAACTCACAGTGGAGATTGAAA



TGTGTATGTAAATTTTGTCTTTTATCTAT





188
CTCAATGATCAGACAACAATCTCATCCAGCCGTTCTCACATCAAATC



TTGCGAACTCGGAAATTAGCGTTCAATATACATTGAGTAAAAGCAGA



TACTAGATGATACTTTAAACGCTCGGTCCCGAGTTCGATCACTGTCG



GGTCACGCAACCAACTGCCAGAAGAATGCAGAGGCCGTCGAAGACGT



CTGTGGGCTATGCGATTCCGGACGAGGTTTTGAAGTGCGTGATGGGG



TACCTGGAGGAGCCGTGCGATCGCAGTGCGGTTTCCCTGGTCTGCAA



GAGGTGGAACCGTGTGGATGCGCTCACTCGCAAGCACGTTACCATTG



CGTTCTGTTACACCATAAGCCCCTCGGATCTCGGTGCACGGTTCCCC



GAGCTTGAGTCGCTGAAATTGAAGGGAAAGCCCAGGGCTTCCATGTT



TAATTTGATTCCCCAGGACTGGGGCGGATACGCGGAGCCGTGGATTA



ATGAGATTTCCCAGACGTTGCTCTGCTTAAAGGCTCTTCATTTGCGC



AGAATGATCGTTACGGATGAGGATCTCAGGGCTTTGGCTCGCGCCCG



CGGCCACATTCTGCAGGTTCTTAAACTGGAGAAGTGCTCGGGGTTTT



CGACTCTCGGGCTTCTCGAAGTCGCACGGTCCTGCAGATCTCTTAGG



GTCTTGTTTTTAGAGGAAAGTACTATTGAAGATGAAGGTGGAGAATG



GTTACATGAGCTTGCTCTTCATAATTCTTCATTGGAAGTTTTGAACT



TCTACATGACAGGTTTGGAAAATGTTAATGTTAATGACCTTGAGATG



ATAGCAACAAACTGTCGATCTCTGACCTCATTCAAGATAAGTGAATG



TGATATTCTGGATTTAAGAAATGTATTCAAGAAGGCCACAGCATTGG



AAGAGTTTGGCGGTGGGTCATTTAGTAGCAGTGAAGAGCAGGCTGTA



GAACCAAATATTTATGAAATGGTTAAATTCCCTACAAATTTGATGTC



ATTGTCAGGACTGAATTACATGAGTGAGACTGAATTACCAGTTGTAT



TTCCACGAGCATCTTCACTAAAGAAACTGGATTTGCAGTATACACTT



TTGAGCACAGAAAACTATTGCCAGTTGTTACAGTCGTGCATTAATAT



TGAAATTCTTGAGGTTACGAATGCGATTGGAGATAGAGGGTTAGAAG



TAGCAGCTGAGAATTGTAAAAAATTAAGGCGACTTAGAGTGGAGCGT



GGGGAAGATGAAGCTGGTTTGGAGGGTCAGCAAAACTTTGTTTCTCA



CAAAGGGCTTTCAGTTATAGCTCAAGGCTGTCCCAATCTAGAGTACA



TTGCTGTGTATGTTTCAGATATGACTAACTCAGCCTTAGAATCTGTT



GGTAAATTTTGCAAAAATCTGAGGGATTTTCGGCTAGTCTTGCTAGA



CAAGAAAGAACAAGTGACTGACCTCCCACTAGACAATGGTGTCATGG



CTCTGCTGCTTGGGTGCCAAAAGTTGAAGAGGTTTGGATTTTACCTA



AGGCCTGGAGGATTGACGGACATAGGCCTTGGTTACATTGGAAAGTT



TAGTAGCAATGTGAGGTGGATGCTTCTGGGTTATGTCGGAGAGACTG



ACTTTGGGCTTCTTGAGTTCTCGAAGGGATGCCCAAATTTGGAGAAA



CTTGAATTAAGGGGTTGTTGCTTCAGCGAATATGCATTATCTGTGGC



AGCGCTTAGCTTGAGGTCTCTAAAATATATCTGGGTTCAGGGCTACA



ATGCAACGCCATCTGGATTTGATCTTCTAGCTATGGAGCGCCCTTTC



TGGAACATAGAGTTTACTCCAGCTTCTCAAGTGACAGTGGATGGTTT



TAATTTGGAAGAAGAAATTACAGAGAAGCCAGCACAGATATTGGCTT



ATTATTCGCTTGCAGGAAGACGAACAGACCATCCAGATTCAGTAATT



CCTTTAAGCTTATCCTCATGGAATCGTCAGCTCCAGCATGTATATGA



ATATTCTCTTTTCCATGCATATGAATATTAAGTTGCTGTGTTATAGT



TATTATTGGTGTGGATCTATGTACATTTTAAACCTTCTAAGGAGTGG



AGCGTATAAATGGTTATGGTGTCAGTTATACTTCCTCGGCATGCCTT



TTGAAAACTATAAAGGCAAGAAGAATTAGCCACGCATGGCCCTTGTG



CCTGTCTTCCGCCTGCAAGCATGGATTTTATGCTGACTGCTTCAACG



TTATATGGAGATGGATTCCTTAATCTGTCGCATTTAAGAGGAAAGCC



CTGCTTTGTCAAATCTTATGCCTGCTGTCTGTATATTACGCAGAGGA



TTTGTCCATCTATAACATGATCGTCGATCGTCACTACTTTACCACAG



AAATGAATGCAGGCAACTCCTTGAGGAGCTTCTAGATCTATTCTTTC



TTGAGGCTATCACATTCTAGAAGAAAATGGTGGCTTACTCGAAGCTG



AGGACTCAGAATGTATTTATGCTTGAGATTACATCATATTAACATGT



AAGTTTATTGGAATCTGAAAATTCCTGATGTATCCATTTGTGGGACT



TTCGGTCAGTACAAAAAGACTCAACATATGCCAAGGATTCCTGATTT



GATTTGAGGTAGAGAAGGGTTCGGAGTTCTCATTTGAGATTATGGCA



AGTTAGAAAATCAGAAGGATGATTAAAAGCTGAAGATTCCTTGCATT



TAGAATTGGGATCAGACTTCTAAAGCTAAGCCTGGTCTATCTGTATT



TCTCATTTCACCATTGCGAGGTTTGCATCTTTAAATCATGGATTTCT



TTCAATAATTTGTAGCTTTCTCGTGCTAACAAGACAAATTTCTGCCT



AGTGTGGAGAGTTCAAAGCCTACAGTTTGATTTCTTTTTCTTTTCGC



TAAAGAAAATTGATTCGCATAAAGACAAAGGACATACTGCTACTATG



TTTGTAGAATCCACAATTATTTGTACATATTCAATGTGTTTTATATA



GCTTAATACAAGTAGTCTGTACGTATCCTGTAAAAAAAAAA





189
GGTTGCAGCATGCTTCTCGATTCGATGATGAGATAGTGATATATGAT



TACCCATATTTTACTTGGAGTGCAGACGCATGCCATGCTGGCATGCT



CTGTGGACAACGTCGAGATTTAAGATACACCACTGGAGAAGATCTCG



GGGATGACTACAAAGATCGGTGGTTAAGACCTCACATAGATAAAGGA



TGGAGTAACGGCCATTCCGCAGATTGGAACCCGCGATTCTGCTATTC



ATTCTTCTTCTCCTCGACTTAAATCTTCGCAGATTTGATAGATATTC



ATTTGCCCGAACGTTGCTAGGGCCCTGACCATCAATGGCGAAGTTAT



ATCTTTTCGTTGCGGCTTTGCTTCTACTTTCTGCTTCATCAGCTGCT



TCCCAGTCGTTGAATACCTCCAGTGATGCGATCCCGGGGAAAGATTT



CAGCACAGGCAAACAAGTGTCGAGTACTTGCGATTGTTTGCGGAAGA



TATCAGCTGGTCCAACAACCTGGTGCTTGGGCTGCTAGTGCCCCGAA



GCATTTGGTCGCCTCTGCCTAGGGTTTTGCAGACATGGCTTCGTAAC



TATATTGCTGGAACTGTTGTGTATTTTGTATCCGGAAGCCTTTGGTC



CTTTTATATTTATTACTGGAAGCGCAATGTCTACATCCCGGCAGATA



GTACACCTTCAAAGGAACCAATCTTCTTGCAAATAATGGTGACTATG



AAAGCCATGCCTTTGTATTGTGCTCTTCCTACGCTGTCAGAATACAT



GATTGAGAATGGTTGGACAAGGTGTTATGCCGCTATAAATGAAGTTG



GGTGGCCTTCTTATATTTTATTAACTATTCTATACTTACTGCTGGTC



GAGTTTGGGATTTACTGGATGCACAGAGAGTTACATGACATAAAGGT



TCTATATAAGTATCTCCATGCAACTCATCACATATACAACAAACAGA



ATACACTATCTCCTTTTGCAGGATTGGCTTTCAATCCACTGGATGGC



ATATTACAGGCGATTCCCCATGTTATTGCTTTATTTATCATACCAAC



ACATTTTTTAACCCATGAGCTGCTTCTATTTTGTGAGGGAATCTGGA



CAACCAACATTCATGATTGCATACATGGTAAAGTTTGGCCTATTATG



GGAGCTGGGTATCATACTATCCATCACACAACATATCGACACAATTA



TGGCCATTATACAATTTGGATGGACTGGATGTTTGGAACACTTCGTG



ATCCAACAGCTGAAGCAAAGAGCGTGAAAAATATGTGATTTCCAGCT



TTTCTATGCAGCCGTTTCTCAAAAGATCTTTTAACTGGTTGTGCTGT



TTACTCGCCAAAGAACTTTTTTCTACATTTAGGGCCATAGAATAATT



TTTTTTGTATATTCCGTGTAGGCAGATGTTGTACTTCTCGAAGTTTA



TTTATTTGGGAGCAATCGGCTTTTTATGTGTAAGTTGTAATTTGTGA



TATCAAGCTCTGGTTTAATGTTGTAAAGACTTGGTGAGACGGGCTGT



GGAATTATTTTTATCAACATAATTAGGTGTACTTTCATATTTCATTT



TAAATCTTGGCTCAAATTATTGTGAAGGCATTTCGGTTCTGCTTTCT



TTGTAACATTTGTAATAGGCGAAGTCTGTCTGCTTTTTCGATGTATT



TGAACTTAATTCTGTACAATAGAACATAACACATGTTTGCCATGTGT



TTAAGATTTCCGCATGTATACCGGCACTATTAACATATGCAAGTATT



CATTGAGGGTTTTTACCACTATAGTTGGCATTGCTTTTAATGTCGGA



CAGTCCCTAATTATTTAAAAAAAAAA





190
GCTTTCTACTGCTTCCTTGGAATGTCTTCTTTCGGCTTTTTTCCATG



GTAGCAGTCGTGCCTATCAGTTGAACCTTCTCTTCCTTACCTTTTCT



TTCTTCTAACTTCTTCCATGTAATTCTTTCTTTGGCTTTTATCCATG



CTATCAGTTGTGGCTATCAGGAGTAGCTCGGTTACCTTCTGAAATTT



GCTTCTTGAACTGGTGAAGATATATGAACGCATGCATTCAATTTGCT



AGAGATAAAACGTGGCCAATTTCTCTATATTTCAACGTTTTGGGATT



GTCGGCATTGTCGTAATGGCTTATAAAACGGAGGAGGACTACGATTA



TTTGTTTAAAGTTGTGCTAATCGGAGACTCAGGGGTTGGGAAGTCCA



ATTTACTTTCGAGATTTACTCGAAATGAGTTCAGTTTGGAGTCCAAA



TCAACAATAGGTGTGGAGTTTGCGGCACGCAGCGTCAACGTGGACGG



GAAAAGTATCAAAGCCCAAATCTGGGATACAGCTGGTCAAGAAAGGT



ACAGGGCCATCACAAGTGCATATTACCGTGGAGCTGTGGGCGCCCTG



CTGGTGTATGACATTACTCGCCATGTGACATTTGAGAATGTTGAGAG



GTGGTATAAAGAGCTCAAGGATCATACAGATGTCAACATTGTGGTGA



TGCTAGTGGGAAACAAGTCTGATTTACTGCATCTGAGAGCTGTTTCT



GTTGAAGAAGGGAAATCGTTTGCGGAGAGGGAGAGCCTCTACTTCAT



GGAACATCTGCATTGGACTCAACAAATGTGGAGAACTCCTTCACACA



GGTGTTAACGCAGATTTACAGAATAGTGAGTAAAGGAGCTTGGATAC



TGCAGAGGAAGCTTTATCAACACTGCCAGGCAAGGGTCAGTCAATTT



CTGTAAATGGCAAGGATGAGTTCACTACCAAGAAGGCTGGATGCTGC



TAGTTCTACCCATTGAATGCATTTTCTTTTTCTCCCCTCGTCAATAT



TTTTGTTAATCAGGTGCCATATGTTATTCTTGTAATGTTCAATTTGA



TTCCATATGTTACTCTTGTAATGCTCAATTTGATTTGATTCCAGTTG



ACTTGTTCGAAAACGTCCATTTTTCAAACTTCCATCAGTCTCCAAAG



GATTGATGTATGGCCATGCATTCGCTATAGCATAGTGAAGCTGGGTT



TATACTCAGAAGTGTAGAATCTTTGGTGTCGTATAGACGAACCATTT



TGCACATTTTGAGATTGTTGTAATTTCTATACGTAGTACGTTTTTGA



GATTTTGTGTGTTATAAAGCCACATGTTATGCTTTCCAAAAAAAAAA



AAAA





191
CCTTCTCAACCACAACCATCATCCCCTCGCACTCTCCACATCATCTC



CAGTCCCCATTTCCTGTTTCTATTCTTCTATATTAACTATGCCTGAA



CTCGTGAAGATTCCGTCTACCTCGCCAAGCTCGCTGAGCAGGCTGAG



CGTTATGAAGAGATGGTTGAGAACATGAAGCGTGTGGCTTCTTCTGA



CCAAGAACTCACTGTCGAGGAACGCAATCTGCTGTCTGTCGCGTACA



AGAACGTTATTGGTGCTCGCCGCGCGTCCTGGAGAATCGTTTCATCA



ATTGAGCAGAAGGAGGAATCTAAGGCAATGAGGCTCAGGTGTCAATG



ATCAAGGATACAGGGAGAAAATTGAGAGTGAACTCGCCAAAATCTGC



GAAGATATTCTCGATGTCCTCGATAAGCACCTCATTCCCTCAGCTGC



CTCTGGGGAGTCCAAGGTCTTCTACCACAAGATGATGGGCGACTACC



ACCGCTACCTCGCAGAATTTGCCACCGGTGATAGCGGAAAGATAGCG



CCGACAAGTCCCTCGAAGCCTACAAGGCCGCATCGGAGGTTGCCGTC



ACCGAATTACCACCTACACATCCCATTCGTCTTGGTCTCGCACTGAA



TTTCTCGGTATTCTACTATGAAATTCTCAATAGTCCCGACCGTGCAT



GCCACCTGGCCAAACAAGCGTTCGACGATGCTATTGCCGAGCTTGAT



ACGCTCTCGGAGGAAAGCTACAAGGATTCCACTCTCATCATGCAATT



GCTTAGGGATAACTTGACGCTCTGGACTTCGGACATGCAAGACTCTG



CCGATAAGCCCGCCGACTCGAAGGATGAGCCCGCTGAGACACCTGCA



GAGGATTAGATGTTTCCGTATGCATTTATTGTCTCGGAAGTCTTGTT



ATTTCTAGGCTTTTGTTCTTCAATTTTAATCAATCATTTGTTGAATT



TGTCGTTCGTCTGTTTGCGCTCTCATTATATCTCTGCATTTGTGTCA



TCCTCCATTCCTCTCATCACGTCCATGTGTCCCCTTCCCTTATTACT



CCCTATCCCTTCCCCTCCAGTATTATGCTCGAAATGGTTTCTTATAC



TCCTTACCTTCAATGATGATAGAGGCGGTTCGAGAGCAAAAAAAAAA



AAAAAAAAAAA





192
CCCACTCCCGCTCAATCCGACAACTTGTTTTGATAGTCCATGTCACG



TGCGGGCTGTGTTTTCCTGAGCGACCCAATTCTCCCTACAAGTCCCG



CCCACGACTATCTTTGCTTTCAACGACCCCCCTTCGACGCCAACATT



ACTCGAACTTGCTAGAATACCCTCTTTCCAACATCTATCACAATCTT



CCACAATAGAAATCATGGCAAACGAACGCGAGAGCAAAACCTTCCTC



GCCCGGCTGTGCGAACAGGCTGAGCGCTACGATGAGATGGTCACATA



CATGAAGGAAGTCGCAAAGATCGGCGGTGAATTGACCGTGGACGAGC



GCAACCTTCTCTCAGTCGCATACAAGAACGTAGTTGGCACACGACGT



GCGTCGTGGCGCATCATCTCCTCGATCGAGCAGAAAGAGGAGTCAAA



AGGCACCGATAAGCACGTCGGCACCATCCGCGATTACCGTCAGAAGA



TCGAGACGGAGCTCGAGAAGGTGTGCCAGGATGTCCTCGACGTTCTT



GATGAGAGCTTGATTCCCAAAGCCGAGACTGGCGAGTCTAAAGTATT



TTACCACAAGATGAAGGGCGACTACCACCGCTATCTCGCCGAGTTTG



CCTCGGGAGAGAAGCGCAAGAATGCTGCGACCGCCGCCCATGAGGCC



TACAAGAGCGCCACCGATGTTGCGCAGACTGAGCTCACTCCCACTCA



CCCCATCCGCCTCGGTCTGGCCCTGAACTTTTCTGTGTTCTACTACG



AGATCCTCAACTCACCCGACCGCGCTTGCCATCTTGCAAAGCAGGCA



TTCGACGACGCCATTGCCGAGCTCGACTCTTTGTCTGAGGAGTCTTA



CCGGGACAGCACCCTCATCATGCAGCTTCTGCGTGATAATCTCACCC



TCTGGACATCTTCTGATGGTGCTGAACCAGCTGAGACTGGTGAGGCA



CCAAAGACCGAAGAGGCCAAGCCAGCTGAGACTGCCGAAGCCGCACC



CGCCGAGCCCGAGAGCAAGCCAGCCAAGGAGGAGGAGCCCGCCGCCC



CAGCTGCAGCTTAAATTATCAGCTGACATGGACAATGCATGCTGTTG



CGAACCGATTGAAGCTTGGTCCATCATGCCTCGAGACTGCCCAATCT



ATGTTCTCGAGACTCAGTCGCAATGGACATTTCTTCAGTTCTTCGGG



TTTATGCAGGTTAACGGGTTGATGCGGTGTTCTGCTTCTTATCATCA



TGCGAAAACTGGTTCATTATAGCAAGCGGGTTTACGAGTTCTCACAC



GTGTCATGTCTTATGGGCCCCTTCTTCCCTTATCTCTCCGATCCTCC



TTTGCTTTCCTGCTTTATAGCCCCGGTATACTTTTGTTTTGTGCAAT



CTTTCTGGTGGGATACGCTGGTGGATGGATGTTTTGGCAGTTGTAAA



GTGAGTAGGTCTTCTATGGACTTACTCGCAAGCAGCTCGACCGTGAT



ATCTGGGTATAACTAACTAGCTATAAATTGATCATATTCAATTTGAA



AAAA





193
GTAGATAATCACTACCTTCTATTTGCAGACACCTATTTCTGTGCATC



GTGCCTTTACCCTATCCAGGGTTTCCAAATATTTATAAATTGTGTCT



CCCAGGTTTCGGATAAATTCCAGTTCCACTGCCTCCTACGAATCCGG



AATCTTCATCAGTTGCCATGGACGCTCTTCTGAAGCAATTTGAAAGA



CTTCAGAGACCAATTGATCTGGTGCAGACGCTACATGAAACCCAAGT



GAAGCAAGTCCCTGCACGCTACATCCTTCCTTCGGAACAGAGACCAT



CTCGTCCTCTTCAAGTCCAGCAGTCTCTTCCTGTCATTGATCTTGCA



GGTCTGGAAGATACTGATCAACGCATCAAGATTGTCAGTCAAATAGC



CCAAGCATCTCAGGAATGGGGTTTCTTTCAGATAATAAATCATGACA



TACCTGTGTCATTGCTAGAGACTGTGAAGCGTGTTTCACAGGAGTTC



TTTGATCTTCCTCTTGAAGAGAGACGGAAACAGTGTCCTGTCAGGCC



TGGTGTTCACATGCTTGAAGGCTATGGCCGGTTCTTTGACATCTCTG



ATGACACGGTCCTGGACTGGGTTGATACCCTAGTTCATTATATTTCT



CCAGAGTGGGCCAAAGCAGTTGAGCACTGGCCCAAAACCCCTCCACA



TACAGAGAAACATATGAAAAATACGGTGAAGAGGTAATGAAGGTTAT



GGAGAAGTTGCTGGGTCTTCTTTCCCAGGGTTTGGGGCTGGACCCAA



AGTATATCCAAACCCTCAATAAGGAATCCCTGCTACAAGTCAGAATC



AATTATTACCCTCCTTGCCCTCAGCCAGATATGGTGAATGGGTTTAA



ACCCCATTCAGATGTCGATATGCTCACTGTTCTGCTGGATGATGGGG



TGGACGGTCTCCAGGTTCGGAAAGATGAGGATTGGTTCACTGTGCCC



TCTATTCCTGGAGCTCTTATTATCAACATCGGGGATTTGTTACAGAT



AGTAAGCAATGGGAAATACAAGAGTGCCGAGCACCGGGCAGTAGCGA



ATACAAAGCAGAGTCGCATGTCTATGGTCATGTTTTTGAGACCACAA



GAGGATGTGTTGATTGATACTGCTCCCGAACTGATCGATGAAGCTCA



TCCCAGCTTGTACAAAGCCGTTAAAGCTGGGGAGTACGAAACTGAGT



ATAATAGCAAGGATTTTCGAGGAAAAGACGCTGTACATACTTTACGT



ATAGAACAGGCGTAGGAAGTCAATGTCTAGTCCTTCAATTGCATTTT



TATAAGATGTCTATCTAGAGAACTATTCAAGGTATTTGAGTGGAAAC



TATAACTATAAGATAGCTGTAGGTGTTTTGAGTAAAAGATGTAATTT



GCTAGCATATTATATATGCAAAATAAACATAGGGGTATTTCATTGTT



TTGAGTGGGTGTTTCAGTGCCACGTGTTTGGGCATTTTGAGTGGGTA



TTTCATTGTTTTGAGTGGGTGTTTCATTGTCACTTGGTTGTGTGCGT



TTTGAGTGGAAGATGTAATTTAGAGGTATAATATTTTGTTTGGAAGT



CCCTACTTATTAGATTTTTGGAAATTTGGTTAAATATTGATTTGTCT



TGTTTAAATTGGTTTTTTGATATATGGATTTAGCAAGCTTAAAACTT



TTTGCGACAAAAAAAAAA





194
CTCGCGTTCAATTCTGCAAGTGGGCCATTTGAATTTTCCACAGAAAC



ATAACCCTAGATTGGTTTGGAAGGTCGAGTTCGATTCTCCAGGTCTG



TATGCTTTCCTATATGTTTTTAGCCTTATCCTTAAGATCATTTTTCG



GGTCTCAGAAAGAGGTTGATTGGTTATAATAACCAGAATAAATGATG



GAGTCTCTGCGAAAACTGGTGTATTATGCTTGTGTTTCGAGAGGCCC



AGTAATTGTTGCCGAATACAATGATTTAGGGGACGCGGAGCAACTGG



CAATAGCTGTTGAGTGCTTAGGTAGAGCCCCTCCATTCCACAGCAGA



TTCACACACACTATTAAAAACAGAAGATACAGTTTTCTCATGGATTC



TGAGTTTGTATATTATGCAATAGTTGACGAGGCCCTTCCGAAAGTGA



AAGTTTTTTCTTTCTTAGAGCAGGTGAGGGATGAGTTCAAGAGACTG



CTCAGGGCCAAGGGTTTGTCAAATAGTAAGGACGAAATCCTGCAGGG



TTGTGGCCTGGGTGATGATTTTGCCTCCACATTTAGACGCTTGGTTG



CCCCACTCGTTGGGATCCCCCAAACCGAAAAGCGCAGGATGGAGGAA



GAAGAAGCAAGTGCCCGCCGGCAAGAGGATGAGACCGAGACCGAGGT



TTGCTCCCCCACTGCTTCGGCACCACTGTATGGGAAACCCCAACCTG



ATTCCAAACCTAAAAAGGATAAAAAGTCTCTCTGCTCTATACCGCCT



TTAATTTTGAAGACAAACAAACACGAAAAGAAGAAGGTGAGGGATCA



AGTGACTCAGGTAAGAGAGATCATCATGGAGAGCAGTGGCAAGGCAT



TGGATAACGGTCAGAAGCTCGAGGTTACGGTGGATGGAAATACTGGA



GGTGCTGCAGCCCTTTCTTTGCAGAGGACTGCTAGTATGAGAACTAA



AGGTCAGCAGATTGCACAGAGAATGTGGTGGCGCAATGTTAGGGTTG



TTCTCCTTTTGGATTTCGTTGTTTGCACAATACTGTTTGTTGTGTGG



CTCTGCATCTGTCGTGGTTTTAATGCGTTTCAGACTGATGGAGTACG



TCTCTTGGATAAACCTTTTCAAGATGTGTAGCTGTTTTCCTTTTAAG



CTCCAATCGGCCGCTTTTCAACTGCAATCTAGTGAATCGAATAATAT



GACTCTTAATATATACTGTAAATATAGATTTGTGGTGGCACGAAGAG



GCTTCGAATAATGTGACCTTCATGTTTTGGGTTCAGGAGGCCACTGT



ATTAGTATTGCTGTTGGTTAGCCAGTGTTTCAGAGTGTAATAGATAC



AAATGGGCTATTGTATGGGTCCTGGGAAGATATAGGAGAATTTGGTT



TGATTCTTGTACATTCTTCAGATGCCATATAACATTAAAGGGTGCAT



TCGTTTGATCAATGAAGGAAAACTGGTGTTGAAACACGGAAAAAAAA



AA





195
GCAAAACACTCCCCCCGCCCGCCCCCCCCGCCCGCAACTCGCTCCGC



CCGGCTTTTTCTCTCTCGCTCGCTCGCTCGCGATTCTTTTGCTCTTC



CGCAAATCCCTAGTCGAGAGTTAGGTTTCGTAACAGTACACGGAAGA



TGTCGCCCTCTGATTCTTCACGGGAGGAATATGTGTACATGGCCAAG



TTAGCTGAACAGGCTGAGCGGTACGAGGAGATGGTGGATTTCATGGA



GAAAGTTGCCAAGACTGTGGACGTCGAGGAGCTAACCGTTGAGGAAC



GTAACCTTTTGTCTGTGGCGTACAAGAATGTGATTGGGGCCAGGAGG



GCATCGTGGAGGATCATTTCTTCCATTGAGCAGAAGGAAGAGAGCAG



GGGTAACACCGATCATGTCTCGATCATTAAGGACTACAGGGGAAAGA



TCGAGTCCGAGCTCAGCAAGATCTGTGAAGGCATTCTCAGCCTTCTT



GAGTCGCATCTCATTCCTTCAGCCTCCTCTGCTGAGTCCAAGGTGTT



TTACCTTAAAATGAAAGGTGATTACCACAGGTATCTGGCAGAGTTTA



AGACTGCGACTGAAAGGAAAGAAGCTGCCGAGAGCACTTTATTGGCC



TACAAATCTGCTCAGGATATTGCTGGGGCCGAACTGGCTTCTACTCA



CCCAATTAGGCTGGGACTTGCGCTGAACTTCTCTGTTTTCTACTATG



AAATACTTAACTCTCCTGATCGGGCTTGCGCTCTTGCAAAGCAGGCA



TTTGATGAGGCCATAGCTGAGTTGGATACGCTGGGCGAGGAATCATA



CAAGGACAGTACATTGATCATGCAACTTCTTCGAGATAACTTGACTC



TGTGGACTTCTGATCTTACGGATGAAGCTGGGGATGACATTAAGGAA



GCTTCGAAACTGGAGTCTGGAGAGGGGCAGCAATGATTTGCTAGGAT



GATGTCAGTACTTTAATGATATTTTGCACCGTCGTAGATGCCTTGTG



GTTTGTCACAGTGAAGATTATTTATGAACTGAGAGTGCTATAAGTTG



TTTCTCTAGTGTTCCTTGATGAGATTCGGGTTGGTCTTTAGAGTGTT



CTAATGGATATTACTATCTCAAATTGTCGGTTCCCGTGTGCGCTCTT



TCGTGCTGCCTAGTTTAAATTGCACGGACCCGTTGCATGTGATTATA



GATTTCTTTCTTTATCAGTTAATGCTAAGACAGTTCAAGGAAAAAAA



AAA





196
GATCGTCCATAGTGTGACCAGGATCAAGCGCTCTACATATCGTGCAA



CTATCACAATCAGGTCACAACAATGACGGAAGGATCAAACTACGACT



TCTTGTTCAAGGTTGTACTCATCGGAGACTCTGGCGTCGGGAAATCA



AACTTGCTCTCGCGGTTTACCAGGAATGAATTCAACCTGGACTCCAA



GTCTACCATCGGAGTCGAGTTCGCTACTAGATCTGTTCAAGTAGATT



CCAAGACAGTCAAAGCCCAGATCTGGGATACGGCGGGTCAGGAGCGA



TACCGTGCTATCACTTCAGCCTACTACCGAGGTGCTGTCGGGGCTCT



TCTCGTATACGACATTGCCAAGCACCCCACATACCAGAATGTGCACC



GGTGGTTGAAGGAGCTCCGTGATCACGCAGACTCCAACATTGTCATC



ATGCTTGTCGGGAACAAGAGCGATCTCAAGCATTTGCGAGCTGTCCC



TACAGACGAGGCGAAAGCCTTTGCTACCGAGAACAACTTGTCGTTCA



TCGAGACGTCGGCATTGGACGCTTCCAACGTCGAGGCCGCTTTTCAG



AATATCCTGTCTGATATCTACCACATCGTAGCAAAGAAGAACCTCGA



GAACTCGAGCGATGTGATTCAGCCGTTGGAAGGCCGCGGCATCGATA



TCGCAAAGTCGGAGGATGATGGCGGTGCCAAACAGGGCGGCAAATGC



TGCTAAAGCGAGTCTCACCCCAGGGTTCTTGATTTATGTGATCGGCT



CGATTTATGCGGCGTCACTTGATTGCGCGCAGCCTGTCGGATGTGAT



TCTCGTCTACATCCCGAATCCGACTATCTATCACGCTTTCCTTTCTT



TTGTCACCATTCTTGTATGACTTGTAAACAGTACGCAGATTCGATAT



CCTATTCGGCATAAAAAAAAAA





197
CTCAATGATCAGACAACAATCTCATCCAGCCGTTCTCACATCAAATC



TTGCGAACTCGGAAATTAGCGTTCAATATACATTGAGTAAAAGCAGA



TACTAGATGATACTTTAAACGCTCGGTCCCGAGTTCGATCACTGTCG



GGTCACGCAACCAACTGCCAGAAGAATGCAGAGGCCGTCGAAGACGT



CTGTGGGCTATGCGATTCCGGACGAGGTTTTGAAGTGCGTGATGGGG



TACCTGGAGGAGCCGTGCGATCGCAGTGCGGTTTCCCTGGTCTGCAA



GAGGTGGAACCGTGTGGATGCGCTCACTCGCAAGCACGTTACCATTG



CGTTCTGTTACACCATAAGCCCCTCGGATCTCGGTGCACGGTTCCCC



GAGCTTGAGTCGCTGAAATTGAAGGGAAAGCCCAGGGCTTCCATGTT



TAATTTGATTCCCCAGGACTGGGGCGGATACGCGGAGCCGTGGATTA



ATGAGATTTCCCAGACGTTGCTCTGCTTAAAGGCTCTTCATTTGCGC



AGAATGATCGTTACGGATGAGGATCTCAGGGCTTTGGCTCGCGCCCG



CGGCCACATTCTGCAGGTTCTTAAACTGGAGAAGTGCTCGGGGTTTT



CGACTCTCGGGCTTCTCGAAGTCGCACGGTCCTGCAGATCTCTTAGG



GTCTTGTTTTTAGAGGAAAGTACTATTGAAGATGAAGGTGGAGAATG



GTTACATGAGCTTGCTCTTCATAATTCTTCATTGGAAGTTTTGAACT



TCTACATGACAGGTTTGGAAAATGTTAATGTTAATGACCTTGAGATG



ATAGCAACAAACTGTCGATCTCTGACCTCATTCAAGATAAGTGAATG



TGATATTCTGGATTTAAGAAATGTATTCAAGAAGGCCACAGCATTGG



AAGAGTTTGGCGGTGGGTCATTTAGTAGCAGTGAAGAGCAGGCTGTA



GAACCAAATATTTATGAAATGGTTAAATTCCCTACAAATTTGATGTC



ATTGTCAGGACTGAATTACATGAGTGAGACTGAATTACCAGTTGTAT



TTCCACGAGCATCTTCACTAAAGAAACTGGATTTGCAGTATACACTT



TTGAGCACAGAAAACTATTGCCAGTTGTTACAGTCGTGCATTAATAT



TGAAATTCTTGAGGTTACGAATGCGATTGGAGATAGAGGGTTAGAAG



TAGCAGCTGAGAATTGTAAAAAATTAAGGCGACTTAGAGTGGAGCGT



GGGGAAGATGAAGCTGGTTTGGAGGGTCAGCAAAACTTTGTTTCTCA



CAAAGGGCTTTCAGTTATAGCTCAAGGCTGTCCCAATCTAGAGTACA



TTGCTGTGTATGTTTCAGATATGACTAACTCAGCCTTAGAATCTGTT



GGTAAATTTTGCAAAAATCTGAGGGATTTTCGGCTAGTCTTGCTAGA



CAAGAAAGAACAAGTGACTGACCTCCCACTAGACAATGGTGTCATGG



CTCTGCTGCTTGGGTGCCAAAAGTTGAAGAGGTTTGGATTTTACCTA



AGGCCTGGAGGATTGACGGACATAGGCCTTGGTTACATTGGAAAGTT



TAGTAGCAATGTGAGGTGGATGCTTCTGGGTTATGTCGGAGAGACTG



ACTTTGGGCTTCTTGAGTTCTCGAAGGGATGCCCAAATTTGGAGAAA



CTTGAATTAAGGGGTTGTTGCTTCAGCGAATATGCATTATCTGTGGC



AGCGCTTAGCTTGAGGTCTCTAAAATATATCTGGGTTCAGGGCTACA



ATGCAACGCCATCTGGATTTGATCTTCTAGCTATGGAGCGCCCTTTC



TGGAACATAGAGTTTACTCCAGCTTCTCAAGTGACAGTGGATGGTTT



TAATTTGGAAGAAGAAATTACAGAGAAGCCAGCACAGATATTGGCTT



ATTATTCGCTTGCAGGAAGACGAACAGACCATCCAGATTCAGTAATT



CCTTTAAGCTTATCCTCATGGAATCGTCAGCTCCAGCATGTATATGA



ATATTCTCTTTTCCATGCATATGAATATTAAGTTGCTGTGTTATAGT



TATTATTGGTGTGGATCTATGTACATTTTAACCTTCTAAGGAGTGGA



GCGTATATAATGGTTATGGTGTCAGTTATACTTCCTCGGCATGCCTT



TTGAAAACTATAAAGGCAAGAAGAATTAGCCACGCATGGCCCTTGTG



CCTGTCTTCCGCCTGCAAGCATGGATTTTATGCTGACTGCTTCAACG



TTATATGGAGATGGATTCCTTAATCTGTCGCATTTAAGAGGAAAGCC



CTGCTTTGTCAAATCTTATGCCTGCTGTCTGTATATTACGCAGAGGA



TTTGTCCATCTATAACATGATCGTCGATCGTCACTACTTTACCACAG



AAATGAATGCAGGCAACTCCTTGAGGAGCTTCTAGATCTATTCTTTC



TTGAGGCTATCACATTCTAGAAGAAAATGGTGGCTTACTCGAAGCTG



AGGACTCAGAATGTATTTATGCTTGAGATTACATCATATTAACATGT



AAGTTTATTGGAATCTGAAAATTCCTGATGTATCCATTTGTGGGACT



TTCGGTCAGTACAAAAAGACTCAACATATGCCAAGGATTCCTGATTT



GATTTGAGGTAGAGAAGGGTTCGGAGTTCTCATTTGAGATTATGGCA



AGTTAGAAAATCAGAAGGATGATTAAAAGCTGAAGATTCCTTGCATT



TAGAATTGGGATCAGACTTCTAAAGCTAAGCCTGGTCTATCTGTATT



TCTCATTTCACCATTGCGAGGTTTGCATCTTTAAATCATGGATTTCT



TTCAATAATTTGTAGCTTTCTCGTGCTAACAAGACAAATTTCTGCCT



AGTGTGGAGAGTTCAAAGCCTACAGTTTGATTTCTTTTTCTTTTCGC



TAAAGAAAATTGATTCGCATAAAGACAAAGGACATACTGCTACTATG



TTTGTAGAATCCACAATTATTTGTACATATTCAATGTGTTTTATATA



GCTTAATACAAGTAGTCTGTACGTATCCTGTAAAAAAAAAA

















TABLE 3







Cell Signaling Protein Sequences










SEQ




ID










NO
Sequence












198
MEREREQQVYQARLAEQAERYDEMVESMKQVAKLDVELTVEERNVLS




VGYKNVIGARRASWRILSSIEQKEGTKGNEQNVKRIKDYRQRVEDEL



AKICSDILSVIDKHLIPSSSSGESTVFYYKMKGDYCRYLAEFKAGDD



RKEAADQSLKAYEAASSTASTDLAPTHPIRLGLALNFSVFYYEIMNS



PERACHLAKQAFDEAIAELDSLNEDSYKDSTLIMQLLRDNLTLWTTD



LPEEGGEQSKVDEPAAES





199
MSPSDSSREEYVYMAKLAEQAERYEEMVDFMEKVAKTVDVEELTVEE



RNLLSVAYKNVIGARRASWRIISSIEQKEESRGNTDHVSIIKDYRGK



IESELSKICEGILSLLESHLIPSASSAESKVFYLKMKGDYHRYLAEF



KTATERKEAAESTLLAYKSAQDIAGAELASTHPIRLGLALNFSVFYY



EILNSPDRACALAKQAFDEAIAELDTLGEESYKDSTLIMQLLRDNLT



LWTSDLTDEAGDDIKEASKLESGEGQQ





200
MAAADSSREENVYMAKLAEQAERYEEMVEFMEKVAKTVDVEELTVEE



RNLLSVAYKNVIGARRASWRIISSIEQKEESRGNEDHWIIKEYRGKI



ETELSKICDGILNLLESHLVPSASSAESKVFYLKMKGDYHRYLAEFK



AGTERKEAAESTLLAYKSAQDIALAELAPTHPIRLGLALNFSVFYYE



ILNSPDRACSLAKQAFDEAISELDTLGEESYKDSTLIMQLLRDNLTL



WTSDVTDEAGDEIKESSKRESGEGQPPQ





201
MASTKERDGYVYVAKLAEQAERYDEMVEAMKNVAKLDVELTVEERNL



LSVGYKNVIGARRASWRILSSIEQKEDSKGNEHNVKKIKEFRQKVEA



ELANICGDVMKVIDEHLIPSCAGGESTVFFYKMKGDYYRYLAEFKAG



DDRKEAADQSMKAYELASTTAEADLSPTHPIRLGLALNFSVFYYEIM



NSPERACHLAKQAFDEAISELDTLSEESYKDSTLIMQLLRDNLTLWT



SDIPEDGAEDAQKLDNAAKAAGGEDAE





202
MAEHRSYGNVNLKTFDAHVPEIKFTKLFIDGEFVDSVKGRTFETKDP



RNGQWARVAEGDEEDVELAVIAARRAFDHGPWPRMPGYQRGRIMSKF



ADLIEENIDELMLDTIDAGKLFSVGKARDIPNAAMLLRYYAGAVDKI



HGEVLKMSRELHGYTLREPVGVIGHIIPWNFPTGVFFMKVAPTLAAG



CTMIVKPAEQTPLSALFYAHLAKKAGVPDGVINWTGFGPTAGAAISS



HMDIDMVSFTGSTKVGHMVMQAAATSNLKQVSLELGGKSPLIVFDDV



DLDTATNLALTGILYNKGEVCVAGSRVYVQEAIYEEFEKKLVAKAKA



WPVGDPFDPNVRQGPQVDKKQFEKILSYIEHGKREGATLLIGGERLG



TEGYYIQPTIFTDVNEDNVIVKDEIFGPVMSLMKFKTMEEVIKRAND



TRYGLAAGILTKNIDLANTVSRSIRAGMIWINCYLAVDNDCPYGGYK



MSGFGKDLGLDALHKYLHVKSIVTPIYNSPWL





203
MAENQSDANGSLKTYDEHVPDIKFTKLFINGEFVDSVKGRTFETIDP



RNGEVTARVAEGDKEDVDLAVKAARQAFDHGPWPRMPGYQRGRIMSK



FADLIEENIDELAALDTIDAGKIFSMGKAVDIPHAATCLRYYAGAAD



KIHGEVLKMSRELHGYTLLEPVGWGHIIPWNFPTSMFFMKVAPALAA



GCTMIVKPAEQTPLSALYYAHLAKKAGVPNGVINVVTGFGPTAGAAI



TSHMDIDMVNFTGSTKVGRIVMQTAATSNLKQVSLELGGKSPIMIFD



DADLDTATDLALIGIVHNKGEICVAGSRVYVQEGIYEEFEKKLVAKA



KAWPVGDPFDPKVQQGPQVDKKQFEKILSYIEHGKREGATLLTGGER



LGTKGYYVQPTIFTNVKEDNVIVKDEIFGPVMSLMKFKTVEEAIKRA



NDTRYGLAAGIVTKNIDVANTVSRSIVIWINCYFAFDNDCPCGGYKT



SGFGRDLGLDALHKCLHVKSIVTPLYNSPWL





204
MREREMAENQSNANGSLKTYDAHVPEIKFTKLFINGKFVDSVKGRTL



ETIDPRNGQATARVAEGDKEDVDLAVKAARQAFDHGPWPRMPGYQRG



RIMSKFADLIEENIDELAALDTIDAGKLFSVGKAQDIPHAATMLRYY



AGAADKIHGEVLKMSRELHGYTLREPVGVIAHIIPWNFPTAVFFMKV



APALAAGCTMIVKPAEQTPLSALFYAHLAKKAGIPDGVINIVTGFGR



TAGAAISNHMDIDMVSFTGSTEVGRIVMQAAATSNLKQVSLELGGKS



PLIIFDDVDLDTATDLALTGILHNKGEICVAGSRVYVQEGIYEEFKN



KLVAKAKAWPVGDPFDPNVRHGPQVDKKQFEKILAYIEHGKREGATL



LTGGERLGTEGYYIQPTIFTNVKEDNMIVKDEIFGPIMSLMKFKTTE



EVIKRANDTRYGLAAGVLTKNIDMANTVSRSIRAGTIWINCYFAFDN



DCPLGGYKMSGFGRDFGLDALHKYLQVKSVVTPIYKSPWL





205
MASRRRMLLKVIILGDSGVGKTSLMNQYVNRKFSNQYKATIGADFLT



KEVQFEDRLFTLQIWDTAGQERFQSLGVAFYRGADCCVLVYDVNVMK



SFDNLNNWREEFLLQASPSDPENFPFWLGNKIDVDGGNSRWSEKKAK



AWCASKGNIPYFETSAKEGFNVEAAFECIAKNALKNEPEEEIYLPDT



IDVTGGGRQQRSTGCEC





206
MAVPENLGRDQYVYLAKLAEQAERYEEMVEFMHKLWGWTPAAELTVE



ERNLLSVAYKNVIGSLRAAWRIVSSIEQKEEGRKNEDHWLVKEYRSK



VENELSDVCASILRLLDTNLVPSAAASESKVFYLKMKGDYHRYLAEF



KVGDERKAAAEDTMLAYKAAQDIAQADLASTHPIRLGLALNFSVFYY



EILNQSDKACSMAKQAFEEAIAELDTLGEESYKDSTLIMQLLRDNFT



LWTSDVQDQLDEP





207
MATAPSAREENVYMAKLAEQAERYEEMVEFMEKVAAAAAAADAEELT



IEERNLLSVAYKNVIGARRASWRIISSIEQKEESRGNEDHVAAIRDYRS



KIESELSGICAGILKLLDSRLIPAAASGDSKVFYLKMKGDYHRYLAEFK



TGAERKEAAESTLTAYKAAQDIANTELAPTHPIRLGLALNFSVFYYEIL



NSPDRACSLAKQAFDEAIAELDTLGEESYKDSTLIMQLLRDNLTLWTSD



MQEDGADEIKEAPKADEQQ





208
MAAAAPPPSSPREEYVYMAKLAEQAERYEEMVEFMEKVSAAAADAEE



LTVEERNLLSVAYKNVIGARRASWRIISSIEQKEESRGNEDHVAAIR



DYRAKIEAELSKICDGILGLLDTRLIPAASVGDSKVFYLKMKGDYHR



YLAEFKTGTERKEAAESTLTAYKMQDIANSELAPTHPIRLGLALNFS



VFYYEILNSPDRACGLAKQAFDEAIAELDTLGEESYKDSTLIMQLLR



DNLTLWTSDMQDDGVDEIKETAKADEQ





209
MKKGGLNPILNLKLSLPPPDEDSIAKFLTQSGTFVDGDLLVNRDGVR



VVQQTEVEVPPLIKPTDNQLSLADIDTIKIGKGNGGIVQLVQHKWTG



QFFALKVIQMKVEESARKQIAQELKINQSSQCPYVVVCYQSFYDNGT



VSIILEYMDGGSLADFLRKVKTIPEPNLAVICKQVLKGLLYLHHEKH



IIHRDLKPSNLLINHRGEVKITDFGVSAIMASTSGQANTFVGTYNYM



SPERIIGNNYGYKSDIWSLGLVLLECATGKFPYTPPDQQEGWTNFYE



LMEAIVDHPPPSAASDQFSSEFCSFISACVQQDPKKRWSANELMGHP



FISMYEDLNVDLASYFTNAGSPLATF





210
MEDDERGEEYLFKIVLIGDSAVGKSNLLSRFALDEFDINTKATIGVE



FQTQVVEIDGKEVKAQIWDTAGQERFRAVTSAYYRGAVGALIVYDIT



RRTTFESVKRWLDELDTHCDTAVARMLVGNKCDLNNIREVSTEEGKA



LAEAEGLFFMETSALDSTNVQISFEIVIREIYKNISRKVLNSDSYKA



ELSVNRVTLAKNGADSSGRSFYSCCAR





211
MSSSDEEGGEEYLFKIVIIGDSAVGKSNLLSRYARNEFNPHSKATIG



VEFQTQSMDIDGKEVKAQIWDTAGQERFRAVTSAYYRGAVGALVVDI



TRRSTFDSVSRWLDELKTHSDTTVARMLVGNKCDLESIRDVTVEEGK



SLAESEGLFFMETSALDATNVKTAFEIVIKEIYNNVSRKVLNSDAYK



AELSVNRVTLAGNGADGSKRSQSFSCCSR





212
MALVPSDPINNGQSLPLIAEVNMSSDSSSAAAVVRATVVQASTVFYD



TPATLDKAERLLAEAASYGSQLVVFPEAFVGGYPRGSTFGVSIGNRT



AKGKEEFRKYHASAIDVPGPEVDRLAAMAGKYKVFLVMGVIERDGYT



LYCTILFFDPQGHYLGKHRKVMPTALERVIWGFGDGSTIPVFDTPIG



KIGAAICWENRMPLLRTAMYAKGVEIYCAPTADARDIWQASMTHIAL



EGGCFVLSANQFCRRKDYPPPPEYVFAGTDDDLNPDSVVCAGGSVII



SPSGNVLAGPNYDGEALISADLDLGEIARAKFDFDWGHYSRPEVLSL



IVRDHPSNPVTFASTSGKPEGPYK





213
MDPSKSRDSAESTRVIQFPNDVLERILSLIDSHRDRNAVSLVSKAWY



NAERWTRRHVFIGNCYAVSPQIVARRFPNIRSVMLKGKPRFSDFNLV



PPNWGADVHGWLAVFADQYPQLEELRLKRMTVTDESLKFLARKFHNF



RVLSLLSCDGFSTDGLEAIATDCRHLTELDIQENGIDDISGNWLSCF



PENFTSMEVLNFASLSSDVNFDALERLVSQCKSLKILKVNKSITLEQ



LQRLLVRAPQLTELGTGSFLQELTAHQSEELERAFIGCKYLHALSGL



WEATTLYLPVLYPACTNLTFLNLSYAALQSEELAKLVAHCPRLQRLW



VLDTVEDVGLEAVASSCPLLEELRVFPADPYDQDINRGVTESGFLAV



SLGCRKLHWLYFCRQMTNAAVARIVQNCPGFTHFRLCIMKPGQPDYL



TNEPMDEGFGAVVKTCTNLRRLGVSGLLTDLTFEYIGRYAKNLETLS



VAFAGGSDLGMKSILVGCPKLRKLEIRDCPFGNEALLSGLEKYESMR



SLWMSACKVTLHGCKTLATQRPRLNVEVMKDEEIDDGQSYKVYVYRT



VAGPRTDAPSFVHTL





214
MESCNCVEPQWPADELLMKYQYLSDFFIALAYFSIPLELIYFVKKSA



VFPYRWVLVQFGAFIVLCGATHLINLWTFAIHSRTVAWMTIAKVLTA



AVSCITALMLVHIIPDLLSVKTRELFLKNKAAELDREMGLIRTQEET



GRHVRMLTHEIRSTLDRHTILKTTLIELGRTLGLEECALWMPTRSGL



ELQLSYTLRQQQNPVGYTVPIHLPVINRVFSSNRALKISPNSPVARI



RPLAGKYIPGEVVAVRVPLLHLSNFQINDWPELSTKRYALMVLMLPS



DSARQWHVHELELVEVVADQVAVALSHAAILEESMRARDLLMEQNVA



LDLARREAETAIRARNDFLAVMNHEMRTPMHAIIALSSLLQETELTP



EQRLMVETIMKSSNLLATLINDVLDLSRLEDGSFQLNIATFNLHAVF



REVLNLIKPVASVKKLLITLNLAPDLPEYAVGDEKRLMQVILNVVGN



AVKFSKEGGISITAFVAKAEYLREARTPEFLPLPSDNHFYLRVQVRD



SGSGVNPQDIPKLFTKFAHNQSLATRNSGGSGLGLAICKRFVTLMDG



HIWIESEGIGKGCTATFIVRLGIPEKLNESKFPVLPRGSSNHVLANF



SGLKVLVMDDNGVGRAATKGLLLHLGCDVTTVSSGDELLHAVSQEHK



VVLMDICTPGIDSYEVAVQIHRLYSQHHERPLLVAITGSTDKVTKEN



CMRVGMDGVIQKPVSLDKMRNVLSELLECGHQMSSLARV





215
MASRRRMLLKVIILGDSGVGKTSLMNQYVNRKFSNQYKATIGADFLT



KEVQFGDRLFTLQIWDTAGQERFQSLGVAFYRGADCCVLVYDVNVMK



SFDNLNHWREEFLIQASPSDPENFPFVVLGNKIDIDGGNSRWSEKKA



KAWCASKGNISYFETSAKEGFNVEAAFQCIAKNALKNEPEEELYLPD



TIDVAGGQQQRSSGCEC





216
MAGGYRADDDYDYLFKVVLIGDSGVGKSNLLSRFTRNEFSLESKSTI



GVEFATRSIRVDDKVVKAQIWDTAGQERYRAITSAYYRGAVGALLVY



DVTRHVTFENVERWLKELRDHTDSNIVIMLVGNKADLRHLRAVSTED



AKAFAERENTYFMETSALESMNVENSFTEVLTQIYHVVSRKALDVGE



DPAAPPKGQTISVGSKDDVSAVKKVGCCSA





217
MVDSFDEECDYLFKAVLTGDSAVGKSNLLSRFARKEFQLDSKPTIGV



EFAYRNVKVADKLIKAQIWDTAGQERFRAITSSYYRGALGALLVYDI



TRRVTFENVKKWLRELRDFGNPDMVVVLVGNKSDLGSSREVDLEEGK



DFAEAENLCFMETSALENLNVEEAFLEMITRIHEITSQKSLEAKNNE



ITSSLHGPKQVIQIDEVTATKKPYCCSS





218
MAGYKADEEYDYLFKLVLIGDSGVGKSNLLSRFTRNEFNLESKSTIG



VEFATKSLSIDGKVVKAQIWDTAGQERYRAITSAYYRGAVGALLVYD



VTRRATFENVARWLRELRDHTDPNIVVMLIGNKSDLRHLVAVPLEDG



DPFAEMSHYYFMQTSALDATNVEAAFAEVLSQIYRIVSKRAVEAGDN



PSVSCVPGQGQTINVKEEGSVFKRIGCCSS





219
MASGGGYGDGNQKIDYVFKVVLIGDSAVGKSQILSRFARNEFSLDSK



ATIGVEFQTRTLVIQHKSVKAQIWDTAGQERYRAVTSAYYRGAVGAM



LVVDITRRQSFDHIPRWLEELRSHADKNIVIILVGNKTDLENQRAVP



TEDAKEFAQKEGLFFLETSALDSTNVESAFLYVLTEIFNIVNKKSLV



AGESQTNGNPASLAGKKIIIPGPAQEIPAKNKMCCGT





220
MADAAAQNGQFSDFPAVPTHGGQFIQYNIFGNHFEITAKYRPPIMPI



GRGAYGIVCSVLNSETNEMVAIKKIANAFDNHMDAKRTLREIKLLRH



LDHENVIGIRDVIPPPLRREFTDVYIAMELMDTDLHQIIRSNQGLSE



EHCQYFLYQILRGLKYIHSANVIHRDLKPSNLLLNANCDLKIIDFGL



ARPTAENEFMTEYVVTRWYRAPELLLNSSDYTAAIDVWSVGCIFMEL



MNRKPLFPGRDHVHQMRLLVELLGTPADADLGFVRNEDARRYIRQLP



QHPRQPLASVFPHVHPLAIDLVEKMLTFDPTKRITVEEALAHPYLTR



LHDIADEPVCRQPFSFEFEQQPLGEEQMKDMIYQEAIALNPEFA





221
MATLVEPPNGVHSEGKHYYSMWQTLFEIDTKYVPIKPIGRGAYGIVC



SSVNRETNEKVAIKKIHNAFENRVDALRTLREIKLLRHLRHENVIGL



KDVMMPIQRKSFKDVYLVYELMDTDLHQIIKSSQTLTNDHCQYFLFQ



LLRGLKYLHSANILHRDLKPGNLLINANCDLKICDFGLARASNGKGQ



FMTEYVVTRWYRAPELLLCCDNYGTSIDVWSVGCIFAELLGRKPLFP



GTECLNQLKLIINVLGSQREEDIEFIDNPKAKKFIKSVPYSPGTPLS



RLYPNAHPLAIDLLQKMLIFDPSKRIGVTEALQHPYMSPLYDPNTNP



PAQVPIDLDVNEDLEEEMIREMMWKEMLHYHPEVAVGNLEVYS





222
MNYFPDEVIDHVFDFVTSNRDRNVISLVCKSWYRIERLSRQRVFIGN



CYAISPERLIARFPGVRSLTLKGKPHFADFNLVPPDWGGFVYPWIDA



LARSKVNLEELRLKRMVVTDDGLELISRSFVNFKSLVLVSCEGFTTD



GLAAIAANCRFLRELDLQENEVEDHRGQWLNCFPDSCTSLVSLNFAC



LKGDINLAALERLVARSPYLKSLRLSRAVPLDTLQKILVRAPQLVDL



GVGSFVHDPDSETYNKLVTAIEKCKSMRSLSGFLEVSAYCLPAIYPI



CSGLTSLNLSYAPGIPGSELTKLIRHCRKLQRLWILDCIGDKGLGVV



ASSCKELQELRVFPSDPYGVGNAAVTEEGLVAISRGCPKLNSLLYFC



QQMTNAALKIVAQNCPNFIRFRLCILEPTKPDSSTNQPLDEGFGAIV



QSCKGVRRLSLSGLLTDQVFNYIGTFAEQLEMLSIAFAGDNDKGMLY



VLNGCKKIRKLEIRDCPFGNIALLTDVGKYETMRSLWMSSCDITLGG



CKTLAKKMPRLNVEIINENNEMEDCIDDEQKVERMYLYRTLVGPRKD



APEHVWTL





223
MKRDHRDACSGGYGGGGGGEASGASKGEPPSSSSTHSLPGSGKAKMV



MWGEDDQDPSGGGGGGMDELLAVLGYKVRSSDMAEVAQKLEQLEMVM



GSAQEDGISHLSYDAVHYNPSDLSSWVQSMLFELNPPPPPQQVADAV



LAAAESSSTIAQHHRSHLGSRSQTQTRTLSQTSAPTQTQSQVIFNDD



SEYDLRAIPGVAAFPQGDSDFESAARKKMKTLNGGSNSLSSSSSSSA



AGAAPSESTRPVVLVDTQETGVRLVHTLMACAEAVQQENLKLADALV



KHIGLLAASQNGAMRKVATYFAEALARRIYRIYPNDGSLDSSCNDIL



QMHFYETCPYLKFAHFTANQAILEAFATASRVHVIDFGLKQGMQWPA



LMQALALRPGGPPAFRLTGIGPPQPNNTDALQQVGWKLAQLADTIGV



EFEFRGFVANSLADLEPAMLDIRPPEVETVAVNSVFELHPLLARPGA



IDKVLSSIKAMRPKIVTMVEQEANHNGPGFVDRFTEALHYYSSLFDS



LEGSGVAPPNQDLVMSEVYLGRQICNVYACEGPDRVERHETLVQWQA



RMGSAGFDPVHLGSNAFKQASMLLALFAGGEGYRVEENDGCLMLGWH



TRPLIATSAWQLAAATQ





224
MSKVLRFTGGEDFYSGRSIYQSPKEVNLFLSLGNHVDVYFPPSKRSR



ISAPFVFSEDLFEQKRQDTIEVLPDECLFEIFRRLPGGQERSACACV



SKRWLNLLSNICPNERSSGKSQNNLDPTCGGEEVSSEDDGFLSRSLE



GKKATDIRLAAIAVGTADRGGLGKLSIRGSKLSHVTSLGLGAIARSC



PSLKALSLWHLPSVGDEGLLEVANGCHQLEKLDLCQCPNITNKFLVA



VARNCPNLTDISIESCSSIGNEGLAAVGQFCQNLKSISIKNCPSVGD



QGIVGLISRAGSALTKFKLQALNITDVSLAVIGHYATAVTDLTLASL



HNVTERGFWVMGNGHGLQRLRSLIVTACRGATDLGLESLGKGCPNLK



QLCIRSSAFLSDGGLVSFMKSARSLESLQLEECHRITLSGLYGLVVG



CGDKLKSLALTNCWGFKDFDFGSPQVSPCKSLRSFSVRNCPGFGDAC



LVALGKICPHLQQVELSGLTGITDEGLLRLLECCEAGLVKVNLSGCI



NLTDQVVSAMAKLHGRTLEVLILDGCTKVSDLGLLAIAENCQLLSDL



DVSKCAISDFGLMALARSSQLSLQVLSVSGCSLVSDKCLPALKKVGR



TLLGLNLQHCTAISTRSVDLLLEELWRCDILA





225
MGESRRGEMDGTTRGGSNADMYLPNYKLGKTLGIGSFGKVKIAEHVL



TGHKVAIKILNRRKIKNMEMEEKVRREIKILRLFMHPHIIRLYEVIE



TPTDIVMEWKSGELFDYIVEKGRLQENEARNFFQQIISGVEYCHRNM



WHRDLKPENLLLDSKWNVKIADFGLSNIMRDGHFLKTSCGSPNYAAP



EVISGKLYAGPEVDVWSCGVILYALLCGTLPFDDENIPNLFKKIKGG



MYTLPSHLSAGSKDLIPRMLIVNPMKRITIPEIRQHPWFQAHLPRYL



AVPPPDTMQQAKKIDEEILQEWNMGFERNQLVESLRNRIQNEATVAY



YLLLDNRFRPSNGYLGDEFQETMECTFNRGNPGELTIPTVGPRYPLP



GYMDYQGVNSKPGYYGAEKKWALGLQSRAHPREIMTEVLKALRELNV



CWKKIGHYNMKCMWNPCVPSHESMVSNPVQSNYFGDESTIIENDGAT



KSRNWKFEVQLYKTTEEKYLLDLQRVQGPQFLFLDLCAAFLAQLRVL





226
MAGYRAEDDYDYLFKIVLIGDSGVGKSNLLSRFTRNEFSLESKSTIG



VEFATRSLNVDGKVIKAQIWDTAGQERYRAITSAYYRGAVGALLVYD



VTRHSTFENVERWLRELRDHTDPNIWMLVGNKSDLRHLLAVSTEDGK



SFAEREALVFMETSALEATNVENAFAEVLTQIYNIVSKKALETSEQA



NGSAVPSQGEKIDVGKDVSAVKRGGCCSS





227
MDSSRESLVYVAKLAEQAERYEEMVDEMKKVAKLNVALTVEERNLLS



VGYKNVIGARRASWRILTSIEQKEDARGNEISVKRIKEYRKKVESEL



SSICSDIMVILDEHVIPSASDGESKVFYYKMKGDYYRYLAEFKSDDE



KKEVAEQSMKAYEMATSIAESDLPYTHPIRLGLALNFSVFYYEILNS



AERACHIAKQAFDDAIAELDNLNEESYKDSTLIMQLLRDNLTLWTSD



ITEEGEDAQRINGSAKVGMEEGE





228
MEDRNVKRPDSPGLSDIVLTCVMPYIDDPKDRDAISLVCRRWYEIDA



LTRKHVTIALCYTTSPERLRRRFRHLESLKLKGKPRAAMFNLIPENW



GGYVTPWVTEIAQSFDCLKSLHFRRMIVEDSNLEVLATSRGRVLQVL



KLDKCSGFSTDGLLHVGRLCKTLRTFFLEESTIIEKDGAWLHELAMN



NTVLETLNFYMTELSSFSVQDLQIIARNCRSLTSVKISDCEILDLVG



FFQDAAALEEFGGGLFNEEPERYAALSFPARLCRLGLTYISENEMPI



VFPIASRLRMLDLLYAFLSTDDLCLLIQQCPILEVLETRNVIGDRGL



EVLAHSCKRLKRLRIERGADEQGMGDEGGLVSQRGLMDLARGCLELE



YLAVYVSDITNSSLECIGTYSKNLCDFRLVLLDREEKITDLPLDNGV



RAILRGCEKLRRFALYLRPGGLTDVGLGYIGQYSQNIRWMLLGYVGE



SDEGLREFSRGCPSLQKLEMRGCCFSEQALADAVMRLTSLRYVWVQG



YRGSDTGRDILAMVRPFWNIELIPARRIAVANQNGENVLNEDPAHIL



AYYSLAGPRNDCPDSVIPLAPARLLTL





229
MANRVDHEYDYLFKIVLIGDSGVGKSNILSRFTRNEFCLESKSTIGV



EFATRTLQVEGKTVKAQIWDTAGQERYRAITSAYYRGAVGALLVYDI



TKRQTFDNVQRWLRELRDHADSNIVIMMAGNKSDLNHLRAVPGDDGQ



ALAEKEGLSFLETSALDATNIEKAFQTILTEIYHIISKKALAAQEAA



ATTLPGQGTTINVADATGNANKRGCCST





230
MESFPVINMENLNGEKRAITMDKIKDACENWGFFELVNHGIPPEFMD



TIESMTKGHYKKCMEQRFGELVASKGLECVQTEVHDLDWESTFHLKH



LPVSNISQIPDLDDDYRRVMKEFALKLEKLAEELMDLLCENLGLEKG



YLKKAFYGSQGPNFGTKVSNYPPCPKPDLIKGLRAHTDAGGIILLFQ



DDKVSGLQLLKDGQWVDVPPMRHSIWNLGDQIEVITNGKYKSILHRW



AQTDGNRMSIASFYNPGSDAVIYPAPALVESEAEEASKAVYPKFVFE



DYMKLYAALKFQAKEPRFQAMKAMESSPSLGPIATA





231
MESFPVINMENLNGEKRAITMDKIKDACENWGFFELVNHGIPPEFMD



WERMTKGHYRKCMDQRFRELVASKGLENVQTEVHDLDWESTFHLKHL



PLSNISQVPDLEDDYRKVMKEFAVKLEKLAEELMDLLCENLGLEKGY



LKKAFHGSNGPNFGTKVSNYPPCPKPELIKGLRAHTDAGGVILLFQD



DKVSGLQLLKDGQWVDVPPMRHSIWNLGDQIEVITNGKYKSVLHRWA



QTDGNRMSIASFYNPGSDAAIYPAPALMESKAEEASKAAYPKFVFED



YMKLYAALKFQAKEPRFQAMKVMESSPNLEPIA





232
MSGGSDLPEEILIQILLKLPVKSLVRFRCVSKSWDSLITHPSFVSLH



LRHAMAGHDRSVILLRHYSLTQRKERNTLYLDGESFLEHQELEFPLK



THDTYYLAGSCNGLLCFSDYIINNLQVILWNPSLRKCVQLPIPRFID



TDLTHTYVLGFGFDTRRVDYKWRLIYILGKNWSVIVPPEVEIYELKT



NAWRGIQTAVPYVIPESSSQAFVNGAIHWIGYNPADRRLKVASSPRS



IWLFDMQDEVFGEMELPKGGDYANRLNLSLAVHQDLICLLHCHPMEE



DGHQLYGVCWVWVMKEYGAADSWTKLFTINISEHGGIGRILGFRKKG



DALLVTHNDELVSYDLRGQRISRLGLYGVARSFEVIPYMDCLILV





233
MGCSSSLPDRASGRLGGLNSENGAVNDAKNLRVKLVLLGDSGVGKSC



IVLRFVRGQFDPTSKVTIGASFLSQTIALQDSTTVKFEIWDTAGQER



YAALAPLYYRGAAVAVVVYDITSPESFQKAQYWVKELQKHGSPDMVM



ALVGNKADLQENREVWQDGIDYAEKNGMFFIETSAKTADNINQLFEE



IAKRLPRPTPS





234
MDGGAPQPADWMSEAAPAQQQQQQPQQAQPQGIENIPATLSHGGRFI



QYNIFGNIFEVTAKYKPPIMPIGKGAYGIVCSALNSETNEHVAIKKI



ANAFDNKIDAKRTLREIKLLRHMDHENWAIRDIIPPPQREVFNDVYI



AYELMDTDLHQIIRSNQALSEEHCQYFLYQILRGLKYIHSANVLHRD



LKPSNLLLNANCDLKICDFGLARVTSETDFMTEYVTRWYRAPELLLN



SSDYTAAIDVWSVGCIFMELMDRKPLFPGRDHVQQLRLLMELIGTPS



EAELGFLNENAKKYIRQLPLYRRQSFTEKFPHVHPLAIDLVEKMLTF



DPRLRLTVEEALAHPYLNSLHDISDEPTCMNPFNFDFEQHALTEEQM



RELIYREALAFNPEYLQ





235
MESSSSGGASAEHSVRGIPTHGGRYVQYNVYGNLFEVSRKWPPIRPI



GRGAYGLVCAAMNSETNEEVAIKKIGNAFDNRIDAKRTLREIKLLCH



MDHENVIGLKDIIRPPSRENFNDWIWELMDTDLHQIIRSNQPLTDDH



CRYFLYQLLRGLKYVHSASVLHRDLKPSNLFLNSNCDLKIGDFGLAR



TTSETDFMTEYVVTRWYRAPELLLNCSEYTAAIDIWSVGCILGEIMT



RQPLFPGKDYVHQLRLITELIGSPDDSSLGFLRSDNARRYVRQLPQY



PRQQFSSRFQTMSPGAVDLLERMLVFDPIRRITVEEALCHPYLAPLH



DINEEPICPTPFIYDFEQPSFTEENIKELIWRETLRFNPDPMH





236
MGQVPSSASSSPEPSHRGGAISSSHRLDSLPSLEFVSSFEDEEDAAA



ADEGAAAGYDYTGDLPDECLAHVFHFLGTGDRKRCSWCRRWRRVDGE



SRHRLSLNAQADLLSSLPSVFSRFDAVTKLALRCDRKSVSLGDEALV



LISLRCRGLARLKLRGCREVTDLGVAAFAENCRQLRKLSCGSCAINA



VLDHCVNLEELSIKRLRGIHDGAEPIGPGAAAKSLRSICLKELINGQ



CFGPLLVGARKLSTLKLIRCLGDWDNVLQTIGSSNPGLLEVHLERIQ



VSDGGLCGIANCKGIDSLHVVKVPECSNLGLSSENCRQLRKLHIDGW



RINRIGDEGLVEVAKQCLQLQELVLIGVSVTHSSLAAIGSNCRKLER



LAFCGSDTVGDAEIACIAAKCEALKKLCIKNCPITDVGIESLAQGCP



NLVKIKVRKCRGVSGQWELLKERRGSLVFNLDACGIEALDDIRGVQE



SVMEFPPVNTSDAPSSSNERSMLFRAKLGLFAGRNLVACTFRRWSNG



EHSTNGNL





237
MAYSFPEEVLEHVFSFIGSDRDRNAVSLVCKSWYEIERWCRRRVFVG



NCYAVSPAAVVRRFPEVRSVELKGKPHFADFNLVPEGWGGYVSPWIT



TLARAYPWLEEIRLKRMVVTDESLELIARSFKNFKVLVLSSCEGFST



DGLAAVAANCRNLRELDLRESEVEDMSGHWLSHFPDSYTSLVSLNIS



CLGSEVSFSALERLVSRCPDLRSLRLNRWPLDRLANLLRRPPQLAEL



GTGVYSAELRSDDFSNLVGALAGCRELRSLSGFWDWPAYLPAVYPLC



SGLTSLNLSYATIQSSELTKLISQCHSLQRLWVLDYIEDSGLEALAA



CCKDLRELRVFPSEPFNREGNVSLTEQGLVSVSEGCSKLQSVLYFCR



QMSNAALLTIARNRPNMTRFRLCIIEPRCPDYITHEPLDTGFGAIVQ



HCKDLQRLSLSGLLTDRVFEYIGTYAKKLEMLSVAFAGDSDLGLHHV



LSGCDSLRKLEIRDCPFGDKALLANAAKLETMRSLWMSSCSVSFGAC



KLLGQKMPRLNVEVIDERGHPDSRPESCPVEKLYIYRWAGPRFDMPD



FVWTMDEDSALRP





238
MAQYEEDNAEFYVRYYVGHKGKFGHEFLEFEFRPDGKLRYANNSNYK



NDIMIRKEVWLTPAVLRECRRIISESEIMKEDDSNWPEPDRVGRQEL



EIVMGNEHISFTTSKIGSLVDVQTSKDPDGLRIFYYLVQDLKCFVFS



LISLHFKIKPI





239
MARRAEEEYDYLFKWLIGDSGVGKSNLLSRFTRNEFCLESKSTIGVE



FATRTLQVEGRTVKAQIWDTAGQERYRAITSAYYRGALGLLVYDVTK



PTTFDNVSRWLKELRDHADSNIVIMLIGNKTDLKHLRAVATEDAQSY



AEKEGLSFIETSALEATNVEKAFQTILSEIYRIISKKPLSSEDAAPA



NIKEGKTIVVGESEANTKKACCSSS





240
MAVDCLTSKTSPAMPPQHKDEAREDKKHLVFDASVIRHQPDIPKQFI



WPDEEKPCANAPDLAVPLIDLDGFLSKDPSASEEASRLVGDACQKHG



FFLWNHGVDAGLISDAHKYMDKFFGLPLSEKQRAQRKLGEHCGYASS



FTGRFSSKLPWKETLSFGYSAEKSSANVVEDYFKNTMGEEFEQSGRV



YQDYCEAMSRLSLGIMELLGMSLGIGRDHFREFFESNDSIMRLNYYP



PCQKPDLTLGTGPHCDPTSLTILHQDQVGGLQVFVDNEWRSISPNFN



AFWNIGDTFMALSNGLYKSCLHRAVVNSRTPRKSLAFFLCPRSDKWR



PPSELVAMSCPRAYPDFTWPVLLEFTQKHYRADMNTLRAFTNWLQQR



TSEPVR





241
MASRRRMLLKVIILGDSGVGKTSLMNQWNRKFSNQYKATIGADFLTK



EVQFEDRLFTLQIWDTAGQERFQSLGVAFYRGADCCVLVYDVNVMKS



FDNLNNWREEFLIQAGPSDPENFPFVVLGNKVDVDNGNSRVVSEKKA



RAWCASKGNIPYFETSAKEGFNVEAAFECIAKNALKNEPEEEIYLPD



TIDVAGGARQQRSTGCEC





242
MLTISDEKLFHNCLLALYLIGPPTFISLRYIQAPYGKHHRSGWGPTI



SPALAWFLMESPTLWLTLLIFPFGKNSSNARSLILISPFLFHYFHRT



IIYPLRIRSSGGQRSTQPNAANRFPVTVAFMAFGFNLLNAYVQARWV



SNYESDGAAGGWWFWGRFLVGLVIFVSGMYMNMSSDMVLVGLKREGK



GYRVPRGGLFEFVSCPNYFGEIVEWLGWAVMTWSAWAGFGFFLYTCA



NLVPRARANHRWYLDKFGEEYPKSRKAVIPFLY





243
MAEAKTVHSPLVTYFSMLSLLTLCPPFVILLWYTMVHADGSIVQTFD



YLRQHGLQGFLDIWPRPTAVAWKIIAVYAFEAALQLLLPGKWKGPIS



PAGNQPVYKANGMAAYFVTLITYLGLWWFGIFNPTVVYDHLGEIYSA



LIVGSFIFCIFLYIKGHVAPSSTDSGSSGNIIIDFYWGMELYPRIGK



DFDIKVFTNCRFGMMSWAVLALTYCIKQYEQNGKVADSMLVNTILML



VYVTKFFWWEAGYWNTMDIAHDRAFYICWGCLVWVPSIYTSPGMYLV



NHPVNLGTQLALYILVAGILCIYINYDCDRQRQEFRRTNGCSVWGKA



PSKISASYTTTSGENKTSLLLTSGWWGLSRHFHYVPEILGAFFWTVP



ALFNHFLPYFYVIFLTILLFDRAKRDDDRCRSKYGKYWKLYCEKVRY



RIIPGIY





244
MRSTKPLKPLKLAVPAPDAPIASFLTASGTFHDGDLLLNHKGLRLKS



EEKESCLSNGKELDLDFSLEDLETIKVIGKGSGGWQLVRHKWVGKLF



ALKVIQMNIQEEIRKQIVQELKINQASQCPHWICYHSFYHNGAFSLV



LEYMDRGSLADVIRQVKTILEPYLAWCKQVLQGLWLHNERHVIHRDI



KPSNLLVNHRGEVKITDFGVSAMLASSMGQRDTFVGTYNYMSPERIS



GSTYDYSSDIWSLGMVVLECAIGRFPYMQSEDQQSWPSFYELLEAIV



ESPPPSAPADQFSPEFCSFVSSCIQKDPQQRSSSLDLLSHAFIKKFE



DKDIDLGILVGSLEPPVSFPRC





245
MDSTTHSFQRRPLSIKLWPPSQSTRIMLVERMTKNLIAPSVLSRKYG



LLSKEEAEEDAKRIEESAAIANQHMEKEPDGDGSSAVQVYATQSSKL



MLEVIKRGPRMKVDGEAILPAKAIAASETVFDISGGRRAFIDAEEAE



ELLKPLKAPGNFYKKICFSNRSFGLDAARVAEPFLVSVKDKLTDVDL



SDFVAGRPEAEALEVMNIFSSALEGCNLRSLDLSNNALGEKGVRAFG



ALLKSQNNLEELYLMNDGISEEAALAVCELLPSTEKLRILHFHNNMT



GDEGALAISEIVKHSPVLEDFRCSSTRVGSDGGVSLCDALSACSRIK



KLDLRDNMFGVESGVALSKAIPSFADLTEWFSYLNLEDEGTEALAIA



LKESAPSLEVLEMAGNDITAKAGAVLAACIAAKQFLTKLNLSENELK



DEGAILIGKALEEGHGQLVEVDLSTNSIRRVGARVLAQAWQKPGFKM



LNINANFISEEGLDEVKDIFKTSPNMLGPLDENDPEGEDFDEEADEE



GAGHEDELEAKLKDLEIKHEE





246
MVKLTMIARVTDGLPLAEGLDDGRDVKDAEFYKQQVKALFKNLSKGQ



NEPSRMSVETGPYYFHYIIEGRVCYLTMCDRSYPKKLAFQYLEDLKN



EFGRVNGAQIETAARPYAFIKFDTFIQKTKKLYQDTRTQRNISKLND



ELYEVHQIMTRNVQEVLGVGEKLDQVSEMSSRLTSESRIYADKARDL



NRQALIRKWAPVAIVLGWFLLFWVKSKIW





247
MSYVSSNRKPLLSRKATNDGHAEKSPYFDGWKAYDKDPFHPTQNPSG



VIQMGLAEHQLCFDLVQEWLVSNPEASICTKKGVDKFRDIALFQDYH



GLPAFRNAVAKFMGRVRGDKVKFDPDRIVMSGGATGAHEMITFCLAD



PGDAFLVPTPYYAGFDRDLCWRTEARLLPWCHSSNNFKVTRKALEEA



YAKAVEANISVKGLLLTNPSNPLGTILDRDTLREAMSFINEKNIHLI



CDEIYAATVFRQPDFISIAEIIEEDQEYNRNLVHIIYSLSKDMGFPG



FRVGIVYSYNDAWECGRRMSSFGLVSSQTQYLIASMLSDDQFIGKFL



LESAERLETRHKNFTDGLHQVGIKCLNGNAGLFLWMDLRELLMESTV



EAETALWRGIINEFKLNVSPGSSFHCSEPGWFRVCIANMNEETMKVA



LARIREFVRRNGDKLNRKEKCRQSDLRLRLSFRRMDDVLRSPCIMSP



HSPIPQSPLVRTRT





248
MATLVEPPDGVRQRGKQYYSMWRTLFEVDAKWPIKPIGRGAYGWCSS



INRETHEKVAIKKIHNVFENRIDALRTLRELKLLRHIKHENVIALKD



VMLPVHSASFREVYLWELMDTDLHQLIKSPQPLSNEHCRFFIFQLLK



GLKYLHSANVLHRDLKPGNLLVNANCDLKICDFGLARTNQGDGQFMT



EYVVTRWYRAPELLLSCDNYGTSIDVWSVGCIFAEILGRKPLFPGTE



CLNQLRLIIDTLGSQGEEDIEFIDNRKARRYIKALPFSRGTHFSQLY



PQADPLAVDLLQRMLVFDPRKRITVTEALQHPYMAGLYDPRGNPPAQ



YPINLDIDDSMEQHMIREMMWNEILHYHPHQYASLHG





249
MGQQSLIYSFVARGPVLLAEYTEFSGNFTSVASQCLQKLPATSNKFT



YNCDGHTFNYLVDYCWAVESVGRQIPMAFLERIKEDFTHRYDAGKAA



TASANSLNREFGPKLKEHMQYCVDHPEEISKLAKVKAQVSEVKGVMM



ENIEKVLDRGEKIELLVDKTDNLRSQAQDFRQQGTKMRRKMWLQNMK



IKLIVLGIIIALILVIVLSVCHGFNCGHK





250
MADVAGLTEAAGSRFSSLELIGRGSFGDVYKAFDKELNKEVAIKVID



LEESEDEIEDIQKEISVLSQCRSPYITEYYGSYLHQTKLWIIMEYMA



GGSVADLLQSGPPLDEMSIACILRDLLHAIEYLHTEGRDIKAANILL



SENGDVKVADFGVSAQLTRTISRRKTFVGTPFWMAPEVIQNSDGYNE



KADIWSLGITAIEMAKGEPPLADLHPMRVLFIIPRENPPQLDEHFSR



SIKEFVSLCLKKVPAERPSAKELLKHRFIRNARKSPRLLERIRERPK



YPTVEDGETPMIGKGVVEGSDTVKIRRDIKGEETVRASNQGRGGKNT



GWDFSIGGVQGTGTVRTNLLPPQVRERKSENSHNQATPRRVADGGNS



WLSASGNSPQAAEISLRKDARDLHYNNHHDDEDSSLSGSGTVVVRTP



RESQPSPLLRDQSTLSSSSYSSVEDASTTGTVVFRGQHDESDSPRTP



KSRLGIQERSSSASLEDSAANLAEAKAAMQGAFKRGNAREKRSVLGK



FNDGQENGNREQLTKSPDSSRNSYEYFDAHKVLPRSRQASDDEDIAK



ILSSSAPLSVLLIPSLKETTGDDSDGPWHAVSTSLTNLERMKPGSCE



VLISKLLQRLASSKESSLKDLQDLATHTFSKGKISPEKSGNANTEAD



NRKKQQNKEFNSNANLSPLARFLLSRWQGQVSRDLNPT





251
MSQKGLIYSFVAKGTWLAEHTQFSGNFSTIAVQCLQKLPSNSSKYTY



SCDGHTFNFLTDSGFVFLWADESVGRSVPFVFLERVKDDFMQHYSAS



IASGDPHPLADDDEDDDLFQDRFSIAYNLDREFGPRLKEHMQYCMSH



PEEMSKLSKLKAQISEVKGIMVDNIEKVLDRGERIELLVDKTENLQF



QADIFQRQGRQLRRKMWFQNLQMKVVVAGAWIVIFLLWLIAKWGSK





252
MEGEEEQKPAATKRRKPRSGAPSSAPINNLDDGCLMHIFSFLSPIPD



RYNTALVCHRWCYLACHPRLWLRVDRSVDSSEPGVFPNIELAVSAAR



PGDTILIAAGGSHVASNIQUKKPLCLIGGGELPDETMLLCSRGSDSA



LEFLSTCKLSNLTVKAELGCCLLHRSGRLIIDGCILQCETDPLDYUL



SCPIVSTATGSKVVSSPNGCHGDGVSVSRTRIEGGAKAVLTSGDLAL



QRVRVICARTSMFFWFDVECPS





253
MGQSSSSTAPALGGRGADPDPDPDPDDGHSAAKSKAVIWPVLGEAAA



EECAAPDLSLSISDLPDECLACVFQYLGSGDRARCSLVCRRWLAVEG



QSRQRLALHAQSELLEAVPALFARFDSVSKLALKCDRKALSIGDDAL



VLISLKCRNLTRLKLRGCRALTDTGIAVFTSNCRGLRKLSCGSCAFG



AKGLNAVIDHCASLEELSVKRLRSPTEGAMEPIGPGAAAASLKTICL



KELYNGQGFGPLIIGSKNLRTLKLVKCYGDWDTVLQVMVERVAKLVE



IHLERIQVSDFGIASLSNCSDLEILHLLKTPHCTNLGLISVAERCTL



LRKLHIDGLKLNRIGDDGLIAVAKRCPNLRELVLIGVNPTELSLDLL



GSNCLTLERLAFCGSDWGDAEIMCIAARCVALKKLCIKNCPVSDEGM



KALASGCPNLVKLKVKKCGGVTSEGAAWLRMRRGSLALNLDSSDQEQ



IDAFASDGGGEENHVEFPPVPSQTAGANIASSSGTSRSSSFKSRLGS



LRGKSLMACTFRRWSSGSKDS





254
MGEESFIYSFVARGTMILAEYTEFTGNFPAIAAQCLQKLPSSNNKFT



YSCDHHTFNFLLEDGYAYCWAKESVAKQISIAFLERVKVDFKKRYGG



GKADTAVAKSLNKEFGPIMKEHMKYIIEHAEEIDKLIKVKAQVSEVK



SIMLENIDKAIDRGENLTILADKTENLRDQAQAYKKQGTQIRRKMWY



QNMKIKLVVFGILLFLILVIWLSICHGFDCSN





255
MAGGYRADDDYDYLFKWLIGDSGVGKSNLLSRFTRNEFSLESKSTIG



VEFATRSIRVDDKVVKAQIWDTAGQERYRAITSAYYRGAVGALLWDV



TRHVTFENVERWLKELRDHTDSNIVIMLVGNKADLRHLRAVSTEDAT



AFAEKENTFFMETSALESMNVENAFTEVLTQIHRWSRKALEAGNDPG



ALPKGQTINVGSKDDVSEVKKVGCCSS





256
MAELAGDLPGELVTEILDRLPVESLLRCRSVSKRWRGIIDSREFVRS



HLARSFESTANLTLFFRHSSSLYCIDLTSLLRHGGVAEMNYPLMCYS



DQIRVLGSCNGLLCISNAADDVVVWNPATRKHKFLPYSAVEVRRSSV



FSVCWGFGYDERRDDWLLRLVQLVTEPIESEVSIYSLKDNAWRRLKD



MPYSLVYPRKMGVFVCGHLHWIMTRELVSDSANLLVAFDFRIEDFKV



VDQPEGIDNKLDMDLSVLGGCLCLSINGNHMGVHVVVIMKEYGLRDS



WTKLFSIPQSEVARPLGFVRPLAYASNGRQVLVRQDSKNLILYDLET



KGMERVDINGMPNSFEAEICLRTLVSVDDYGGYTKKKQQEAEEIENR



TKRDDFLSVGFKLVL





257
MADTATRAIPPRMEFSDEAAAGGAAAPAAAAAAAEEEEEEEEAPSPA



AEISEVEKSKIGIMRAVVERDDPSAKDVDDFMIRRFLRARDLDIEKA



SKLFLKYLSWRRSFVPNGVISASEVPNNLAQRKLFMQGLDKKGRPII



VVYGGRHNPSKGSLEEFKRMILLRMPGGQEKFMGIADLEGWGYKSSD



IRGYLAALSILQDCYPERLGKLFLIHVPYIFMTAWKMVYPFIDPKTK



KKIVFVDNKKLRTTLLGDIDESQLPDVYGGRLPLVAIQDS





258
MAARLFSSLLSRSSSAASSSSSSSSARALLSRARKPLLGREIKSYST



AAAIEEPINPGVWNHTQLFINGQWDSASGKTFPTFDPRTGEVIAHVA



EGEAEDINRAVAAARKAFDEGPWPRMTAYERANVLFRFADLLEKHND



EIAALETWDNGKPYEQAAKIELPMIVRQIRYYAGWADKIHGLTVPAD



GQYHVQTLHEPIGVAGQIIPWNFPLLMYAWKVGPALATGNTWLKTAE



QTPLSALYATKLLHEAGLPPGVLNVVSGFGPTAGAALSSHMDVDKLA



FTGSTDTGKIVLELAAKSNLKPVTLELGGKSPFIVCEDVDKAVELAH



FALFFNQGQCCCAGSRTWHESIYEEFVEKAKARATVRSVGDPFKSGI



EQGPQIDSEQFQKILRYIRSGVEGGATLETGGERFGTKGHYIQPTVF



SNVKDDMLIAKDEIFGPVQTILKFKDLKEVIQRANNSRYGLAAGVFT



QNIDTANTLTRALKVGTVWVNCFDVFDAAIPFGGYKMSGHGREKGVY



SLSNYLQVKAWTSLKNPAWL





259
MSSSSSSGGGGGGAKLPHDVAVEILKRLPARSLLRFRCVCRSWRSAI



DDPRFVALHWSHSALHASSRHLACLDCGDDAVQNRCSLFPNAPLALP



PPPSQIEIPFVAPPNRYALVGSCNGLICVSESSSDGTERALYFWNLF



TRKHKAVRLPRPERMPPFSVGGAHWLGFCFDAKSNDYRWRIIRYLGI



RRRFRNKKPRVEWSFRTDSWKTLECEVPLLCDSAVFLNGNLHWYSFN



GEGDGYGSIVLFNVAEVFDEIALPEGISPHFVLSVTVLNESLAVFFS



HREACMKDYGVPESWSKLYTFEVTEPVTGFDGFTWNGELLMEINCEE



RVSWNPITAQLSILPLSARYKLVPWESLVPP





260
MDAAPLTSQRRPFSVKLWPPSKNTRETLVERMTRNLTSESIFTRKYG



SLSPEEAEENAKRIEDEAFTTANQHYEKEPDGDGGSAVQLYAKECSK



LILEVLKKGPKGKDEKPPTSDSAKAPRETFFDISKGQRAFIEAEEAE



ELLRPLKEPENSFTKICFSNRSFGLGAAHVAEPILISLKQQLKEVDL



SDFIAGRPETEALEVMSIFSAALEGSVLNSLNLSNNALGEKGVRAFS



ALLKSQSQLEELYLMNDGISEEAARAVCELIPSTEKLRVLHFHNNMT



GDEGAIAIAEWKCSSLMEDFRCSSTRIGSDGGVALSEALENCIHLKK



LDLRDNMFGVDAGVALSKALSKHTNLTEVYLSYLNLEDEGAIAIANV



LKETASSLTVLDMAGNDITAEAAPTLSACIMKNLLTKLNLAENELKD



EGAIQIGKALQEGHEQLTEVDLNTNSIRRAGARFLAQVVVQKPGFKL



LNIDGNFISEDGIDEVKSIFKKSPEMLASLDENDPEGGDEDEEDEEG



EAEGEADEGELESKLKNLEVGEE





261
MALVRERRQLNLRLPLTDLPNRRPLFPPPLSLPLPPSMAAASATAAA



GSGAAATSLSDLESLGVLGHGNGGTVYKVRHRRTSAVYALKVVHAGC



DATVRRQVLREMEILRRTDSPHWRCHGIFEKPNGDIAILMENMDAGS



LQTLLEASGTFSEKQLAAVARHVLNGLHYLHSLKIIHRDIKPSNLLV



NSAMEVKIADFGVSKIMCRTLDACNSYVGTCAYMSPERFDPDSYGGN



YDGYAGDIWSLGLTLLELYLGHFPLLGPGQRPDWATLMCAICFGEPP



KSPDGSSEEFRSFVECCLQKESSKRWSVAELLNHPFIAGGKDPAGSL





262
MVSAAQAAGGSLSLSLSLRDREILTSVNSVASSFSLLGSGFIVLCYL



LFKELRKFSFKLVFYLALSDMLCSFFNIIGDPSIGFFCYAQGYTTHF



FCVASFLWTTVIAFTLHRTWRHKTDVEDLEAMFHLYVWGTSWMTIIR



SIGNDHRHLGAWCWSQTGRTGKAVHFITFYAPLWGAILYNGFSYFQV



IRMLNNATRMAVGMSDRAYHLDARPDMKALNRWGYYPLILIGSWTFG



TINRIHDFIEPGHKIFWLSLLDVGTAALMGLFNSIAYGLNSSVRRAI



RERLDLVTWPETIRPWLPNSSRIRHQQQESELVSLKSQDPH





263
MAGLSDDLITKILDRFPKESLIPFRCVSKQWRRLIDDRFFRKSLLYL



VPMYSSSLYRIGLRRLGDLVEIENPFESEQIVLLGSCRGFLCIYNEI



DGQIAIWNPSTRSCQLLPPADAEIAHRLGPPACVYGFGYDYWNDEFV



LLRLVQTMEDPILSVSIYRSRGSVWRRLQGIPPYSLVEPRTMGVFLR



GRLHWIMRRDPMQNSAIVLVAFDIHTENSVEVQQLNFIDNRLPMYLA



ILEGGLCLIINDERGGVSAWIASEYGSEESWARLFSIADYSMGRVLL



QPLAYSQNGRQVLLLYRETLVWYDLDTGDVENINSMLSISNTPIVGD



YLGSRRRRLQGAWRQLEGMSYSLGNACKRGIFLHGRLHWIMTLQLVL



NSTKVLVAFDIRSDKFMEVSELNFIDNRLNMDLTLLGGCLCLIIYGE



QRGVHAWIMREYGLNRPWYMLFSMPGHSRPLLAYSQNGRQVLVAVGG



KTLVWYDRVWYDLHTGGVKKFGKRGMPSSYEAEIYLRTLVPVGKPPI





264
MAGGEAFSSNPPPPKPAILGNNSKTINAKLVLLGDMGAGKSSLVLRF



VKDQFFDFQESTIGAAFFSRTVGVNDASVKFEIWDTAGQERYHSLAP



MYYRGAAAAIVVYDITSTESFERAKKWVEELHKQGNPNLIITLAGNK



TDMEDKRKVAAEEACMYAEERRLVFIETSAKTATNVSKLFYEIAKRL



PRVQAMQNSAPAGMVLADTSSEETRSASCCS





265
MEIPMIDLSELDGKNRSKTMALLHHACEKWGCFKIKNHGVDPELMEK



VKHFVNTHYEENLKASFYESETAKCLENANGATSDLDWECTFFIWHR



PKSNIEDFPNLSNDLRKTMDEYIAQLVKLAENLSELMCENLGLGKDH



IKRAFSGKDGPSVGTKVAKYPECPYPEKVRGLREHTDAGGIILLLQD



DQVPGLEFLHDDQWVPIPPSTNDTIFVNTGDQLEVLSNGRYKSVWHR



VMAVESGSRLSVATFYNPAGDAIISPAPKLLYPEKYTFGEYLKLYAT



TKFQEKEPRFESMKSVMSNGYNGW





266
MATVPQEAINELQALMDRVDEPLMRTFENIHQGYLKETLVRFLKARE



GNVAKAHKMLLDCLKWRVQNEIDIILSKPIIPDDLYRAVRDSQLIGL



SGYSKEGLPVYAIGVGLSTFDKASVHYYVQSHIQINEYRDRVILPSA



SKRYGRPITTCLKVLDMSGLRLSALSQIKLLTIISTVDDLNYPEKTN



TYYIVNAPYVFSACWKWKPLLQERTRKKVQVLPGCGRDDLLKIMDYS



SLPHFCKGEGSGSGRHTSYGPENCYSLDHPFHQQLYSYIKEQSQRRQ



PIQPIKQGSFHVALPEAAAEGTEIAKTIESELQKFENGSGMPDSLDG



LKINGE





267
MARAGNKNIQAKLVLLGDMGAGKTSLVLRFVKGQFHEYQESTIGAAF



FTQVLSLNEATVKFDIWDTAGQERYHSLAPMYYRGAAAAVVVYDLTS



MDSFQRAKKWVLELQRQGNPKLIMFLVANKADLEQKRQVLSEEGEQY



AKENGLSFLETSAKTAQNVNELFYEIAKRIAKATPSRPTGMKLQRQE



SRRSLFCCSG





268
MSTLSEDDETEILLRLPVKSLLKFKSVCKPWNSLISSPYFAKTHLQI



SASSPRILLATNPPLSVSCESLHDDDRAGHEGTPLTQLRPPVEAPDG



CRPRIVGYCDGLVCLEYDDHRIWLWNPATGESRNIPNASCSYNRPTI



CGLGYDPSTDDYKILRHCSVADAYGFPEYSVFDVFALKTGSWRRVHD



KHDEFNWVPEAGTYANGFLHWLWGRDPWEHKKIVSFSMSKEKFEDAL



LALPEANEGTGFRVLGVAGECLLIYKSMAEVDTFMAWMMSDYGVRSS



SSWMELCSVTLPNQTLNTYFYMRPLCSTRAGKIAFSSIGTTRLSMIL



RNVMTKWFVKEDKLDFWYVESFVSPHGAKLQNQYVSRVKEPMERSDF



IGDHSVFKEGETSYKKANSHLSSKRRKAS





269
MEIFPVINLEKLNGEERGVTMEMIRDACENWGFFELVNHGISHELMD



TVERLTKGHYKECMERKFKEMVASKGLAVQSEIGDIDWESTFFLRHL



PVSNISEVPDLKEDYRKVMREFALEIEKLAEQLLDLLCENLGELKGY



LKKVFYGSKGPTFGTKVSNYPPCPNPELFKGLRAHTDAGGIILLFQD



DKVGGLQLLKDGKWIDVPPLRHSIVINLGDQLEVITNGKYKSVEHRV



IAQSDGNRMSIASFYNPGSDAVICPAPALLKKEAGEEGQAYPKFVFE



DYMKLYARLKFQAKEPRFEAMKATESTIARGPIATA





270
MQVSQPARPSDPIYRRDDHLSQACKDLVSSLPSEEGWVATSFCLYQG



FWFPTWLFNGVLACQNHFQAQPSDILLVTNPKSGTTWLKAILFALLN



RAKYSDSDSKQRHPLLTQNPHDLVPFLEVKLYLQQENPDLTTFESPR



LFATHLPYSSLPGSVRDSRCKLVYLCRNPKDMFISLWHYVNKRRAEE



KGQIPLPKCLDKFCRGLSPYGPYWDHVMGYHKASLEMPEQVLFLMYE



ELKEDPRVHVSRLADFLGCPFSDEELRDGTVEGIMRMCSFDNLSSLE



VNKSGKLWTGQENQWFFRRGKVGDWVNYLSAEMADKIDQVMEEKLRD



SGLNFQYK





271
MDPTKKPRESSSSTASAAAAEFPDEVLERVLALLASHKDRSAASLVS



KAWYHAERWSRTRVFIGNCYSVTPEIVAGRFPKIRSVTLKGKPRFSD



FNLVPQNWGADIRSWLTVFAERYPFLEELRLKRMTVTDESLKFLALK



FPNFKALSLMSCDGFSTDGLAAIATRCRNLTELDIQENGIDDISGDW



LSCFPENFTSLEVLNFASLNSDVDFDALERLVSRCNSLKVLKVNRTI



SLDQLQRLLVRAPRLTELGTGSFLQELNAHQYSELERAFGGCKTLHT



LSGLYEAMAPYLPVLYPACANLTFLNLNDAALQNEELAKLWHCPCLQ



RLWVLDTVGDEGLGAVARSCPLLEELRVFPANPFDEEVNHGVSESGF



LAISYGCRRLHYVLYFCRQMTNAAVATIVQNCPDFTHFRLCIMNPGQ



PDYLTNEPMDEAFGAWKRCTKLQRLAVSGLLTDQTFEYIGTYAKNLE



TLSVAFAGSSDRGMQCVLRGCPKLRKLEIRDCPFGNAALLSGLEKYE



SMRSLWMSACKVTMNGCAVLARERPRLNVEVMKDEESSDGQAYKVYV



YRTVAGPRRDAPPFVLTL





272
MSSSAVQFAAASRDGHENNGGGGGDSSGERLDPTAVLLPVDPGAPDL



SLPRETFLRAALSLKDQWQATWREGGAADPTAYTGLLGTAFLCLRSY



AATGDRGDLLLSAEIVDACASAARASTRHVTFLCGKGGVFAVGAWAN



LLGDHHKRDFFLNLFLEVAQERALPVGPEEGGFGMSYDLLYGRAGFL



WAALFLNKNLGEETVPNNVLMPIVDAVLAGGRAGASDIATCPLMYRW



HGTRYLGAANGLAGILQVLLHFPLCEEYLEDVKGTLRYIMSKRFPHS



GNYPSSEGNPRDKLVQWSHGATGMAITLCKASQVFPHDRDFRDAAIE



AGEVVWKNGLVKKVGLADGISGNAYAFLSLYRLTGERIYEDRARAFA



SFLYHDANKPVGTGHGHVADYAFSLYQGLAGAACLWFDLVDAENSRF



PGYEL





273
MQILPSPEESITCSGPHYDRAKEAKEFDETKAGVKGLIDSGMAKVPR



LFIHPPQNLRDLSSDTEGSATDLKVPIIDMMGCQDSQLRRDWDDLRR



ASETWGFFQIINHGIPVDVMDGVLEAVKQFHEQPEGVKGEWYSRDDA



RKFRYYSNGDLFWSKAATWKDTLLFDFPFGEPDREAVPLLFRETVFE



YEKHVEKLKGSLSELLSEALGLDSGYLGDIECMDSKRIVSHYYPTCP



EPELTLGTINHSDATYLTLLLQNHNGGLQVRHQNQWVDVSPVPGAIL



VIIGDFMQLVSNDKFKSVEHRVLARRAGPRVSVLCFLFPGETRKSKP



YGPIKELLDENNPPMYRETSFTEYFGYYLSSGNGLNGESVLPHFRVS



EPK





274
MLKKLASGIFISSLLITVSVADNGFPRCNCDDEGSLWSVESILECQR



VSDFLIAVAYFSIPIELLYFISCSNIPFKWVLFQFIAFIVLCGLTHL



INGWTYAHHPFQLMVALTVFKILTALVSCATAITLITLIPLLLKVKV



REFMLKKKAWDLGREVGIIMKQKEAGLHVRMLTQEIRKSLDRHTILD



TTLVELSKTLGLQNCAVWMPNNGKTEMNLTHERGRNYSGTYHIPIPI



TDPDWSIKQSDQVHILRPDSELATASSVGPGESGPVAAIRMPMLRVS



NFKGGTPELHPACYAILVLVLPGGEPRSWSNQELEIIKWADQVAVAL



SHAAILEESQLMREKLEEQNRALQQEKRNAMMASQARSSFQKVMNDG



LKRPMHTISGLLSIMQDESLNADQKIIGNAMARTSAVLANLINDWNM



STKNSGRFPLEVRSFSMHDMIREAACLAKCLCIYKGFSFELDIDRSL



PNNVMGDERRVFQVILHMIGNLLNDSNQGKLVTLRILREKASGSQGR



YDRGWVTWRSESTDRGVRIKFEVGISDDISLLERSVSTIQLGGRKYN



SDGVEEDFSFSICKWLVQLMQGNIWVVPNTQGFAQSMTLVLRFPLRE



SISVTISEPGPSPDYTLSNSVFTGLKVLLVDSDDANKAVTRKLLEKL



GCKVSTASSGFECLGALRPSESSFQIVLLDLHMPSLDGFEVANKIRQ



FHSSTNWPVIVALTTSGDDIWERCLQVGINGVIRKPVLLHGMANELR



RVLLQPSKTLL





275
MAGYRAEDDYDYLYKWLIGDSGVGKSNLLSRFTKNEFNLESKSTIGV



EFATRTLTVDGKWKAQIWDTAGQERYRAITSAYYRGAVGALLVYDVT



RHATFENVDRWLKELRNHTDPSIWMLVANKSDLRHLIAVSTEDGKSY



AERESLYFMETSALEATNVENAFAEVLTQIYRTTSKKTVEGDDGSAA



AFPSQGEKINIKDDVSALKKVGCCST





276
MQPSQPPPLNENYLRDDVKSQECEDLHSSLPSEEDWVPTSLPSEEDC



VPSTLRLYQGFWFPSWVLNSWACQNHFQAHPSDILLVTSPKCGTTWL



KAILFALLNRAKYSDSNSQKRHPLLTQNPHDLVPFLEFRLYLQNKNP



DLTAFASPRLLATHLPYSSLPRSVRDSNCKLVYLCRNPKDTFISMWH



YFNKLRPEEKGQLPLPEGLDKFCRGVNWCGPYWDHVLGYHKASSEMP



EKVLFVKYEEMKADPSVQVRRLADFMGRPFSEEELRNGTVEGILRMC



SFDNLSALEVNRSGKLPSGLEKKWFFRKGEVGDWVNYMSAEMGEQID



GVMEEKLHGSGLKF





277
MAILYAWARGTWLAEFSAVTGNTGAVARRILEKLPSEADSRLCFSQD



RYIFHILRSDGLSFLCMANDTFGRRIPFSYLEDIQMRFMKNYGKVAH



FAPAYAMNDEFSRVLHQQMEFFSSNPSADTLNRVRGEVSEMRTIMVD



NIEKILDRGDRIELLVDKTATMQDGAFHFKKQSKRLRRALWMKNAKL



LALLTCLILVLLYIIIAACCGGITLPNCRS





278
MTGTMIGVTNANEQQALDRAQEVRQFEDSNLGVKGLLDSGLSTLPPM



FIHPPDLLSSLKPWGLKTDSIPIIDLSGSNSDRRPSVIEEVARAARE



FGFFQIVNHGVPTEVLGQTIAAVKAFHEQPAEVKARIYRRESETGVA



FFASSVDLLHSNVACWRDSLRIRSGPVLPDEEEIPEVCRNEVMEWNQ



QTQHLGVLLMGLLSEGLGLSPSKLQDMTCVEKRNMLGHYYPYCPQPD



LTVGLKPHTDKGVITVLLQDQVGGLQVKHGEAWLDVTPSPGVLIVNI



GDLLQIMSNDEYKSVEHRVLANPGPEPRLSVAVFYYPLECENQIGPI



PELVSPEKPAAFRQFKLGEYLKRFQTEVLDGKTLKNHFKT





279
MWASPNPRRAEKIQAVELPAIDLSPSGRSAAPRLIVEACERYGFFKA



VNHGVPAEIVSRMDEASAGFFARPASEKRLAGPADPFGYGSKSIGFN



GDVGEVEYLLLESDPAFVSRRSASISDDPTRFSAAVNVYIEAVKDLA



CDILDLMAEGLGVRDTSVFSRLIRAVDGDSVFRINHYPQCAVLHGEV



GFGEHSDPQILTVLRSNNVGGLQISLEDGWVTPVPPDPAAFWINVGD



LLQAMTNGRFSSVRHRAVTNPFRSRTSIAFFGAPPLDARIAPQRELV



TPRRPRLYNPFTWAEYKKAAYSLRLGDKRLDLFKACREDGGIDL





280
MYRIQAGSAAAAGVEPGYCVETDPTGRYARFEEILGKGATKTVYKAI



DEVLGMEVAWNQVKLNDSFRSPDEYQRLISEVHLLSTLNHDSIMKFH



TSWVDVDGTAFNFITEMFTSGTLRNYRKKYPRLHIRAIKNWAVQILH



GLVYLHSHDPPVIHRDLKCDNLFVNGHLGQVKIGDLGLAAILHGSRA



AHSIIGTPEFMAPELYDENYNELVDVYSIGMCVLEMLTCEYPYIECT



NPAQIYKKVTSGKLPEAFYRIKDSKARKFIGKCLANVSCRVSARELL



HDPFLLSDEGDRLPGLKFKMPEPFLNGRDVDNLRARDNPLRTDMMIT



GKLNPEGDTIFLKVQIADRNSARNVYFPFDVLNDTPIDVAKEMVKEL



EIMDWEAEEIADMIGGEISALVPNWTKQDMTDYNQENDDGFAPPFLS



FSSGSSSQASPSGFTAYRENEIASDYGCLQDVPDDMSSPSSIHSGTY



SHTSYFCPEDQEVNPGPSNPDQHLISRSNRHTRFCADDYQRPRQFKD



RSQTLQCQVLTGSDRDSSSVINRRMAGHRLSRNRSLVDVHSQLLHLS



LLEEVSKRRLSRTVGEVENIGFQAPFEISRNAPWIGGSSFISSSRNK



KGHRIQNRRN





281
MDAGYLFKEETSLYNRIVLGSLLPASAWEPMPRLLQTWLRNYIGGTL



IYFLSGFLWCFYIYYLKRNVYVPKDEIPTRKAMLLQIYVAMKAMPWY



CALPTLSEYMVENGWTKCFSRISDVGWLAYLVYLSIYLVMAEFGIYW



MHRELHDIKPLYKHLHATHHIYNKQNTLSPFAGLAFHPLDGILQAVP



HVMALFLVPTHFTTHIALLFLEAIWTANIHDCIHGKLWPVMGAGYHT



IHHTTYRHNYGHYTIWMDWMFGTLRDPIDDGSKKEM





282
MAHQQLCSQSAIAGTEEHERKETDELIASLPQRKGAVRPFQCLYQNF



WSPIFVLPNVITFQRHFEAKHKDIVLASQPKSGTTWLKALVFSIVNR



FRFGISNTPLLTSNPHELVPFFEFQLYGSKLRPNLDGLAEPRLFATH



IPYPSLPECIKRSECQIIYICRNPLDTWSSWHFFLEKARLEDQPEWS



LEEHFETYCQGTISFGPFWDHIMGYWKMSLEWPSKVLFLKYEDLKED



TWHLNRVAEFVGLPFTEEEEEAGVIEEIAKMCSLKTLKDLEVNKSGK



VALTIEFEKRSFFRKGEVGDWVNHLTPSMVDRLNSIIQEKMSPFGLE



FKTC





283
MPESREDSVYLAKLAEQAERYEEMVENMKRVASSDQELTVEERNLLS



VAYKNVIGARRASWRIVSSIEQKEESKGNEAQVSMIKGYREKIEQEL



AKICEDILEVLDKHLIPSAASGESKVFYHKMMGDYHRYLAEFATGDK



RKDSADKSLEAYKAASDVAVTELPPTHPIRLGLALNFSVFYYEILNS



PDRACHLAKQAFDDAIAELDTLSEESYKDSTLIMQLLRDNLTLWTSD



MQDSADKPADTKEEAGDAPAED





284
MSSSSSGGDGGGGPKLPHDVAVDILKRLPARSLLRFRCVCRSWRSAI



DDPRFVALHLSHSALHASSRHLACLDCGEDAVQNRCSLFPNAPLALP



PPPLQIEIPFVAPPNRYALVGSCNGLICVSESSSDGTERALYFWNLF



TRKHKAVRLPRPERMPPLSVGGAHWLGFCFDAKSNDYRWRIIRYLGI



RRRRFRNKKPRVEVYSFRTDSWKTLECEVPLLCDSAVFLNGNLHWYS



FNGEGDGYGSIVLFNVADEVFDEIALPEGISPHFVLSVAVLNDSLAV



FFSDGEACFVWVMKDYGVPESWSKLYTFEVTGPVTAFDGFTWNGELL



MEINCEERVSWNPITAQLSILPLLARYELLPWESLVPP





285
MPSRRRTLLKVIILGDSGVGKTSLMNQYVNKKFSNQYKATIGADFLT



KEVQLDDRLFTLQIWDTAGQERFQSLGVAFYRGADCCVLVYDVNVMK



SFDNLNNWREEFLIQASPSDPENFPFWIGNKIDVDGGNSRWSEKKAR



AWCASKGNIPYFETSAKEGVNVEEAFQCIAKNALKSGEEEEIYLPDT



IDVANSSQPRPSGCEC





286
MAHLNQFVGRTANLCLCVQQNSRLPYLSGVPSVEDLKYRLMGPSDQI



RVLGSCGRLCIIDVADEINVWDPSTRQSMPLPHSAVEIRRPSALPIC



VYGFGCDVRNGAFKLLRLIQLATGQRRSEVSIYNMIDQNWRRLPEIA



YNLVYPDKMGVFAYGRLHLTVTPERLACSPAKLLLAFDCHTEEFEEV



ELPDNIDKKRDMVVAVLDGRLCLSIDRIDMFADVWILRVYGSQESWA



WVFSIPKYDDDRIPRFVWPLACSEDHHHVLVRKDNKDVVWYDLHARY



INRVDIRGMPSSFKDAYVM





287
MGAWLGCILGLIPLLGCCLWWWNEIRYVWPVKRRCSGTNAKLPPGHM



GFPFFGELFTFLWYYKILRRPDEFINSKRKKYGDGVGMYRTHLFGSP



SIIACVPSVNKFVFRAEDTFIAQWPNVDIMGTNSLGAVHGKAHDRLR



SFVLNAVNRPDALRRIAALVQPRLVSALELWAQKGRIVAFHETKKVT



FENIGKLFVSFEPGPQLEKIDGLFHDMLKGMRAQRLNFPGTAYRCAL



QARKKVEAIFRVELEERKSRSEETVTDLMDELRQIKDEEGRKLSDQE



VLDNIVSFVFAGYESTSLASMWAIYYLAKSPNVLKKLREENTSVSQN



KKGEFITSEDISNMKYTKKWEETLRMANISHFLFRLVTKDIEYKGYR



IPKGWKVILWLRYLHTNPENFDDPMCFNPERWNDSVKPEAYQVFGGG



SRICPGNMLARIQLAILLHHLSVEYKWELINSDAGFVYLPHPAPVDE



VEVSFSKL





288
MWPSKLAIEQFSYVMNSNALSSHQIPWDLSKPDSKSLIIKACEECGF



FKWNHGVPLDFISRLEEEAVKFFSLPLPEKERAGPPDPFGYGNKMIG



RNGDVGWIEYLLLTTDPNFNYRKLPSAFNENPERFRSALSDYTSAVR



YMACEILELMADGLRIQQRNIFSKLLMDEQSDSVFRLNHYPPCPELQ



SYVDRNMIGFGEHTDPQIISVLRSNNTSGLQISMKDGTWVSVPPDQN



SFFINVGDSLEVMTNGRFRSVRHRVLANTSKSRVSMIYFGGPPLSEK



IAPLPCLMKGKESLYKEFTWFEYKKSAYNTRLADNRLEHFQRVAAS





289
MAWIFLALGWLVLCVCTALLRWNEVRYMKKGLPPGTMGWPVFGETTE



FLKQGPNFMKNQSARYGSFFKSHILGCPTIVSMDPEVNRYILMNEAK



GLVPGYPQSMLDILGKRNIAAVHGASHKHMRGALLSLVSPTMIRDQL



LPKIDRFMRSHLARWDDGSIIDLQDKTKQMALLSSLMQIGIDSSSIS



QEFIPEFFKLVLGTLSLPIDLPGTNYRRGFQARKNILGMLRKLIEER



RASQEAHNDMLGCLMRSDDNKYKLNDEEIIDQIITIMYSGYETVSTT



SMMAVKYLHDNPSVLHELRKEHLGIRAKKRPEDPIEWDDLKAMRFTR



AVIFETSRLATWNGVLRKTTKDMELNGFLIPKGWRIYVYTREINYNL



RLYPDPLAFNPWRWLDKSVECQNYNLIFGGGTRQCPGKELGIAEIST



FLHYFVTRYRWEEIGGDKLMKFPRVEAPNGLHIRVSPQC





290
MSAEKERESHVFMAKLAEQAERYDEMVQSMKDVAKLDLELSVEERNL



LSVGYKNVIGARRASWRIMSSIEQKEEAKGNEQNAKRIRDYRQKVED



ELCRICNDILSIIDDHLLPSSTSGESTVFYYKMKGDYYRYLAEFKSG



NERKEIADQSLKAYEAASNTAATDLPPTHPIRLGLALNFSVFYYEIQ



NSPERACHLAKQAFDEAIAELDTLSEESYKDSTLIMQLLRDNLTLWS



SDLEDLGGDDQPKGEEAKVEDGEP





291
MSARRRTLLKVIILGDSGVGKTSLMNQYVNKKFSNQYKATIGADFLT



KEVQFEDRLFTLQERFQSLGVAFYRGADCCVLVYDVNVLKSFDNLNN



WRDEFLIQASPSDPENFPFWLGNKIDVDGGNSRVVSEKKARAWCASK



GNIPYFETSAKEGFNVEAAFQCIAKNALKNEPEEEIYLPDTIDVNAG



RPQRTSGCDC





292
MSARRRTLLKVIILGDSGVGKTSLMNQYVNKKFSNQYKATIGADFLT



KEVQFEDRLFTLQIWDTAGQERFQSLGVAFYRGADCCVLVYDVNVLK



SFDNLNNWRDEFLIQASPSDPENFPFVVLGNKIDVDGGNSRWSEKKA



RAWCASKGNIPYFETSAKEGFNVEAAFQCIAKNALKNEPEEEIYLPD



TIDVNAGRPQRTSGCDC





293
MKRASYGCISDEALECVMGHLEDPRDRGSVSLVCKKWYDVDAFTRKH



VTVAFCYSIHASDLTRRFTRLESLTVKGKPRAAMYNLLPHDWGGYAK



PWIDQISFTCLCLKALHLRRMIVTDDDLTTLVRGRGHMLQELKLEKC



SGFSTRGLEEVAHGCRSLKILMLDESQIEEESGDWLHELALNNSSLE



VLDFYMTTLEMINTSDLELIVTNCPSLTSLKVGECDIVEMRGVLSKA



TALEEFGGGTFNNSEEHATETSMITFPPKLTSLLGLNFMIEAEMPAI



FPRASALKRLDLQYTFLSTENHCQLAGLCPNLEILEVRNVIGDKGLE



VVANTCKKLKRLRVERGADDPTLEDEQDKEEHIADLPLDNGVRALLR



GCQKLSRFAFYIRPGGLTDTGLGYIGEYSTNVRWMLLGFVGETDQGI



LEFSKGCPKLERLEIRGCGFSESALAAAVLQLKSLKYIWVQGYNATV



TGANLLAMARPYWNIEFSPALQSSDVFAEDMAEEKKQDQVAQLLAYY



SLAGRRTDHPESVIPLAPLFWNCHQVTVF





294
MKRASYGCISDGCISDEALECVMGHLEDPRDRGSVSLVCKKWYDVDA



FTRKHVTVAFCYSIHASDLTRRFTRLESLTVKGKPRAAMYNLLPHDW



GGYAKPWIDQISFTCLCLKALHLRRMIVTDDDLTTLVRGRGHMLQEL



KLEKCSGFSTRGLEEVAHGCRSLKILMLDESQIEEESGDWLHELALN



NSSLEVLDFYMTTLEMINTSDLELIVTNCPSLTSLKVGECDIVEMRG



VLSKATALEEFGGGTFNNSEEHATETSMITFPPKLTSLLGLNFMIEA



EMPAIFPRASALKRLDLDYTFLSTENHCQLAGLCPNLEILEVRNVIG



DKGLEWANTCKKLKRLRVERGADDPTLEDEQGWISHKGLSLVAQGCP



LLEYIAVYVSDICNSTLETFGQCCKNLKDFRLVLLDKEEHIADLPLD



NGVRALLRGCQKLSRFAFYIRPGGLTDTGLGYIGEYSTNVRWMLLGF



VGETDQGILEFSKGCPKLERLEIRGCCFSESALAIAAVLQLKSLKYI



WVQGYNATVTGANLLAMARPYWNIEFSPALQSSDVFAEDMAEEKKQD



QVAQLLAYYSLAGRRTDHPESVIPLAPLFWNCHQVTVF





295
MFTISTCTTHAQSLIYSFVARGTWLAEYTEFKGNFTGIAAQCLQKLP



ASNNKFTYNCDNHTFNYLVEDGFAYCWADESVGRDVPMAFLERVKED



FKRRYGGGRADTAVANSLNRDFGSKLKEHMQYCIDHPEEISKLAKVK



AQVSEVKGVMMDNIEKVLDRGEKIELLVDKTENLRFQAQDFQKKGTE



LRRKMWFQNMKVKLIVLGIWALILIIVLSVCHGFNCSKK





296
MTTEKERENHVYMAKLAEQAERYDEMVDSMKKVAKLDVELTVEERNL



LSVGYKNVIGARRASWRIMSSIEQKEEGKGNDVNAKRIKDYRHKVET



ELSRICGDILTIIDEHLIPSSSSGESMVFYYKMKGDYYRYLAEFKSG



SDRKETADQALKAYLAASTTATTDLPPTHPIRLGLILNFSVFYYEIL



NSPERACHLAKQAFDEAIAELDSLSEESYKDSTLIMQLLRDNLTLWT



SDLQEDGGEEQLKGEEIKPEDGEH





297
MSSRERKARVGLKLPIPAREDAFAKPMPLPLPLPKPPNMNGACKLPC



VPLEEVTLEDLQKISTLGCGSSGKVYKVKHAKTGKIYALKIIQEKHE



LAVRKQIMREMEILRRANSPHIVQCYGIFDRGGEISFVLEYMDGGTL



AQVLQAHKKIPEHYLAEVARQVLKGLHYLHQNKIVHRKIKPSNLINK



REEVKIADFGVSTVLAHTLAQCNSFVGTCAYMSPERFDPDGYGGKYD



GCSADIWSLGLSLLECALGRFPCLSPGQRPDWPTLMVAICLGDPPSP



PPDASPEFQSFIRCCLQKDALLRHTALRLLSHPFLKKYEQQSCDLAP



LLQSLHL





298
METTGTNNMQAKLVLLGDMGTGKSSLVLRFVKGQFLDYQESTIGAAF



FSQTLAVNEVTVKFEIWDTAGQERYHSLAPMYYRGAAAAIIVYDITN



LDSFVRAKNWVLELQKQGNPNLVMALAGNKADMAAKRKVEPEEAETY



AKENGLFFMETSAKTAQNVNELFYEIARRLPKARPVQQPAGMVLTDR



PAESAKTYSCCS





299
METGAAAVDGHIQGILTHGGQYVQYNIFGNLFEVFSKYIPPIRPIGR



GAYGIVCSAVNSETNEEVAIKKIGNAFDNRIDAKRTLREIKLLCHME



HENIIAIKDIIRPPQREIFNDVYIVYELMDTDLYQIIRSTQPLTEDH



GQYFLYQLLRGLKYIHSANILHRDLKPSNLLLNANCDLKICDFGLAR



TTSETDFMTEYVVTRWYRAPELLLNCSEYTAAIDIWSVGCIFMEILK



REPLFPGKDYVQQLRLITELIGSPDDSDLGFLRSDNARRYIRQLPQF



PKQPFSQKFPNMAPAAVDLLEKMLVFDPSKRITVQEALSHPYLASLH



DINDEPSCPTPFNFDFEQPSFTEEHIKELIWRESLNFNPDMMQ





300
MRVTEQPEDYLFKIVLIGDSAVGKSNLLARYARNEFYPNSKSTIGVE



FQTQTMEIDGKEIKAQIWDTAGQERFRAVTSAYYRGAVGALWYDISR



RQTFDNISRWLDELHTHSDMNVVTVIVGNKTDLMDAREVSTEEGAAL



AEAQNLYFVETSALDSTNVQVAFQTWKEIYNILSRKVLSCQEQKLES



KLTNGKTVILHEAESESTTKQTGKFWCCSG





301
MMSYAGEEQPEDYLFKIVLIGDSAVGKSNLLARYARNEFYPNSKSTI



GVEFQTQTMEIDGKEIKAQIWDTAGQERFRAVTSAYYRGAVGALVVY



DISRRQTFDNISRWLDELHTHSDMNVVTVIVGNKTDLMDAREVSTEE



GAALAEAQNLYFVETSALDSTNVQVAFQTWKEIYNILSRKVLSCQEQ



KLESKLTNGKTVILHEAESESTTKQTGKFWCCSG





302
MATRKRTLLKVIILGDSGVGKTSLMNQYVNKKFSNQYKATIGADFLT



KEVQVEDRLVTMQIWDTAGQERFQSLGVAFYRGADCCVLWDVNVIKS



FDNLDNWHQEFLIQANPNDPDNFPFWLGNKTDVDGGHSRWSEKKAKM



WCAAKGNIPYFETSAKEDMNVEEAFQCIAKNALKNEPDEEIYLPETI



DVGHIGVQRPSACQC





303
MATRKRTLLKVIILGDSGVGKTSLMNQYVNKKFSNQYKATIGADFLT



KEVQVEDRLVTMQIWDTAGQERFQSLGVAFYRGADCCVLVYDVNVIK



SFDNLDNWRQEFLIQANPNDPDNFPFWLGNKTDVDGGHSRWSEKKAK



MWCAAKGNIPYFETSAKEDMNVEEAFQCIAKNALKNEPDEEIYLPET



IDVGHIGVQRPSACQC





304
MVLRISELTIGYVYTGLKLKEAWIMATRKRTLLKVIILGDSGVGKTS



LMNQYVNKKFSNQYKATIGADFLTKEVQVEDRLVTMQIWDTAGQERF



QSLGVAFYRGADCCVLVYDVNVIKSFDNLDNWRQEFLIQANPNDPDN



FPFWLGNKTDVDGGHSRWSEKKAKMWCAAKGNIPYFETSAKEDMNVE



EAFQCIAKNALKNEPDEEIYLPETIDVGHIGVQRPSACQC





305
MGQGASSSSWHALKREENDVNLGRDYSLSLPDECLACIFCTLSSGDR



QRCSLVCKRWFLVEGSSRQRLSLDARLDISAAIPGLFSRFDHVTKLA



LRCDRRMVSIKDEGLIKIGIHCKSLKKLKLKACRELSDVGIEDFAKL



CTGLKKLSCGSCTFGAKGMNAVLKYCVGLEELSVKRLRGLADGSVDV



IGPGCAMLKSICLKELFNGQYFGPLIAGSKNLRTLKLFRCSGDWDKL



LEVITDHVSGLVEVHLERLQVSDRGLMAVSRCAGLEVLHLVKTPECT



NVGLAAIANNCKNLRKLHIDGWKTNRIGDEGLIAVGKKCQNLQELVL



IGLNLTATSLSPLASNCQVLERLALCGSETIGDTEISCIAAKCLSLK



KLCIKGCPVSDDGIESLVSGCPKLVKVKVKKCRGVTWEGAERLRANR



GSLAVNLDTPLPNPWGPPSGAGAAEASAPSTSKSSIAKAKFSLFAGR



NLVACAFLRLSNGSDGDHKRVSANA





306
MAYKVDDDYDYLFKWLIGDSGVGKSNLLSRFTRNEFSLESKSTIGVE



FATRSINVDGKMIKAQIWDTAGQERYRAITSAYYRGAVGALLVYDIT



RHVTFENVERWLKELRDHTEHNIWMLVGNKSDLRHLRAVSTEDAQTF



AEREGLYFIETSALESTNVENAFKQVLTQIYRIVSKKALDVSEDNAA



APAQGQTINVKDDVTATKKVGCCSTS





307
MSSDKERENHVYMAKLAEQAERYDEMVEAMKRVAKLDVELTVEERNL



LSVGYKNVIGARRASWRIMSSIEQKEDAKGNDHNVKRIKEYRQKVEA



ELSKICHDIMTIIDEHLIPSSNIGESTVFYYKMKGDYYRYLAEFKTG



NERKEAADQSLKAYQTASSTAESDLAPTHPIRLGLALNFSVFYYEIM



NSPERACHLAKQAFDEAIAELDTLSEESYKDSTLIMQLLRDNLTLWT



SDLQEDGVEDQTKGDEPWGMDEEL





308
MSSDKERENHVYMAKLAEQAERYDEMVEAMKRVAKLDVELTVEERNL



LSVGYKNVIGARRASWRIMSSIEQKEDAKGNDHNVKRIKEYRQKVEA



ELSKICHDIMTIIDEHLIPSSNIGESTVFYYKMKGDYYRYLAEFKTG



NERKEAADQSLKAYQTASSTAESDLAPTHPIRLGLALNFSVFYYEIM



NSPERACHLAKQAFDEAIAELDTLSEESYKDSTLIMQLLRDNLTLWT



SDLQEDGVEDQTKGDEPWGMDEEL





309
MVESSREENVYMAKLAEQAERYEEMVEFMEKVTKGVEVEELTVEERN



LLSVAYKNVIGARRASWRIISSIEQKEESRGNDEHVVTIREYRAKVE



AELSKICEGILRLLDSHLIPSSTAAESKVFYLKMKGDYHRYLAEFKT



GAERKEAAENTLLAYKSAQDIAAAELAPTHPIRLGLALNFSVFYYEI



LNSPDRACNLAKQAFDEAIAELDTLGEDSYKDSTLIMQLLRDNLTLW



TSDMQEDAGEEIKETSKREDGEEQ





310
MDGMSTRGGSNFDMYLPNYKLGKTLGIGSFGKVKIAEHALTGHKVAI



KILNRRKIRNMDMEEKVRREIKILRLFMHPHIIRLYEVIETPSDIYV



VMEYVKSGDLFDYIVEKGRLQEDEARCFFQQIISGVEYCHRNMIVHR



DLKPENLLLDSKCNVKIADFGLSNVMRDGHFLKTSCGSPNYAAPEVI



SGKLYAGPEVDVWSCGVILYALLCGSLPFDDENIPNLFKKIKGGIYT



LPSHLSSGARDLIPRMLWDPMKRMTIPEIRQHPWFLEKLPRYLAVPP



PDTIQQAKKIDEEILQEVIKRNFDRNQLVESLRSRIQNEATVAYYLM



LDNRSRISNGYLGSEFQEAKDCIHHFVPTDRATPTGDHRLTGFINQG



NASRSQFPIERKWALGLQSQAHPREIMSEVLKALQELDVAWKKIGHY



NMKCRWFPAVLRKVDSSMNKSLHGNHIIQDDSTAGINCRSPPNWKFE



VQLYKAREEKYLLDLQRVQGPHFLFLDLCADFLAQLRVL





311
MTIARRCSSLIVRGVRSAGSRSSAVGSPALSKQASTKNSRIQRFGTA



ASALEEPIAPPVQVKYTHLLIDGQFVNAASGKTFPTFDPRTGDLIAD



VAEGDAEDVDRAVKAARKAFDEGPWPKMTAYERSCIMYRFADLLEKH



NDEIAALETWDNGKPYEQSSLVEVPMAIRVFRYYAGWADKIHGLTIP



ADGPYHVQTLHEPIGVAGQIIPWNFPLLLFSWKVAPALACGNTIVLK



SAEQTSLTAIYAAKLFHEAGLPSGVLNIIPGYGRTAGVAIAKHMDID



KLAFTGSTETGKAVLELASKSNLKRVTLELGGKSPFIVCEDADVDQA



VELAHSALFFNQGQCCCAASRTYVHESIYDEFVEKTKARCLSRWGDP



FKKGVEQGPQIDQMQFNKIMSYIKAGKESGAKLVTGGEQIGTKGFYI



MPTVFSEVQDDMPIATDEIFGPIQSILKFKDINEVIKRANGTDYGLA



AGVFTKSMDTANTLTRALRAGSIWINCFHIFDAGVPFGGYKMSGTGR



QKGIYGLQSYLQVKAVVTPLKNPAWL





312
MAAMRAGRGFSSLLTRAVRSAGTRSPAVGLAALSQEASIKNTGIRSL



GTAASALEEPIAPPVQVQYTQLLIDGQFVNAASGRTFPTLDPRTGDL



IVDVAEGDAEDVDRAVKAARKAFDEGPWPKMTAYERSCIMLRFADLL



EKHNDEIAALETWDNGKPYEQAALVEVPMWRLFRYYAGWADKIHGLT



VPADGPYHCQTLHEPIGVAGQIIPWNFPLLMFAWKVGPALACGNSIV



LKSAEQTPLTALYAAKLFHEAGLPPGVLNVISGYGPTAGAAIARHMD



IDKVAFTGSTSTGQAVLELASKSNLKPVTLELGGKSPFIVCKDADVD



QAVELAHFALFFNQGQCCCAGSRTFVHESIHDEFVEKAKARCLSRWG



DPFRKGVEQGPQIDREQFNKVMGYIKSGRESGAKLVTGGDQIGTKGF



YIMPTIFSEVKDDMGIATDEIFGPVQSIIKFKTLDEVIKRANATRYG



LAAGVFTKNIETANSLTRALRVGTWVVNCFDIFDAGIPFGGYKMSGT



GREKGIYSLNNYLQVKAWSPLKNPAWL





313
MKRQHFQLQQQQQPQPNGHGRCCSTVPVHPNPVSMPGSGPPPQAPRT



TATAPAAGAAAAGGGGSSGSCKGKEWLKDTCKQGVGVDMELASMGYS



VKSSELEQVAHRLEQLEMMMCNGQEDGIISHLSSEAVHYNPSDLGGW



IESMLSELHVPILPPTDQPFQFPQAAADQSSTVREASNSVPESSTST



SKGTRSVQNVEQDQQYRLNGSGAGLFEPPEVLDRSEFQLHGYPGQGG



VRDNGIDRMFGNYGGLFSQVLDVSDLLVDDPDVLQEPPPQEASPSTL



LLQSSSNSSLEVQSGQDRLEEDVTGREQKRYRVCDPELSERTVVVMG



ADPHESGVRLVHTLMACAEAVQRGNLAIAREMVKEVRILASAQGGAM



SKVATYFAEALARRIYGFLPQDTLRFNQNDPLSDFLQIHFYQTCPYL



KFAHFIANQAILDAFSGHQQVHVIDFNLKQGIQWPALIQALALRPGG



PPAFRLTGIGPPQPDGTDALQEVGTRLHQFAESVNVKFSFRGYVATS



LADIKPWMLDARPELEAVAVNSILELHRLLEDPIPGRPSAIDRVLAS



IWSLKPKILTVVEQEADHNRPVFLDRFTEALHYYSTVFDSLEARGLQ



AQSEEQVMSEVYLGREICNIVACERSERVERHEPLLNWSVRLRNAGF



WPIPLGSNAFKQASMLLSLFSGGEGYRVEENNGCLTLGWHSRPLIAA



SAWQRC





314
MAYSGRARRPISFLLKQLKTSHSYSSWTRCNGFNGQSMFQSNAISRC



KAPSFRPTAELGWVLGFSHSCRGYSAEVGSTEQVGLIKQLRERTSAP



MKDVKAALVDCNWDLEAAYTELRKKGIAGASKKGARIAAEGILALAQ



DEKVAAVIELNCETDFVARNEIFQYLAHSVAKSALTMEALPELLSES



ATLDLKLLGEMNIILDHPKLTREITVQDAIMEVAAIMGENVKLRRGF



ALSSANGWSSYLHTSPQPGLGRIAGLLTLESENGGAPTEVLQRVGSN



LAMHWAARPLFLSKDHVATKTLEAERDILKTQAAASGKPQAAIEKMV



EGQLRKFVEEIALLEQKFVMNDKVNVKSVLEDLSKEVGQQIRVGSFL



RVEVGEGIHRQETSFASEVAAQVG





315
MEASAAAADGHIQGILTHGGRYVQYNIFGNLFEVSSKYVPPIRLIGQ



GAYGIVCAAVNSETNEQVAIKKIGNSFANRIDAKRTLREIKLLCHMD



HENIIAIKDVIRPPQRENFKDVYIVYELMDTDLCQIIHSKQPLSVDH



CQYFIYQLLRGLKYIHSANILHRDLKPGNLFLNEDCDLKIGDFGLAR



TTSDTDSMTEYVVTRWYRAPELLLNCSEYTAAIDIWSVGCIFMEILK



REPLFPGSNYVEQLKLITEFIGSPDDSDLGFLRSDNTRRYIRQLPQV



PKQPFAQKFPNMDEDALDLLEKMLVFDPSKRITVEEALSHRYLASLH



GINEEPRCPAPFNFDFEQGTFTEEHIKELIWRESLNFNPDMME





316
MAVPVIDMKKMLNGEEREVTMAKIQNACQEWGFFQLLNHGIPHALLD



RVKELFKEHYKNSMDAEFQKSEIVGMLESAVSQGKNFGTTKIDDDWE



TGFFLQDETYDTVSPPLPTNLKETMKEFSEEVKILAERILDIICENL



GLEKGYLKEAIAGGNGDGKAPFFGIKMAHYPPCPRPELVDGLRPHLD



AGGVILLLQDDEVGGLQVLKDGTWFDVEPIRHAIVIDIGDQLEVMTN



GKCKSMWHRVLSKKDANRMSVAAFYNPSTNAEVFPAPQLIMKATEQN



GNENDNNNMNAQSGYSYPKFVSKDYMKVYGEQKFLEREPRFEAMRAL



CSLK





317
MPAKNGASLSSPFNIFFMSITGTAMKKMLNGEEREVTMAKIQNACQE



WGFFQLLNHGIPHALLDRVKELFKEHYKNSMDAEFQKSEIVGMLESA



TKIDDDWETGFFLQDETYDTVSPPLPTNLKETMKEFSEEVKILAERI



LDIICENLGLEKGYLKEAIAGGNGDGKAPFFGIKMAHYPPCPRPELV



DGLRPHLDAGGVILLLQDDEVGGLQVLKDGTWFDVEPIRHAIVIDIG



DQLEVMTNGKCKSMWHRVLSKTDANRMSVAAFYNPSTNAEVFPAPQL



ILKATEQNGNGNDNNNMNAQSGYSYPKFVSKDYMKVYGEQKFLEREP



RFEAMRALCSLK





318
MASPYGDYDQRIDYMFKVVVIGDSAVGKSQILSRFAKNEFSLDSKST



IGVEFQTRTVAIDNKTIKTQIWDTAGQERYRAVTSAYYRGALGAMLV



YDITKRQSFDHVARWLEELRGHADNNIVIMLIGNKCDLRDMRAVPEE



DAKEFAQREGLYFFETSALEAINVEMAFITALTEIYRIVSRKALTAN



EDERNGNAAALTGTKISLSSPEQSVMAVKKKSCC





319
MDRLISGQTTCNSVEKQSNGDSNLDYSVSDAVRDKLRLMRDRIEKED



PASKVTDDGTLLRFLYARESNVEKACEMFAKYRKWRQTYVPLGYIPE



TMVGNELKHKFVYMQGYDKVGRPIMVLRLARHIASQSNMEDFKRFVV



YAFDKMSASATKGQTKFSIIADFADWAYKNVNLRGTIAAVQTLQDFY



PERLGKVYLINRPYIFWAAWKIVSPFIDKVTRQKIVFTDDKYVKETL



LKDIDENQLPEIYGGKLPLVAIDDCWPNWPPITSF





320
MTEKERENHVYMAKLAEQAERYDEMVDSMKKVAKLDVELTVEERNLL



SVGYKNVIGARRASWRIMSSIEQKEEAKGNELNVKRIKEYRHKVEDE



LSRICNDILTIIDEHLIPSSSTGESTVFYYKMKGDYYRYLAEFKTGN



ERKEAADQSLKAYQAASNTATTDLAPTHPIRLGLALNFSVFYYEILN



SPERACHLAKQAFDEAIAELDTLSEESYKDSTLIMQLLRDNLTLWTS



DLQEEGGEDQPKGEEDKIEEIEH





321
MVKLTMIARVTDGLPLAEGLDDGREQRDLEFYKQQAKALFKKLSHGQ



HEPSRMSIETGPFIFHYIIEARVCYLTMCDRSYPKKLAFQYLEELKN



EFEKLYQSQVETVARPYAFIKFDTFIQKTRKLYLDTRTQRNLAKLND



DLYEVQQIMTRNVQEVLGVGEKLDQVSQMSSRLSSESRKYADKAKDL



SRQAFIKKWAPVAIVLGVVFVLLWMRWYIWQ





322
MARRTDDEYDYLFKWLIGDSGVGKSNLLSRFTRNEFCLESKSTIGVE



FATRTVQVEGKTIKAQIWDTAGQERYRAITSAYYRGAVGALLVYDIT



KPTTFENVGRWLKELRDHADSNIVIMLVGNKSDLKHLRGVSTEDAQS



FAEKEGLSFLETSALEATNVERAFQTILAEIHRIISKKALASEEAAG



AGIREGKTILVSEPDSNTKKACCS





323
MDQDQSICRFAAQKGKGEIQSSSFPDEVLEHVLVFLSSQKDRNSVSL



VCKAWHRVEAWTRQQVFIGNCYAVSPQIMIKRFPKIKSVSLKGKPRF



ADFNLVPPNWGAHLTPWVSAMATAYPLLERLYLKRMTITDYDLTLLA



NSFLYFKELVMVCCDGFSTGGLASIASKCRQLTTLDLNEDEIHDNGE



DWLACFPETLTSLRSLCFDCLEGPVNFDALERLVARCPSLKKLRLNR



NVSIVQLQRLIIKAPQLTHLGTGSFFYEFQLEQVADLLAAFSNCKQL



QCLSGFREWPEYLPAVYPVCSNLTSLNFSYAVIGSRELEGIVCHCRK



LQLLWVLDSVGDKGLEAAATTCKDLRDLRVFPVDAREDGEGCVSERG



LVAISEGCPNLESILYFCQRMTNKAVVTMSHNCSKLASFRLCIMGRH



QPDHLTGEPMDEGFGAIVRNCKSLTRLAVSGLLTDKAFQYFGAYGER



LETLSVAFAGESDLSMKYVLDGCKNLRKLEIRDSPFGDVALLSGLHH



YENMRFLWMSDCRLTLQGCTELAKKMPGLNVEIIRENECNDSLVEKL



YAYRTVAGPRKDMPSFVTIL





324
MQQDQRRKNSSEIEFFTEYGGASRYKIQEVIGKGSYGWCSAIDTHTG



EKVAIKKITNIFEHLSDATRILREIKLLRLLRHPDIVEIKHIMLPPS



QREFKDIYVVFELMESDLHQVIKANDDLTPEHYQFFLYQLLRALKYI



HTANVFHRDLKPKNVLANADCKLKICDFGLARVAFNDTPTAIFWTDY



VATRWYRAPELCGSFFSKYTPAIDIWSIGCIFAEVLTGKPLFPGKNW



HQLDLMTDLLGTPSPETIARVRNEKARRYLNSMRKKQPVPFTQKFVG



ADHLALKLLERLLAFDPKDRPTAEEALADPYFRGLAKVAREPVAQPI



TKMEFEFERRRVTKDDVRELIYREILEYHPQIMKEYLNGTDRTNFMY



PSAVDQFKRQFAHLEEHYGKGGSVPPLERQHASLPRPCVVYSNSGGP



SSEQASSGPSRDRALEVREEAPRYSREGEKQHQDRSSGNVKVPLHAS



HKVLQGSTAKPGKVIGPVLPCENGSIKEAYNPRRLIRNAGVAPSQCP



APIYSYPRRNSTAKTEVDDKREDGINQFNVSQHKTQYVGIGAARKVA



ALESRSSHLY





325
MADDLGEFYVRYYVGHKGKFGHEFLEFEFRPDGKLRYANNSNYKNDT



MIRKEVFLTQAVLRECRRIIAESEIMKEDDNNWPEPDRVGRQELEIV



MGNEHISFTTSKIGSLVDVQSSKDPEGLRIFYYLVQDLKCFVFSLIG



LHFKIKPI





326
MPPTSDRIPAMADDLGEFYVRYYVGHKGKFGHEFLEFEFRPDGKLRY



ANNSNYKNDTMIRKEVFLTQAVLRECRRIIAESEIMKEDDNNWPEPD



RVGRQELEIVMGNEHISFTTSKIGSLVDVQSSKDPEGLRIFYYLVQD



LKCFVFSLIGLHFKIKPI





327
MGHNTSEAIKQMTAFIDGVDEPLKKSFQTMHRGYAQQTLERFLKARE



GNVQKANKMLLDCLSWRVQNHIDNILAKPIEPREVYNAVRESQLMGM



TGYCKKGRPVFAIGVGLSGYDKASADKYVQSHIQINEYRTKFSLPNA



SKKYGSYIGPCLKILDMTGLKLSALNRIKILTTIATVDDLNYPAEXR



STYYIVNAPYVFSACWKWKPLLQEGLDEKLQVLQGCGREELLKVMDY



DVLPHFSRQEGSGSSKHHNGKTIDCFSPDHPFHVELYNYIKQQAAII



KPVAPEKMRSFHVDVPEQDDEGTIIVQTLRICIT





328
MAETVTYSWPVGFVCFVLTMLLLQLYRIVWREDSRGYNLPPGSSGWP



LIGETLSFMRGINSISKPRQFIQDREQRYGKIFRTNLFGRSRMIVSV



DPEFNKYILQHEGRLVQSSYLRPFRKLIGKYGLLSVYGDLQKKLHGT



AVNFLRFERLSVHFMEDIQNLMHTTFAQWQAKGHIHLYHECHQFVLN



LMAKQLLDLSPSKETEEIGKAFGDFSKSFWLPIRIPGTAYWKGLKAR



DFLMKKIYASIKYRREHPEWHNDFLGELLKEDLHSEEIIADFVLFLL



FAGHETSASTMAFAIKFLTDCPQALRELKAEHNALLKRKGSPRNQNL



TWDDYQSLKFTQCVINETHRLANVAPAVFREAIADIKIKGFVIPKGW



SVLVLMNGIHLDDKYHSSPLKFDPWRWQQILENNELYKNPSFMPFGG



GLRLCPGMHLAKLELGLFLHHFITKFRWEPLDDDKISYFPVSHLTKG



FPIRLHPQEQMDD





329
MDRLSNGQTTCNSVEKGNDGGLNFDNSISDAVRTKLRQMRDVIEKED



PSSKVTDDDTLRRFLYARELNVEKASVMFSKYRKWRQTFVPLGYIPE



TMIRDELMKNSVHMQGFDKRGRPIAVIFLARHIPCRKTIENLKCHFV



YIFDKMSASSRGQTKFTIIADFDGWTYKNVDIRGAIAVLEILQDYYP



ERLGKVYLIHRPYIFWAAWKIVSPFIDQVTREKIVFVEDKHLNETLL



NDIDESQLPEIYGGKLPLVKIQDCWPNWPPITST





330
MTGVEYDASDKDREPFVEVDPTGRYGRYEDVLGRGAMKTVYRAFDQE



DGIEVAWNKVSLQNLDDVSLERIYSEVRLLKSLRNGNIIMFYNAWLD



RKTGHVNFITEVCTSGTLRQYRQKHRHVSMKAVKNWARQILDGLHYL



HSHIPCIIHRDLNCSNIFVNGNTGILKIGDLGLAAALENDHAAHTII



GTPEFMAPELYEEDYNELVDVYSFGMCLLEMVTLEIPYSECRSVAQI



YKKVSSGIRPAALEKVTNQEVRQFIEKCLAVTSARPSAAELLKDPFL



SEVQSSS





331
MPYYVLQREVESEFLEVDPTGRYGRYNDVLGKGASKTVYRAFDEIEG



IEVAWNQVKVNDILQSPEDLERLYSEVHLLKTLKHKNIIKFFSSWID



TTTRNINFITEMFTSGTLRQYRQKHKRVDLRAVKNWARQILRGLLYL



HSHDPPIIHRDLKCDNIFVNGNQGEVKIGDLGLAAILRKSHSAHTVI



GTPEFMAPELYDEEYNELVDIYAFGMCLLEMLTFEYPYSECSNPAQI



YKKVTSGKKPAALYKLKDPEVRQFVEKCLVTVSRRLPARELLMDPFL



QTDEHGLEYSFSRLDFCKDDVGELGPLLREPNIEAFQNGAHKLLQSI



HLVHPCSKNEISVHHENKKQQKWPLPSYIREDSMSHNMDFTVKGKKR



EDDTIFLRLRIADTEGRIRNIYFPFDVEEDTAMSVASEMVAELDLAD



QDVTKIAEMIDEEIMALVPDWKAGVAIDDHHSFYDHYHSSNKTSETC



WWNHNDHASSISSQSSLLEYLRSHYHVDNKSEIVPCTQVECAAMHGR



FEEVTFQFNATDFYSYVEEEAPTISSGSSDVLHHDWVNGEDPVSPIS



LISHGSGISNFEDPQTCLISSGTGNKEDWPSKPAKPPETTGYVGNFE



ESWSNGLSEGFSPVTDSNCLSSVPKPMFHPQSPSSVNILSDEDEDST



SRELRLLAVKHQKELMELQRKHEHSLLGIENELKNRTPLGTSLDMKN



SSPGINFQDQKLNVNGQREQREDDSVRHGTTGRDKEFVAMKQLGSDA



RGTRLSSSPSHRLSPMEPAVSSDLPGPSKLAMHSSTLPSVRPINRNI



APNQRLMKMHSFSGVDSQRSINSLAKEVSRQKNYQTIGAFRTGNVDE



KKHSLEGMRRFPSISQKSSSRNCKEGKTKIV





332
MGSGIMTETLTDSWLVGLLCLVLGFLLLQLYKLVWGASSRAYKLPPG



STGWPLIGETIGFFRGINSTAQPRQFIQERERRYGEIFRSNLFGRSR



IWSVDPEFNKHVLQHEGRQFQANYPKPLRNLIGKYGLLSVHGDLQRK



LHGAAVNLLRFERLSVDFMEDIQNLLHITLAKWEAKRDIHLQEECHQ



LVLNLMAKQLLDLSPSKDTEEICEAFGHFSEALLAVPIKIPGTKYAR



GFKAREFLIKKIYESIEDRRQHPEAVHNDLLTKLLKEDTFSEEIIAD



FILFLLFAGHETSSRSMSFAIKFLTDCPRALEELKAEHDALLMRKGN



LKNQKLNWDDYQSLKFTQCVIHETLRVGNFGPGVFRETKEDIKTKGG



FVIPRGWTVYVFLTGTHLDEKYHSSALKFDPWRWQPHLQDQELLKNP



SFMPFGGGARLCPGMHLAKMELALFLHNFVTKFRWEALQDDKISYFP



FPRLIKGLPIRLRLRE





333
MAIMGETLHSLLVGLVCFALGMLLLELYKLVWRVDSRSYKLPPGSTG



LPLIGETISFFRGINSTDQPRRYIQEREKRYGEIFRSNLFGRSRIWS



VNPEFNKHVLQHEGRQFQANYPKPLRNLIGKFGLLAVHGDLQKKLHG



TAVNLLRFERLSVDFMTDIQNLLHTTLPKWQAKRDIHLQEECHQLVL



NLMAKQLMDLSPSKETEEICEAFGHFSEALLAIPLRIPGTAYARGFK



AREFLIKRIYEGIEDRRKHPQWRNDLLTKLLKEDSFSEELIADFILF



LLFAGHETSSRSMSFAIKFLTDCPKAYQELKAEHDALLQRKGNRRNG



NLTWDDYQSMKFTQCIINETLRLGNFAPGAFREAKEDVKTKGGFVIP



KGWTVYVFLTGTHLDEKYHSSALTFNPWRWQQLLQDQELSKNPSFMP



FGGGARLCPGMHLAKLELALFLHNFVTKFRWEALQDEKISYFPFPRL



IKGLPIRLHPQERLGD





334
MGGTVVDSVRRWYQRRWSHSSSAHESGKEKQTVDSLSSSSVSPLPVE



TKAVEGRGLKPVRVQLRSKMTGPDRSRKSSLETEFFTEYGEANRYQI



QEWGKGSYGWSSAIDTHTDIVEIKHIMLPPSRREFKDIYVVFELMES



DLHQVIKANDDLTPEHYQFFLYQLLRALKYIHTANVFHRDLKPKNIL



ANADCKLKICDFGLARVSFNDAPSAIFWTDYVATRWYRAPELCGSFF



TKYTPAIDIWSIGCIFAEMLTGKALFPGKNWHQLDIMTDLLGTPSTE



TLSRIRNEKARRYLSNMRKKQPTPFSQKFPNVDPLALRLLERMLAFD



PKDRPTAEEALADPYFNGLAKVEREPSTQPISKLEFEFERRRLTKDD



VRELIYREILEYHPQMLQEYLCGGNNATFMYPSAVDMFKRQFAHLEE



HYSKGENSTPLGRQHASLPRERVIEFRENPTKHSKDSEKQQERITAS



VTKATLQSPPRNQGIVIDSAVSLSNGPSRAVPDPRNLVKSASINASK



CTVVVNSCQRRNSTMKPGDEKKEDLSSESSAVTYNTDSMVAGLTSKI



AAMSSGVAHS





335
MAYRADDDYDYLFKWLIGDSGVGKSNLLSRFTRNEFSLESKSTIGVE



FATRSITVDDKVIKAQIWDTAGQERYRAITSAYYRGAVGALLVYDVT



RHVTFENVERWLKELRDHTDANIVIMLVGNKADLRHLRAVSIEDGKA



FAERENTYFMETSALESTNVENAFTEVLSQIYRIVSKKALDVGEDPA



AVPSKGQTIHVGNKDDVTAMKKVGCCSL





336
MMKKRGDSSSSFPDEVLEHVLLFWSIKDRSAVSLVCKAWYRAEAWSR



RKVFIGNCYSVSPEILVRRFPKITGITLKGKPRFSDFNLVPPHWGAD



IHPWLLVIRGAYPWLRELRLKRMIVTDESLELIARSFSDFRALSLTT



CEGFSTDGLAVIATHCRNLQELDLQESEVDDRGGYWLSCFPESCVSL



VSLNFACLQSEVNFDALQRLVARCISLRSLKLNKTLSLEQLKRLLVI



APQLMELGTGSFFQELSGPQFTTDLENAFKNCNKLRTLSGMWEVAPL



YLPALYSVCSNLTFLNLSYAANIRSMELGRLVSHCPQLRRLVVVLDT



VGDKGLETVSSNCKNLRELRVFPLDPFGQDRVGVTEKGILKISQGCP



NLSYVLYFCRQMTNAAIIEVAQNCPRLTHFRLCIMNPCQPDHLTDEP



MDEAFGAIVKICKGLQRLAISGLLTDKAFEYIGLYAKNLETLSVAFA



GSSDLGMECVLRGCPKLRKLEIRDSPFGNAALLSGLEQYESMRSLWM



SSCKVTMSGCRYLAQNKPRLNVEIIKENDEDDNDADKLYVYRTIAGP



RRDAPNFVLTL





337
MVDHSLIYSFVSRGTVILAEYTEFTGNFPTIAFQCLQKLPATSNKFT



FDCQHHTFNYLVEDGFTYCWADESAGRQVPMAFLERIKDEFKKTYSD



GRAEVAIANGLHQEFGPKLKEHMDYCAQHPEQINKLAKTKAQVAEVK



GVMMDNIEKILDRGEKIELMVDKTEQLQFQAQDFQNQGAKIRRKMWF



RNTKVKLICLSFLLFWLMIWISLCRGFKCHV





338
MAILYALVARGSTVLAEFDAAHGNAKTIARQILEKIPGTGDSHVSYS



QDRYIFHVKRTDGLTVLCMADDTAGRRIPFAFLEDIHGKFVKTYGRA



VHTALAFTMNDEFSRVLSQQMEYYSSDPNADKINRIRGEMSQVRNVM



VENIDKVLERGDRLELLVDKTETIQGNTFKFKKQARRFKNTMWWRNI



KLTVAVIWLLIVIYVILAIVCKGVTLPSCRK





339
MAWASNSLQLQREEEAETMISDQQQEAGAEIMASEEESIMEPENPSL



SHPNIVSSCGMRFQKYQSVWIDANLVPAVNFIQNEFQPRPDDIFFAS



LPKTGTTWGKALLYTILEFTSTGNNPPASPNGNSAADEKRFGVDEKN



PHALVPTMETYLFNSSDSEQYDISCFSDFPSPRVLHTHLPIHTLPLL



VRSSPTCKIVYIARNPRDSFVSLWQFYARLRGAGSHYLDGDLGKETV



FDAFCSGFYYGGPFAENVLSYWHESRRNPNQVMFVTYEDLQADCVGW



VKRMALFLGCSSPLLEDNAQIIAEKCSFDTLCNLQVNRKGKVGTLKY



GMKNAFFFREGKVGEWKKHFTPQMEERIYLEIEQKLSDQGLRFTNSL





340
MGQQSLIYSFVARGTWLAEYTQFTGNFTTIANQCLQKIPASNNKFTY



NCDRHTFNYLVEDGYTYCWADESVGRQLPIAFLERIKDDFKKRYGGG



KADTAVAHSLNKDFGPKLKDHMQYCVDHPEEINKLAKVKAQVSEVKG



VMMENIEKVLDRGEKIELLVDKTENLRFQAQDFQKQGTQLRRKMWFQ



NMKVKLWLGIVFVLILIIWLSICHGFKCH





341
MENMRKKLGPLFNSGQSFRPDISVDSCTSYKVTAGGTLHLLSNSCGE



YNINELGLQKRTSAGIDHLVHRDIKPANLLINLNGEPKITDFGISVG



LENTVAMCGTFVGTVTYMSPERIGNEYYSFPADIWSLGLSIFECGTG



EFPYNASKGPVNLMLQVIDDPSPSPSRDCFSEEFCSFVDVCLQKDPT



ARPTAEQLLSHPFIKKYENAGVDLSAYVQSIFDPIDRLKDLADMLTV



HYYMLFDGTDDQWHHMKTMYRENSAFSYANQVAAGANDIFNTLSRIH



SMLVGDSPDERLVHWENLQCCVYGQHGWIRVSGSFVLGGQFIPTGGG



VQVEGVSQGPLLDIASQRMGTFNEQFIMEPGEQIGCYYIYKQELCIQ



Q





342
MAQTAQPALDPNIPGVLTHGGRFVQYNIYGNMFEVTAKYVPPLFPIG



RGAYGWCSALNSETNEQVALKKISNAFDNLIDARRTLREIKLLRHMQ



HENVISIKDIMLPPQREAFDDVYIALELMDTDLHQIIRSNQALSEQH



CQYFLYQILRGLKYIHSANVLHRDLKPSNLLLSANCDLKIADFGLAR



TTSETDFMTEYVVTRWYRAPELLLNSPDYTAAIDVWSVGCIFMELMN



RKPLFPGKDHVHQLRLITELTGTPTDADLGFIRSENAKRLVQLLPQL



PRQSLAEKFPHVHPSAIDICERMLTFDPNQRITVEEALNHPYLGSLH



DETDEPTCPVPFNFDFEQYALTEEQMRELIYMEALAFNPT





343
MKRCEGCFEVGRLEALGDDILLQVLDNINETRDRNSWSLVCKQFYRL



ESAYKRKIRLLRGEMLPRILKRYRAVEHLDLSLCPQISDQCLGFVAA



AAGSSLRSIDLSRLVRFSHLGLSVLAKGCENLVEIDVSYCARFGDME



AAAVSSAKNLQTLKLVRCQMVSDLGLSLIAVGCRKLQNLNLKWCVGV



SDLGVELVAIKCKELRSLDVSYLQITNKCIASITQLFYLETFVSVGC



VCIDDEGLALLKNGCKSLQRLDVSKCQSMSSTGIISLANGCIALQQL



NLAYCIPVTNALLASFDKYDSLQSIRFDGCEISSSGLKSIGKSCKSL



MELSLSKCTGVTDEGISALVGGCTGLKILDITCCRDLTDVAITAVAT



SCGNLSCLKMESCALVTERSLYMLGDSCPFLEVLDLTDCSVSNTGLK



SISRCTGLTTLKLGLCENISNEGLTHIAAHCSNLQEIDLYRSVGIGD



TGLAALASGCPKLRMVNLSYCIGITDHGLKSLAQLEKLYNLEIRGCF



LVTSAGISAIASGCKRLVELDIKRCYRVDDMGMMTVVQCCINLRQIN



VSYCPISDAAFLALVNLSCLQNVNLVHLRNVSLDAFAYLLLACESLK



KIKLLKQLKSLLSSNLIRHVENKGCRIRWVEKPLFI





344
MEAAAAPVQSTDTLMSDAPQAAGSNPMDSIPAVLSHGGRFVQYNIFG



NIFEVTAKYKPPLLPIGKGAYGIVCSAMNSETKEQVAIKKIANAFDN



RIDAKRTLREIKLLRHMDHENWAIRDIIPPPQREAFDDVYIAYELMD



TDLHQIIRSNQGLSEEHCQYFLYQILRGLKYIHSANVLHRDLKPSNL



LLNANCDLKICDFGLARITSETDFMTEYVVTRWYRAPELLLNSADYT



AAIDVWSVGCIFMELMNRQPLFPGRDHVHQLRLLTELIGTPTEADLG



FVRSDNARRFIRQLPQYPRQSFTQKFPHVHALAIDLCEKMLTFDPNQ



RITVEEALAHPYLANLHDISDEPICAMPFSFDFEQHTLTEDQMKELI



YREALVFNPEYAQ





345
MAKKQAGKSNDSTVNDSGSENETKKPAGSKEDGSIHSPLVAYASILS



LLSCTPPFVIFLWYTMVHLDGSASQFWDLCKEQGLQGFLRIWPKPTL



IAWKLIASFAAFEAALQLLLPGERVTGPVSPAGNIPVYKANGVLAYF



VTLTTYIAIWWFGLFNPAIVYDHLGEIFSALIIGSFIFCIFLYIKGH



VAPSSTDSGSSGNWIDFYWGMELYPRIGKNFDIKVFTNCRFGMMSWA



VLAVRYSIKQYEEYGRVADSMLVSSILMVVYVTKFFLWESGYWNTMD



IAHDRAGFYICWGCLVWVPSVYTSPAMYLVRHPISLGLKLSLGILIA



GIACIFINYDCDRQRQLFRKTNGNCLIWGRPPSKIEAWYETMSGEKK



SSLLLTSGWWSVSRHFHYVPEILAAFFWTLPGLFNHFLPYFYVIFLT



ILLFDRAQRDDQRCRAKYGKYWDIYCKQVKYNIIPGIY





346
MKFPAPARNLLIVLIVFLERILTRCMVSDSSNHEPPSSCTATRISPA



SSGIISNTKPADCSSLASLDLHGSISLPGTAITTEDFGGIYHHKPLA



IVHPASVEDIVKVVTMVNASPNLTLAAMGNGHSINGQAQALNGLVLD



MRSLKGIEIFQGSPTEGPYVDACGDELWIDVLKATLRVGLAPRSWTD



YLPLSVGGTLSNGGVSGQTFKFGPQISNVLNLHWSGKGESMTCYPET



NQDLFYGALGGLGQFGIITKARIMLQRAPHMVRWIRAVYADFEEFRA



DQELLISLPEEGTFDYVEGFVLTNNDDPINGWPSVLLSPSNSSFDFK



LIPQTAGPMLYCLEVALHYDHDEDFVTLNKRIESMLAPLRFIKGLHF



SFDLPYFDFLNRVHAAEVAARSSGIWDAPHPWLNLFVPKSKISAFDA



KVFREILKDGVGGPILVYPVTRNKWDSRMSAIIPEEDTFYLVALLRF



SPPYPSGPPIQSILAQNEQILHYCTTAGIDMKLYLPHYKTESDWKRH



FGRKWQQFLQRKSKYDPKAILAPGQRIFSRSTDSTAFTRLYSSS





347
MAGELTQAEKETLAAVNVGASALSFAGSAFIVLCYVLFRELRKFSFK



LIFYLALSDMFCSLFNILGDPGKGFFCYAQGYTTHFVCVASFLWTTT



IAFTLHRTWRHKTDVEELGAIFHLYVWGTSLVMTIIPSIGDGYGQAG



AWCLVKTTSRATKVLQFITFYAPLWGAILFNGFTYFQVSRMLNNATQ



MAAGMSDRQQQTDSRVDMKAMNRWGYYPLILIGSWTFATVNRIHDFI



EPQEKVFWLSFLDVGTAALMGLFNSIAYGLNASVRRTLQQKIDLWVV



PEWFRKWLPGFIMLRDQAHESEMISLKIPVEQ





348
MAYKADDDYDYLFKVVLIGDSGVGKSNLLSRFTRNEFSLESKSTIGV



EFATRSIIVDGKTIKAQIWDTAGQERYRAITSAYYRGAVGALLVYDI



TRHTTFESVERWLKELQDHTDNNIWMLVGNKADLRHLRAVSTEDSQA



LAERESLYFMETSALESTNVENAFTQVLTQIYRIWKKALDVSEEPSA



LPPQGQAINIKDDVTATKKPMCCNF





349
MESCNCIDPPWSADDLLTKYQYISDFFIALAYFSIPLELIYFVKKSA



VFPYRWVLVQFGAFIVLCGATHMINLWTFHVHTKAVAMVMTISKILT



AWSCATALMLVHIIPDLLSVKTRELFLKNKAAELDREMGIIRTQEET



GRHVRMLTHEIRSTLDRHTILNTTLVELGRTLALEECALWMPTRTGL



ELQLSHTLRQQNPMTFTVPIQHPSINQVFSTNRAVMISPNSPVAMIR



PRTGKYMIGDWAVRVPLLHLSNFQINDWPEPSKRWYALMVLMLPSDS



ARRWHVHELELVEWADQVAVALSHAAILEESMRARDLLMEQNVALEI



ARQEAETAIRARNDFLAVMNHEMRTPMHAIIALSSLLQETELTPEQR



SMVETILRSSNLLATLINDVLDLSKLEDGSLELNIRIFNLRSMFREV



HNLVKPIASVKKLCVSMNLASDLPEYAAGDDKRLMQTVLNVLGNAVK



FSKEGSVSVTVLLERPECLRDPRAEFYPVQGDRHFYLRVQVKDTGAG



INPPDIPKLFSKFVHSDTMTTRNYGGTGLGLAICKRFVNLMEGHIWL



ESEGLGKGSTCIFIVKLGIPDPIHEMEHQYVFPIPSNSTRKDFPGLK



VLVTDDNGVNRMVTRSLLARLGCDVTVVDSGHECLQAMSQAGQNFKV



LFLDVCMPGMDGYEVAIHIQEMFPNRHERPLLVALTGSADKATKEKC



IKIGMDGVLLKPVSLEKMRSVLVDLLEHGSVCDSIQRL





350
MSFRKRALFKVIVLGDSGVGKTSLVTQYVHKRFSSQYKATIGADFMS



KELQVDDRLVTLQIWDTAGQERFQSLGVAFYRGADCCVLVYDVNVLK



SFDNLENWHKEFLNQASPTEPDTFPFMLLGNKIDVDGGNSRWSELKA



MTWCKSKGIPYFETSAKDDYRIDAAFLSIARSALKNQPEQEIYFLGL



PEALPESEPPSRSFCGC





351
MWRRMSSFPDELLEHVLAFLSSHRDRNAVSLVCKSWFRIEAGSRQRV



FIGNCYAVSPAILIRRFPRIKSVALKGKPHFADFNMVPPGWGADIHP



WLAAMAEAYPWLEELRLKRMVITDESLQLLARSFPNFKVLVLTSCDG



FSTDGLAAIAAHCRHITELDLQESDIDDRGGNWLSCFPDSCTSLVSL



NFACLTKEVNFEALERLVARCTSLRSLKLNRLVPLELLHRLLVRAPH



LEDLGTGAFLHEPRTEQYSKLKVALQNCKRLQSLSGFWEVAPGYLPL



VESLCSNLTSLNLSYATIQSAELTNLLGHCHKLQRLWVLDYIEDKGL



EWASTCKDLQELRVFPLDPYGQGAVTEEGLVTISRGCPKLTSVLYFC



CQMTNAALITVARNSPLLTCFRLCIFDPTSPDHLTKQPLDEGFGTVV



QSCKSLRRLSMSGLLTDKVFQVIGTYGKCLEMLSVAFAGDSDFGMQC



VLSGCINLRKLEVRDSPFGDLALLAGSEKYESMRSLWMSSCSVTVHG



CKELAAKMRNLNVEVIHDRDQFEDISTMTQPVDGLYVYRSVAGHRKD



TPHFIYTM





352
MAQQSLIYSFVARGNIVLAEHTSFSGNFSIIAVQCLQKLPSNSNKFT



YTCDNHTFNYLVDDGFVFLWADEAAGRQVPFIFLERVKEDFKRRYGG



RAETSMAHSLDKDYGPILRDHMQYCMDHPEELSKFFKIKAQVSEVKG



IMMDNIEKVLDRGEKIELLVDKTEGLQFQADNFQRQGRQLRRKMWLQ



NLKFKLIVLGIVLVIMLIIWLSICKGFSCH





353
MSIISIPEVEVEMGSASPNARTLRATWQASTVFYDTPATLDKAERLI



AEGAAYGSQLLVFPEAFIGGYPRGSNFGAVIGNRTFKGREEFRKYHA



SAIDVPGPEVERISAAAAKYKVHVIMGVIERAGFTLYCTVLFFDSQG



RFLGKHRKLMPTSLERVIWGFGDGSTLPVYDTSIGRVGALICWENRM



PLLRTALYGKGVELYCAPTADARESWQASMLHIALEGGCFVLSANQF



CRRKDYPPPPDYVFGGSEENMSPESWCAGGSVIISPTGTVLAGPNFE



GEALITADLDFGEIVRAKFDFDVVGHYARPEVLKLTVNDYPLNPVTF



SSGIAASEKKDSENV





354
MEDDPGEDYLFKVVLIGDSAVGKSNLLSRYARNEFHMNSKATIGVEF



QTQSMEFDGKEIKAQIWDTAGQERFRAVTSAYYRGAVGALWYDISRR



HTFESVGRWLDELKMHSDMNVVTMLVGNKCDLESLREVPVEESKALA



EAEKLFFIETSALNATNVNDAFQIVIKEVYNNMSRKALNSGSYKSKL



LSNGSTSVNLVQNGDAATKTGLKKYGCC





355
MAVPVIDIKKLLDGEEREMTMDQIHKACQEWGFFQLVNHGIPYSLLD



RVKVLFKEHYKNSMDAQFQDSAWQMLESSNSQGMNLSATKIDADWET



GFFLPLSSHKTETVTPPLPANFRETMEEFAEEVKGLAERLLEIMCEN



LGLEKVYLKEALAGGNGDNNSPFFGIKMSHYPPCPRPDLIDGLRNHT



DAGGLILLLQDDEIDGLQVLMDGIVVFDVQPIQHAIVIDIGDQLEVM



TNGKYKSMWHRVLAKEDATRMSVAAFYNPSSDAEVYPASQLMSAEQN



GSNNVNAESGYDYPKFVSADYMTVYAAQKFLPKEPRFEAMRSVGHAV



N





356
MATKVDPPNGVAAEGKHYYSMWRNTFEIDTKYIPIKPIGKGAYGIVC



SAKNTETNEKVAIKKIGNVFENRIDAMRTLREIKLLRQLAHDNIITL



KDIMTPVGRSNFRDVYLVYDLMDTDLHQIIKSSQALTDDHYQYFIYQ



LLRGLKYLHSANVLHRDLKPSNLLLTANCDLKICDFGLARTNCETGQ



FMTEYVVTRWYRAPELLLSCDEYGPSIDVWSVGCILAELLGRQPIFP



GKDYINQLKLIINVIGSPAEDDLYFVQSQKACSYIKSLPHVPSASLQ



RLYPQANPTAIDLLDKMLVFDPYKRITVTEALEHPYFSALHDPRLEP



SATAPFELDMPDEELRVQELREMVWKEMLYYHPEAANIL





357
MGIELEMDRPQEEGWVRGAILGAGAYGTVSLGVSRSNGQLFAIKSAA



GFSVALENEYQILRCLDCPYIVRCLGHNYSFENGAEVHNLFLEYMPG



GSLVDLLGRFGGTLNETVIRAYTRGILRGLDYLHSQGIVHCDIKGKN



ILVDSNGVKLADFGSAKRVDDEEKCEEAMQLRGTPQWMAPEWNQVEQ



GPASDIWSLACTVLEMATGRPPWSHVSSPLAAMYRIGCTEELPGLPG



CLSPQIRDFLEKCFRRDPKKRWSSAELLNHPFLKKDCSVIEAEEAIR



GPGSPTSHLDFRNHIWDSYDSQTTLIPSLSLPSPTRERNAEVNRSVE



QCPRRSPRDRLMALAAACKFEKVANRPNWITSLHGPWTVVKSSRSKS



PTSDKPLLKSDISNGSSIQELPFTEERCSTSFKAVNWKGLQPRGELD



QCSQAMLSSAQSQHQPSSSTSSKTPHHNLFSLAETSNLTGEAWESDG



NSSQRIVGGD





358
MSGRRNPLLNIPIPARQQTQLYRLPLPPQSTSVSRDVSDLADLERIQ



ILGHGSEGNVYKVRHRRTSELYALKVIHGNHDETVRQQIIRQMEILK



KTESPYWKCHGIFERGEEIHFVLEYMDGGSLEQRRSDTMSERFLAEV



ARQVLEGLKYLHRHKIVHRDIKPSNLLINRRQEVKIADFGVSRILSQ



TLDPCNTYVGTCAYMSPERFDPETYGGRYDGYAGDIWSLGLSLLECY



TGHFPFLAAGQKADWPALMCAICYGDPPAPPPTASAHFRSFITCCLH



KDARNRWTAAQLLGHPFVLSNPPQTPSIPMQRLSI





359
MATRVNPPNGVFVEGKHYYSMWRNIFELDAKYIPIKPIGKGAYGIVC



SARNAETNEKIAIKKIINAFENQTDARRTLREIKLLRLFAHDNIIAL



KDIMTPVTRTNFNDVYLVYDLMDTDLHQIIKSSQVLTDDHCQYFIYQ



LLRGLKYLHSANVLHRDLKPSNLLLNANCDLKICDFGLARTNCEKGQ



FMTEYVVTRWYRAPELLLSCEEYGTSIDIWSVGCIFAELLGRKPIFP



GKDYINQLKLIVNVLGSPDEDDLEFIESQKARSYIKSLPVTSHASVQ



RLYPRANPSAISLLDKMLAFDPRKRITVTEALEHPYFSALHDPSLER



SATAPFDLDMPEEELKEEELKEMFWNEMLHYHPEAANTS





360
MRQEHSENPEEEEERVSFDLNSMCKFSSQSDTEPIETSFPDEVLEHV



LVFLTAHKDRNAVSLVCKSWYRVEAWTRHQVFIGNCYALSPGTMINR



FPKIKSVTLKGKPRFADFNLVPPNWGAHLHPWVLAMAPAYPWLEKLL



LKRMTVTDEDLALLADSFPNFKDLVLLYCDGFSTKGLGIIASKCRQL



RRLDLNEDDIVDSGVDWLSCFPETTTTLECLSFECLEGPINIDALER



LVARCLSLKELRLNRTISIVQLHRLMLRAPQLTHLGTGCFSYDFIPE



QATVLQVAFNNCKSLQCLSGFREWPEYLPTIYSVCNNLLELNLSYAV



MGSRELEQIVCNCPKLQRLWVLDSVEDAGLRAAAATCKDLRDLRVFP



MDAREDGNGCVSDEGLVAISEGCPNLQSILYFCQRMTNAAVVTMSKN



CQNLTSFRLCIMGRHKPDHITHKPMDEGFGAIVMNCKKLTRLAVSGL



LTNKAFEYIGTYGESLETLSVAFAGENDLGMKYVLDGCRRLRKLEIR



DSPFGDTALLSGLHHYEQMRFLWMSDCKVSIQGCMELARKMPWLNVE



IIRENSYDDRLVEKLYVYRSVAGPRKDMPPIVITL





361
MGSSSHRENGAVKAVSCSKEDKLEQSRVNLMRSIVEAKDSSAKATDD



ATLRRFLRARDLNVGKASELFLKYLKWKRAFVPLGYIPESEVSNELR



KNKIFIQGLDKDRRPIGVILAARHNAFDRDLEEFKRLVVYGFDKICA



CMPRGQEKFVMLADLEGWGYKNVDIRAYLMVLEIMQDCYPERLGKLF



MIHVPYLFWAAWKTVYPFIDKVTKKKIVFVEDKHLKETLLNDIDESQ



LPEIFGGKLPLVPTQDCVIPN





362
MENVGGEEYLFKIWIGDSAVGKSNLLSRYARNEFNANSKATIGVEFQ



TQVMDIDGKEVKAQIWDTAGQERFRAVTSAYYRGAVGALIVYDISRR



LTFDNVARWLEELKMHADGNWKMLVGNKSDLAHIREVPVEDGKKLAE



SEGLFFIETSALDNTNVLPAFQIWKEIYTNVSKKMLNSDSYKSQLSL



NRVNITDAYGDGDGVDPPKTKNSCC





363
MGHAASWIPPQETKQEDEDSQEGVDYTLNIPDECLAHVFHYLKPGDR



KPCSLVCKRWHHAEGQSRRRLSLDARAEIVPAIPSLFWRFNYVSRLA



LRGNRRTIGINDDGLLLIGIHCKNLKNLKLRSCREITDIGMSRFAQL



CGSLRKFSCGSCTFGTPGINAITTHCKSLEELTVKRLRSAGEVPSEP



VGPGAGNLKRICLKELYYGQFFVPLIAGSKKLQTLKLSKCSGDWDTL



LDIITQDVTSLVEVLLERLHVSDTGLLAVSKLASLEILHLAKTPECS



NTGLAAIANGCRKLRKLHVDGWRTNRIGDEGLIEIARKCHYLKELVL



IGVNPTITSLSMLASNCHVLERLALCGSATIGDAELSCIAAKCYSLK



KLCIKGCPVSDQGMESLISGCPMLVKVKVKRCRGVTSEGADLLRANK



GSLDVSLDTITSPSLNGLSTQASSSVPRASAISSAGKSTLSKARLTL



IAGGSFLACAFLKLSNGS





364
MAGLDNGWNGIVSVKFTKLFIDGKFVDAISGKTFETLDPRTGDLITR



VAEGDKEDVDLAVKTAREAFDKGPWPRMSGYERGRLLNRYADLVEQY



IDELAALETLDNGQPLTLVRVIVTGCIQILRYYAGAADKIHGETLKM



GGQYQAYTLHEPIGWGQIIPWNFPLFMFFMKISPALACGCTIVIKPA



EQTPLTALYCAHLAKEAGLPPGVLNVITGFGETAGAAISNHMDIDKV



AFTGSTDIGRVIMVAAAHSNLKPVTLELGGKSPLIIMDDADIEEAVN



LAHKAIFFGSGQVCCAGSRIYVQEGIHDKFVKRVVERAKKQWGDPFN



PEVDHGPQIDKTQFEKILEYIEHGKREGAKLLTGGSRVGEKGFYIEP



TIFSHVQEDMKIGKEEIFGPWSIFKFRTIEEAIELGNKTIYGLAAGI



VSKNIDTVNRLSRSIRAGVIWVNCYHWFPDAPFGGYKMSGIGREQGL



DVLKNYLAVKCVITPLHDSPWL





365
MRKKDLKKLKLAVPAPETPMSDFLTASGTFQDGDLLLNRQGLRLISQ



EDDESPSPIEPLDNQFTLADLETVSVIGKGSGGWQLVRHKWTGQFFA



LKAIQMSIQESVRKQIVQELKINQASQCPNVWCYHAFYNNGVISIVL



EYMDCGSLADVIKRVKTFTEPYLAVICKQVLKGLIYLHRDRHIIHRD



IKPSNLLVNHKGEVKITDFGVSATLANSMGQRDTFVGTYNYMSPERI



SGSTYGFSSDIWSLGLVVLECATGRFTYLPPGQEEGWLNFYELLETI



VEQPAPCASPDEFSPEFCSFISACVQKDPKDRMSATDLLNHAFIRKY



EDQNVDLAALLSSLSSPV





366
MALMMEFGDDAGIGEEWEDNESQRMEIDTGKGIETHFNDIPEVIMSN



IFSAIKDTRSRNRMALVCRKWHEMERATRVYLCIRGNISNNLYRLPM



CFQSVTKLDLSLCSPWGYPPLDFTTPHGNFIGHRLKDAFPRVNNIVI



YVRSARNIEKLSSLWPCLEHVKLVRWHRRAMDPESAVGLGMELKLLM



QNCTALKSLDLSQFYCWTEDIPLALQAEPHVSANLSSLNLLKLSAEG



FRAQELAAISGACRNLEELLAVCVFDPRYMDCVGDEALWLARNCSRV



RILHLVDATAFEALRGDPEDIFSSENAKITRQGLESMFWNLPLLEDL



VLDISHNVADSGPALEFLSSHCKNIKSLKLGQFQGICKGPEPDGVAL



CTNLEALFIKNCSDLTDTGLAAIAAGCSRLGKLELQGCRQITEAGLK



FCTSRLSKTLVEVRVSCCKYLDTAATLRALEPICESVRKLHIDCIWD



KSILDQEIASPSRRLNPVGSSAISTREIASYGMGKNHLVSAGDCNVN



RWDQNPESAWGPSLQLAPPQFCPDLNCANFDFGSSPSDVPMTNWGLD



LNLTASSCSGPLESSEERGCLPIENFFEEHEKPNSLGSDRYVPSDGV



MFRGMDVNGKAPQMERLCHSNTGTVSDSSSTEFVDFLGINDKHQEWQ



KLGADINYGMEVMVNSSQIWGVTGEASKRTSSANLEGEQSWTEIPNQ



YSYSDSSSHIRSITWKNLQFLSLWIPVGELLSPLAAMGLKVCPLLEE



ISIQVEGDCRLCPKPRERACGLSSLACYPSLSKLELNCGEVIGFALS



APAGKMDLSLWERWYLNGLRELHLSELNYWPPQDKDMNRRGLSLPAA



GLLSECAALRKLFVHGTCHEHFMMMFIRIPDLRDIQLREDYYPAHED



DTSTEMRTDSCRRFEEALASRGFTD





367
MQQDQRRKAPTEVEFFTEYGEASRYKIQEVIGKGSYGWCSAIDTHTG



EKVAIKKINDIFEHISDATRILREIKLLRLLRHPDIVEIKHIMLPPS



RREFKDIYVVFELMESDLHQVIKANDDLTPEHYQFFLYQLLRALKYI



HTANVYHRDLKPKNVLANADCKLKICDFGLARVAFNDMPTTIFWTDY



VATRWYRAPELCGSFFSKYTPAIDIWSIGCIFAEILTGKPLFPGKNW



HQLDLITDLFGTPPIEAISRVRNEKARRYLSSMRKKQPVPLSQKFST



ADPLALKLLERLLSFDPKDRPTAEEALADPYFKGLAKVEREPSAQQI



SKMEFEFERRRVTKEDVRELIFREILEYHPQMLKEYLNGSDRSNFMY



PSAVDQFKKQFSHLEEHYGKGAPWPLERQHASLPRSSWHSNTMPPLP



EKTISGPSRDRTSESRDESSRYIRETEKLQHDRSAGNALKAPLQPPQ



KILQGGAAKPGKWGPLPYENGSTKEVYDPRRLIRNAVLTTSQYAAPI



YSYPRRTSNTKIEPNEKEDAESTLMPPKAQYVGIGAARKVAAVQSAS



SRLY





368
MGPCNGRFSALILISMTPPPSRVGVLISLFIMSLLLCISAPCMHSPA



AALIGLSRSEKYNTDGQDPCRLSFLDTAAAAIDFGRIYHHNPAAILR



PVSAEEIARFLRAIYASRALATGYRQEYLTVAAKGAGHSIHGQAQAP



DGLVIEMSSLRGVRIHVADRAGGYSYADVAAGELWVDLLAEAMKLGL



APRSWTDYLYLSVGGTLSNAGISGQTFRHGPQISNVLQLDIITGTGE



LVTCSPAENADLFYASMGGLGQFGIITRARIILEPAPQKVKWVRALY



SDFEQFTRDQELLVSMDDGAASVDYLEGFWVNNEAMRSWSISFRTDT



PLDDSVFNDAGTEILFCIEIAKYFTQSDDETADVDKVTGRIISRLSF



IPGLIYSVEVPYADFLNRVRVEELNLRSRGLWDVPHPWLNMFVPRRQ



IQRFTTSLLRIMSPDTVKGPILVYPVKRSKWNTNMSAVIPEDKDEIF



YAVGVLRSADPLCLAGSSCLNDLLSQNQQIIDVSTNANEIGNDKTEP



GMGAKQYLAHHSQQWQWKNHFGSKWGIFLQRKARYDPLNILAPGQRI



LNRNHRE





369
MDQDQSICRFAAQKGKGEIQSSSFPDEVLEHVLVFLSSQKDRNSVSL



VCKAWHRVEAWTRQQVFIGNCYAVSPQIMIKRFPKIKSVSLKGKPRF



ADFNLVPPNWGAHLTPWVSAMATAYPLLERLYLKRMTITDYDLTLLA



NSFLYFKELVMVCCDGFSTGGLASIASKCRQLTTLDLNEDEIHDNGE



DWLACFPETLTSLRSLCFDCLEGPVNFDALERLVARCPSLKKLRLNR



NVSIVQLQRLIIKAPQLTHLGTGSFFYEFQLEQVADLLAAFSNCKQL



QCLSGFREWPEYLPAVYPVCSNLTSLNFSYAVIGSRELEGIVCHCRK



LQLLWVLDSVGDKGLEAAATTCKDLRDLRVFPVDAREDGEGCVSERG



LVAISEGCPNLESILYFCQRMTNKAVVTMSHNCSKLASFRLCIMGRH



QPDHLTGEPMDEGFGAIVRNCKSLTRLAVSGLLTDKAFQYFGAYGER



LETLSVAFAGESDLSMKYVLDGCKNLRKLEIRDSPFGDVALLSGLHH



YENMRFLWMSDCRLTLQGCTELAKKMPGLNVEIIRENECNDSLVEKL



YAYRTVAGPRKDMPSFVTIL





370
MASTPVSSSASQPNLLRHYTPTVTDCSSSGSSIPWDLSAQKTSWQAL



VKACEDYGFFKVVNHGISQVLIDAMEAEAEKLFALPLSEKERAGPAD



PYGYGNRSIGRNGDVGWIEYLLFRSDFQYVQQRYKAISPDNYINFCN



TASKYISATKKLACDILELLAEGLGLPENIFSSFLTAEGSDSAFRLN



HYPPCPDPSNIIGFGEHTDPQILTVLHSNDVGGLQVLSRDGKWVTVS



PDPSSFSINIGDCMQVLTNGRFKSVRHRAVTNTLRSRISMMFFGAPA



LDATIVTPSQLVDEDRPAQYMPFLWSQYKKSIYCLKLGQTRGLLQKF



QASMVGVGVA





371
MGSSGRHENEAEKVVSCYEGDTIEQNRVDLMRSIIEVKYPSAKVTDD



ATLRRFLRARDLNVEKASQLFLKYLKWRQALVPLGYIPESEVSNELR



KKKVYIQGFDKQRRPIEVILTARHYASDRDLEEFKRLIWGFDKLCAS



MPTGLETFWIADFEGWGYSNMDTRAYLAALEILQDCYPERLAKAFMI



HVPYLFQTAWKMISPFIDKVTKKKIIFVEDKHLRSTLLNDIDESQLP



EIYGGALPLVPAQDFVIPNWS





372
MAIPVIEMGSLIGNDKERFMAEMGKACEEVGFFQLKGHGIPVELMER



VKKVCSEHYNHVREPKFKTESVPVKLLNKSLMEAELSSSEPKKVENV



DWEDCIVLQYAQEDYPWPSDPSEFKETMMEFGKEITKLAESLLELLS



EILGLEKGYLKRTLSGGDGPDDKAFFGTKISHYPPCPRPDLVEGLRA



HTDAGGLILLFQDDEVGGLQVLDNTGRWIDAPPMKDTLVIDIGDQLE



AISNGRYRSAWHRVLATDSGNRMSVASFYNPSLDAVISPAPELLSQP



KKGSELSLYPKFMFGDYMNVYAQQKFLPKEPRFQAVAALQY





373
MMEALPDQWWEVLDRIKETRDRNTAALLCKRFYQIEKNQREYLRVGC



GLSPAIEALSALCMRFPNLVRVEIGYSGWMSKLGKQLDNEGLKILSQ



HCPNLTDLTLSFCTFITDGGLGYLGSCTGLKALRLNFTPGITGCGIL



SVWGCKKLSTLHLTRCLNVSSVEWLEYLGRLESLEDLAINNCRAIGE



GDLAKLGYGWRNLKRLQFEVDANYRYMKVYGRLAVERWQKQWVACEA



LEDLSLVNCLISPGRGLACVLRKCQALQNLHLDMCVGVRDDDLISLA



QQCPKLKTLSLRVPSDFSVPILMSNPLRLTDESLKAIAQNCSELESV



SISFSDGDFPSSSSFSLAGIVSLIEACPIRVLVLDHVYSFNDSGMEA



LCAAHFLEILELIQCQEVTDEGLQLVKHFPCLSVMRLCRCLGLTDIG



LKPLVASHKLQKLKVEDCPQISEKGTQGAAKWSYKQDLSWIY





374
MDPMERAAKVLGSSPGHKNMMGCSSSGVKVEPEIDGLLANAGYTVKA



SDLAHVAQRLEQLESIMGTVQDPGISHLASEAVHYNPSDLAGWIESM



FGELNPGADMPVPFGDRGSLIDSSQVHKPIQDDPSLSAMDLALIHEY



GLQFNGSQASNPQGFSPDSDPSVRCNIFSGPPLRSGDSTTHTNFQAR



SFSAQSSDEGSSLSTTRLGTAQQSIDNGAQESGIRWHLLMGCAEAIQ



RNNLKVASNLVREIRMTVNSAPCGAMGKVASHFVEALARRICGLNGA



ESNMSQADAQSEILYHHFYEVCPYLKFAHFTANQAILEAFEGHGSVH



VIDLNLMHGLQWPALIQALALRPGGPPLLRLTAIGPRQPDGRDVLQE



IGMKLAQFAESVNVEFDFRGVMADKLEDIKPWMFQVKPGEWAVNSVL



QLHRLLYIDAPTGSSPIDWLKSIGSLRPKIVTVVEHEANHNGPVFLD



RFVEALHYYSTMFDSLEACNVLPNSMEKFLAELYIQKEICNIVACEG



RYRIERHETLSHWRIRLGRAGFRPSHLGSNAFKQARMLLTLFSGEGY



TVEENNGSLTLGWHSRPLIAASAWQGS





375
MASNSRYTQSQSTGSNNRRSSTNTNTTTNKATAMAQYNADARLLQVF



EQSGESGKSFDYTRSVKSTTESVPEQQITAYLSRIQRGGRIQPFGCV



LAVEETTFRIIAYSENAVEMLDLAPQSVPSMEQPQQDVLTIGTDVRT



LFTAASAHSLEKAAVAQEISLMNPIWVHCKNSRKPFYAIVHRIDVGM



VIDLEPLRTGDAFMSAAGAVQSQKLAVRAISRLQSLPCGDVGLLCDS



WENVRELIGYDRVMVYKFHEDEHGEWAEIRRSDLEPYLGLHYPATDI



PQASRFLFMQNRVRMICDCMATPVKVIQSEELMQPLCLVGSTLRAPH



GCHAQYMANMGSIASLVMAVIINGNDEEGGGSGRNSMKLWGLWCHHT



SPRAVPFPLRYACEFLMQALGLQLNMELQLAAQLTEKHILKTQTLLC



DMLLRDAPMGIVTQSPSIMDLVKCDGAALYYGGMCWMLGVTPTEAQI



KDIADWLLEHHGDSTGLSTDSLADAGYPGAASLGDAVCGMASARITS



KDFLFWFRSHTAKEMKWGGVKHHPDDKDDARRMHPRSSFKAFLEWKR



RSLPWDNVEIDAIHSLQLILRGSFQDIDDSGTKTMVHSRLNDLRLQG



IDELSSVASEMVRLIETTTAPILAVDYNGLVNGWNAKVAELTGLPVG



EAMGMSLVQDLVFEESVERVEKMLHNALRGEEEKNVEMMLKTFGPQK



EKEAVILWNACSSRDFTDNIVGVCFVGQDVTSQKVVMDKFIRIQGDY



RSIVQSPNPLIPPIFASDEYACCSEWNAAMEKVTGWTHDEVIGKMLV



GEIFGGCCRLKGQDAVTKFTIVLHSAIDGQEIEKFPFAFFDKQGKYV



EALLTANKRTDADGRITGSFCFLQIASSELQQALEVQRQQEKKCFAR



LKELAYIRQEIKNPLYGMMFTRKLLEETDLSDDQKQFVETSAVCERQ



MQKVMDDMDLESLEDGYMELDTAEFILGTVIDAWSQGMIVLREKGLQ



LIREIPGEVKTMRLYGDQVRLQQILADFLLNVLRFTPSPEGWVAIKV



FPTLKQLGGGLHWHLEFRITHPGPGLPAELVQDLFDRSQWATQEGVG



LSMCRKLLKLMNGDVQYIRESGICYFLVNVEFPMAQREDAASIK





376
MATVGNKNVQAKLVLLGDMGAGKSSLVLRFVKGQFFAYQESTIGAAF



FSQTLAVNETSVKLEIWDTAGQERYHSLAPMYYRGAAAAIIVYDITN



LDSFVRAKKWVQELQRQGNPNMVIALAGNKSDMIENSKVSPEEAKVY



AQENGLFFMETSAKTAQNVNELFYEIARRLPKAEPVQHPAGMVLADR



SAERARSNSCCS





377
MADSSVRSESVYMSKLAEQAERYDEMVEYMGKVVKAADVEELAVEER



NLLSVSYKNAIGSRRASWRIVSSIEQKEESRGNEDRLPLIRQYRLKV



EAELSGICDSILGLLDGYLIPSASCGEAKVFYLKMKGDYNRYLAEFK



TGDERKEAADGTLEAYKNAQGIALVELASTHPIRLGLALNFSVFYYE



IMNMPEKACALAKQAFDEAIAELDTLGEESYKDSTLIMQLLRDNLTL



WTSDMQEQLDDS





378
MDNGMMVWIVLAGWAMAVWYLLVQHQQPKQSHNVPWETLPPGAVGWP



FLGEIISFYFRTPDFVKQRRGRYGNLFRTFLIGYPMVISTDPEVNKF



ILNNDGRLFVPAYPSHWSQIIGECNIFAARGDFHKRMRGAFLHFISI



SWKNRLLSEIQNIITFSLAGWEGRNVNVLHEAEEMIFSVMANHMLSL



SAGTALESMKRDFLVMMKGLRSLPLRVPGTTFYKSLQKKQVLFNQIK



SIIEERKLNMSAYDSYDDLLSSILRSASEKEFTTTQIVDLIVQSVIG



SLETTPKIMASWRHLSENPHIIIYLKEEHETIIQAKENNQSLSWDDY



KSMVFTKSVIKETLRFGMQPLNNIMFKKTLQDVKIEGYTIPKGWTCI



IYDLVSDMDTKYCKDPLSFNPQRWQSKEMNEVPFLAFGGGPRLCPGY



ELAMLTMSFFLHHLVTKFRWEYLPSKSELRWFDSPLNSVFDCRIHVE



NR





379
MAILYALVGRGTWLAEFSAVGGNAGTVARRIMEKLPLQDRGEGESRL



CYSQDRHIFHILRGSDGLTFLCMANDTFGRQIPFAYLEDIQMRFMKT



YGRVAQNALAYAMNDEFSRVLHQQMEYFSSNPNADTLTRVRGEMNEV



RTVMVENIEKILERGDRIELLVDKTSTIQDSSFHFKKQSRRLRQALW



MKNAKLLASLTCLIWLLYIIIALCCGGITLPSCRS





380
MGEFKKWKRCNSLPSPINSLDDGCLMRIFSFLSPLPDRYSAARVCSR



WRHLASDPRMWLRVEKSCNALAESGIFSTIEDAWAARPGDTILIATG



WHMACNIQIVKPICLVGGGSSPDEWLVCPRGFDSALEFLSTGKVANL



TIKAELGSCLLHRNGRLTVEGCVLQCEEHPLEHLCCPIVSTADALAP



PSTLSSVMKGGSSMSVIHTRIKGGAKAVLTNGSLTLQQVRVIYSPTA



LFFWFNVSQKSLTDIDLPPFICKA





381
MGSTNNQSERAFSIKLWPPSESTRLMLVERMTDNLSSVSFFSRKYGL



LSKEEAAENAKRIEETAFLAANDHEAKETNSDDSSWQFYAREASRLM



LEALKRGPTSQKQESEKELTAETVVKEVKETIFDISRGDRGFVDGTL



AEELLRPLTEEGNSYTKICFSNRSFGLDAARVAERALMEVQRNLTDV



DLSDFIAGRPEVEALEVMTIFASVLQGCELRSLNLSDNALGEKGVRA



FGPLLKSQKTLEELYFMNNGISVEAARAICELLPSVERLRVLHFHNN



MTGDDGAEPLSELVRNCTALEDFRCSSTRVGAVGGIALVGALGAGNR



LKKLDLRDNMFGKKCGVALSRALSPHLGLTEAYLSYLGFQDKGTIAL



ANSLKEGAPSLKVLELAGNEITVKAATALAECLGLKRMLTKLVLSEN



ELKDEGSVLICRALEEGHEHLKELDLSSNSISGVGAKVAAELWNKPD



FDLLNIDGNCISEEGIDAVKDVLRRGDKGVTVLGSLEDNDAEGEGND



YEDGDEDDDENESSDSDGDLVAKVEDLKMQ





382
MSPAESSREESWMAKLAEQAERYEEMVEYMEKVAKTVDVEELWEERN



LLSVAYKNVIGARRASWRIISSIEQKEESRGNEEHVTMIREYRGKVE



SELSNICDGILRLLDTHLIPSSTSGESKVFYLKMKGDYHRYLAEFKT



GAERKEAAESTLLAYKAAQDIATAELAPTHPIRLGLALNFSVFYYEI



LNSPDRACTLAKQAFDEAIAELDTLGEESYKDSTLIMQLLRDNLTLW



TSDMQEETGGDEIKEAPKKEEGDGH





383
MARKVDDEYDFLFKVVLIGDSGVGKSNLLSRFTRNEFCLESKSTIGV



EFATRTIQVDGKTIKAQIWDTAGQERYRAITSAYYRGAVGALLVYDI



TKNATFDNVKRWLRELRDHADSNIVIMLVGNKCDLNHLRAVPIDEAQ



DFAEKEGLSFMETSALESTNVEKAFQSILAEIYQIVKRKSLAEEAAS



SGPSQGTPINVTDAEAVAKKRSCCL





384
MNAGPLIAALRDCPLLAFPSWTMGIILAYFCYMALAQFILPGKQIPG



WLADKTRIYYRCNGFITLFLLVTLLGISMAAGILSLAWADKGGELLS



TTLILSALISLFLWAGHLSQSKMTSLKPHITGNFIHDWWFGIQLNPQ



FLGIDLKFLLIRSGMIGWAVINLSVAAKAFQLKDSLNLSMILYQIFC



LLYVMDYFWYEEYMTSTWDIIAENLGFMLVFGDLVWIPFTFSIQGWW



LLTHKPDLTTKAAAILDVLIFIIGYDSLRGSNKQKHIFKKDPTACIW



GEPPKVIGGKLLASGYWGISRHCNYLGDLLLAFSFSLPCGASSFVPY



FYPMYLLFLLLWRERRDEAKCREKYKEDWVTYCKLVPWRIIPYLY





385
MQRPSKTSVGYAIPDEVLKCVMGYLEEPCDRSAVSLVCKRWNRVDAL



TRKHHVTIAFCYTISPSDLGARFPELESLKLKGKPRASMFNLIPQDW



GGYAEPWINEISQTLLCLKALHLRRMIWDEDLRALARARGHILQVLK



LEKCSGFSTLGLLEVARSCRSLRVLFLEESTIEDEGGEWLHELALHN



SSLEVLNFYMTGLENVNVNDLEMIATNCRSLTSFKISECDILDLRNV



FKKATALEEFGGGSFSSSEEQAVEPNIYEMVKFPTNLMSLSGLNYMS



ETELPWFPRASSLKKLDLQYTLLSTENYCQLLQSCINIEILEVTNAI



GDRGLEVAAENCKKLRRLRVERGEDEAGLEGQQNFVSHKGLSVIAQG



CPNLEYIAVWSDMTNSALESVGKFCKNLRDFRLVLLDKKEQVTDLPL



DNGVMALLLGCQKLKRFGFYLRPGGLTDIGLGYIGKFSSNVRWMLLG



YVGETDFGLLEFSKGCPNLEKLELRGCCFSEYALSVAALSLRSLKYI



WVQGYNATPSGFDLLAMERPFWNIEFTPASQVTVDGFNLEEEITEKP



AQILAYYSLAGRRTDHPDSVIPLSLSSWNRQLQHVYEYSLFHAYEY





386
MAKLYLFVAALLLLSASSAASQSLNTSSDAIPGKDFSTGKQSVEYLR



LFAEDISWSNNLVLGLLVPRSIWSPLPRVLQTWLRNYIATVVYFVSG



SLWSFYIYYWKRNVYIPADSTPSKEPIFLQIMVTMKAMPLYCALPTL



SEYMIENGWTRCYAAINEVGWPSYILLTILYLLLVEFGIYWMHRELH



DIKVLYKYLHATHHIYNKQNTLSPFAGLAFNPLDGILQAIPHVIALF



IIPTHFLTHELLLFCEGIWTTNIHDCIHGKVWPIMGAGYHTIHHTTY



RHNYGHYTIWMDWMFGTLRDPTAEAKSVKNM





387
MAYKTEEDYDYLFKVVLIGDSGVGKSNLLSRFTRNEFSLESKSTIGV



EFAARSVNVDGKSIKAQIWDTAGQERYRAITSAYYRGAVGALLVYDI



TRHVTFENVERWYKELKDHTDVNIWMLVGNKSDLLHLRAVSVEEGKS



FAERESLYFMETSALDSTNVENSFTQVLTQIYRIVSKRSLDTAEEAL



STLPGKGQSISVNGKDEFTTKKAGCC





388
MPETREDSWLAKLAEQAERYEEMVENMKRVASSDQELTVEERNLLSV



AYKNVIGARRASWRIVSSIEQKEESKGNEAQVSMIKGYREKIESELA



KICEDILDVLDKHLIPSAASGESKVFYHKMMGDYHRYLAEFATGDKR



KDSADKSLEAYKAASEVAVTELPPTHPIRLGALNFSVFYYEILNSPD



RACHLAKQAFDDAIAELDTLSEESYKDSTLIMQLLRDNLTLWTSDMQ



DSADKPADSKDEPAETPAED





389
MANERESKTFLARLCEQAERYDEMVTYMKEVAKIGGELTVDERNLLS



VAYKNWGTRRASWRIISSIEQKEESKGTDKHVGTIRDYRQKIETELE



KVCQDVLDVLDESLIPKAETGESKVFYHKMKGDYHRYLAEFASGEKR



KNAATAAHEAYKSATDVAQTELTPTHPIRLGLALNFSVFYYEILNSP



DRACHLAKQAFDDAIAELDSLSEESYRDSTLIMQLLRDNLTLWTSSD



GAEPAETGEAPKTEEAKPAETAEAAPAEPESKPAKEEEPAAPAAA





390
MDALLKQFERLQRPIDLVQTLHETQVKQVPARYILPSEQRPSRPLQV



QQSLPVIDLAGLEDTDQRIKIVSQIAQASQEWGFFQIINHDIPVSLL



ETVKRVSQEFFDLPLEERRKQCPVRPGVHMLEGYGRFFDISDDTVLD



WVDTLVHYISPEWAKAVEHWPKNPSTYRETYEKYGEEVMKVMEKLLG



LLSQGLGLDPKYIQTLNKESLLQVRINYYPPCPQPDMVNGFKPHSDV



DMLWLLDDGVDGLQVRKDEDWFTVPSIPGALIINIGDLLQIVSNGKY



KSAEHRAVANTKQSRMSMVMFLRPQEDVLIDTAPELIDEAHPSLYKA



VKAGEYETEYNSKDFRGKDAVHTLRIEQA





391
MMESLRKLVYYACVSRGPVIVAEYNDLGDAEQLAIAVECLGRAPPFH



SRFTHTIKNRRYSFLMDSEFVYYAIVDEALPKVKVFSFLEQVRDEFK



RLLRAKGLSNSKDEILQGCGLGDDFASTFRRLVAPLVGIPQTEKRRM



EEEEASARRQEDETETEVCSPTASAPLYGKPQPDSKPKKDKKSLCSI



PPLILKTNKHEKKKVRDQVTQVREIIMESSGKALDNGQKLEVTVDGN



TGGAAALSLQRTASMRTKGQQIAQRMWWRNVRWLLLDFWCTILFVWV



LCICRGFKCVSD





392
MSPSDSSREEYVYMAKLAEQAERYEEMVDFMEKVAKTVDVEELTVEE



RNLLSVAYKNVIGARRASWRIISSIEQKEESRGNTDHVSIIKDYRGK



IESELSKICEGILSLLESHLIPSASSAESKVFYLKMKGDYHRYLAEF



KTATERKEAAESTLLAYKSAQDIAGAELASTHPIRLGLALNFSVFYY



EILNSPDRACALAKQAFDEAIAELDTLGEESYKDSTLIMQLLRDNLT



LWTSDLTDEAGDDIKEASKLESGEGQQ





393
MTEGSNYDFLFKWLIGDSGVGKSNLLSRFTRNEFNLDSKSTIGVEFA



TRSVQVDSKTVKAQIWDTAGQERYRAITSAYYRGAVGALLVYDIAKH



PTYQNVHRWLKELRDHADSNIVIMLVGNKSDLKHLRAVPTDEAKAFA



TENNLSFIETSALDASNVEAAFQNILSDIYHIVAKKNLENSSDVIQP



LEGRGIDIAKSEDDGGAKQGGKCC





394
MQRPSKTSVGYAIPDEVLKCVMGYLEEPCDRSAVSLVCKRWNRVDAL



TRKHVTIAFCYTISPSDLGARFPELESLKLKGKPRASMFNLIPQDWG



GYAEPWINEISQTLLCLKALHLRRMIVTDEDLRALARARGHILQVLK



LEKCSGFSTLGLLEVARSCRSLRVLFLEESTIEDEGGEWLHELALHN



SSLEVLNFYMTGLENVNVNDLEMIATNCRSLTSFKISECDILDLRNV



FKKATALEEFGGGSFSSSEEQAVEPNIYEMVKFPTNLMSLSGLNYMS



ETELPWFPRASSLKKLDLQYTLLSTENYCQLLQSCINIEILEVTNAI



GDRGLEVAAENCKKLRRLRVERGEDEAGLEGQQNFVSHKGLSVIAQG



CPNLEYIAVYVSDMTNSALESVGKFCKNLRDFRLVLLDKKEQVTDLP



LDNGVMALLLGCQKLKRFGFYLRPGGLTDIGLGYIGKFSSNVRWMLL



GYVGETDFGLLEFSKGCPNLEKLELRGCCFSEYALSVAALSLRSLKY



IWVQGYNATPSGFDLLAMERPFWNIEFTPASQVTVDGFNLEEEITEK



PAQILAYYSLAGRRTDHPDSVIPLSLSSWNRQLQHVYEYSLFHAYEY

















TABLE 4







Cell Signaling Dligonucleotide Sequences










SEQ




ID










NO
Sequence












395
ATGGTCTTATGCGATGGTGCAGTTAGTAGACTGTTGGTCTGTATTT




ACTTATTTAACAGA





396
TTTACCTTAAGATGAAAGGTGATTACCACAGGTATCTGGCAGAGTT



TAAGACTGCGACTG





397
AATAATTCTATAGACTCACACTACCAATGGTTCACAAAGTGATTGT



GGTAGACATATGTC





398
ATTAATTATGCAGCTTCTAAGGGACAATCTGACATTATGGACTTCT



GACATCCCTGAGGA





399
TCTTAGTGGGCGCTGGATTGCATCATCAGACGGGTCAAATAATATA



TAATTAGAAGTGTA





400
ATAATGTGTAATTCCAAATTATGAGGTATATTTGCAATAAACAAAA



TGCAGGTCATTTTG





401
GAACATAGACGAACTAGCTGCTCTGGACACTATAGATGCCGGGAAG



CTATTTAGTGTCGG





402
GGTCGGGAAGACGTCTCTCATGAACCAGTACGTCAACCGCAAGTTC



AGTAACCAGTACAA





403
AATTGGAAAACGCTCTTGGGTTTGTGAACGTGCTTCTCACTGCTTT



AGTGTTGGTTTTCA





404
AATTCTGCATTGAGTGTAGCAGATCCCTTCTATTAGATTATTCATA



TGACTATGTGACTG





405
TTCAATATCTCAATTGAACACGATAAAAGGCCTCCATGTCTATGCA



GATTGTTGCCTACT





406
GTGGTCTGCTACCAATCTTTCTATGATAATGGTACCGTTTCTATTA



TATTAGAGTATATG





407
TTGCACTGTCTTATTTTATCAATTTGTATCCTAATACGTGGCCAAT



GAACTTTACGGTTT





408
AAGAAATATATAACAATGTGAGCAGGAAGGTTCTAAATTCAGATGC



TTATAAAGCAGAGC





409
TTCAGTTGCACAGTAAACATGTCTGTATCCTGTGCAGTAGGACTCT



TGTAACTAGTCTGT





410
TTTTGAAGGTTAATAAAAGTATTACGCTAGAACAATTACAGAGGCT



GCTTGTCCGTGCTC





411
CTCAAGAACTGTAGCATATGTTATGACCATTGCAAAGGTTTTAACT



GCTGCGGTATCATG





412
AAATCGTGCGTTGTGAAATTGGTTGTGTATAATCTCTAGAATCCAA



AGGCTTACGGGTCA





413
GAACTGTCTTCGGGCGAGTTTAATCATGTATCTGATTTACGATCGG



TGTTGTGAACGTCG





414
TCCCAACCGTTGGGGGATTTTTTGACGAGTCAGTACCAAATTTATA



GTTGCCTACTGACC





415
TATATTTTTCTCTTACACAAAATGTCGTCAGATATAAATTGGTCTG



GGAATTGTCGATGC





416
TGCATTGGATTCTACCAATGTCGAGAGTGCATTCTTGACTGTCTTG



ACCGAGATATTCAA





417
TGTATCAGATTCTACGTGGACTGAAGTATATCCACTCTGCGAATGT



TATTCATAGAGACT





418
TCCATGTACTAGGTTTCCTATCTAACCTGTAAATAGCCTTATTGCT



ATGAGACTTCAGGC





419
TTGAATCTTAGTTATGCTCCTGGGATCCCTGGAAGTGAGCTAACTA



AGTTAATCCGTCAT





420
TATGTAGATCTTTGTGGCTGTAACATGTACTTCTTGCTTACCTGTT



CGATGCTATATAAT





421
GAGTGCCACAGGATTACCCTGTCAGGACTATATGGTCTTGTCGTTG



GTTGTGGGGATAAA





422
CAACTTGTCGAATCACTTCGCAACCGGATTCAAAATGAGGCTACTG



TTGCATACTACTTG





423
TGTTTTTAGGACACAATGTATTAGGTGCTTGATGCTAGCGCGGACA



CATTGTATTATTTT





424
CATCAGACGGTGAATCCAAAGTATTTTACTATAAGATGAAGGGAGA



CTACTACCGTTATC





425
AAAGATAACTGATTTACCCCTGGACAATGGTGTCAGGGCTATTTTA



AGGGGATGTGAAAA





426
AGATTCTAACATAGTTATTATGATGGCTGGGAACAAGTCTGATTTG



AACCACCTAAGAGC





427
TATTTGAACTCTGTCCCAATATGTACTTTGATTTATGGATTGTAAC



GATGTACTCAATTG





428
GTCATTGTGACTCATGTTAGTATTTGACATGATTCGTGTTAAATTA



TTTATGAAATATTG





429
AGAATTGGTCCGTGATAGTGCCACCGGAGGTTGAGATCTATGAGCT



TAAAACTAATGCTT





430
GGAGTCTTCAACGGCGGTGATGTAAAATATCTATCCCAATGTATAC



CTCCTGTCCTGGAA





431
ATGAGGGAGTTAATTTATAGGGAAGCGCTTGCATTTAATCCCGAGT



ATCTACAGTAATGG





432
TTTTTAAGAAGTGATAATGCACGAAGATATGTAAGACAGCTTCCAC



AGTACCCAAGACAG





433
TGCAAGGGTATCGACAGTCTGCATGTCGTGAAGGTCCCCGAGTGTT



CGAATTTAGGTCTT





434
GCCAGATGTCTAATGCGGCCTTACTTACCATAGCTCGGAACCGTCC



TAACATGACTCGAT





435
ATGATAGTAACTGGCCAGAACCTGACCGTGTGGGACGGCAAGAACT



TGAGATTGTAATGG





436
TTTCCAGACTATTCTCTCAGAGATATACAGGATAATTAGTAAGAAG



CCTCTGTCCTCAGA





437
AATCCGGGAGGGTGTACCAGGACTATTGTGAGGCCATGAGCAGACT



GTCTCTAGGAATAA





438
CCCTTGGGATGCGTATACGATGCGGCTCAAGGTGTATCAATTCGTG



TTACAGATACCATT





439
TTTGTAATCCCCCTGAATAATGGAGTTACTATTGATCAGTGGATAT



TGCTTACTATGTTG





440
GATTTTTAACCCCACGGTTGTTTATGATCACTTGGGCGAAATATAC



TCCGCACTCATTGT





441
GACAAGTTAAGACTATTCTAGAACCATATTTAGCAGTGGTCTGTAA



GCAGGTCTTACAAG





442
CAGCGTCGGCCACTCTCGATAAAACTCTGGCCGCCTAGTCAAAGTA



CTAGGATTATGCTT





443
TCATTCCTTATGCAGTTGTGGCAATAGATTTGCCATGTTAAGTAGT



GAATAGAGAACCCT





444
TGATCCTGGCGATGCGTTCTTGGTGCCAACCCCTTACTATGCAGGA



TTTGATCGAGATTT





445
TTCTTGTTGGTTCCTGCATTGAGAGAGACCTAATTGCTTGATGTCC



TGTAATTTGTAAAA





446
CTTTACATGGTCCTTCATTATACTATAGCCTATAGAAGAAATACAT



TTGCATGTATAGTT





447
TCTCTAGATCCTTAGATTAAGGTTTGATCTGTGTATATGCTGTGTC



GTTGCCTGAGAATG





448
GGATGACGATTTGTTTCAAGATCGTTTTAGCATTGCATACAACCTT



GACCGAGAGTTTGG





449
CTTGACTCGATATCTTTGTGCTGTTGTCTGTAGTATATATCAGTAC



CAGTTAGTTTTACT





450
TTGGATTTGCTAGGATCTAACTGCCTCACGTTGGAGAGACTGGCGT



TTTGCGGTAGCGAT





451
CAAAGCAGATACAGCTGTTGCCAAAAGTCTGAATAAGGAGTTCGGG



CCAATTATGAAGGA





452
CGACTCTAACATTGTTATAATGCTTGTGGGGAATAAGGCTGATTTG



CGACATTTACGTGC





453
CTGCCTTAGCATTAACGGGAACCACATGGGTGTCCATGTGTGGATT



ATGAAAGAGTATGG





454
TTCTTTTGAATTCGCTATCCAGTGTTGGTCAAATTTTAGCCAATAA



TTTAAGTTGTTTCT





455
ATGGAGCTAGTCGTTTGACTAGTACCTGTATGTAGATCTAATGGAA



GCTACAGAGTTCTG





456
TTCGATGCGAAGTCTAATGACTATCGTGTTGTCAGGATTATCCGAT



ACCTAGGTATTCGC





457
AAGAATCTTGAAGTAGGTGAAGAGTAGGATATGTTCTTTCTAGTTT



AAGGTAATTTGAAT





458
GATGCTTCGGGCAGTGAAATTGCTGTTCGAGAACTAATGAAGGAAC



CTTCTTGACTAGTT





459
GTTCACTTCATTACGTTTTATGCGCCACTCTGGGGAGCAATCCTTT



ATAACGGTTTTTCA





460
GTTTTGCTCCTGTACCGTGAGACTCTCGTTTGGTACGATTTAGATA



CCGGTGACGTTGAG





461
AAAGGCGACTCGTGTTCATAGAAACATCTGCTAAGACTGCCACTAA



TGTTAGCAAACTGT





462
GGTCTTGTGGTTATATATGCCAGTTGTCTCTTTTACAGTGAGTTTT



GTGTAACTCCTAAA





463
GACAGAGATCGCTAAAACCATAGAATCCGAGCTACAGAAGTTTGAA



AACGGAAGTGGGAT





464
GAATCTCATTCTGACCCTGGCTCGTGAATACTTTCATATGTACACA



GTATTTCACCGGAC





465
GGAGTTGTGTAGTGTTACTCTCCCGAATCAGACATTAAACACTTAC



TTCTACATGAGGCC





466
TGTTACTAAGAATAGGGTCTTGTTTCATGGTCTACTAATGTAATGA



ATCTCGCTCTTTAT





467
ACTTTCAGTACAAATAACTCACTCGTTCAATAATTTCCGTGGGCTG



TGTTAATTTTAAAG





468
AGAGCAGTGATGGTCAGGCATATAAAGTTTATGTTTACCGCACTGT



TGCTGGACCAAGGA





469
GATTAATTAAATCGGATTCCCCGAAATGGGATGACGTGCTATAAGG



ACGTAGCCACTGCC





470
GAACAATCCGCCCATGTACAGGGAGACCTCTTTCACAGAGTATTTT



GGGTATTACCTCTC





471
TCTCTGCTCATTACCGTTTCAGTGGCTGATAATGGATTCCCACGAT



GCAATTGCGATGAC





472
TAGAAAATGCCTTTGCAGAAGTGCTAACGCAGATCTACCGTACCAC



TAGTAAGAAGACAG





473
GTTTTGTACTATTGGCGTTTGGCAGAAGTTATTTGGCCAGTACGTA



GCTGGCTAAACAAG





474
TTTCACGGGGCATCTCTACACTGATGTAAATAATGTACTTATTTAT



AGCTGACAGTCGAG





475
AATTATTAAAGTGGACATCGTTTGTTTTATGTGACACACCTGACAC



TAATATTCGTAATT





476
TCTCCTAGTGTTGGTGTACTGTTGTAATCAATGGAAAGGTATGTTA



GGCGACGATATTAT





477
CTTGGAAATGCTTACTTGCGAGTATCCTTACATTGAATGCACCAAT



CCGGCTCAAATTTA





478
TTCCTCTGGTGCTTCTACATTTATTACCTCAAGCGCAATGTTTACG



TCCCGAAGGATGAG





479
TGGTAGCATCGGTAGACTACATCTATGCTGTAAACTATTCCTATCC



TATAATAGTTGCAT





480
CCAATCCAATGTTATTTCTTATTAGCGCTAAGACCTTACCTCTGGA



TCCCTTCGTTGAAA





481
TAGATTGATCGATTTGAAGGCTATCTACTTTCAAAAGGATACATGT



TGTGCTTATGATTA





482
AATCAAATGCATTCTTGAGTGATGTCCTACTTAATTTGTCTTTCAT



GACGCGGCTTTTCT





483
GATGTCGTTTGGTATGATTTACATGCTAGGTACATCAATAGGGTAG



ATATAAGGGGCATG





484
AGTTTATTAATGTAGGATTTCCCTTTTATAGTTAAAAGAGTGATTA



GGTGGGGTTAGACC





485
ATATCACAGAGCGTCCATGGTCTGCCACTATCTCTATTTGACAATT



TGTAATATGTAATT





486
ATATACGTTTACACGAGAGAAATAAATTACAATCTGCGATTATATC



CCGATCCACTAGCT





487
GGTCCTTCAAAGTACGTGGGCTCAAATAAAGCGTTAATATGTATGG



TAACTGGTACTTCA





488
GGGGTGTTAATCAAACGTTTACTTGTGTAACCAGTGTAGAGATAGA



ATTGTACTCTAGTA





489
GAAGGGCTGACAGATACAGGTCTTGGTTATATTGGCGAGTACAGCA



CTAATGTAAGGTGG





490
GAAATACCAAGGGCACTAGAGTTCAAGTAGACGTTTATAATTTAAC



CGGCCATTCAACAT





491
TTCAGTGGGGCAGAGACTCTGATTGCGTACAGCAACTTTAGTGTAT



TATATCAAGGTCAT





492
AGAACGAGTTTATGCATGAGAAGCTATGATCCCATGGTTATTAGGG



TGTAGGTCATTATT





493
TGAATATTGTACCTGAGAGCATTCATTGACTTGTAATGAATGTACA



CTCTCTTGGTCTCT





494
TTGTACTAGACTATACTATGGGACGCCTAACCTGTCATTTAAAAAT



GTGAGACTGTTCGT





495
ATTGTGTATTCCTAATCTGAGCCAACTATTGGCCTCTACTTTATTA



TCATTGGACATTAA





496
TCAATACTTTCCAAGGGGTTCGCAAGGTCTTTTGCAATGTCTAGCC



AGATTATTCCATGT





497
AGAAGCCCTTCCGTGTCTTCGATATACGTGCCCGATCTTGTAGACA



ATCTTTAGTATATG





498
TCTTTTGGCATAGTGTTTCCTGATGCACGGTGCAGATATATGACTT



GGCATCTAGATCAG





499
GGAAAAACTTTGACCGATTTCTGGAATCACTTATAGTTGAATTCGA



GCAGGTTCTCATTT





500
ACAAAAGACCAGTAGGACATTATGGGGTCTTAACTTGGTGTGTATA



CCATGGCTATTAAA





501
TTGGCGAATCTACTGTTTTCTACTATAAAATGAAAGGAGACTACTA



CCGTTATCTGGCTG





502
GTGAAATGTGATAATCTTATAGTGTATTAGGATTAGGATTAGATTA



CCAGGCTTTCCTGC





503
ATGGTAGTTTACCAGATTATATGGTTACTATCAACTGTTCGATTGT



TCTAGTGTGCAGTA





504
TCAGACGTTAGAACTCTGGTTAGCTGTGCATCCTATAGTAACGTCT



CTGTAATACGGTGT





505
AATTTGGAACTCAATTATCATGGCCATATCAAATGCGAAATGAAGG



GTGTCATTGTTTCT





506
TTTGTGCACCCTGTTACAACTCGCCAGTATAGGTCTAAATCTGCAT



TTACACAACCCACT





507
AGATTGGAGTTGTGTATTCTAAATCGAGGCCAGCTATTGGGCCTTA



TGCGATTATTATTA





508
GGTTCTGGTTATAAACTTATGTTCAATAAAGAATTAGAATTAGATT



AATCTATATAGGAA





509
TTCAGTCATCCTAAACTGCAGGTCTACTTCCGAGAGTTGTTGAAAC



CCGTTTAGATTCTA





510
ATTCGAACCTCGACTATTCAGTTTCCGATGCGGTCAGAGACAAGCT



GCGGCTTATGAGAG





511
GGTTTAAGTTAGGTTGGAACTTTGAAGTACATTAGTGTTCTGCACT



TTATATCCTAAGTT





512
TTATTACATTACCTGGGTAAGAAGTGGAGTTTAGCTGCTCAGAGGC



AGATAGTAACAAGC





513
AGCTATTATTTGTTTGAGGAGCAATGGACATGACACCTACATATTT



ATTTAAGGTAGGGA





514
GAATTTCCGTGGTTATGGCTCTGCTACATATGGGCAACCTGTTAGG



GCTATCCTACTAAA





515
AATAAGGTGGATTATTAAATCGCGTATTTTTAACTTATCTAATATC



TATTTACTGACTCG





516
GACATCTCCGCTCTTTAGTTAATGGGTCTCTCATTTCCTGAACGTC



TAGGCAGGCCTATC





517
GCCTTTCTAATCGAGCAGATATTGATGGACTGAACACGATGTGTAT



ATGGAGCGTGCTTT





518
TTAAAGGGCTGAAGAGAAGTCGATCGGTGTACGTTGTTGTCGTCAG



GTTGCAGGTTCGAA





519
TAATTGCCCCGCTGTGGACATATAAATATCATGTCCGTTGGTGTGA



GTAGATATCATGTC





520
TTTCGATAATTCAATTTCCGACGCGGTCAGAACCAAGCTGAGGCAA



ATGCGAGATGTCAT





521
ACTGTTGGTGGAAATATGTGATGCCAAATGCTAGGAAAAATTATTT



AGATATTATTGCAT





522
ATTTTACGGAGAGCATAAGCTATAAAAGCAAATCGGTCTGCAGTGT



ATTATCGACATCCC





523
CTTCTTACTGCTTCAGCTCTACAAATTAGTGTGGGGGGCGAGCAGT



CGAGCCTATAAGTT





524
CACTTGGCACCCTGCGGACACAAGTCCTAGGTTTAATCGCATATGT



TGGCGTGACTAGAT





525
TGACTGATTTGCTTGGCACTCCGTCAACAGAAACACTTTCTAGGAT



CCGCAATGAGAAGG





526
GCATGTCAGTTTTAAGAGACAAGCACCCTGCTATTGCTCTGTATGA



TTTATTAGTGAACC





527
AGCTTGCACCAACGTAGGTCACCAGTTAATATGCATTCTTCTTTCA



GAAATTCAAGGAAG





528
ATAAGTTTGTAGCTATCAACATGACTAAGCTTTAGTGAAGGGCTAT



ACAATGCATCTTTA





529
GGAGGCTATTGGTTAATACATATAAAGGGTGGTAAAGCGCTGTTCA



TATTTTTCCTAGAA





530
GGAAGAACTTTGCGTTTCCCTGCATTTCTACTTGTACCCTTATTCA



TTCATTCAAGAAAA





531
ATCTTGATTACTTGGCAGTCCTTTCTAGATACAATCCTTTCGAGGC



ATTTATATTCATTT





532
GTGCTGTAGATATGTTCAAGAGACAATTTGCTCATCTAGAGGAACA



CTATAGTAAAGGTG





533
CCAGAACCTACTAAACTGGATGCTAAATGAGCCAGACGTTCCAAAT



AATAGACAGTTAAC





534
AGACCTCTTAATCCATGGTGAGAGCATGAGGTCTAATAAGTTCGGA



ACCGTGTATTCATC





535
AAGTAACATTTTGTGCAGACAGTGGTTACAACTTTGAAAATTGGAA



GCTGGGCTATTTTC





536
TTTTCGAAAGCTCATCGAGCAGCTATAGAAACATTAATGCATGAAA



GAGATCTAAATATT





537
TGCAAATTAGTACCATTCGACAGCTGCCACCTGCCCATTGTTTGAT



TCCACGTGGCACAG





538
TTTGAAGTGAGTAACACCTAGACATGACATTGTACAACTTAAAGAA



CAATAGAAATTTGC





539
TTTACAGTTGTAGTTGTTTGCACGAATTGTTGAGTAACTTCTTTAC



TCATTTGAGGGTTT





540
TTGATCTTATGGATCTGACAAACAATGCACTGATTTATTCGTATGA



GACCAAAAAATCTC





541
GATGATCCAAGGTATCTCGTCATGTCCTTAAGAGCTTGGTTTCTCT



TTCTATCCCAGTTT





542
GCAAATGAACAGCCTGGCAGATTCCTAGTCTGGAATTAGGCAGTAA



ATAGTTATTTAATT





543
ACATCTAAGTGGTTTTATGTACATATAAGAAACTGGCATGTTTATG



AGTGGAACAACTTT





544
CTGTAAAACTTATCTTTGTATATAACAAGATTGAGCATGCCTAGAA



TAGAAAGAACAATT





545
TTAATCAAATCTGCAGTGTTAACCACCTGTTATCTACATGGGATTC



TTACAAGCTATTCT





546
AAGTGGTTATGATTATCCAAAGTTCGTATCCGCAGATTACATGACA



GTGTATGCTGCGCA





547
AAGATGAGATGTAGAGATGGATAAAGTTTGAATATATCTCAAAGCA



CGGCCTTGAGTTTT





548
AATTAATACCGGTTGAGTTTGTTCGGTTACACAATATATGACTTCA



TGATTAGCCATTTA





549
AAATGTCGGGTCGCAGAAATCCGCTGTTGAATATCCCAATTCCTGC



TCGGCAACAGACTC





550
AGAGCGAGTCTTTTATAACAGGTTATTTTATTGTAAGAAAGCACAC



TTGTTTATGTGTAA





551
TCCACATGCACGGTCCAGTCCTCAGTGTTCACCCATAAGGACACCC



CATGTTTGTTAATG





552
AATGCTCGGACACAGTAAATTAAATTCACTCGAGAATAAGTTCCTC



GCCATTCACAATAA





553
CTTAGGCTTGAGCCCTAGATGCTGTACACAGAGCAGAATAATAGTG



ATGTATTAAGTAAT





554
GGATATCTGAGGTATTGATGTTGTACGATCCTCAGATCTACCTTTG



ATGCGTTATGCTGA





555
GAACTATGCTTTAACCTCTTTCAAATGTGTTTGTCAAATGCTTTCA



TAGCTTTATATATT





556
ATCATAATAGACATTCAAGTGATGACACCCTATGGTAAAACAATGG



TTTCCAGATTCCAT





557
AAATAAAGTATAGAATATTACAGTATGTCCACTCACTCTTCCAGGG



TTTCCCCGATGGAT





558
TATGGTTCAGTATCAAGCCCAAAAGGGACAACAACCATGCAGTCCC



TCTGTACTGTAAGA





559
CAGTGTAGAGCATCTTCAGGCACAAGGACTACAGTATTACGGCGGA



TGATCAGTATAGCT





560
CAAAAAGTTTTGGAGTAATTGAGTAAATTATCCAATATGGTATTTG



ACCTCCTAAACAAA





561
GTTTTCTCAAAGTCGTAATAAATTTGTTTAGAAATTGTTGTACTGT



TAATGCCCAACCGG





562
CATTTTATCAATTAGAAGGACAACTTTTATGAAAGCAGGATAATTC



TAGGTGTAGTGCTA





563
TTTTCAAGTTTTTAAGACAGTTAAATACTCCTATCCTGTGGTGTCT



GGATAAACATACCA





564
TGTGTAATCCATTAGCAAGGTCCTTGACAGCATTTTAAGCTGTAAG



TTTAGAAGGTTTCA





565
TATGCTTGAATTTAAGTAGATTGGAGCTGTGAGACAGATGATTATA



TTCTCGACTTTTCT





566
TTTATTCATTTTAGTGAGTGGAAGGAGAGGACATTTTTATGGGTCT



GCCACAGAAATTGA





567
TGAACAAGCACCAAAGTTTGGTAGTTGGAAAGACTAAATGAAATCA



TTATGAGTATATTC





568
CATTTGCATATTTAGAGGATATTCAAATGAGATTTATGAAGACATA



TGGCCGTGTGGCTC





569
ATGTTCCATGCCTAACAGGTATTGAGATTCAGGTCTATGTAGTAGT



TTATCGTATACATC





570
GCTGCAGATAAGTCCCTTTACATTAAATGATTGGAAATTCTATACC



CGGCTAAATGTTGT





571
TATTTTCAGGGAAAATGTCGCCTGCGGAGTCTTCTCGTGAAGAAAG



TGTGTATATGGCCA





572
TTTATGTACTTTGAGTGTCTGACTAGAGAAGCATCATCGCTAGAAT



TAAGGAGGATGCCT





573
AATTTTTCGTTATTCAATGCATGTTTTCTCCTTACAGGAATTGCGA



GCCTCTCGAGTCTT





574
AATCTCATCCAGCCGTTCTCACATCAAATCTTGCGAACTCGGAAAT



TAGCGTTCAATATA





575
TGCCATGTGTTTAAGATTTCCGCATGTATACCGGCACTATTAACAT



ATGCAAGTATTCAT





576
TAATTTCTATACGTAGTACGTTTTTGAGATTTTGTGTGTTATAAAG



CCACATGTTATGCT





577
GATGTTTCCGTATGCATTTATTGTCTCGGAAGTCTTGTTATTTCTA



GGCTTTTGTTCTTC





578
TATGGACTTACTCGCAAGCAGCTCGACCGTGATATCTGGGTATAAC



TAACTAGCTATAAA





579
TCTAGAGAACTATTCAAGGTATTTGAGTGGAAACTATAACTATAAG



ATAGCTGTAGGTGT





580
CTGTAAATATAGATTTGTGGTGGCACGAAGAGGCTTCGAATAATGT



GACCTTCATGTTTT





581
GGATATTACTATCTCAAATTGTCGGTTCCCGTGTGCGCTCTTTCGT



GCTGCCTAGTTTAA





582
CTTTTGTCACCATTCTTGTATGACTTGTAAACAGTACGCAGATTCG



ATATCCTATTCGGC





583
TGTATATTACGCAGAGGATTTGTCCATCTATAACATGATCGTCGAT



CGTCACTACTTTAC

















TABLE 7







Nucleotide Sequence of the DNA



Construct pWVR202









SEQ




ID










NO
Sequence












584
CGCCGGCGTTGTGGATACCTCGCGGAAAACTTGGCCCTCACTGACAG




ATGAGGGGCGGACGTTGACACTTGAGGGGCCGACTCACCCGGCGCGG



CGTTGACAGATGAGGGGCAGGCTCGATTTCGGCCGGCGACGTGGAGC



TGGCCAGCCTCGCAAATCGGCGAAAACGCCTGATTTTACGCGAGTTT



CCCACAGATGATGTGGACAAGCCTGGGGATAAGTGCCCTGCGGTATT



GACACTTGAGGGGCGCGACTACTGACAGATGAGGGGCGCGATCCTTG



ACACTTGAGGGGCAGAGTGCTGACAGATGAGGGGCGCACCTATTGAC



ATTTGAGGGGCTGTCCACAGGCAGAAAATCCAGCATTTGCAAGGGTT



TCCGCCCGTTTTTCGGCCACCGCTAACCTGTCTTTTAACCTGCTTTT



AAACCAATATTTATAAACCTTGTTTTTAACCAGGGCTGCGCCCTGTG



CGCGTGACCGCGCACGCCGAAGGGGGGTGCCCCCCCTTCTCGAACCC



TCCCGGCCCGCTAACGCGGGCCTCCCATCCCCCCAGGGGCTGCGCCC



CTCGGCCGCGAACGGCCTCACCCCAAAAATGGCAGCGCTGGCAGTCC



ATAATTGTGGTTTCAAAATCGGCTCCGTCGATACTATGTTATACGCC



AACTTTGAAAACAACTTTGAAAAAGCTGTTTTCTGGTATTTAAGGTT



TTAGAATGCAAGGAACAGTGAATTGGAGTTCGTCTTGTTATAATTAG



CTTCTTGGGGTATCTTTAAATACTGTAGAAAAGAGGAAGGAAATAAT



AAATGGCTAAAATGAGAATATCACCGGAATTGAAAAAACTGATCGAA



AAATACCGCTGCGTAAAAGATACGGAAGGAATGTCTCCTGCTAAGGT



ATATAAGCTGGTGGGAGAAAATGAAAACCTATATTTAAAAATGACGG



ACAGCCGGTATAAAGGGACCACCTATGATGTGGAACGGGAAAAGGAC



ATGATGCTATGGCTGGAAGGAAAGCTGCCTGTTCCAAAGGTCCTGCA



CTTTGAACGGCATGATGGCTGGAGCAATCTGCTCATGAGTGAGGCCG



ATGGCGTCCTTTGCTCGGAAGAGTATGAAGATGAACAAAGCCCTGAA



AAGATTATCGAGCTGTATGCGGAGTGCATCAGGCTCTTTCACTCCAT



CGACATATCGGATTGTCCCTATACGAATAGCTTAGACAGCCGCTTAG



CCGAATTGGATTACTTACTGAATAACGATCTGGCCGATGTGGATTGC



GAAAACTGGGAAGAAGACACTCCATTTAAAGATCCGCGCGAGCTGTA



TGATTTTTTAAAGACGGAAAAGCCCGAAGAGGAACTTGTCTTTTCCC



ACGGCGACCTGGGAGACAGCAACATCTTTGTGAAAGATGGCAAAGTA



AGTGGCTTTATTGATCTTGGGAGAAGCGGCAGGGCGGACAAGTGGTA



TGACATTGCCTTCTGCGTCCGGTCGATCAGGGAGGATATCGGGGAAG



AACAGTATGTCGAGCTATTTTTTGACTTACTGGGGATCAAGCCTGAT



TGGGAGAAAATAAAATATTATATTTTACTGGATGAATTGTTTTAGTA



CCTAGATGTGGCGCAACGATGCCGGCGACAAGCAGGAGCGCACCGAC



TTCTTCCGCATCAAGTGTTTTGGCTCTCAGGCCGAGGCCCACGGCAA



GTATTTGGGCAAGGGGTCGCTGGTATTCGTGCAGGGCAAGATTCGGA



ATACCAAGTACGAGAAGGACGGCCAGACGGTCTACGGGACCGACTTC



ATTGCCGATAAGGTGGATTATCTGGACACCAAGGCACCAGGCGGGTC



AAATCAGGAATAAGGGCACATTGCCCCGGCGTGAGTCGGGGCAATCC



CGCAAGGAGGGTGAATGAATCGGACGTTTGACCGGAAGGCATACAGG



CAAGAACTGATCGACGCGGGGTTTTCCGCCGAGGATGCCGAAACCAT



CGCAAGCCGCACCGTCATGCGTGCGCCCCGCGAAACCTTCCAGTCCG



TCGGCTCGATGGTCCAGCAAGCTACGGCCAAGATCGAGCGCGACAGC



GTGCAACTGGCTCCCCCTGCCCTGCCCGCGCCATCGGCCGCCGTGGA



GCGTTCGCGTCGTCTCGAACAGGAGGCGGCAGGTTTGGCGAAGTCGA



TGACCATCGACACGCGAGGAACTATGACGACCAAGAAGCGAAAAACC



GCCGGCGAGGACCTGGCAAAACAGGTCAGCGAGGCCAAGCAGGCCGC



GTTGCTGAAACACACGAAGCAGCAGATCAAGGAAATGCAGCTTTCCT



TGTTCGATATTGCGCCGTGGCCGGACACGATGCGAGCGATGCCAAAC



GACACGGCCCGCTCTGCCCTGTTCACCACGCGCAACAAGAAAATCCC



GCGCGAGGCGCTGCAAAACAAGGTCATTTTCCACGTCAACAAGGACG



TGAAGATCACCTACACCGGCGTCGAGCTGCGGGCCGACGATGACGAA



CTGGTGTGGCAGCAGGTGTTGGAGTACGCGAAGCGCACCCCTATCGG



CGAGCCGATCACCTTCACGTTCTACGAGCTTTGCCAGGACCTGGGCT



GGTCGATCAATGGCCGGTATTACACGAAGGCCGAGGAATGCCTGTCG



CGCCTACAGGCGACGGCGATGGGCTTCACGTCCGACCGCGTTGGGCA



CCTGGAATCGGTGTCGCTGCTGCACCGCTTCCGCGTCCTGGACCGTG



GCAAGAAAACGTCCCGTTGCCAGGTCCTGATCGACGAGGAAATCGTC



GTGCTGTTTGCTGGCGACCACTACACGAAATTCATATGGGAGAAGTA



CCGCAAGCTGTCGCCGACGGCCCGACGGATGTTCGACTATTTCAGCT



CGCACCGGGAGCCGTACCCGCTCAAGCTGGAAACCTTCCGCCTCATG



TGCGGATCGGATTCCACCCGCGTGAAGAAGTGGCGCGAGCAGGTCGG



CGAAGCCTGCGAAGAGTTGCGAGGCAGCGGCCTGGTGGAACACGCCT



GGGTCAATGATGACCTGGTGCATTGCAAACGCTAGGGCCTTGTGGGG



TCAGTTCCGGCTGGGGGTTCAGCAGCCAGCGCTTTACAAAGGAGTCT



AGAAGATCCTGGCATTTCAGGAACAAGCGGGCACTGCTCGACGCACT



TGCTTCGCTCAGTATCGCTCGGGACGCACGGCGCGCTCTACGAACTG



CCGATAGACAACTGTCACGGTTAAGCGAGAAATGAATAAGAAGGCTG



ATAATTCGGATCTCTGCGAGGGAGATGATATTTGATCACAGGCAGCA



ACGCTCTGTCATCGTTACAATCAACATGCTACCCTCCGCGAGATCAT



CCGTGTTTCAAACCCGGCAGCTTAGTTGCCGTTCTTCCGAATAGCAT



CGGTAACATGAGCAAAGTCTGCCGCCTTACAACGGCTCTCCCGCTGA



CGCCGTCCCGGACTGATGGGCTGCCTGTATCGAGTGGTGATTTTGTG



CCGAGCTGCCGGTCGGGGAGCTGTTGGCTGGCTGGTGGCAGGATATA



TTGTGGTGTAAACAAATTGACGCTTAGACAACTTAATAACACATTGC



GGACGTTTTTAATGTACTGGGGTGGTTTTTCTTTTCACCAGTGAGAC



GGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCA



GCAAGCGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTG



ATGGTGGTTCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAG



CCCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACT



ATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATC



AGGGCGATGGCCCACGGCCGCTCTAGAACTAGTGGATCCCCCCTACG



TGCGATCTAGTAACATAGATGACACCGCGCGCGATAATTTATCCTAG



TTTGCGCGCTATATTTTGTTTTCTATCGCGTATTAAATGTATAATTG



CGGGACTCTAATCATAAAAACCCATCTCATAAATAACGTCATGCATT



ACATGTTAATTATTACATGCTTAACGTAATTCAACAGAAATTATATG



ATAATCATCGCAAGACCGGCAACAGGATTCAATCTTAAGAAACTTTA



TTGCCAAATGTTTGAACGATCCCTCAGAAGAACTCGTCAAGAAGGCG



ATAGAAGGCGATGCGCTGCGAATCGGGAGCGGCGATACCGTAAAGCA



CGAGGAAGCGGTCAGCCCATTCGCCGCCAAGCTCTTCAGCAATATCA



CGGGTAGCCAACGCTATGTCCTGATAGCGGTCCGCCACACCCAGCCG



GCCACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACCATGATAT



TCGGCAAGCAGGCATCGCCATGGGTCACGACGAGATCCTCGCCGTCG



GGCATGCGCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCGAGCCC



CTGATGCTCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCA



TCCGAGTACGTGCTCGCTCGATGCGATGTTTCGCTTGGTGGTCGAAT



GGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCATTGCATCAGC



CATGATGGATACTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGAT



CCTGCCCCGGCACTTCGCCCAATAGCAGCCAGTCCCTTCCCGCTTCA



GTGACAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTCGTGGCCAG



CCACGATAGCCGCGCTGCCTCGTCCTGGAGTTCATTCAGGGCACCGG



ACAGGTCGGTCTTGACAAAAAGAACCGGGCGCCCCTGCGCTGACAGC



CGGAACACGGCGGCATCAGAGCAGCCGATTGTCTGTTGTGCCCAGTC



ATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTGCGTGCA



ATCCATCTTGTTCAATCATCTGTTAATCAGAAAAACTCAGATTAATC



GACAAATTCGATCGCACAAACTAGAAACTAACACCAGATCTAGATAG



AAATCACAAATCGAAGAGTAATTATTCGACAAAACTCAAATTATTTG



AACAAATCGGATGATATTTATGAAACCCTAATCGAGAATTAAGATGA



TATCTAACGATCAAACCCAGAAAATCGTCTTCGATCTAAGATTAACA



GAATCTAAACCAAAGAACATATACGAAATTGGGATCGAACGAAAACA



AAATCGAAGATTTTGAGAGAATAAGGAACACAGAAATTTACCTTGAT



CACGGTAGAGAGAATTGAGAGAAAGTTTTTAAGATTTTGAGAAATTG



AAATCTGAATTGTGAAGAAGAAGAGCTCTTTGGGTATTGTTTTATAG



AAGAAGAAGAAGAAAAGACGAGGACGACTAGGTCACGAGAAAGCTAA



GGCGGTGAAGCAATAGCTAATAATAAAATGACACGTGTATTGAGCGT



TGTTTACACGCAAAGTTGTTTTTGGCTAATTGCCTTATTTTTAGGTT



GAGGAAAAGTATTTGTGCTTTGAGTTGATAAACACGACTCGTGTGTG



CCGGCTGCAACCACTTTGACGCCGTTTATTACTGACTCGTCGACAAC



CACAATTTCTAACGGTCGTCATAAGATCCAGCCGTTGAGATTTAACG



ATCGTTACGATTTATATTTTTTTAGCATTATCGTTTTATTTTTTAAA



TATACGGTGGAGCTGAAAATTGGCAATAATTGAACCGTGGGTCCCAC



TGCATTGAAGCGTATTTCGTATTTTCTAGAATTCTTCGTGCTTTATT



TCTTTTCCTTTTTGTTTTTTTTTGCCATTTATCTAATGCAAGTGGGC



TTATAAAATCAGTGAATTTCTTGGAAAAGTAACTTCTTTATCGTATA



ACATATTGTGAAATTATCCATTTCTTTTAATTTTTTAGTGTTATTGG



ATATTTTTGTATGATTATTGATTTGCATAGGATAATGACTTTTGTAT



CAAGTTGGTGAACAAGTCTCGTTAAAAAAGGCAAGTGGTTTGGTGAC



TCGATTTATTCTTGTTATTTAATTCATATATCAATGGATCTTATTTG



GGGCCTGGTCCATATTTAACACTCGTGTTCAGTCCAATGACCAATAA



TATTTTTTCATTAATAACAATGTAACAAGAATGATACACAAAACATT



CTTTGAATAAGTTCGCTATGAAGAAGGGAACTTATCCGGTCCTAGAT



CATCAGTTCATACAAACCTCCATAGAGTTCAACATCTTAAACAAGGA



TATCCTGATCCGTTGACGGCGCGCCAAGCGGCCGCAAAACCCCTCAC



AAATACATAAAAAAAATTCTTTATTTAATTATCAAACTCTCCACTAC



CTTTCCCACCAACCGTTACAATCCTGAATGTTGGAAAAAACTAACTA



CATTGATATAAAAAAACTACATTACTTCCTAAATCATATCAAAATTG



TATAAATATATCCACTCACTTGGACAAATTGCCCATAGTTGGAAAGA



TGTTCACCAAGTCAACAAGATTTATCAATGGAAAAATCCATCTACCA



AACTTACTTTCAAGAAAATCCAAGGATTATAGAGTAAAAAATCTATG



TATTATTAAGTCAAAAAGAAAACCAAAGTGAACAAATATTGATGTAC



AAGTTTGAGAGGATAAGACATTGGAATCGTCTAACCAGGAGGCGGAG



GAATTCCCTAGACAGTTAAAAGTGGCCGGAATCCCGGTAAAAAAGAT



TAAAATTTTTTTGTAGAGGGAGTGCTTGAATCATGTTTTTTATGATG



GAAATAGATTCAGCACCATCAAAAACATTCAGGACACCTAAAATTTT



GAAGTTTAACAAAAATAACTTGGATCTACAAAAATCCGTATCGGATT



TTCTCTAAATATAACTAGAATTTTCATAACTTTCAAAGCAACTCCTC



CCCTAACCGTAAAACTTTTCCTACTTCACCGTTAATTACATTCCTTA



AGAGTAGATAAAGAAATAAAGTAAATAAAAGTATTCACAAACCAACA



ATTTATTTCTTTTATTTACTTAAAAAAACAAAAAGTTTATTTATTTT



ACTTAAATGGCATAATGACATATCGGAGATCCCTCGAACGAGAATCT



TTTATCTCCCTGGTTTTGTATTAAAAAGTAATTTATTGTGGGGTCCA



CGCGGAGTTGGAATCCTACAGACGCGCTTTACATACGTCTCGAGAAG



CGTGACGGATGTGCGACCGGATGACCCTGTATAACCCACCGACACAG



CCAGCGCACAGTATACACGTGTCATTTCTCTATTGGAAAATGTCGTT



GTTATCCCCGCTGGTACGCAACCACCGATGGTGACAGGTCGTCTGTT



GTCGTGTCGCGTAGCGGGAGAAGGGTCTCATCCAACGCTATTAAATA



CTCGCCTTCACCGCGTTACTTCTCATCTTTTCTCTTGCGTTGTATAA



TCAGTGCGATATTCTCAGAGAGCTTTTCATTCAAAGGTATGGAGTTT



TGAAGGGCTTTACTCTTAACATTTGTTTTTCTTTGTAAATTGTTAAT



GGTGGTTTCTGTGGGGGAAGAATCTTTTGCCAGGTCCTTTTGGGTTT



CGCATGTTTATTTGGGTTATTTTTCTCGACTATGGCTGACATTACTA



GGGCTTTCGTGCTTTCATCTGTGTTTTCTTCCCTTAATAGGTCTGTC



TCTCTGGAATATTTAATTTTCGTATGTAAGTTATGAGTAGTCGCTGT



TTGTAATAGGCTCTTGTCTGTAAAGGTTTCAGCAGGTGTTTGCGTTT



TATTGCGTCATGTGTTTCAGAAGGCCTTTGCAGATTATTGCGTTGTA



CTTTAATATTTTGTCTCCAACCTTGTTATAGTTTCCCTCCTTTGATC



TCACAGGAACCCTTTCTTCTTTGAGCATTTTCTTGTGGCGTTCTGTA



GTAATATTTTAATTTTGGGCCCGGGTTCTGAGGGTAGGTGATTATTC



ACAGTGATGTGCTTTCCCTATAAGGTCCTCTATGTGTAAGCTGTTAG



GGTTTGTGCGTTACTATTGACATGTCACATGTCACATATTTTCTTCC



TCTTATCCTTCGAACTGATGGTTCTTTTTCTAATTCGTGGATTGCTG



GTGCCATATTTTATTTCTATTGCAACTGTATTTTAGGGTGTCTCTTT



CTTTTTGATTTCTTGTTAATATTTGTGTTCAGGTTGTAACTATGGGT



TGCTAGGGTGTCTGCCCTCTTCTTTTGTGCTTCTTTCGCAGAATCTG



TCCGTTGGTCTGTATTTGGGTGATGAATTATTTATTCCTTGAAGTAT



CTGTCTAATTAGCTTGTGATGATGTGCAGGTATATTCGTTAGTCATA



TTTCAATTTCAAGCGATCCCCCGGGCTGCAGGCTAGCTAAAAGTACT



TTTCCTAGGATCGATGGGTGTTATTTGTGGATAATAAATTCGGGTGA



TGTTCAGTGTTTGTCGTATTTCTCACGAATAAATTGTGTTTATGTAT



GTGTTAGTGTTGTTTGTCTGTTTCAGACCCTCTTATGTTATATTTTT



CTTTTCGTCGGTCAGTTGAAGCCAATACTGGTGTCCTGGCCGGCACT



GCAATACCATTTCGTTTAATATAAAGACTCTGTTATCCGTGAGCTCG



AATTTCCCCGATCGTTCAAACATTTGGCAATAAAGTTTCTTAAGATT



GAATCCTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGA



ATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTATTT



ATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTTAATA



CGCGATAGAAAACAAAATATAGCGCGCAAACTAGGATAAATTATCGC



GCGCGGTGTCATCTATGTTACTAGATCGCGGCCGCATTTAAATGGGC



CCTGTTAACTGGTACCTTAATTAAAAGTTTAAACTATCAGTGTTTGA



CAGGATATATTGGCGGGTAAACCTAAGAGAAAAGAGCGTTTATTAGA



ATAATCGGATATTTAAAAGGGCGTGAAAAGGTTTATCCGTTCGTCCA



TTTGTATGTGCATGCCAACCACAGGGTTCCCCAGATC
















TABLE 15







Summary of results for cell signaling genes in transformants
























E. grandis x









Increased
Increase in


E. europhylla


P. taeda plants







regenerative
regenerative

P. deltoids

plants
with growth






ability of
ability of
plants
with mean growth
increases when







P. deltoids


P. deltoids

displaying
increases when
compared to






transformants
transformants
growth
compared to
controls and with




Putative
SEQ
after 12 weeks
after 5 months
increases of
controls and with
increases of >50%



DNA
Cell Signaling
ID
(example 16,
(Example 16,
>50%
increases of >50%
(example
Other



Construct
Gene
NO
table 10)
table 11)
(example 20)
(example 23)
25)
observations




















1
pGrowth1
Poly-
130
NT
NT
NT
NT
yes
Patterned




phosphoinositide






necrosis in




binding protein







P. deltoids












(example 21)


2
pGrowth2
Poly-
132
NT
NT

NT

Patterned




phosphoinositide






necrosis in




binding protein







P. deltoids












(exampe 21)


3
pGrowth3
Poly-
122
NT
NT

NT
yes




phosphoinositide




binding protein


4
pGrowth11
Ethylene-
117

yes
yes
NT
yes




responsive




elongation factor


5
pGrowth21
G-protein coupled
150

yes
yes
NT
yes




receptor


6
pGrowth22
14-3-3 protein
180
yes
yes

yes
NT


7
pGrowth23
14-3-3 protein
195



NT



8
pGrowth24
14-3-3 protein
192
yes
yes
yes
NT
NT
Increased











leaf surface











area in












P. deltoids












(example 17)


9
pGrowth25
Synaptobrevin-
98

yes
yes
NT

Longer




like






internodes in












P. deltoids












(example 18)


10
pGrowth26
Synaptobrevin-
140

yes
yes
NT
NT




like


11
pGrowth27
Synaptobrevin-
155

yes
yes
yes
NT




like


12
pGrowth28
Synaptobrevin-
124

yes

NT
NT




like


13
pGrowth29
SNF1-related
113

yes
NT
NT
NT




protein kinase


14
pGrowth30
Ethylene
152
yes
yes
yes
NT
yes




Receptor


15
pGrowth49
Synaptobrevin
141
NT
NT
NT
NT
NT




like


16
pGrowth51
Poly-
164
NT
NT
NT
NT
NT




phosphoinositide




binding protein





NT = not tested


— No effect observed





Claims
  • 1. An isolated polynucleotide comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 130 and a variant thereof, wherein said variant encodes the same polypeptide as that encoded by the nucleic acid sequence of SEQ ID NO: 130.
  • 2. A DNA construct comprising the polynucleotide of claim 1.
  • 3. The DNA construct of claim 2, further comprising a promoter, wherein the promoter and the polynucleotide are operably linked.
  • 4. The DNA construct of claim 2, wherein the polynucleotide encodes an RNA transcript.
  • 5. The DNA construct of claim 4, wherein the polynucleotide is in a sense or antisense orientation relative to the promoter.
  • 6. The DNA construct of claim 4, wherein the RNA transcript induces RNA interference of the polynucleotide.
  • 7. A plant cell transformed with the DNA construct of claim 2.
  • 8. The DNA construct of claim 6, wherein the RNA transcript is a small interfering RNA.
US Referenced Citations (7)
Number Name Date Kind
6667502 Agarwal et al. Dec 2003 B1
6867350 Ferl et al. Mar 2005 B2
7135616 Heard et al. Nov 2006 B2
20020107644 Meglen et al. Aug 2002 A1
20020113212 Meglen et al. Aug 2002 A1
20050016494 Udy Jan 2005 A1
20050214263 Vaistij et al. Sep 2005 A1
Foreign Referenced Citations (2)
Number Date Country
0271988 Aug 1995 EP
WO 0175164 Oct 2001 WO
Related Publications (1)
Number Date Country
20070039071 A1 Feb 2007 US
Provisional Applications (1)
Number Date Country
60691398 Jun 2005 US