Plant fatty acid desaturases and alleles therefor

Information

  • Patent Application
  • 20030150020
  • Publication Number
    20030150020
  • Date Filed
    April 01, 2002
    22 years ago
  • Date Published
    August 07, 2003
    21 years ago
Abstract
In one aspect, the invention provides new variants of the Fad3 enzyme, including amino acid substitutions, as well as nucleic acid sequences encoding such peptides. Other aspects of the invention include transgenic plants and plant parts. Vectors capable of transforming plant cells are provided, including the nucleic acids of the invention, including Fad3 coding sequences. Corresponding methods are provided for obtaining the transgenic plants of the invention. Methods are provided for using the plants of the invention, including selected plants and transgenic plants, to obtain plant products. Amplification primers for identifying the Fad3 alleles of the invention are provided, together with methods of obtaining plants using the Fad3 alleles of the invention as markers.
Description


FIELD OF THE INVENTION

[0001] The invention is in the field of plant biology, involving compositions and methods related to fatty acid metabolism in plants. Aspects of the invention include genes and enzymes involved in fatty acid metabolism in plants, as well as plants and plant parts having the genes and expressing the enzymes, and methods for making the plants and plant parts using the genes (including recombinant genetic engineering methods and classical plant breeding methods using markers of the invention).



BACKGROUND OF THE INVENTION

[0002] Fatty acids arc acyl lipids that are found in a variety of plant tissues, including the triacylglycerols in oil bodies of seeds and fruits, as well as the glycolipids and phospholipids in leaves, roots or shoots. Fatty acids include saturated and unsaturated monocarboxylic acids with unbranched even-numbered carbon chains, such as the unsaturated fatty acids: oleic (18:1, i.e. a C18 chain with a double bond in position 1), linoleic (18:2) and linolenic (18:3) acid.


[0003] Significant efforts have been made to manipulate the fatty acid profile of plants, particularly oil-seed varieties such as canola that are used for the large-scale production of commercial fats and oils (see for example U.S. Pat. No. 5,625,130 issued to Grant et al. Apr. 29, 1997; U.S. Pat. No. 5,668,299 issued to DeBonte et al. Sept. 16, 1997; U.S. Pat. No. 5,767,338 issued to Fan Jun. 16, 1998; U.S. Pat. No. 5,777,201 issued to Poutre et al. Jul. 7, 1998; U.S. Pat. No. 5,840,946 issued to Wong et al. Nov. 24, 1998; and U.S. Pat. No. 5,850,026 issued to DeBonte et al. Dec. 15, 1998).


[0004] A reduction in the linolenic acid content of plant oils may be desirable for some applications. Low linolenic acid cultivars of B. napus have for example been developed from the cultivar Oro (Röbbelen and Nitsch, 1975, L. Z PflanzenzÜchtg 75:93), by mutagenesis including the low linolenic acid cultivars Stellar (Scarth et al., 1988, Can J Plant Sci 68:509) and Apollo (Scarth et al., 1994, Can J Plant Sci 75:203). The Apollo line has been used to identify molecular markers associated with low linolenic acid loci in a double haploid population derived from a cross between the Apollo line (low linolenic) and a high linolenic line (YN90-1016), using random amplification of polymorphic DNAs and bulk segregant analysis (Somers et al., 1998, Theoretical and Applied Genetics 96(6/7):897). The rapeseed fad3 gene, one of 13 markers identified by Somers et al., supra, was mapped near the locus controlling 14% of the variation in linolenic acid content, confirming a link between the fad3 gene and a low linolenic acid phenotype (Jourdren et al., 1996, Theoretical and Applied Genetics 93:512).


[0005] The product of the Fad3 gene is a fatty acid desaturase known variously as delta-15 fatty acid desaturase, linoleic acid desaturase, omega-3 fatty acid desaturase, Fad3 or 15-DES (Arondel et al., 1992, Science 258:1353; Yadav et al., 1993, Plant Physiol. 103:467; WO 93/11245; and WO 98/56239 published Dec. 17, 1998), hereinafter called Fad3. Fad 3 is involved in the enzymatic conversion of linoleic acid to alpha-linolenic acid. In WO 98/56239, DeBonte et al. disclose mutant Fad3 genes, and identify regions of the Fad3 enzyme that are said to contain conserved amino acid motifs which may be mutated to alter fatty acid metabolism in a plant (see Tables 5 and 6 therein). The genomic regions identified by DeBonte et al. generally coincide with the first two of three ‘Histidine Box’ motifs that have been imputed to have a role in the functional activity of the Fad3 enzyme.



SUMMARY OF THE INVENTION

[0006] It has unexpectedly been discovered that plant fatty acid metabolism may be altered by mutations in the Fad3 enzyme, particularly by amino acid substitutions in regions of the protein outside of the regions taught to be functionally important in WO 98/56239. In one aspect, the invention accordingly provides new variants of the Fad3 enzyme, comprising non-conserved amino acid substitutions, as well as nucleic acid sequences encoding such peptides. It is disclosed herein that plants having the Fad3 alleles of the invention exhibit a low linolenic acid phenotype. Accordingly, other aspects of the invention include transgenic plants and plant parts. As used herein, ‘plant parts’ includes plant cells, seeds, pollen bearing the nucleic acids of the invention or expressing the Fad3 enzymes of the invention or having the Fad3 coding sequences of the invention. Vectors capable of transforming plant cells are provided, comprising the nucleic acids of the invention, including Fad3 coding sequences. Corresponding methods are provided for obtaining the transgenic plants of the invention. Methods are provided for using the plants of the invention, including selected plants and transgenic plants, to obtain plant products. As used herein, “plant products” includes anything derived from a plant of the invention, including plant parts such as seeds, meals, fats or oils, including such plant products having altered linolenic acid concentrations. Amplification primers for identifying the Fad3 alleles of the invention are provided, together with methods of obtaining plants using the Fad3 alleles of the invention as markers.


[0007] Marker assisted plant breeding programs are provided by the invention, wherein the Fad3 alleles of the invention, such as Fad3A and Fad3C, may be identified in plant lines subjected to selective breeding.







BRIEF DESCRIPTION OF THE DRAWINGS

[0008]
FIG. 1 is a listing of the amino acid sequence of the Fad3A protein from the Apollo cultivar (SEQ ID NO: 1), showing positions of amino acid substitutions in accordance with various aspects of the invention, at positions 213, 275 and 347. One of the prior-art-identified histidine box sequences, HDCGH, is also boxed for reference.


[0009]
FIG. 2 is a pairwise alignment of the Apollo Fad3A (“ApolloA”) and partial Fad3C (“ApolloC”) sequences with the derived Brassica napus omega-3 fatty acid desaturase amino acid sequence which is GenBank accession number L22962 (SEQ ID NO:2), showing: Identities=369/380 (97%), Positives=372/380 (97%), Gaps=3/380, using the BLASTp program. In the Consensus sequence, two regions identified as functionally important in WO 98/56239 appear in boxes. A putative ‘histidine box’ within the first of these regions, identified in the prior art relating to Fad3 enzymes, is also boxed in the ApolloA and L22962 sequences.


[0010]
FIG. 3 a pairwise alignment of the Apollo Fad3A sequence and the derived Brassica napus omega-3 fatty acid desaturase amino acid sequence which is GenBank accession number L01418 (SEQ ID NO:3), showing: Identities=359/383 (93%), Positives=368/383 (95%), Gaps=3/383 (0%), using the BLASTp program.


[0011]
FIG. 4 is a pairwise alignment of the Apollo Fad3A sequence and the derived Arabidopsis thaliana omega-3 fatty acid desaturase amino acid sequence which is GenBank accession numbers D17579 and D26508 (SEQ ID NO:4), showing: Identities=347/386 (89%), Positives=361/386 (92%), Gaps=6/386 (1%), using the BLASTp program. Position 98 in the sequence is also highlighted, to provide a reference point with respect to the sequence shown in FIG. 5 which begins at residue 98.


[0012]
FIG. 5 is a partial pairwise alignment of the Apollo Fad3A and Fad3C sequences and the derived YN90-1016 Fad3 sequence (SEQ ID NO:5).


[0013]
FIG. 6 is a partial pairwise alignment of the Apollo Fad3A sequence and the derived N89-53 Fad3 sequence (SEQ ID NO:6).


[0014]
FIG. 7 shows an Apollo Fad3A cDNA sequence (SEQ ID NO:7) and a partial Fad3C cDNA sequence, aligned.


[0015]
FIG. 8 is the Apollo Fad3A genomic DNA sequence (SEQ ID NO:8).


[0016]
FIG. 9 is a multiple protein sequence alignment, carried out using BLASTP software, comparing the Apollo Fad3A sequence (SEQ ID NO:1) to a variety of known plant delta 15 fatty acid desaturase protein sequences (SEQ ID NO:9 to SEQ ID NO:42).


[0017]
FIG. 10 is a comparison of the partial genomic pFad3A (Apollo) and partial genomic pFad3Y (YN90-1016) sequences, discussed in the Examples, with a consensus sequence shown between them. The pFad3A sequence is the top sequence, and begins at nucleotide 954 of the Apollo Fad3A genomic DNA sequence of FIG. 8.


[0018]
FIG. 11 is a sequence alignment performed using the CLUSTALW program, showing the alignment betweeen a genomic Fad3A sequence (SEQ ID NO:8) and a partial genomic Fad3C sequence.







DETAILED DESCRIPTION OF THE INVENTION

[0019] In one aspect, the invention provides recombinant nucleic acids encoding a plant fatty acid desaturase. By recombinant, it is meant herein that a nucleic acid is not a naturally occurring sequence, or it is a sequence that is made by an artificial combination of two otherwise separated segments of nucleic acid sequence. Such combinations of sequences may be achieved by a wide variety of genetic engineering techniques, such as mutagenesis and site-specific-recombination of one or more nucleotides (Beetham et al., 1999, Proc. Natl. Acad. Sci. USA 96:8774; Zhu et al., 1999, Proc. Natl. Acad. Sci. USA 96:87768). By fatty acid desaturase, it is meant herein that a protein exhibits activity manifested as the introduction of a double bond in the biosynthesis of a fatty acid. For example, Fad3 enzymes are defined by the activity of introducing the third double bond in the biosynthesis of 16:3 or 18:3 fatty acids.


[0020] In various aspects of the invention, the nucleic acid sequence of the invention may encode an amino acid substitution in the desaturase. By substitution, it is meant that the amino acid sequence is other than it would have been but for the recombination of the nucleic acid encoding the protein. The amino acid substitution may for example be at a position selected from the group consisting of amino acid positions corresponding to amino acid positions 213, 217, 224, 275, 281 and 347 of Apollo Fad3A (SEQ ID NO:1). By ‘corresponding to’, in comparison to the Apollo Fad3A (or Fad3C) sequence, it is meant that the positions are aligned when the sequences being compared are optimally aligned, for example using the BLASTP algorithm, with gaps permitted, and allowing for conservative substitutions, as discussed further herein.


[0021] In alternative embodiments, amino acid substitutions in the desaturase may be made in particular motifs. For example, substitutions may be made within motifs, such as the motif STTCWSIM centered on a position corresponding to position 213 of Apollo Fad3A; the motif STTCWSIMLATLVYLSFL corresponding to positions 210 to 227 of Apollo Fad3A; the motif SYLRGGL centered on a position corresponding to position 275 of Apollo Fad3A; the motif SXXXDHYVSD (in which X represents any amino acid). beginning at a position corresponding to position 347 of Apollo Fad3A; a position in the motif STTCWSIMLAT corresponding to positions 210 to 220 of Apollo Fad3A; and, a position in the motif SYLRGGLTTIDRD corresponding to positions 272 to 284 of Apollo Fad3A.


[0022] It is well known in the art that some modifications and changes can be made in the structure of a polypeptide without substantially altering the biological function of that peptide, to obtain a biologically equivalent polypeptide. As used herein, the term “conserved amino acid substitutions” refers to the substitution of one amino acid for another at a given location in the peptide, where the substitution can be made without any appreciable loss or gain of function, to obtain a biologically equivalent polypeptide. In making such changes, substitutions of like amino acid residues can be made on the basis of relative similarity of side-chain substituents, for example, their size, charge, hydrophobicity, hydrophilicity, and the like, and such substitutions may be assayed for their effect on the function of the peptide by routine testing. Conversely, as used herein, the term “non-conserved amino acid substitutions” refers to the substitution of one amino acid for another at a given location in the peptide, where the substitution causes an appreciable loss or gain of function of the peptide, to obtain a polypeptide that is not biologically equivalent.


[0023] In some embodiments, conserved amino acid substitutions may be made where an amino acid residue is substituted for another having a similar hydrophilicity value (e.g., within a value of plus or minus 2.0), where the following hydrophilicity values are assigned to amino acid residues (as detailed in U.S. Pat. No. 4,554,101, incorporated herein by reference): Arg (+3.0); Lys (+3.0); Asp (+3.0); Glu (+3.0); Ser (+0.3); Asn (+0.2); Gln (+0.2); Gly (0); Pro (−0.5); Thr (−0.4); Ala (−0.5); His (−0.5); Cys (−1.0); Met (−1.3); Val (−1.5); Leu (−1.8); Ile (−1.8); Tyr (−2.3); Phe (−2.5); and Trp (−3.4). Non-conserved amino acid substitutions may be made were the hydrophilicity value of the residues is significantly different, e.g. differing by more than 2.0. For example, on this basis, the following amino acid substitutions for the wild type Cys (−1.0) at a position corresponding to amino acid 213 in Apollo Fad3A would be non-conserved substitutions: Trp (−3.4), Arg (+3.0); Lys (+3.0); Asp (+3.0); Glu (+3.0). Similarly the following amino acid substitutions for the wild type Arg (+3.0) at a position corresponding to amino acid 275 in Apollo Fad3A would be non-conserved substitutions: Ser (+0.3); Asn (+0.2); Gln (+0.2); Gly (0); Pro (−0.5); Thr (−0.4); Ala (−0.5); His (−0.5); Cys (−1.0); Met (−1.3); Val (−1.5); Leu (−1.8); Ile (−1.8); Tyr (−2.3); Phe (−2.5); and Trp (−3.4). Similarly the following amino acid substitutions for the wild type Ser (+0.3) at a position corresponding to amino acid 347 in Apollo Fad3A would be non-conserved substitutions: Arg (+3.0); Lys (+3.0); Asp (+3.0); Glu (+3.0); Leu (−1.8); Ile (−1.8); Tyr (−2.3); Phe (−2.5); and Trp (−3.4).


[0024] In alternative embodiments, conserved amino acid substitutions may be made where an amino acid residue is substituted for another having a similar hydropathic index (e.g., within a value of plus or minus 2.0). In such embodiments, each amino acid residue may be assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics, as follows: Ile (+4.5); Val (+4.2); Leu (+3.8); Phe (+2.8); Cys (+2.5); Met (+1.9); Ala (+1.8); Gly (−0.4); Thr (−0.7); Ser (−0.8); Trp (−0.9); Tyr (−1.3); Pro (−1.6His (−3.2); Glu (−3.5); Gln (−3.5); Asp (−3.5); Asn (−3.5); Lys (−3.9); and Arg (−4.5). Non-conserved amino acid substitutions may be made were the hydropathic index of the residues is significantly different, e.g. differing by more than 2.0. For example, on this basis, the following amino acid substitutions for the wild type Cys (+2.5) at a position corresponding to amino acid 213 in Apollo Fad3A would be non-conserved substitutions: Ile (+4.5); Gly (−0.4); Thr (−0.7); Ser (−0.8); Trp (−0.9); Tyr (−1.3); Pro (−1.6); His (−3.2); Glu (−3.5); Gln (−3.5); Asp (−3.5); Asn (−3.5); Lys (−3.9); and Arg (−4.5). Similarly the following amino acid substitutions for the wild type Arg (−4.5) at a position corresponding to amino acid 275 in Apollo Fad3A would be non-conserved substitutions: Ile (+4.5); Val (+4.2); Leu (+3.8); Phe (+2.8); Cys (+2.5); Met (+1.9); Ala (+1.8); Gly (−0.4); Thr (−0.7 ); Ser (−0.8); Trp (−0.9); Tyr (−1.3); Pro (−1.6). Similarly the following amino acid substitutions for the wild type Ser (−0.8) at a position corresponding to amino acid 347 in Apollo Fad3A would be non-conserved substitutions: Ile (+4.5); Val (+4.2); Leu (+3.8); Phe (+2.8); Cys (+2.5); Met (+1.9); Ala (+1.8); His (−3.2); Glu (−3.5); Gln (−3.5); Asp (−3.5); Asn (−3.5); Lys (−3.9); and Arg (−4.5). Similarly, the the following amino acid substitutions for the wild type Met (+1.9) at a position corresponding to amino acid 217 in Apollo Fad3A would be non-conserved substitutions: Ile (+4.5); Val (+4.2); Gly (−0.4); Thr (−0.7); Ser (−0.8); Trp (−0.9); Tyr (−1.3); Pro (−1.6); His (−3.2); Glu (−3.5); Gln (−3.5); Asp (−3.5); Asn (−3.5); Lys (−3.9); and Arg (−4.5). Similarly, the the following amino acid substitutions for the wild type Leu (+3.8) at a position corresponding to amino acid 224 in Apollo Fad3A would be non-conserved substitutions: Ala (+1.8); Gly (−0.4); Thr (−0.7); Ser (−0.8); Trp (−0.9); Tyr (−1.3); Pro (−1.6); His (−3.2); Glu (−3.5); Gln (−3.5); Asp (−3.5); Asn (−3.5); Lys (−3.9); and Arg (−4.5).


[0025] In alternative embodiments, conserved amino acid substitutions may be made where an amino acid residue is substituted for another in the same class, where the amino acids are divided into non-polar, acidic, basic and neutral classes, as follows: non-polar: Ala, Val, Leu, Ile, Phe, Trp, Pro, Met; acidic: Asp, Glu; basic: Lys, Arg, His; neutral: Gly, Ser, Thr, Cys, Asn, Gln, Tyr. Non-conserved amino acid substitutions may be made were the residues do not fall into the same class, for example substitution of a basic amino acid for a neutral or non-polar amino acid.


[0026] In alternative aspects of the invention, mutant plant fatty acid desaturases, such as Fad3 enzymes, are provided that have amino acid substitutions corresponding to the substitutions found in the Apollo Fad3A or Fad3C proteins: Ala substituted in position 213, or Cys substituted in position 275, or Arg substituted in position 347, or Val substituted in position 217, or Pro substituted in position 224, or Val substituted in position 281. In alternative embodiments, amino acid substitutions may be made at these positions that are at least as non-conserved as the substitutions found in Apollo Fad3A or Fad3C. For example, the substitution of Ala for Cys at position 213 of Apollo Fad3A constitutes a change on the foregoing hydrophilicity scale of −1.0 to −0.5, i.e. a difference of 0.5. Substitutions of similar magnitude of change would comprise substituting any one of the following amino acids for Cys (−1.0): Arg (+3.0); Lys (+3.0); Asp (+3.0); Glu (+3.0); Ser (+0.3); Asn (+0.2); Gln (+0.2); Gly (0); Pro (−0.5); Thr (−0.4); Ala (−0.5); His (−0.5); Val (−1.5); Leu (−1.8); Ile (−1.8); Tyr (−2.3); Phe (−2.5); and Trp (−3.4). Similarly, the substitution of Arg for Ser at position 347 of Apollo Fad3A constitutes a change on the foregoing hydrophilicity scale of +3.0 to +0.3, i.e. a difference of 2.7. Substitutions of similar magnitude of change would comprise substituting any one of the following amino acids for Ser (+0.3): Phe (−2.5); and Trp (−3.4).


[0027] In alternative embodiments, using amino acid substitutions based on the foregoing hydropathic index scale, the substitution of Ala for Cys at position 213 of Apollo Fad3A constitutes a change on the foregoing hydrophilicity scale of +2.5 to +1.8, i.e. a difference of 0.7. Substitutions of similar magnitude of change would comprise substituting any one of the following amino acids for Cys (+2.5): Gly (−0.4); Thr (−0.7); Ser (−0.8); Trp (−0.9); Tyr (−1.3); Pro (−1.6); His (−3.2); Glu (−3.5); Gln (−3.5); Asp (−3.5); Asn (−3.5); Lys (−3.9); and Arg (−4.5); Ile (+4.5); Val (+4.2); Leu (+3.8). Similarly, the substitution of Cys for Arg at position 275 of Apollo Fad3A constitutes a change on the foregoing hydropathic index of −4.5 to +2.5, i.e. a difference of 7.0. Substitutions of similar magnitude of change would comprise substituting any one of the following amino acids for Arg (−4.5): Ile (+4.5); Val (+4.2); Leu (+3.8); Phe (+2.8). Similarly, the substitution of Arg for Ser at position 347 of Apollo Fad3A constitutes a change on the foregoing hydropathic index of −0.8 to −4.5, i.e. a difference of 3.7. Substitutions of similar magnitude of change would comprise substituting any one of the following amino acids for Ser (−0.8): Ile (+4.5); Val (+4.2); Leu (+3.8).


[0028] One aspect of the invention is the recognition of functionally important sequence motifs in plant delta 15 fatty acid desaturases, particularly the motifs in the conserved regions that surround the amino acid substitutions in the Apollo Fad3 proteins: including the motif STTCWSIM centered on position 213; the motif SYLRGGL centered on position 275; and the motif SXXXDHYVSD beginning at position 347. Non-conservative amino acid substitutions within these motifs of plant delta 15 fatty acid desaturases are an aspect of the present invention. Plant delta 15 fatty acid desaturases having such non-conserved substitutions may be useful in transgenic plants of the invention to alter fatty acid metabolism, particularly the fatty acid composition of seed oils.


[0029] In various aspects, the invention provides isolated nucleic acid and protein sequences. By isolated, it is meant that the isolated substance has been substantially separated or purified away from other biological components with which it would other wise be associated, for example in vivo. The term ‘isolated’ therefore includes substances purified by standard purification methods, as well as substances prepared by recombinant expression in a host, as well as chemically synthesized substances.


[0030] The invention provides vectors comprising nucleic acids of the invention. A vector is a nucleic acid molecule that may be introduced into a host cell, to produce a transformed host cell. A vector may include nucleic acid sequences that permit it to replicate in the host cell, such as an origin of replication. A vector may also include one or more selectable marker genes and other genetic elements known in the art. A transformed cell is a cell into which has been introduced a nucleic acid molecule by molecular biology techniques. As used herein, the term transformation encompasses all such techniques by which a nucleic acid molecule might be introduced into a host cell, including transformation with Agrobacterium vectors, transfection with viral vectors, transformation with plasmid vectors and introduction of naked DNA by electroporation, lipofection and particle gun acceleration.


[0031] In one aspect the invention provides amplification primers or probes that may be used to identify Fad3 nucleic acid sequences of the invention, such as the Apollo Fad3A or Fad3C nucleic acid sequences, from other nucleic acid sequences. As used herein, the term “Apollo Fad3 nucleic acid sequences”, means the naturally occurring nucleic acid sequences, and portions thereof, encoding the Apollo Fad3 enzyme, including Fad3A and Fad3C. For example, primers or probes may be synthesized that are complimentary to portions of the Apollo microsomal Fad3A or Fad3C alleles that differ from the sequence of the Fad3 allele reported by Yadav et al. 1993, Plant Physiology 103:467. An example of such a primer is described in Example 1, wherein one of the selected primers is shown to be capable of distinguishing plants having high linolenic acid content from plants having low linolenic acid content. Such primers or probes may comprise 5 or more contiguous residues complimentary to a Fad3 nucleic acid sequence of the invention, such as Fad3A or Fad3C. In some embodiments, the isolated nucleic acid probe or primer may be capable of hybridizing to a characteristic portion of the recombinant nucleic acid (i.e. a part of the recombinant sequence which differs from other sequences, such as wild type sequences), under selective hybridization conditions. Selective hybridization of this sort may be used to identify a Fad3 nucleic acid sequence of the invention.


[0032] In one aspect, the invention provides amplification primers that may be used to incorporate a sequence polymorphism into an amplified nucleic acid sequence, such that a novel restriction site is produced. For example, primers may be synthesized that are substantially complementary to portions of an allele of interest, but differ from the sequence by one or more point mutations that introduce a restriction enzyme cleavage site (Michaels et al., 1998, The Plant Journal 14(3): 381-385, and Neff et al., 1998, The Plant Journal 14(3): 387-392; both of which are incorporated herein by reference). Primers such as those described in Example 1, may be adapted to produce by amplification a nucleic acid that contains a restriction enzyme site that is unique to an allele. The restriction site may be cleaved by a restriction endonuclease to provide sequence information from allele-specific polymorphisms.


[0033] One aspect of the invention comprises a method of selecting plants, such as Brassica napus seedlings, having a low linolenic acid content by utilizing PCR primers to selectively amplify a desired Fad3 allele. This method may be used, for example, to ensure that selected progeny carry a desired allele conferring a low linolenic acid oil phenotype. In accordance with an embodiment of the method, seedlings of a first segregating backcross population, may be subjected to PCR analysis to detect the mutant Fad3 nucleic acid, and the selected plants backcrossed again to a recurrent parental line. The backcrossing and PCR analysis of the first seedling population may, for example, proceed through at least two more cycles to create a third segregating backcross seedling population, which may be self-pollinated to create a third seedling population. The third seedling population may be subjected to PCR analysis for the mutant Fad3 nucleic acid, and homozygotes may be selected for further pedigree breeding, such as breeding of an elite, low linolenic acid content strain.


[0034] In various embodiments, the invention comprises plants expressing the desaturases of the invention. In some embodiments, such plants will exhibit altered fatty acid content in one or more tissues. These aspects of the invention relate to all higher plants, including monocots and dicots, such as species from the genera Fragaria. Lotus, Medicago, Onobrychis, Triforium, Trigonelia, Vigna, Citrus, Linum. Geranium, Manihot, Caucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Hyoscyamus, Lycopersicon, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocatlis, Nemesia, Pelargonium, Panicum, Penniserum, Ranunculus, Senecio, Salpiglossis, Cucarnis, Browallia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura. Such plants may include maize, wheat, rice, barley, soybean, beans, rapeseed, canola, alfalfa, flax, sunflower, cotton, clover, lettuce, tomato cucurbits, potato carrot, radish, pea lentils, cabbage, broccoli, brussel sprouts, peppers, apple, pear, peach, apricot, carnations and roses. More specifically, in alternative embodiments, plants for which the invention may be used in modifying fatty acid content include oil crops of the Cruciferae family: canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.), and others; the Composirae family: sunflower (Helianthus spp.), safflower (Carthamus spp.), niger (Guizotia spp.) and others; the Palmae family: palm (Elaeis spp.), coconut (Cocos spp.) and others; the Leguminosae family: peanut (Arachis spp.), soybean (Glycine spp.) and others; and plants of other families such as maize (Zea spp.), cotton (Gossypium sp.), jojoba (Simonasia sp.), flax (Linum sp.), sesame (Sesamum spp.), castor bean (Ricinus spp.), olive (Olea spp.), poppy (Papaver spp.), spurge (Euphorbia, spp.), meadowfoam (Limnanthes spp.), mustard (Sinapis spp.) and cuphea (Cuphea spp.).


[0035] In some aspects of the invention, nucleic acids encoding novel Fad3 proteins may be introduced into plants by transformation, and expression of such nucleic acids may be mediated by promoters to which such coding sequences are operably linked. One aspect of the invention comprises plants transformed with nucleic acid sequences encoding the fatty acid desaturases of the invention. Transformation may for example be carried out as described in WO 94/11516, which is hereby incorporated by reference. In the context of the present invention, “promoter” means a sequence sufficient to direct transcription of a gene when the promoter is operably linked to the gene. The promoter is accordingly the portion of a gene containing DNA sequences that provide for the binding of RNA polymerase and initiation of transcription. Promoter sequences are commonly, but not universally, located in the 5′ non-coding regions of a gene. A promoter and a gene are “operably linked” when such sequences are functionally connected so as to permit gene expression mediated by the promoter. The term “operably linked” accordingly indicates that DNA segments are arranged so that they function in concert for their intended purposes, such as initiating transcription in the promoter to proceed through the coding segment of a gene to a terminator portion of the gene. Gene expression may occur in some instances when appropriate molecules (such as transcriptional activator proteins) are bound to the promoter. Expression is the process of conversion of the information of a coding sequence of a gene into mRNA by transcription and subsequently into polypeptide (protein) by translation, as a result of which the protein is said to be expressed. As the term is used herein, a gene or nucleic acid is “expressible” if it is capable of expression under appropriate conditions in a particular host cell.


[0036] For the present invention, promoters may be used that provide for preferential gene expression within a specific organ or tissue, or during a specific period of development. For example, promoters may be used that are specific for embryogenesis (U.S. Pat. No. 5,723,765 issued Mar. 3, 1998 to Oliver et al.). Such promoters may, in some instances, be obtained from genomic clones of cDNAs. Depending upon the application of the present invention, those skilled in this art may choose a promoter for use in the invention which provides a desired expression pattern. Promoters may be identified from genes which have a differential pattern of expression in a specific tissue by screening a tissue of interest, for example, using methods described in U.S. Pat. No. 4,943,674 and European Patent Application EP-A 0255378.


[0037] Various aspects of the present invention encompass nucleic acid or amino acid sequences that are homologous to other sequences. As the term is used herein, an amino acid or nucleic acid sequence is “homologous” to another sequence if the two sequences are substantially identical and the functional activity of the sequences is conserved (for example, both sequences function as or encode a Fad3; as used herein, sequence conservation or identity does not infer evolutionary relatedness). Nucleic acid sequences may also be homologous if they encode substantially identical amino acid sequences, even if the nucleic acid sequences are not themselves substantially identical, for example as a result of the degeneracy of the genetic code.


[0038] Two amino acid or nucleic acid sequences are considered substantially identical if, when optimally aligned, they share at least about 70% sequence identity. In alternative embodiments, sequence identity may for example be at least 75%, at least 90% or at least 95%, Optimal alignment of sequences for comparisons of identity may be conducted using a variety of algorithms, such as the local homology algorithm of Smith and Waterman, 1981, Adv. Appl. Math 2: 482, the homology alignment algorithm of Needleman and Wunsch, 1970, J. Mol. Biol. 48:443, the search for similarity method of Pearson and Lipman, 1988, Proc. Natl. Acad Sci. USA 85: 2444, and the computerized implementations of these algorithms (such as GAP, BESTFIT, FASTA and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, Madison, Wis., U.S.A.). Sequence identity may also be determined using the BLAST algorithm, described in Altschul et al., 1990, J. Mol. Biol 215:403-10 (using the published default settings). Software for performing BLAST analysis may be available through the National Center for Biotechnology Information (through the internet at http://www.ncbi.nlm.nih.gov/). The BLAST algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence that either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighbourhood word score threshold. Initial neighbourhood word hits act as seeds for initiating searches to find longer HSPs. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extension of the word hits in each direction is halted when the following parameters are met: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLAST program may use as defaults a word length (W) of 11, the BLOSUM62 scoring matrix (Henikoff and Henikoff, 1992, Proc. Natl. Acad. Sci. USA 89: 10915-10919) alignments (B) of 50, expectation (E) of 10 (or 1 or 0.1 or 0.01 or 0.001 or 0.0001), M=5, N=4, and a comparison of both strands. One measure of the statistical similarity between two sequences using the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. In alternative embodiments of the invention, nucleotide or amino acid sequences are considered substantially identical if the smallest sum probability in a comparison of the test sequences is less than about 1, preferably less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.


[0039] An alternative indication that two nucleic acid sequences are substantially identical is that the two sequences hybridize to each other under moderately stringent, or preferably stringent, conditions. Hybridisation to filter-bound sequences under moderately stringent conditions may, for example, be performed in 0.5 M NaHPO4, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65° C., and washing in 0.2×SSC/0.1% SDS at 42° C. (see Ausubel, et al. (eds), 1989, Current Protocols in Molecular Biology, Vol. 1, Green Publishing Associates, Inc., and John Wiley & Sons, Inc., New York, at p. 2.10.3). Alternatively, hybridization to filter-bound sequences under stringent conditions may, for example, be performed in 0.5 M NaHPO4, 7% SDS, 1 mM EDTA at 65° C., and washing in 0.1×SSC/0.1% SDS at 68° C. (see Ausubel, et al. (eds), 1989, supra). Hybridization conditions may be modified in accordance with known methods depending on the sequence of interest (see Tijssen, 1993, Laboratory Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Acid Probes, Part I, Chapter 2 “Overview of principles of hybridization and the strategy of nucleic acid probe assays”, Elsevier, N.Y.). Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point for the specific sequence at a defined ionic strength and pH.


[0040] An alternative indication that two amino acid sequences are substantially identical is that one peptide is specifically immunologically reactive with antibodies that are also specifically immunoreactive against the other peptide. Antibodies are specifically immunoreactive to a peptide if the antibodies bind preferentially to the peptide and do not bind in a significant amount to other proteins present in the sample, so that the preferential binding of the antibody to the peptide is detectable in an immunoassay and distinguishable from non-specific binding to other peptides. Specific immunoreactivity of antibodies to peptides may be assessed using a variety of immunoassay formats, such as solid-phase ELISA immunoassays for selecting monoclonal antibodies specifically immunoreactive with a protein (see Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Publications, New York).


[0041] As used herein to describe nucleic acid or amino acid sequences the term “heterologous” refers to molecules or portions of molecules, such as DNA sequences, that are artificially introduced into a particular host cell. Heterologous DNA sequences may for example be introduced into a host cell by transformation. Such heterologous molecules may include sequences derived from the host cell. Heterologous DNA sequences may become integrated into the host cell genome, either as a result of the original transformation of the host cells, or as the result of subsequent recombination events.


[0042] In accordance with various aspects of the invention, plant cells may be transformed with heterologous nucleic acids. In this context, “heterologous” denotes any nucleic acid that is introduced by transformation. Transformation techniques that may be employed include plant cell membrane disruption by electroporation, microinjection and polyethylene glycol based transformation (such as are disclosed in Paszkowski et al. EMBO J 3:2717 (1984); Fromm et al., Proc. Natl. Acad. Sci. USA 82:5824 (1985); Rogers et al., Methods Enzymol. 118:627 (1986); and in U.S. Pat. Nos. 4,684,61 1; 4,801,540; 4,743,548 and 5,231,019), biolistic transformation such as DNA particle bombardment (for example as disclosed in Klein, et al., Nature 327: 70 (1987); Gordon-Kamm, et al. “The Plant Cell” 2:603 (1990); and in U.S. Pat. Nos. 4,945,050; 5,015,580; 5,149,655 and 5,466,587); Agrobacterium-mediated transformation methods (such as those disclosed in Horsch et al. Science 233: 496 (1984); Fraley et al., Proc. Nat'l Acad. Sci. USA 80:4803 (1983); and U.S. Pat. Nos. 4,940,838 and 5,464,763).


[0043] Transformed plant cells may be cultured to regenerate whole plants having the transformed genotype and displaying a desired phenotype, as for example modified by the expression of a heterologous Fad3 during growth or development. A variety of plant culture techniques may be used to regenerate whole plants, such as are described in Gamborg and Phillips, “Plant Cell, Tissue and Organ Culture, Fundamental Methods”, Springer Berlin, 1995); Evans et al. “Protoplasts Isolation and Culture”, Handbook of Plant Cell Culture, Macmillian Publishing Company, New York, 1983; or Binding, “Regeneration of Plants, Plant Protoplasts”, CRC Press, Boca Raton, 1985; or in Klee et al., Ann. Rev. of Plant Phys. 38:467 (1987).


[0044] Standard techniques may be used for plant transformation, such as transformation of Arabidopsis. For example, wild type (WT) A. thaliana seeds of ecotype “Columbia” may be planted in 4″ pots containing soil and plants grown in a controlled growth chamber or greenhouse. The vacuum infiltration method of in planta transformation (Bechtold et al., 1993) may be used to transform A. thaliana plants with overnight culture of A. tumefaciens strain GV3101 bearing both the helper nopoline plasmid and the binary construct containing the described chimeric gene. pMP90 is a disarmed Ti plasmid with intact vir region acting in trans, gentamycin and kanamycin selection markers as described in Koncz and Schell (1986). Following infiltration, plants may be grown to maturity and seeds (T1) collected from each pod individually. Seeds may be surface-sterilized and screened on selective medium containing 50 mg/L kanamycin with or without 200-300 mg/L timentin. After about four weeks on selection medium, the non-transformed seedlings will generally die. The transformed seedlings may be transferred to soil in pots. Leaf DNA may be isolated (Edwards et al., 1991) and analyzed by PCR for the presence of the DNA insertion. Genomic DNA may also be isolated and used in Southern hybridization (Southern, 1975) to determine the copy number of the inserted sequence in a given transformant. To determine the segregation, T2 seeds may be collected from T1 plants.


[0045] Alternative embodiments of the invention may make use of techniques for transformation of Brassica. Such as transformation of B. napus cv. Westar and B. carinala cv. Dodolla by co-cultivation of cotyledonary petioles or hypocotyl explants with A. tumefaciens bearing the plasmids described herein. Transformation of B. napus plants may, for example, be performed according to the method of Moloney et al., 1989, Plant Cell Rep 8: 238. Modifications of that method may include the introduction of a 7-day explant-recovery period following co-cultivation, on MS medium with the hormone benzyladenine (BA), and the antibiotic timentin for the elimination of Agrobacterium. Transformation of B. carinata plants may be performed according to the method by Babic et al., 1998, Plant Cell Rep 17: 183. Cotyledonary petiole explants may be dipped in suspension of Agrobacterium bearing the desired constructs and placed on 7-cm filter paper (Whatman no. 1) on top of the regeneration medium for 2 days. After co-cultivation, explants may be transferred onto the selection medium containing 50 mg/L kanamycin. Regenerated green shoots may first be transferred to a medium to allow elongation and then to a rooting medium all containing 50 mg/L kanamycin. Putative transformants with roots (T0) may be transferred to soil. Genomic DNA may be isolated from developing leaves for PCR and Southern analyses. Seeds (T1) from transgenic plants may then be harvested. Transgenic plants may be observed and characterized for alteration of traits, particularly fatty acid content, and more particularly fatty acid content of seed oils.



Example 1


Isolation of Apollo Fad3 Sequences

[0046] Cloning and sequence analysis of the Fad3A gene is described below, the Fad3C gene from Apollo was cloned and characterized in a similar manner.


[0047] PCR primers described in a publication by Jourdren et al. (1996) were used to amplify the microsomal delta-15 fatty acid desaturase coding sequences (Fad3) from the following B. napus accessions: low linolenic acid variety Apollo (Scarth et al. 1994) and normal linolenic acid breeding lines YN90-1016 and N89-53 (Agriculture and Agri-Food Canada). The PCR reaction conditions used are described in Somers et al., 1998, Theor. Appl. Genet. 96: 897. The primer sequences were degenerate and named FAD3L and FAD3R (see Table 1). An amplified DNA fragment was cloned from each accession into pGEM (Promega Corp, Madison Wis., USA) and each of the clones (pFad3A, from Apollo; pFAD3Y, from YN90-1016; and pFad3N89 from N89-53) was sequenced using the di-deoxy terminator cycle sequencing technique. The initial clones containing the Fad3 coding sequence were lacking the 3′ and 5′ coding sequences. The 3′ end of the genomic sequence from Apollo was PCR amplified using a primer (A047F, Table 1) designed from the pFad3A clone and a primer (A047R, Table 1) derived from the terminus of the genebank sequence L01418, a B. napus microsomal Fad3 gene. The 5′ end of the genomic sequence from Apollo was PCR amplified using a primer (A046F, Table 1) designed from the pFad3A clone and a primer (A046R, Table 1) derived from the terminus of the genebank sequence L01418. The Fad3 genomic DNA sequences were then aligned with genebank sequence L01418 (cDNA) and based on this alignment, the Apollo, YN90-1016 and N89-53 Fad3 coding and non-coding sequences were distinguished, and the coding frame determined.


[0048] The three B. napus Fad3 coding sequences were converted to amino acid sequences using Lasergene, DNA STAR software and the protein sequences were aligned with the protein sequence derived from L01418. Differences at the protein sequence level between pFad3A and L01418, pFad3Y, pFad3N89 correlated to differences in the DNA coding sequence.


[0049] An alignment of the genomic DNA sequences in pFad3A, pFad3Y and pFad3N89 revealed several sequence differences within intron regions. PCR primers were derived from the pFad3A intron sequences and included the observed sequence polymorphisms (Table 1). DNA was extracted from many other oilseed accessions and these are described in Table 2.
1TABLE 1PCR primer sequences derived from thesequence of pFad3APrimerSEQ IDnameSequence (5′-3′)NO'sA006RAAG AGT GGC CAA CAT GAT CG43A007FATT CTT AGC ATC TGC CTC G44A027FCCC CTT CTG AAT ACT GCG GT45A028FTTC CGG TAA TCC CCC TCT CA46A029RACT GTA GTC ATC CCC AAA CAA AT47A036FGCA TCA AAA TCT TTA GCA TCG AA48A037FGGT GCA TGT TAG CAA ACA GTA AT49A046FCAT TTC ACT CAG AGC CCA CAC50A046RGAC CAA CGC CAG TAT TCA GA51A047FATT ACG GGA TCT TCA ACA ACC A52A047RTAA AAA CAA CCA GAA ATA AGT AAA 53A048CTA TCA ATA GTT GTT AAT CCT CCA CA54A050TTG GAC GAC CAC TTG TCA GAT T55FAD3LGTG GAC ATG GGA GTT TYT CNG A56FAD3RTGG CAT CGA CCA ART GRT ART G57


[0050] The pFad3A genomic DNA sequence is 3007 bp (FIG. 8) and includes the entire coding sequence. The pFad3A and pFad3Y (1864 bp) sequences were aligned and there were several sequence polymorphisms observed throughout the sequences (FIG. 10). A number of polymorphisms are further exemplified herein, centered at nucleotides 191, 270, 693 and 1267 of pFad3A as shown in FIG. 10.


[0051] PCR primers that included sequence polymorphisms observed in the Apollo Fad3 coding sequences were designed from the pFad3A sequence (primers A028F, A029R, A036F, A037F shown in Table 1). These primers were paired with different conserved PCR primers (designated A006R, A007F and A027F in Table 1) to demonstrate the ability to selectively amplify the Apollo Fad3 allele over other alleles, particularly wild-type alleles such as the YN90-1016 Fad3 allele. A DNA fragment of the predicted size was amplified from the Apollo DNA template in each case and was not amplified from the YN90-1016 DNA template. Therefore, the sequence polymorphisms observed in the Apollo Fad3 gene may be used to selectively amplify and detect the mutant Fad3 allele from Apollo. Similar sequence alignments of the Apollo Fad3 allele to other crucifer oilseed Fad3 alleles may be routinely used to identify sequence polymorphisms that may be used as a basis for the selective amplification of the Apollo Fad3 allele.


[0052] The alignment of pFad3A, pFad3Y and pFad3N89 with the Fad3 Genebank sequence L01418 showed the position of introns and exons within pFad3A, pFad3Y and pFad3N89. The intron sequences were edited out to identify the coding sequence of pFad3A (852 bp in length) to be aligned with the coding sequence of pFad3Y (657 bp in length), showing a number of nucleotide polymorphisms (FIG. 10).


[0053] Both the pFad3A and pFad3Y coding sequences were converted to amino acid sequences and aligned (FIG. 5). A non-conserved change (mutation) in the amino acid sequence between these protein sequences was identified at amino acid 275 of the Apollo Fad3 sequence (Apollo, cysteine; YN90-1016, arginine). FIG. 9 shows the extent to which this mutation distinguishes the Apollo Fad3 enzyme from a very wide variety of other known delta-15 fatty acid desaturases. Similarly, FIG. 9 shows a number of other amino acid substitutions in the Apollo Fad3 sequence compared to other delta-15 fatty acid desaturases.


[0054] Identifying DNA sequence differences and primers.


[0055] The mutation at amino acid 275 (cysteine) is due to a single base pair mutation, shown boxed in FIG. 7 (cDNA) at nucleotide 823, boxed in FIG. 8 at nucleotide 2685 and at corresponding nucleotide 1734 of the pFad3A DNA sequence of FIG. 10 (the pFad3A sequence of FIG. 10 begins at nucleotide 954 of FIG. 8). The wild type L01418, YN90-1016 and N89-53 Fad3 alleles all included a CGT (arginine) codon and the mutant Apollo Fad3 allele includes a TGT (cysteine) codon (FIG. 9).


[0056] A PCR primer (A048, Table 1) was designed to include the DNA sequence polymorphism at a nucleotide corresponding to nucleotide 1734 of pFad3A (FIG. 10) where the final nucleotide in the 3′ end of the primer included an ‘A’ (Adenine) nucleotide to selectively PCR amplify the mutant Apollo Fad3 allele over corresponding wildtype Fad3 alleles.


[0057] Specificity of selective amplification of Apollo microsomal Fad3A allele.


[0058] The mutant microsomal Fad3 alleles of Apollo are thought to be derived from a low linolenic acid mutant line from Germany, designated ‘M11’ (Röbbelen G, Nitsch A, 1975, L. Z PflanzenzÜchtg 75:93). Amplification products indicative of the Apollo Fad3A allele were obtained using primers A048 and A050 (Table 1). A collection of genotypes were tested, as listed in table 2, for the presence of the C to T nucleotide polymorphism of the Apollo Fad3A allele. PCR amplification from an Apollo DNA template was also assayed as a control. Apart from Apollo, the only other genotypes showing the presence of the amplification product from the Apollo Fad3A gene included TO97-3414, S86-69 and Stellar. Stellar is the first spring canola quality B. napus variety developed carrying low linolenic acid and was derived from crosses with M11 (low linolenic acid) (Scarth et al. 1988). Accession S86-69 is a low linolenic acid B. napus line selected from the variety Apollo. TO97-3414 is a (BC3F4) B. juncea accession derived from interspecific crosses of B. juncea with S86-69 and selection for low linolenic acid. Therefore, all of the accessions showing amplification of the mutant Apollo Fad3A allele are related to Apollo, in the sense that they are all descended from B. napus line M11 (by “descended from” it is meant that a plant is derived from another by methods of classical plant breeding, including crossing parent plant lines or self crossing of parent plants, but this does not include methods of genetic engineering in which nucleic acid sequences are recombined to produce new strains). Such PCR tests may be highly specific, and may be used in one aspect of the invention as a selective amplification assay for the presence of the Apollo Fad3A or Fad3C alleles in a wide variety of genetic backgrounds.
2TABLE 2Crucifer oilseed species/accessions tested for the presence of theFad3A allele using primers A048 and A050.Species1TypeAccession2Linolenic acid contentB. junceaSpring/breedingJ90-2741HighB. junceaSpring/breedingJ90-4253HighB. junceaSpring/breedingJ90-223HighB. junceaSpring/breedingTO97-3422-1HighB. junceaSpring/breedingTO97-3421-1HighB. junceaSpring/breedingTO97-3414LowB. junceaSpring/breedingTO97-3400HighB. napusSpring/breedingDH13830HighB. napusSpring/breedingDH13619HighB. napusSpring/breeding9592HighB. napusSpring/canolaRangeHighB. napusSpring/canolaDunkeldHighB. napusSpring/breedingN89-17HighB. napusSpring/breedingYN90-1016HighB. napusSpring/breeding264-663HighB. napusSpring/breeding1269HighB. napusSpring/breeding1526HighB. napusSpring/breedingS86-69LowB. rapaSpring/canolaHorizonHighB. rapaSpring/canolaMavrickHighB. rapaSpring/canolaRewardHighB. rapaSpring/canolaTobinHighB. rapaSpring/rapeBronowskiHighB. rapaSpring/rapeCresorHighB. rapaSpring/rapeMidasHighB. rapaSpring/rapeOroHighB. napusSpring/canolaAC ElectHighB. napusSpring/canolaAC ExcelHighB. napusSpring/canolaAC H102HighB. napusSpring/canolaAltoHighB. napusSpring/canolaCycloneHighB. napusSpring/canolaDeltaHighB. napusSpring/canolaGarrisonHighB. napusSpring/canolaGlobalHighB. napusSpring/canolaHyola 417HighB. napusSpring/canolaKaratHighB. napusSpring/canolaLegacyHighB. napusSpring/canolaLegendHighB. napusSpring/canolaPoloHighB. napusSpring/canolaProfitHighB. napusSpring/canolaRegentHighB. napusSpring/canolaShiraleeHighB. napusSpring/canolaStellarLowB. napusSpring/canolaTopasHighB. napusSpring/canolaTowerHighB. napusSpring/canolaTributeHighB. napusSpring/canolaWestarHighB. napusWinter/canolaCascadeHighB. napusWinter/canolaCeresHighB. napusWinter/canolaGlacierHighB. napusWinter/canolaMarHighB. napusWinter/canolaRubinHighB. napusWinter/canolaSamouraiHighB. napusWinter/canolaTandemHighB. napusWinter/canolaTapidorHighB. napusWinter/rapeMarcusHighB. napusWinter/rapeJet NeufHighB. junceaorientalAC VulcanHighB. junceaorientalForgeHighB. junceaBrownScimitarHighS. albaSpring/canolaWD96-2-3HighS. albaMustardEmergoHighB. rapaSpring/breeding7001HighB. rapaSpring/breeding6909HighB. rapaSpring/breeding6810HighB. rapaSpring/breeding6794High1Winter and Spring represent the growth habit; canola indicates low in erucic acid and low in glucosinolate content, rape indicates high erucic acid content, breeding indicates unregistered lines. 2Low = <4% C18:3, High = >8% C18:3.



Example 2

[0059]
FIG. 9 shows a protein sequence alignment between the Apollo Fad3A protein and a wide variety of other Fad3 sequences, identified by database accession number, and more particularly described below. The alignment was produced using the BLASTP software available from the National Centre for Biotechnology Information (NCBI, Bethesda, Md., U.S.A.) through the internet at http://www.cnbi.nlm.nih.gov/BLAST/. A description of how to use this software, including how to optimally align sequences is available on the internet at http://www.cnbi.nlm.nih.gov/BLAST/blast/_help.html. In summary form, the database sequences are as follows, with the ‘Expect’ value of the match with the Apollo Fad3A sequence, as calculated by the BLAST algorithm:
3TABLE 3Fad3 Sequences Compared2 to Apollo Fad3AccessionExpect1sp|P4G311|FD31_BRANA OMEGA-3 FATTY ACID DESATURASE, ENDOPLA . . . 0.0sp|P48624|FD32_BRANA OMEGA-3 FATTY ACID DESATURASE, ENDOPLA . . . 0.0sp|P48623|FD3E_ARATH OMEGA-3 FATTY ACID DESATURASE, ENDOPLA . . . 0.0gi|3133289 (AF020204) omega-3 desaturase [Pelargonium×hor.e-171sp|P32291|FD3E_PHAAU OMEGA-3 FATTY ACID DESATURASE, ENDOPLA . . . e-168gi|4091113 (AF047172) omega-3 fatty acid desaturase [Vernic . . . e-168sp|P48622|FD3D_ARATH TEMPERATURE-SENSITIVE OMEGA-3 FATTY AC . . . e-167gb|AAD15744| (AF047039) omega-3 fatty acid desaturase [Peri . . .e-165sp|P48619|FD3C_RICCO OMEGA-3 FATTY ACID DESATURASE, CHLOROP . . .e-165gi|1754795 (059477) omega-3 fatty acid desaturase [Perilla . . .e-164sp|P48620|FD3C_SESIN OMEGA-3 FATTY ACID DESATURASE, CHLOROP . . . e-164sp|P46310|FD3C_ARATH OMEGA-3 FATTY ACID DESATURASE, CHLOROP . . . e-164dbj|BAA11475| (D79979) omega-3 fatty acid desaturase (Nicot . . . e-163sp|P48626|FD3E_TOBAC OMEGA-3 FATTY ACID DESATURASE, ENDOPLA . . . e-163gi|4240385 (AF061027) omega-3 fatty acid desaturase precurs . . . e-162gi|1786066 (075745) omega-3 fatty acid desaturase [Petrosel . . . e-162sp|P48625|FD3E_SOYBN OMEGA-3 FATTY ACID DESATURASE, ENDOPLA . . . e-162sp|P48618|FD3C_BRANA OMEGA-3 FATTY ACID DESATURASE, CHLOROP . . . e-162dbj|BAA22440| (D63953) fatty acid desaturase [Zea mays] >g1 . . . e-162sp|P48621|FD3C_SOYBN OMEGA-3 FATTY ACID DESATURASE, CHLOROP . . . e-161dbj|BAA22441| (D63954) fatty acid desaturase [Zea mays[e-160emb|CAA07638| (AJ007739) w-3 desaturase [Solanum tuberosum]e-160gi|699590 (017065) delta-15 lineoyl desaturase [Limnanthes . . . e-155dbj|BAA07785.1| (043698) plastid omega-3 fatty acid desatur . . . e-154dbj|BAA2SS58| (D84678) omega-3 fatty acid desaturase [Triti . . . e-154dbj|BAA11397| (D78506) w-3 fatty acid desaturase [Oryza sat . . . e-147gi|408490 (L22963) omega-3 fatty acid desaturase [Brassica . . . e-145dbj|BAA224S9| (D65952) fatty acid desaturase [Zea mays]e-113dbj|BAA11396| (D76505) w-3 fatty acid desaturase [Oryza sat . . . e-110gi|2197199 (D36389) omega-3 desaturase [Synechococcus PCC7002]e-102gb|AAD41582.1|AF056572_1 (AF056572) unknown [Brassica rapa] . . . e-102pir||S52650 desaturase delta 15—Synechocystis sp. (strain . . . 6e-96gb|AAD41581.1|AF056571_1 (AF056571) unknown [Brassica olera . . . 6e-80gb|AAD4158O.1|AF056570_1 (AF056570) unknown [Brassica napus]2e-791 Some "E" values shown as exponents, e.g. ‘e-171=1×10−1712 The database used a basis for the BLASTP search was Non-redundant GenBank CDS (translations+PDB+SwissProt+SPupdate+PIR), Posted date: Sep. 14, 1999 3:12 PM (number of letters in database: 126,047,814; number of sequences in database: 411,698), using the following parameters: LambdaKH0.3240.1400.461GappedLambdaKH0.2700.04700.230Matrix: BLOSUM62Gap Penalties: Existence: 11, Extension: 1Number of Hits to DB: 106686529Number of Sequences: 411698Number of extensions: 4746913Number of successful extensions: 13626Number of sequences better than 10.0: 129Number of HSP's better than 10.0 without gapping: 102Number of HSP's successfully gapped in prelim test: 27Number of HSP's that attempted gapping in prelim test: 13347Number of HSP's gapped (non-prelim): 139length of query: 380length of database: 126,047,814effective HSP length: 48effective length of query: 332effective length of database: 106286310effective search space: 35287054920effective search space used: 35287054920T: 11A: 40X1: 15 (7.0 bits)X2: 38 (14.8 bits)X3: 64 (24.9 bits)S1: 40 (21.5 bits)S2: 71 (32.1 bits)


[0060] Further particulars of the non-Apollo Fad3 sequences included in FIG. 9 are as follows:
4P46311 (Brassica navus)LOCUS FD31_BRANA 377 aa PLN Feb. 1, 1996DEFINITION OMEGA-3 FATTY ACID DESATURASE, ENDOPLASMIC RETICULUMVERSION 1).ACCESSION246311PIDg1169600VERSION246311 GI:1169600DESOURCEswissprot: locus FD31_BRANA, accession P46311;class: standard.created: Nov 1, 1995.sequence updated: Nov 1, 1995.annotation updated: Feb 1, 1996.xrefs: gi: 408491, gi: 408492KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; ENDOPLASMICRETICULUM;TRANSMEMBRANE.SOURCErape.ORGANISMBrassica napusEukaryotae; Viridiplantae; Charophyta/Einbryaphyta group;Embryophyta; Tracheophyta; seed plants; Magnoliophyta;eudicotyledons; Rosidae; Capparales; Brassicaceae; Brassica.REFERENCE1 (residues 1 to 377)AUTHORSYADAV, N. S., WIERZBICKI, A., AEGERTER, M., CASTER, C. S., PEREZ-GRAU, L., KIMNEY, A. J., HITZ, W. D., BOOTH, J. R. JR., SCHWEIGER, B.,STECCA, K. L., ALLEN, S. M., BLACKWELL, M.,REITER, R. S., CARLSON, T. J., RUSSELL, S. H., FELDMANN, K. A.,PIERCE, J. and BROWSE, J.TITLECloning of higher plant omega-3 fatty acid desaturasesJOURNALPlant Physiol. 103 (2), 467-476 (1993)MEDLINE 94302147REMARKSEQUENCE FROM N.A.TISSUE = SEEDCOMMENT(FUNCTION) ER (MICROSOMAL) OMEGA-3 FATTY ACID DESATURASEINTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 18:3FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT MEMBRANES. IT ISTHOUGHT TO USE CYTOCHROME ES AS AN ELECTRON DONOR AND TO ACTON FATTY ACIDS ESTERIFIED TO PHOSPHATIDYLCHOLINE AND,POSSIBLY, OTHER PHOSPHOLIPIDS.[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.[SUECELLULAR LOCATION] ENOOPLASMIC RETICULUM. [DOMAIN] THEHISTIDINE BOX DOMAINS MAY CONTAIN THE ACTIVE SITE AND/OR BEINVOLVED IN METAL ION BINDING.[SIMILARITY] TO OTHER PLANT OMEGA-H FATTY ACID DESATURASES.FEATURESLocation/Qualifierssource1 . . . 377/organism=″Brassica napus/db_xref=″taxon:3708″1 . . . 377Protein1 . . . 377/product=″OMEGA-3 FATTY ACID DESATUPASE, ENDOPLASMICRETICULUM″/EC_number=″1.14.99.-″Region54 . . . 73/region_name=″Transmembrane region″Region92 . . . 96/note=″HTSTIDINE BOX 1.″/region_name=″Domain″Region128 . . . 132/note=″HISTIDINE BOX 2.″/region_name=″Domain″Region203 . . . 226/region_name=″Transmembrane region″Region233 . . . 251/region_name=″Transmembrane region″Region295 . . . 299/note=″HISTIDINE BOX 3.″/region_name=″Domain″ORIGIN(SEQ ID NO: 9)mvvamdgrsn angderfcips aqppfkigdi raaipkhcwv kspirsmsyv ardifavvalavaavyfdsw ffwpiywaaq gtlfwaitvl ghdcghgsfs dipilntavg hilhstiivpyhgwrishrt hhqnhghven cieswvplpek lyknishstr mirytvpipm layplyiwyrspgkegshyn pyssifapse rkiiatsttc wsimlatlvy lsflvgpvtv lkvygvpyiifvmwldavty lhhhghddkl pwyrgkewsy lrggltticir dygifnnihh digthvihhlfpqiphyhlv datksakhvl gryyrepkts gaipihives lvasikkdhy vsdtgciivfyetdpdlyvya sdkskinP48624 (Brassica navus)LOCUSFD32_BRANA383 aa PLN Feb. 1, 1996DEFINITIONOMEGA-3 FATTY ACID DESATURASE, ENDOPLASMIC RETICULUMVERSION 2).ACCESSIONP48624PIDg1345967VERSIONP48624 GI:1345967DBSOURCEswissprot: locus FD32 BRANA, accession P48624;class: standard.created: Feb. 1, 1996.sequence updated: Feb. 1, 1996.annotation updated: Feb. 1, 1996.xrefs: gi: 167147, gi: 167148KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; ENDOPLASMICRETICULUM;TRANEMEMBRANE.SOURCE rape.ORGANISMBrassica napusEukaryocae; Viridiplantae; Charophyta/Embryophyta group;Embryophyta; Tracheophyta; seed plants; Magnoliophyta;eudicotyledons; Rosidee; Capparales; Brassicaceae; Brassica.REFERENCE1 (residues 1 to 383)AUTHORSArondel, V., Lemieux, B., Hwang, I., Cibson, S., Goodmnan, H. M. andSomerville, C. R.TITLEMap-based cloning of a gene controlling omega-B fatty aciddesaturation in ArabidopsisJOURNALScience 258 (5086), 1353-1355 (1992)MEDLINE93088059REMARKSEQUENCE FROM N.A.COMMENT[FUNCTION] ER (MICROSOMAL) OMEGA-B FATTY ACID DESATURASEINTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 18:3FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT MEMBRANES. IT ISTHOUGHT TO USE CYTOCEROME ES AS AN ELECTRON DONOR AND TO ACTON FATTY ACIDS ESTERIFIED TO PHOSPHATIDYLCHOLINE AND,POSSIBLY, OTHER PHOSPHOLIPIDS.[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.[SUBCELLULAR LOCATION] ENDOFLASMIC RETICULUM. [DOMAIN] THEHISTIDINE BOX DOMAINS MAY CONTAIN THE ACTIVE SITEAND/OR BE INVOLVED IN METAL ION BINDING.[SIMILARITY] TO OTHER PLANT OMEGA-B FATTY ACID DESATURASES.FEATURESLocation/Qualifierssource1 . . . 383/organism=″Brassica napus/db_xref=″taxon:3708″1 . . . 383Protein1 . . . 383/product=″OMEGA-3 FATTY ACID DESATURASE, ENDOPLASMICRETICULUM″/EC_number=″1.14.99.-″Region53 . . . 73/region_name=″Transmembrane region″Region98 . . . 102/note=″HISTIDINE BOX 1.″/reqion name=″Domain″Region134 . . . 138/note=″HISTIDINE BOX 2.″/region_name=″Domain″Region210 . . . 230/reqion name=″Transmembrane region″Region234 . . . 254/region_name=″Transmembrane region″Region301 . . . 305/note=″HISTIDINE BOX 3.″/region_name=″Domain″ORIGIN(SEQ ID NO: 10)mvvamdqrsn vngdsgarke egfdpsaqpp fkigdiraai pkhcwvkspi rsmsyvtrdifavaalamaa vyfdswflwp lywvaqgtlt waifvighdc ghgsfsdipl insvvghilhsfilvpyhgw rishrthhqn hghvendesw vpipeklykn lphstrmlry tvplpmlaypiyiwyrspgk egshfnpyss lfapserkii atsttcwsim lativylsil vdpvtvikvygvpyiifvmw idavtylhhh ghdekipwyr gkewsylrgg lttidrdygi tnnihhdigthvihhlfpqi phyhlvdatr aakhvlgryy repktsqaip ihivesivas ikkdhyvsdtgdivfyetdp diyvyasdks kinP48623 (thale cress, Arabidoysis thaliana)Score = 753 bits (1922), Expect = 0.0Identities = 348/386 90%), Positives 362/386(93%), Gaps = 6/386(1%)LOCUSFD3E_ABATE386 aa PLN Oct. 1, 1996DEFINITIONOMEGA-3 FATTY ACID DESATURASE, ENDOPLASMIC RETICULUM.ACCESSIONP48623FIDg1345973VERSIONP48623 GI:1345973OBSOURCEswissprot: locus FD3E_ARATH, accession P48623;class: standard.created: Feb. 1, 1996.sequence updated: Feb. 1, 1996.annotation updated: Oct 1, 1996.xrefs: gi: 408482, gi: 408483, gi: 1030693, gi: 471091, gi:511907, gi: 1197795KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; ENDOPLASMICRETICULUM;TRANSMEMBRANE.SOURCEthale cress.ORGANISMArabidopsis thalianaEukaryotae; Viridiplantae; Charophyta/Erubryophyta group;Embryophyta; Tracheophyta; seed plants; Magnoliophyta;eudicotyledons; Rosidae; Capparales; Brassicaceae;Arabidopsis.REFERENCE1 (residues 1 to 386)AUTHORSYADAV, N. S., WIERZBICKI, A., AEGERTER, M., CASTER, C. S., PEREZ-GRAU, L., KINNEY, A. J., HITZ, W. D., BOOTH, J. R. JR.,SCHWEIGER, B., STECCA, K. L., ALLEN, S. M., BLACKWELL, M.,REITER, R. S., CARLSON, T. J., RUSSELL, S. H., FELDMANN, K. A.,PIERCE, J. and BROWSE, J.TITLECloning of higher plant omega-3 fatty acid desaturasesJOURNALPlant Physiol. 103 (2), 467-476 (1993)MEDLINE94302147REMARKSEQUENCE FROM N.A.STRAIN=CV. COLUMBIA; TISSUE=SEEDLINGREFERENCE2 (residues 1 to 386)AUTHORSWATAHIKI, M. C. and YAMANOTO, K. T.TITLEDirect SubmissionJOURNALSubmitted (Sep. ?+48, 1993) TO EMBL/GENBANK/DDBJ DATA BANKSREMARKSEQUENCE FROM N.A.STRAIN=CV. COLUMBIA; TISSUE=HYPOCOTYLREFERENCE3 (residues 1 to 386)AUTHORSNishiuchi, T., Nishimura, M., Arondel, V. and Iba, K.TITLEGenomic nucleotide sequence of a gene encoding a microsomalomega-B fatty acid desaturase from Arabidopsis thalianaJOURNALPlant Physiol. 105 (2), 767-768 (1994)MEDLINE94345020REMARKSEQUENCE FROM N.A.STRAIN=CV. COLUMBIACOMMENT[FUNCTION] MICROSOMAL (ER) OMEGA-B FATTY ACID DESATURASEINTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 18:3FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT MEMBRANES. IT ISTHOUGHT TO USE CYTOCHROME B5 AS AN ELECTRON DONOR AND TO ACTON FATTY ACIDS ESTERIFIED TO PHOSPHATIDYLCHOLINE AND,POSSIBLY, OTHER PHOSPHOLIPIDS.[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.[SUBCELLULAR LOCATION] ENDOPLASMIC RETICULUM.[TISSUE SPECIFICITY] ABUNDANT IN LEAVES AND SEEDLINGS. BARELYDETECTABLE IN ROOT TISSUE. [DOMAIN] THE HISTIDINE BOX DOMAINSMAY CONTAIN THE ACTIVE SITE AND/OR BE INVOLVED IN METAL IONBINDING.[SIMILARITY] TO OTHER PLANT OMEGA-3 FATTY ACID DESATURASES.FEATURESLocation/Qualifierssource1 . . . 386/organism=″Arabidopsis thaliana/db_xref=″taxon:3702″1 . . . 386Protein1 . . . 386/product=″OMEGA-3 FATTY ACID DESATURASE, ENDOPLASMICRETICULUM″/EC_number=″1.14.99.-″Region63 . . . 83/region_name=″Transmembrane region″Region101 . . . 105/note=″HISTIDINE BOX 1.″/reqion_name=″Domain″Region137 . . . 141/note=″HISTIDINE BOX 2.″/region_name=″Domain″Region220 . . . 240/region_name=″Transmembrane region″Region242 . . . 262/region_name=″Transmembrane region″Region304 . . . 308/note=″HISTIDINE BOX 3.″/region _name=″Domain″ORIGIN(SEQ ID NO: 11)rnvvamdqrtn vngdpgagdr kkeerfdpsa gppfkigdir aaipkhcwvk splrsmsyvvrdiiavaala iaavyvdswf lwplywaaqg tlfwaifvlg hdcghgsfsd ipllnsvvghilhsfiivpy hgwrishrth hgnhghvend eswvplperv ykkiphstrm lrytvplpmlayplylcyrs pgkegshfnp ysslfapser kliatsttcw simfvsiial sfvfgplavikvygvpyiif vmwldavtyl hhhghdeklp wyrgkewsyi rggltticird ygifnnihhcligthvihhlf pqiphyhlvd atkaakhvlg ryyrepktsg aipihlvesl vasikkdhyvsdtgdivfye tclpdlyvyas dkskin3133289 (Pelargonium x hortorum)LOCUSAAC16443 407 aa PLN May 15, 1998DEFINITIONomega-3 desaturase.ACCESSIONAAC16443PIDg3133289VERSIONAAC16443.1 GI:3133289DBSOURCEaccession AF020204.1KEYWORDSSOURCEPelargonium x hortorum.ORGANISMPelargonium x hortorumEukaryota; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;eudicotyledons; core eudicots; Rosidae; Geraniales;Geraniaceae; Pelargonium.REFERENCE1 (residues 1 to 407)AUTHORSSchultz, D. J., Mununa, R. O., Cox-Foster. D., Craig, R. andMedford, J. I.TITLEGeranium omega-3 desaturaseJOURNALUnpublishedREFERENCE2 (residues 1 to 407)AUTHORSSchultz, D. J., Mumina, R. O., Cox-Foster, D., Craig, R. andMedford, J. I.TITLEDirect SubmissionJOURNALSubmitted (Aug. 19, 1997) Botany, MSU, 166 Plant BiologyBuilding, East Lansing, MI 48824, USACOMMENTMethod: conceptual translation supplied by author.FEATURESLocation/Qualifierssource1 . . . 407/organism=″Pelargonium x hortorum/db_xref=″taxon: 4031″Protein<1 . . . 407/product=″omega-3 desaturase″COB1 . . . 407/gene=″pxh-15″/codedby=″AF020204.1:<1 . . . 1226″ORIGIN(SEQ ID NO: 12)sdfdp sapppfrlge iraaipqhcw vkspwrsmsy vvrdivvvfa lavaafrlds wlvwpiywavqgtmfwaifv lghdcghgsf sdshilnsvm ghilhssilv pyhgwrishk thhsnhghvendeswvplte kryksldvst rllrftipfp vfaypfylww rspgkkgshf npysdifapserrdvltsti swsimvalla qlscvfglvp mlklyggpyw ifvmwldtvt ylhhhghddhklpwyrqkew sylrgglttv drdyglfnni hhdigthvih hlfpqiphyh lveatraakpvlgkyyrepk rsgpfpyhli dnlvksiked hyvsdtgdiv fyetdpeqfk sdpkklP32291 (mung bean, Vigna radiata)Score = 591 bits (1507), Expect e−168Identities = 259/359 (72%), Positives = 303/359 (84%)LOCUSFD3E_PHAAU 380 aa PLN Feb. 01,1996DEFINITIONOMEGA-3 FATTY ACID DESATURASE, ENDOPLASMIC RETICULUM(INDOLE-3-ACETIC ACID INDUCED PROTEIN ARGi).ACCESSIONP32291PIDg416638VERSIONP32291 GI:416638OBSOURCEswissprot: locus FD3E PHAAU, accession P32291;class: standard.created: Oct 1, 1993.sequence updated: Oct 1, 1993.annotation updated: Feb. 1, 1996.xrefs: gi: 287561, gi: 287562KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; ENDOPLASMICRETICULUM; TRANSMEMBRANE.SOURCEmung bean.ORGANISMVigna radiaraEukaryotee; Viridiplantae; Charophyta/Embryophyta group;Embryophyta; Tracheophyta; seed plants; Magnoliophyta;eudicotyledons; Rosidae; Fabales; Fabaceae; Papilionoideae;Vigna.REFERENCE1 (residues 1 to 380)AUTHORSYAMAMOTO, K. T., MORI, H. and IMASEKI, H.JOURNALPLANT CELL PHYSIOL. 33, 13-20 (1992)REMARKSEQUENCE FROM N.A.TISSUE=HYPOCOTYLCOMMENT[FUNCTION] MICROSOMAL (ER) OMEGA-3 FATTY ACID DESATURASEINTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 18:3FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT MENBRANES. IT ISTHOUGHT TO USE CYTOCHROME B5 AS AN ELECTRON DONOR AND TO ACTON FATTY ACIDS ESTERIFIED TO PHOSPHATIDYLCHOLINE AND,POSSIBLY, OTHER PHOSPHOLIPIDS.[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.[SUSCELLULAR LOCATION] ENDOPLASMIC RETICULUM. INDUCTION] BYAUXIN, ETHYLENE AND WOUNDING. [DOMAIN] THE HISTIDINE BOXDOMAINS MAY CONTAIN THE ACTIVE SITE AND/OR BE INVOLVED INMETAL ION BINDING. [SIMILARITY] TO OTHER PLANT OMEGA-3 FATTYACID DESATURASES.FEATURESLocation/Qualifierssource1 . . . 380/organism=″Vigna radiata/db_xref=″taxon: 3916″1 . . . 380Protein1 . . . 380/product=″OMEGA-3 FATTY ACID DESATURASE, ENDOPLASMICRETICULUM″/EC_number=″1.14.99.-″Region59 . . . 78/region_name==″Transmembrane region″Region97 . . . 101/note=″HISTIDINE BOX 1.″/region_name=″Domain″Region133 . . . 137/note=″HISTIDINE BOX 2.″/region_name=″Domain″Region208 . . . 231/region_name=″Transmembrane region″Region238 . . . 256/region_name=″Transmembrane region==Region300 . . . 304/note=″HISTIDINE BOX 3.″/region_name=″Domain″ORIGIN(SEQ ID NO:13)fdpgapppf kiadiraaip khcwekstlr slsyvircivl vvtalaasai sfnswffwplywpaqgtrntw alfvighdcg hgsfsnsskl nsfvghilhs lilvpyngwr ishrthhqnhghvekdeswv pltekvyknl cidmtrmlrys fpfpifaypf ylwnrspgke gshfnpysnltspgerkgvv tstlcwgivl svllylslti gpifmlklyg vpylifvmwl dfvtylhhhgythklpwyrg qewsylrggl ttvdrdygwi nnvhhdigth vihhlfpqip byhlveatksaksvlgkyyr epqksgplpf hilkyllqsi sqdhfvscttg divyyqtdpk lhqdswtksk+UZ,4091113 ( Vernicia fordii)Score 590 bits (1504), Expect = e−168Identities = 265/377 (70%), Positives = 305/377 (80%), Gaps 7/377 (1%)LOCUSAAC98967 387 aa PLN Jan. 01, 1999DEFINITIONomega-3 fatty acid desaturase.ACCESSIONAAC98967PIDg4091113VERSIONAAC98967.1 GI:4091113DBSOURCElocus AF047172 accession AF047172.lKEYWORDSSOURCEVernicia fordii.ORGANISMVernicia fordiiEukaryota; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;eudicotyledons; core eudicots; Rosidae; eurosids I;Malpighiales; Euphorbiaceae; Vernicia.REFERENCE1 (residues 1 to 387)AUTHORSTang, F., Dyer, J. M., Lax, A. R., Shih, D. S., Chapital, D. C. andPepperman, A. B.TITLENucleotide sequence of a cOMA clone for endoplasmic reticularFatty acid desaturase from Aleurites fordli seedsJOURNALUnpublishedREFERENCE2 (residues 1 to 387)AUTHORSTang, F.TITLEDirect SubmissionJOURNALSubmitted (Feb. 8, 1998) Southern Regional Research Center,USDA-ARS, 1100 Robert E. Lee Blvd., New Orleans, LA 70179,USACOMMENTMethod: conceptual translation supplied by author.FEATURESLocation/Qualifierssource1 . . . 387/organism=″Vernicia fordii/variety=″L-2″/db_xref=″taxon:73154″/devstage=″seed″Protein1 . . . 387/product=″omega-3 fatty acid desaturase″CUS1 . . . 387/gene=″Fad3″/coded_by=″AF047172.1:39 . . . 1202″ORIGIN(SEQ ID NO:14)ngvngfha keeeeeedfd lsnpppfnlg qiraaipkhc wvknpwrslt yvfrdvvvvfalaaaafyfn swlfwplywf aqgtmfwaif vighdcghgs tsnnsslnnv vghlihssilvpyhgwrish rthhqnhgnv ekdeswvplp ekiykemdls trilrysvpl pmfalpfylwwrspgkegsh fnpnsdf tap herkavitsn fcfsimalll lyscfvfgpv qvlkfygipylvfvmwldfv tymhhhghee klpwyrgkew sylrgglqtv drdygwinni hhdigthvihhlfpqiphyh lieatkaakp vlgkyyrepk ksgpfpfhlf snlvrsmsed hyvscligdivfyqtdpdiyk vdksklnP48622 (Arabidoysis thiazana)LOCUSFD3D_ARATE435 aa PLN Feb. 1, 1996DEFINITIONTEMPERATURE-SENSITIVE OMECA-3 FATTY ACID DESATURASE,CHLOROPLAST PRECURSOR.ACCESSIONP48622PIDgl345972VERSIONP48622 GI:1345972DBSOURCEswissprot: locus FD3D_ARATH, accession P48622;class: standard.created: Feb. 1, 1996.sequence updated: Feb. 1, 1996.annotation updated: Feb. 1, 1996.xrefs: gi: 516044, gi: 516045, gi: 497218, gi: 497219, gi:1D3D694, gi: 471093KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; CELOROPLAST;MEMBRANE; TRANSIT PEPTIDE.SOURCEthale cress.ORGANISMArabidopsis thaliana Eukaryotae; Viridipiantae;Charophyta/Embryophyta group; Embryophyta; Tracheophyta; seedplants; Magnoliophyta; eudicetyledons; Rosidae; Capparales;Brass icaceae; Arabidopsis.REFERENCE1 (residues 1 to 435)AUTHORSGibson, S., Arondel, V., Iba, K. and Somerville, C.TITLECloning of a temperature-regulated gene encoding achloropiast omega-3 desaturase from Arabidopsis thalianaJOURNALPlant Physiol. 106 (4), 1615-1621 (1994)MEDLINE95148742REMARK SEQUENCE FROM N.A.STRAIN=CV. COLUMBIA; TISSUE=AERIAL PARTSREFERENCE2 (residues 1 to 435)AUTHORSWATAHIKI, M. C. and YAMAMOTO, K. T.TITLEDirect SubmissionJOURNALSubmitted (??-September 1993) TO EMBL/GENBANK/DDBJ DATA BANKSREMARKSEQUENCE FROM N.A.STRAIN=CV - COLUMBIA; TISSUE=HYPOCOTYLCOMMENT[FUNCTION] CHLOROPLAST OMEGA-B FATTY ACID DESATURASEINTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 16:3AND 18:3 FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANTMEMBRANES. IT IS THOUGHT TO USE FERREDOXIN AS AN ELECTRONDONOR AND TO ACT ON FATTY ACIDS ESTERIFIED TO GALACTOLIPIDS,SULFOLIPIDS AND PHOSPHATIDYLGLYCEROL.[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.[SUSCELLULAR LOCATION] CHLOROPLAST, MEMBRANE-BOUND(PROBABLE). [INDUCTION] BY LOW TEMPERATURES. [DOMAIN] THEHISTIDINE BOX DOMAINS MAY CONTAIN THE ACTIVE SITEAND/OR BE INVOLVED IN METAL ION BINDING. [SIMILARITY] TOOTHER PLANT OMEGA-B FATTY ACID DESATURASES.FEATURESLocation/Qualifierssource1 . . . 435/organism=″Arabidopsis thaliana/db_xref=″taxon:3702″1 . . . 435Protein/product=″TEMPERATURE-1 . . . 435SENSITIVE OMEGA-B FATTY ACIDDESATURASE, CHLOROPLAST PRECURSOR″/EC_nurnber=″l.14.99.-″Region1 . . . (2.435)/region_name=″Transit peptide″/note=″CHLOROPLAST.Region(1.434)..435/region_name=″Mature chain″/note=″TEMPERATURE-SENSITIVE OMEGA-B FATTY ACIDDESATURASE, CHLOROPLAST.″Region156 . . . 160/region_name=″Domain″/note=″HISTIDINE BUX 1.″Region192 . . . 196/region_name=″Domain″/note=″HISTIDINE BOX 2.″Region359 . . . 363/region_name=″Domain″/note=″HISTIDINE BOX 3.″ORIGIN(SEQ ID NO:15)r fdpgapppfn ladiraaipk hcwvknpwms msyvvrdvai vfglaavaay fnnwllwplywfaqgtmfwa lfvlghdcgh gsfsndprln svaghlThss ilvpyhgwri shrthhqnhghvendeswhp ipesiyknle kttqmfrftl pfpmiaypfy iwnrspgkqg shyhpdsdiflpkekkdvit stacwtamaa llvcinfvmg piqinlklygi pywifvmwld fvtylhhhghedkipwyrgk ewsyirgglt tidrdyqwin nihhdigthv ihhifpqiph yhlveateaakpvlgjkyyre pknsgpiplh ligsliksmk qdhfvsdtgd vvyyeadpklAAD15744 (Perilla frutescens)LOCUSAAD15744 391 aa PLN Mar. 3, 1999DEFINITIONomega-3 fatty acid desaturase.ACCESSIONAAD15744PIDg4321399VERSIONAAD15744.1 GI:4321399DBSOURCElocus AF047039 accession AF047039.1KEYWORDSSOURCEPerilla frutescens.ORGANISMPerilla frutescensEukaryota; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; euphyliophytes; Spermatophyta; Magnoliophyta;eudicotyledons; core eudicots; Asteridae; euasterids I;Lamiales; Lamiaceae; Perilla.REFERENCE1 (residues 1 to 391)AUTHORSChung, C. -H., Kim, J. -L., Lee, Y. -C. and Choi, Y. -L.TITLEMolecular cloning and characterization of a omega-3 cUNA fromperilla seedJOURNALUnpublishedREFERENCE2 (residues 1 to 391)AUTHORSChung, C. -H., Kim, J. -L., Lee, Y. -C. and Choi, Y. -L.TITLEDirect SubmissionJOURNALSubmitted (Feb. 7, 1998) Biotechnology, Dong-A University,840, Ha-Dan-Dong, Sa-Ea-Gu, Pusan 604-714, South KoreaCOMMENTMethod: conceptual translation.FEATURESLocation/Qualifierssource1 . . . 391/organism=″Perillia frutescens/cultivar=″Suwon-8″/db_xref=″taxon:48386″/devstage=″seed″Protein1 . . . 391/product=″omega-3 fatty acid desaturase″CDS1 . . . 391/gene=″FAD3″/coded_by==″AF047039.1:156 . . . 1331″ORIGIN(SEQ ID NO:16)gk raadkfdpaa pppfkiadir aaipahcwvk npwrslsyvv wdvaavfali aaavyinswafwpvywiaqq tmfwalfvlg hdcghgsfsd nttlnnvvgh vihssiivpy hgwrishrthhqnhghvekd eswvplpenl ykklcifstkt irykipfpmf ayplylwyrs pgktgshfnpysdlfkpner giivtstrncw aamqvfliya stivgpnnmf klygvpylif vmwldtvtylhhhgydkklp wyrskewsyi rggittvciqci ygtfnkihhd igthvihhlf pqiphyhiveatreakrvlg nyyreprksg pvplhiipal lkslgrdhyv sdngdivyyq tdcielfIP48619 (Ricinus communis)LOCUSFD3C_RICCO460 aa PLN Dec. 15, 1998DEFINITIONOMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST PRECURSOR.ACCESSIONP48619PIDgl345969VERSIONP48619 GI:1345969DBSOURCEswissprot: locus FD3C_RICCO, accession P48619;class: standard.created: Feb. 1, 1996.sequence updated: Feb. 1, 1996.annotation updated: Dec 15, 1998.xrefs: gi: 414731, gi: 414732xrefs (non-sequence databases) : PFAM PF00487KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; CHLOROPLAST;MEMBRANE; TRANSIT PEPTIDE.SOURCEcastor bean.ORGANISMRicinus communisEukaryota; Viridiplantee; Charophyta/Embryophyta group;Embryophyta; Tracheophyta; euphyllophytes; Spermatophyta;Magnuliophyta; eudicotyledons; Rosidae; Euphorbiales;Euphorbiaceae; Ricinus.REFERENCE1 (residues 1 to 460)AUTHORSvan de Loo, F. J. and Somerviile, C.TITLEPlasmid omeqa-3 fatty acid desaturase cONA from RicinusconmunisJOURNALPlant Physiol. 105 (1), 443-444 (1994)MEDLINE94302177REMARKSEQUENCE FROM N.A.STRAIN=CV. BAKER 296; TISSUE=SEED[FUNCTION] CHLOROPLAST OMEGA-3 FATTY ACID DESATURASEINTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 16:3AND 18:3 FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANTMEMBRANES. IT IS THOUGHT TO USE FERREDOXIN AS AN ELECTRONDONOR AND TO ACT ON FATTY ACIDS ESTERIFIED TO GALACTOLIPIDS,SULFOLIPIDS AND PHOSPHATIDYLOLYCEROL.[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.[SUECELLULAR LOCATION] CHLOROPLAST, MEMBRANE-BOUND(PROBABLE). [DOMAIN] THE HISTIDINE BOX DOMAINS MAY CONTAINTHE ACTIVE SITE AND/OR BE INVOLVED IN METAL ION BINDING.[SIMILARITY] TO OTHER PLANT OMEGA-B FATTY ACID DESATURASES.FEATURESLocation/Qualifierssource1 . . . 460/organism=″Ricinus communis/db_xref=″taxon:3988″1 . . . 460Protein1 . . . 460/product=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLASTPRECURSOR″/EC_number=″l.14.99.-″Region1 . . . (2.460)/note=″CHLOROPLAST.″/region_name=″Transit peptide″Region(1.459) . . . 46D/note=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST.″/region_name=″Mature chain″Region177 . . . 181/note=″HISTIDINE BOX 1.″/region_name=″Domain″Region213 . . . 217/note=″HISTIDINE BOX 2.″/region_name=″Domain″Region380 . . . 384/note=″HISTIDINE BOX 3.″/region_name″Domain″ORIGIN(SEQ ID NO:17)ereefng ivnvdegkge ffdagapppf tladiraaip khcwvknpwr snsyvlrdvv vvtglaavaaytnnwvawpl ywfcqgtmfw alfvlghdcg hgsfsnnpkl nsvvghllhs siivpyhgwrishrthhqnh ghvendeswh pisekifksl dnvtktirfs lptpmlaypf ylwsrspgkkgshfhpdsgl fvpkerkdii tstacwtama allvylnfsm gpvqmlklyg ipywifvnwldfvtylhhhg hedklpwyrg kawsylrggl ttldrdygwi nnihhdigth vihhlfpqiphyhlveatea akpvrngkyyr epkksgplpl hilgslvrsm kedhyvsdtg dvvyyqkdpklsgiggekte1754795 (Perilla frutescens)LOCUS AAB39387 438 aa PLN Dec. 28, 1996DEFINITIONomega-3 fatty acid desaturase.ACCESSIONAAB39387PIDg1754795VERSIONAAB39387.1 GI:1754795DESOURCElocus PFU59477 accession U59477.1KEYWORDS.SOURCEPerilla frutescens.ORGANISMPerilla frutescensEukaryota; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; euphyllophytes; Spermatophyta; Nagnoliophyta;eudicotyledons; core eudicots; Asteridae; euasterids I;Lamiales; Larniaceae; Perilla.REFERENCE1 (residues 1 to 438)AUTHORSLee, S. -K., Kim, K. -H., Kim, Y. -M. and Hwang, Y. -S.TITLECloning of plant omega-3 fatty acid desaturase gene fromPerilla frutescensJOURNALUnpublishedREFERENCE2 (residues 1 to 438)AUTHORSLee, S. -K.TITLEDirect SubmissionJOURNALSubmitted (May 30, 1996) Biochemistry, National AgriculturalScience and Technology Institute, 249 Seodundong, Suwon 441-707, Republic of KoreaFEATURESLocation/Qualifierssource1 . . . 438/organism=″Perilla frutescens/strain=″Okdong″/db_xref=″taxon:48386″/clone=″Pfrfad7″/devstage=″seedling″Protein1 . . . 438/product=″omega-3 fatty acid desaturase″CDS1 . . . 438/coded_by=″U59477.1:222 . . . 1538″ORIGIN(SEQ ID NO: 18)eergsv ivngvdefdp gapppfklsd iraaipkhcw vkdpwrsmsy vvrdvvvvfg laaaaayfnnwavwpiywfa qstmfwalfv lqhdcghgsf sndpklnsva ghllhssilv pyhqwrishrthhqnhghve ndeswhpipe kiyrtldfat kklrftlpfp mlaypfylwg rspqkkgshfhpdsdlfvpn erkdvitstv cwtamvaila glsfvmgpvq liklygipyi gfvawidlvtylhhhghdek lpwyrgkews ylrgglttld rdygwinnih hdigthvihh lfpqiphyhlieataaakpv lgkyykepkk sgpfpfyllg vlqksmkkdh yvsdtgdivy yqtdpeP48620 (sesame. Sesamum indicum)LOCUS FD3C_SESIN 447 aa PLN Dec. 15, 1998DEFINITIONOMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST PRECURSOR.ACCESSIONP48620PIDg1345970VERSIONP48620 GI:1345970DBSOURCEswissprot: locus FD3C_SESIN, accession P48620;class: standard.created: Feb. 1, 1996.sequence updated: Feb. 1, 1996.annotation updated: Dec. 15, 1998.xrefs: gi: 870783, gi: 870784xrefs (non-sequence databases): PFAM PF00487KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; CHLOROPLAST;MEMBRANE; TRANSIT PEPTIDE.SOURCE sesame.ORGANISMSesamurn indicumEukaryota; Viridiplantae; Charophyta/Embryophyta group;Embryophyta; Tracheophyta; euphyllophytes; Spermatophyta;Magnoliophyta; eudicotyledons; Asteridae; Centiananae;Lamiales; Pedaliaceae; Sesamum.REFERENCE1 (residues 1 to 447)AUTHORSSHOJI, K.TITLEDirect SubmissionJOURNALSubmitted (Apr. ??, 1995) TO EMBL/GENBANK/DDBJ DATA BANKSREMARKSEQUENCE FROM N.A.STRAIN=CV. 4294; TISSUE=COTYLEDON[FUNCTION] CHLOROPLAST OMEGA-3 FATTY ACID DESATURASEINTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 16:3AND 18:3 FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANTMEMBRANES. IT IS THOUGHT TO USE FERREDOXIN AS AN ELECTRONDONOR AND TO ACT ON FATTY ACIDS ESTERIFIED TO GALACTOLIPIDS,SULFOLIPIDS AND PHOSPHATIDYLGLYCEROL.[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.[SUBCELLULAR LOCATION] CHLOROPLAST, MEMBRANE-BOUND(PROBABLE). [DOMAIN] THE HISTIDINE BOX DOMAINS MAY CONTAINTHE ACTIVE SITE AND/OR BE INVOLVED IN METAL ION BINDING.[SIMILARITY] TO OTHER PLANT OMEGA-3 FATTY ACID DESATURASES.FEATURESLocation/Qualifierssource1 . . . 447/organism=″Sesamum indicum/db_xref=″taxon:4182″1 . . . 447Protein1 . . . 447/product=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLASTPRECURSOR″/EC_number=″1.14.99.-″Region1 . . . (2.447)/note=″CHLOROPLAST.″/region_name=″Transit peptide″Region(1.446) . . . 447/note=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST2″/region_name=″Mature chain″Region167 . . . 171/note=″HISTIDINE BOX 1.″/region_name=″Domain″Region203 . . . 207/note=″HISTIDINE BOX 2.″/region_name=″Domain″Region370 . . . 374/note=″HISTIDINE BOX 3.″/region_name=″Domain″ORIGIN(SEQ ID NO:19)e efdpgapppf klsdireaip khcwvkdpwr smgyvvrdva vvfglaavaa yfnnwvvwplywfaqstmfw alfvlghdcg hgsfsndpkl nsvvghilhs silvpyhgwr ishrthhqnhghvendeswh pisekiyknl dtatkklrft ipfpllaypi ylwsrspgkq gshfhpdsdlfvpnekkdvi tstvcwtaml allvglsfvi gpvqllklyg ipylgnvmwl divtylhhhghedklpwyrg kewsylrggl ttldrdygwi nnihhdigth vihhlfpqip hyhlieateaakpvlgkyyr epkksaplpf hllgdltrsl krdhyvsdvg dvvyyqtdpq lP46310 (Arabidopsis thaliana)LOCUS FD3C_ARATH 446 aa PLN Feb. 1, 1996DEFINITIONOMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST PRECURSOR.ACCESSIONP46310PIDg1169599VERSIONP46310 GI:1169599DBSOURCEswissprot: locus FD3C_ARATH, accession P46310;class: standard.created: Nov. 1, 1995.sequence updated: Nov. 1, 1995.annotation updated: Feb. 1, 1996.xrefs: gi: 408480, gi: 408481, gi: 461160, gi: 541653, gi:809491, gi: 468434KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; CHLOROPLAST;MEMBRANE; TRANSIT PEPTIDE.SOURCEthale cress.ORGANISMChioroplast Arabidopsis thalianaEukaryotae; Viridiplantae; Charophyta/Embryophyta group;Embryophyta; Tracheophyta; seed plants; Magnoliophyta;eudicotyledons; Rosidae; Capparales; Brassicaceae;Arabidopsis.REFERENCE1 (residues 1 to 446)AUTHORSYADAV, N. S., WIERZBICKI, A., AEGERTER, M., CASTER, C. S., PEREZ-GRAU, L., KINNEY, A. J., HITZ, W. D., BOOTH, J. R. JR.,SCHWEIGER, B., STECCA, K. L., ALLEN, S. M., BLACKWELL, M.,REITER, R. S., CARLSON, T. J., RUSSELL, S. H., FELDMANN, K. A.,PIERCE, J. and BROWSE, J.TITLECloning of higher plant omega-3 fatty acid desaturasesJOURNALPlant Physiol. 103 (2), 467-476 (1993)MEDLINE94302147REMARKSEQUENCE FROM N.A.STRAIN=CV. COLUMBIA; TISSUE=HYPOCOTYLREFERENCE2 (residues 1 to 446)AUTHORSIba, K., Gibson, S., Nishiuchi, T., Fuse, T., Nishimura, M.,Arondel, V., Hugly, S. and Somervllle, C.TITLEA gene encoding a chloroplast omega-3 fatty acid desaturasecomplements alterations in fatty acid desaturation andchloroplast copy number of the fad7 mutant of ArabidopsisthalianaJOURNALJ. Biol. Chain. 268 (32), 24099-24105 (1993)MEDLINE94043239REMARKSEQUENCE FROM N.A.STRAIN=CV. COLUMBIA; TISSUE=AERIAL PARTSREFERENCE3 (residues 1 to 446)AUTHORSWATAHIKI, M. and YAMANOTO, K.TITLEDirect SubmissionJOURNALSubmitted (Nov. ??, 1993) TO EMBL/GENBANK/DDBJ DATA BANKSREMARKSEQUENCE FROM N.A.STRAIN=CV. COLUMBIA; TISSUE=HYPOCOTYLCOMMENT[FUNCTION] CHLOROPLAST OMEGA-3 FATTY ACID DESATURASEINTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 16:3AND 18:3 FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANTMEMBRANES. IT IS THOUGHT TO USE FERREDOXIN AS AN ELECTRONDONOR AND TO ACT ON FATTY ACIDS ESTERIFIED TO GALACTOLIPIDS,SULFOLIPIDS AND PHOSPHATIDYLGLYCEROL.[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.[SUBCELLULAR LOCATION] CHLOROPLAST, MEMBRANE-BOUND(PROBABLE). [TISSUE SPECIFICITY] MOST ABUNDANT IN LEAVES ANDSEEDLINGS. [DOMAIN] THE HISTIDINE BOX DOMAINS MAY CONTAIN THEACTIVE SITE AND/OR BE INVOLVED IN METAL ION BINDING.[SIMILARITY] TO OTHER PLANT OMEGA-3 FATTY ACID DESATURASES.FEATURESLocation/Qualifierssource1 . . . 446/organism=″Arabidcpsis thaliana/chloroplast/db_xref=″taxon:3702″1 . . . 446Protein1 . . . 446/product=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLASTPRECURSOR″/EC_number=″1.14.99.-″Region1 . . . 92.446)/note=″CHLOROPLAST.″/region_name=″Transit peptide″Region(1.445) . . . 446/note=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST.″/region_name=″Mature chain″Region163 . . . 167/note=″HISTIDINE BOX 1.″/region_name=″Domain″Region199 . . . 203/note=″HISTIDINE BOX 2.″/region_name=″Domain″Region366 . . . 370/note=″HISTIDINE BOX 3.″/region_name=″Domain″ORIGIN(SEQ ID NO:20)eespi eednkqrfdp gapppfnlad iraaipkhcw vknpwkslsy vvrdvaivfa laagaaylnnwivwplywla qgtmfwalfv lghdcghgsf sndpklnsvv ghllhssilv pyhgwrishrthhqnhghve ndeswhpmse kiyntldkpt rffrttlplv mlaypfylwa rspgkkgshyhpdsdlflpk erkdvltsta cwtamaallv clnftigpiq mlklygipyw invmwldfvtylhhhghedk lpwyrgkews ylrgglttld rdyglinnih hdigthvihh ifpqiphyhlveateaakpv lgkyyrepdk sgplplhlle ilaksikedh yvsdegevvy ykadpnlyBAA11475 (Nicotiana tabacum)LOCUS BAA11475 441 aa PLN Feb. 5, 1999DEFINITIONomega-3 fatty acid desaturase.ACCESSIONBAA11475PIDg1694625VERSIONBAA11475.1 GI:1694625DBSOURCElocus D79979 accession D79979.1KEYWORDSSOURCEcommon tobacco.ORGANISMNicotiana tabacumEukaryota; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; euphyllophytes; Spermatophyta; Nagnoliophyta;eudicotyledons; Asteridae; Solananae; Solanales; Solanaceae;Nicotiana.REFERENCE1 (residues 1 to 441)AUTHORSHamada, T.TITLEDirect SubmissionJOURNALSubmitted (Dec. 12, 1995) to the DDBJ/EMBL/GenBankdatabases. Tatsurou Ramada, Faculty of Science, KyushuUniversity, Department of Biology; 6-10-1 Hakozaki, Higasbi-ku, Fukuoka, Fukuoka 812, Japan(Tel:092-641-1101(ex.4414), Fax:092-632-2741)REFERENCE2 (residues 1 to 441)AUTHORSHamada, T.JOURNALUnpublished (1995)REFERENCE3 (residues 1 to 441)AUTHORSHamada, T., Nishiuchi, T., Kodama, EL, Nishimura, M. and Iba. K.TITLEcDNA cloning of a wounding-inducible gene encoding a plastidomega-3 fatty acid desaturase from tobaccoJOURNALPlant Cell Physiol. 37 (5), 606-611 (1996)MEDLINE96416425FEATURESLocation/Qualifierssource1 . . . 441/organism=″Nicotiana tabacum/db_xref=″taxon:4097″/clone=″lambda H 1″/clone_lib=″lambda gtll″Protein1 . . . 441/product=″omega-3 fatty acid desaturase″CDS1 . . . 441/gene=″NtFAD7″/coded_by==″D79979.l:28 . . . 1353″ORIGIN(SEQ ID NO: 21)eeesertn nsggeffdpg apppfklsdi kaaipkhcwv knpwksmsyv vrdvaivfglaaaaayfnnw vvwplywfaq stmfwalfvl ghdcghgsfs nnhklnsvvg hilhssilvpyhgwrishrt hhqnhghven deswhpipek iynsldlatk klrftlpfpl laypfylwsrspgkkgshfd pnsdlfvpse kkdvmtstlc wtamaallvg lsfvmgpfqv lklygipywgfvmwldlvty lhhhghddkl pwyrgeewsy lrgglttldr dygwinnihh digthvihhlfpqiphyhlv eateaakpvl gkyykepkks gplpfyllgv liksmkqdhy vsdtqdivyyrtdpqlsgfq kP48626 (Nicotiana tabacum)LOCUS FD3E_TOBAC 379 aa PLN Oct. 1, 1996DEFINITIONOMEGA-3 FATTY ACID DESATURASE, ENDOPLASMIC RETICULUM.ACCESSIONP48626PIDg1345975VERSIONP48626 GI:1345975DBSOURCEswissprot: locus FD3E_TOBAC, accession P48626;class: standard.created: Feb. 1, 1996.sequence updated: Feb. 1, 1996.annotation updated: Oct. 1, 1996.xrefs: gi: 1311480, gi: 599592KEYWORDSOXIDOREOUCTASE; FATTY ACID BIOSYNTHESIS; ENDOPLASMICRETICULUM;TRANSMEMBRANE.SOURCEcommon tobacco.ORGANISMNicotiana tabacumEukaryotae; Viridiplantae; Charophyta/Embryophyta group;Embryophyta; Tracheophyta; seed plants; Magnoliophyta;eudicotyledons; Asteridae; Solananae; Solanales; Solanaceae;Nicotiana.REFERENCE1 (residues 1 to 379)AUTHORSHamacla, T., Kodama. H., Nishimura, M. and Iba, K.TITLECloning of a cDNA encoding tobacco omega-3 fatty aciddesaturaseJOURNALGene 147 (2), 293-294 (1994)MEDLINE95011632REMARKSEQUENCE FROM N.A.STRAIN=CV. SR1; TISSUE=LEAFCOMMENT[FUNCTION] ER (MICROSOMAL) OMEGA-3 FATTY ACID DESATURASEINTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 18:3FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT MEMBRANES. IT ISTHOUGHT TO USE CYTOCHROME B5 AS AN ELECTRON DONOR AND TO ACTON FATTY ACIDS ESTERIFIED TO PHOSPHATIDYLCHOLINE AND,POSSIBLY, OTHER PHOSPHOLIPIDS.[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.[SUBCELLULAR LOCATION] ENDOPLASMIC RETICULUM. [DOMAIN] THEHISTIDINE BOX DOMAINS MAY CONTAIN THE ACTIVE SITEAND/OR BE INVOLVED IN METAL ION BINDING. [SIMILARITY] TOOTHER PLANT OMEGA-3 FATTY ACID DESATURASES.FEATURESLocation/Qualifierssource1 . . . 379/organism=″=Nicotiana tabacum/db_xref=″taxon:4097″1 . . . 379Protein1 . . . 379/product=″OMEGA-3 FATTY ACID DESATURASE, ENDOPLASMICRETICULUM″/EC_number=″l.14.99.Region52 . . . 72/region_name=″Transmembrane region″Region97 . . . 101/note=″HISTIDINE BOX 12″/region_name=″Domain″Region133 . . . 137/note=″HISTIDINE BOX 2.″/ region_name=″Domain″Region213 . . . 233/region_name=″Transmembrane region″Region236 . . . 256/region_name=″Transmembrane region″Region300 . . . 304/note=″HISTIDINE BOX 3.″/region_name=″Domain″ORIGIN(SEQ ID NO; 22)fdpsapppf rlaeirnvip khcwvkdplr slsyvvrdvi fvatligiai hldswifyplywaiqgtmfw aifvlghdcg hgsfsdsqll nnvvghilhs ailvpyhgwr ishkthhqnhgnvetdeswv pmpeklynkv gystkflryk ipfpllaypm ylmkrspgks gshfnpysdlfqpherkyvv tstlcwtvma alllylctaf qslqmfkiyg apylifvmwl dfvtylhhhgyekklpwyrg kewsylrggl ttvdrdyglf nnihhdigth vihhlfpqip hyhlreatkaakpvlgkyyr epkksgpipf hlvkdltrsm kqdhyvsdsg eivfyqtdph ifAAD13527 ( Vernicia fordii)LOCUS AAD13527 437 aa PLN Feb. 8, 1999DEFINITIONomega-3 fatty acid desaturase precursor.ACCESSIONAAD13527PIDg4240385VERSIONAAD13527.l GI:4240385DBSOURCElocus AF061027 accession AF061027.1KEYWORDSSOURCEVernicia fordii.ORGANISMVernicia fordiiEukaryota; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;eudicotyledons; core eudicots; Rosidae; eurosids I;Malpighiales; Euphorbiaceae; Vernicia.REFERENCE1 (residues 1 to 437)AUTHORSTang, F., Dyer, J. M., Lax, A. R., Shih, D. S., Chapital. D. C. andPepperman, A. B.TITLENucleotide sequence of a cDNA clone for omega-3 fatty aciddesaturase (Accession No. AF061027) from Aleurites fordiiseeds (PGR99-009)JOURNALPlant Physiol. 119, 364 (1999)REFERENCE2 (residues 1 to 437)AUTHORSTang, F., Dyer, J. M., Lax, A. R., Shih, D. S. and Pepperman, A. B.TITLEDirect SubmissionJOURNALSubmitted (Apr. 21, 1998) Southern Regional Research Center,USDA-ARS, 1100 Robert E. Lee Blvd., New Orleans, LA 70124,USACOMMENTMethod: conceptual translation.FEATURESLocation/Qualifierssource1 . . . 437/organism=″Vernicia fordii/db_xref=″taxon:73154″/tissue_type=″seeds″Protein<1 . . . 437/product=″omega-3 fatty acid desaturase precursor″CDS1 . . . 437/coded_by=″AF061027.l:<1 . . . 1316″ORIGIN(SEQ ID NO: 23)ereegin gvigiegeet efdpgapppf klsdireaip khcwvkdpwr smsyvvrdvavvfglaaaaa ylnnwivwpl ywaaqgtmfw alfvlghdcg hgsfshnpkl nsvvghllhssilvpyhgwr ishrthhqnh ghvendeswq plsekifrsl dymtrtlrft vpspmlaypfylwnrspgkt gshfhpdsdl fgpnerkdvi tstvcwtama allvglslvm gpiqllklygmpywifvmwl dfvtylhhhg heeklpwyrg newsylrggl ttlgrdygwi nnihhdigthvihhffpqip hyhlidatea skpvlgkyyr epdksgplsf hligylirsi kkdhyvsdtgdvvyyqtdpq lAAB72241 (Petroselinum crispum)LOCUS AA272241 438 aa PLN Oct. 8, 1997DEFINITIONomega-3 fatty acid desaturase.ACCESSIONAAB72241PIDg1786066VERSIONAAB72241.1 GI:1786066DBSOURCElocus PCU75745 accession U75745.lKEYWORDS.SOURCEparsley.ORGANISMPetroselinum crispumEukaryota; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; euphyllophytes; Spermacophyta; Magnoliophyta;eudicotyledons; core eudicots; Asteridae; euasterids II;Apiales; Apiaceae; Petroselinum.REFERENCE1 (residues 1 to 438)AUTHORSKirsch, C., Takamiya-Wik, M., Reinold, S., Hahlbrock, K. andSomssich, I. E.TITLERapid, transient, and highly localized induction ofplastidial omega-3 fatty acid desaturase mRNA at fungalinfection sites in Petroselinum crispumJOURNALProc. Natl. Acad. Sci. U.S.A. 94 (5), 2079-2084 (1997)MEDLINE97203190REFERENCE2 (residues 1 to 438)AUTHORSSomssich, I. E. and Kirsch, C.TITLEDirect SubmissionJOURNALSubmitted (Oct. 23, 1996) Biochemistry, Max-Planck-Institut f.Zuchtungsforschung, Carl-von-Linne-Weg 10, Koln, NRW 50829,GermanyCOMMENTMethod: conceptual translation supplied by author.FEATURESLocation/Qualifierssource1 . . . 438/organism=″Petroselinum crispum/db_xref=″taxon:4043″/cell_type=″cultured parsley cells″/clone=″15-1 and 25-2″/note=″derived from two overlapping partial cDNAs″Protein1 . . . 438/product=″omega-3 fatty acid desaturase″CDS1 . . . 438/coded_by=″U75745.1:96 . . . 1412″/note=″complements the Arabidopsis fad7/8 fatty aciddouble mutant″ORIGIN(SEQ ID NO:24)e enefdpgaap pfklsdvraa ipkhcwvkdp vrsrasyvlrd vlivfglava asfvnnwavwplywiaqgtm fwalfvlghd cghgsfsnda klnsvvghil hssilvpyhg wrishrthhqnhghvendes whplseklfn slddltrkfr ftlpfpmlay pfylwgrspg kkgshydpssdlfvpnerkd vitstvcwta maallvglnf vmgpvkmlml ygipywifvm wldfvtylhhhghddklpwy rgkewsylrg glttldrdyg winnihhdig thvvhhlfpq iphyhlieateaakpvfgky yrepkksgpv pfhllatlwk sfkkdhfvsd tgdvvyyqah peP48625 (Glycine max)LOCUS FD3E_SOYBN 380 aa PLN Oct, 1, 1996DEFINITIONOMEGA-3 FATTY ACID DESATURASE, ENDOPLASMIC RETICULUM.ACCESSIONP48625PIDg1345974VERSIONP48625 GI:1345974DBSOURCEswissprot: locus FD3E_SOYBN, accession P48625;class: standard.created: Feb. 1, 1996.sequence updated: Feb. 1, 1996.annotation updated: Oct. 1, 1996.xrefs: gi: 408793, gi: 408794, gi: 541946KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; ENDOPLASMICRETICULUM; TRANSMEMBRANE.SOURCEsoybean.ORGANISMGlycine maxEukaryotae; Viridiplantae; Charophyta/Embryophyta group;Embryophyta; Tracheophyta; seed plants; Magnoliophyta;eudicotyledons; Rosidae; Fabales; Fabaceae; Papilionoidese;Glycine.REFERENCE1 (residues 1 to 380)AUTHORSYADAV, N. S., WIERZBICKI, A., AEGERTER, M., CASTER, C. S., PEREZ-GRAU, L., KINNEY, A. J., HITZ,W. D., BOOTH, J. R. JR.,SCHWEIGER, B., STECCA, K. L., ALLEN, S. M., BLACKWELL, M.,REITER, R. S., CARLSON, T. J., RUSSELL, S. H., FELDMANN, K. A.,PIERCE, J. and BROWSE, J.TITLECloning of higher plant omega-3 fatty acid desaturasesJOURNALPlant Physiol. 103 (2), 467-476 (1993)MEDLINE94302147REMARKSEQUENCE FROM N.A.TISSUE=SEEDCOMMENT[FUNCTION] MICROSOMAL (ER) OMEGA-3 FATTY ACID DESATURASEINTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 18:3FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT MEMBRANES. IT ISTHOUGHT TO USE CYTOCHROME B5 AS AN ELECTRON DONOR AND TO ACTON FATTY ACIDS ESTERIFIED TO PHOSPHATIDYLCHOLINE AND,POSSIBLY, OTHER PHOSPHOLIPIDS.[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.[SUBCELLULAR LOCATION] ENDOPLASMIC RETICULUM. [DOMAIN] THEHISTIDINE BOX DOMAINS MAY CONTAIN THE ACTIVE SITEAND/OR BE INVOLVED IN METAL ION BINDING. [SIMILARITY] TOOTHER PLANT OMEGA-3 FATTY ACID DESATURASES.FEATURESLocation/Qualifierssource1 . . . 380/organism==Glycine max/db_xref=″taxon:384T″1 . . . 380Protein1 . . . 380/product=″OMEGA-3 FATTY ACID DESATURASE, ENDOPLASMICRETICULUM″/EC_number=″1.14.99.-″Region55 . . . 75/region_name=″Transmembrane region″Region100 . . . 104/note=″HISTIDINE BOX 1.″/region_name=″Domain″Region136 . . . 140/note=″HISTIDINE BOX 2.″/region_name=″Domain″Region212 . . . 232/region_name=″Transmembrane region″Region236 . . . 256/reglon name=″Transmembrane region″Region303 . . . 307/note=″HISTIDINE BOX 3.″/region_name=″Domain″ORIGIN(SEQ ID NO:25)fdpsap ppfkiaeira sipkhcwvkn pwrslsyvlr dvlviaaiva aaihtdnwll wliycpiqgtmfwalfvlgh dcghgsfsds pllnslvghi lhssilvpyh gwrishrthh qnhghiekdeswvpltekiy knldsmtrli rftvpfplfv ypiylfsrsp gkegshfnpy snlfppserkgiaistlcwa tmfslliyls fitspllvlk lygipywifv mwldfvtylh hhghhqklpwyrgkewsylr gglttvdrdy gwiynihhdi gthvihhlfp qiphyhlvea tqaakpvlgdyyrepersap lpfhlikyli qsmrqdhfvs dtgdvvyyqt dslllhsqrdP48618 (Brassica napus)LOCUS FD3C_BRANA 404 aa PLN Feb. 1, 1996DEFINITIONOMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST PRECURSOR.ACCESSIONP48618PIDg1345968VERSIONP48618 GI:1345968DBSOURCEswissprot: locus FD3C_BRANA, accession P48618;class: standard.created: Feb. 1, 1996.sequence updated: Feb. 1, 1996.annotation updated: Feb. 1, 1996.xrefs: gi: 408489, gi: 408490, gi: 541916KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; CHLOROPLAST;MEMBRANE; TRANSIT PEPTIDE.SOURCErape.ORGANISMBrassica napusEukaryotae; Viridiplantae; Charophyta/Embryophyta group;Embryophyta; Tracheophyta; seed plants; Magnoliophyta;eudicotyledons; Rosidae; Capparales; Brassicaceae; Brassica.REFERENCE1 (residues 1 to 404)AUTHORSYADAV, N. S., WIERZBICKI, A., AEGERTER, M., CASTER, C. S., PEREZ-GRAU, L., KINNEY, A. J., HITZ, W. D., BOOTH, J. R. JR.,SCHWEIGER, B., STECCA, K. L., ALLEN, S. M., BLACKWELL, M.,REITER, R. S., CARLSON, T. J., RUSSELL, S. H., FELDMANN, K. A.,PIERCE, J. and BROWSE, J.TITLECloning of higher plant omega-3 fatty acid desaturasesJOURNALPlant Physiol. 103 (2), 467-476 (1993)MEDLINE94302147REMARKSEQUENCE FROM N.A.TISSUE=SEEDCOMMENT[FUNCTION] CHLOROPLAST OMEGA-3 FATTY ACID DESATURASEINTRODUCESTHE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 16:3 AND 18:3FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT MEMBRANES. IT ISTHOUGHT TO USE FERREDOXIN AS AN ELECTRON DONOR AND TO ACT ONFATTY ACIDS ESTERIFIED TO GALACTOLIPIDS, SULFOLIPIDS ANDPHOSPHATIDYLGLYCEROL.[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.[SUBCELLULAR LOCATION] CHLOROPLAST, MEMBRANE-BOUND(PROBABLE) . [DOMAIN] THE HISTIDINE BOX DOMAINS MAY CONTAINTHE ACTIVE SITE AND/OR BE INVOLVED IN METAL ION BINDING.[SIMILARITY] TO OTHER PLANT OMEGA-3 FATTY ACID DESATURASES.FEATURESLocation/Qualifierssource1 . . . 404/organism==″Brassica napus/db_xref=″taxon:3708=1 . . . 404Protein<1 . . . 404/product=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLASTPRECURSOR″/EC_number=″l.14.99.-″Region<1 . . . (2.404)/note=″CHLOROPLAST.″/region_name=″Transit peptide″Region(1.403) . . . 404/note=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST.″/region_name=″Mature chain″Region121 . . . 125/note=″HISTIDINE BOX 1.″/region_name=″Domain″Region157 . . . 161/note=″HISTIDINE BOX 22″/region_name=″Domain″Region324 . . . 323/note==″HISTIDINE BOX 32″/region_name=″Domain″ORIGIN(SEQ ID NO: 26)ieee pktqrfdpga pppfnladir aaipkhcwvk npwksmsyvv relaivfala agaaylnnwlvwplywiaqg tmfwalfvlg hdcghgsfsn dprlnsvvgh llhssilvpy hgwrishrthhqnhghvend eswhpmseki yksldkptrf frftlplvml aypfylwars pgkkgshyhpdsdlflpker ndvltstacw tamavllvcl nfvmgpmqml klyvipywin vmwldfvtylhhhghedklp wyrgkewsyl rgglttldrd yglinnihhd igthvihhlf pqiphyhlveateaakpvlg kyyrepdksg piplhllgil aksikedhfv sdegdvvyye adpnlyBAA22440 (Zea mays)LOCUS BAA22440 398 aa PLN Mar. 4, 1998DEFINITIONfatty acid desaturase.ACCESSIONBAA22440PIDg2446996VERSIONBAA22440.1 GI:2446996DBSOURCElocus D63953 accession D63953.1KEYWORDS.SOURCEZea mays.ORGANISMZea maysEukaryota; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;Liliopsida; Poales; Poaceae; Zee.REFERENCE1 (residues 1 to 398)AUTHORSKusano, T.TITLEDirect SubmissionJOURNALSubmitted (Aug. 30, 1995) to the DDBJ/EMBL/GenBank databases.Tomonobu Kusano, Akita Prefectural College of Agriculture,Biotechnology Institute; 2-2 Minami, Ohgatamura, Minamiakita-gun, Akita 010-04, Japan (E-mail:kusano@air.akita-u.ac.jp,Tel:0185-45-2026(ex.403), Fax:0185-45-2678)REFERENCE2 (sites)AUTHORSBerberich, T., Harada, M., Sugawara, K., Kodama, H., Iba, K. andKusaflo, T.TITLETwo maize genes encoding omega-3 fatty acid desaturase andtheir differential expression to temperatureJOURNALPlant Mol. Biol. 36 (2), 297-306 (1998)MEDLINE98145435COMMENTSequence updated (Apr. 11, 1996) by: Tomonobu Kusano.FEATURESLocation/Qualifierssource1 . . . 398/organism=″Zea mays/strain=″honey bantum″/db_xref=″taxon:4577″Protein1 . . . 398/product=″fatty acid desaturase″CDS1 . . . 398/gene=″FAD8″/codedphd —by=″D63953.1:<1 . . . 1198″ORIGIN(SEQ ID NO: 27)veedkr ssplgegdeh vaasgaaqge fdpgapppfg laeiraaipk hcwvkdpwrs mayvlrdvvvvlglaaaaar ldswlvwply waaqqtmfwa lfvlghdcgh gsfsnnpkln svvghilhssilvpyhqwri shrthhqnhg hvekdeswhp lperlyksld fmtrklrftm pfpllafplylfarspgksg shfnpssdlf qpnekkdiit staswlamvg vlagltflmg pvamlklygvpyfvfvawld mvtylhhhgh edklpwyrgq ewsylrgglt tldrdyglin nihhdigthvihhlfpqiph yhlieateaa kpvlgkyyke pkksgplpwh lfgvlaqslk qdhyvsdtgd vvyyqtdP48621 (Glycine max)LOCUS FD3C_SOYBN 453 aa PLN Dec. 15, 1998DEFINITIONOMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST PRECURSOR.ACCESSIONP48621PIDg1345971VERSIONP48621 GI:1345971DBSOURCEswissprot: locus FD3C_SOYBN, accession P48621;class: standard.created: Feb. 1, 1996.sequence updated: Feb. 1, 1996.annotation updated: Dec. 15, 1998.xrefs: gi: 408791, gi: 408792, gi: 541947xrefs (non-sequence databases) : PFAM PF00487KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; CHLOROPLAST;MEMBRANE; TRANSIT PEPTIDE.SOURCEsoybean.ORGANISMGlycine maxEukaryota; Viridiplantae; Charophyta/Embryophyta group;Embryophyta; Tracheophyta; euphyilophytes; Spermatophyta;Magnoliophyta; eudicotyledons; Rosidae; Fabales; Fabaceae;Papiiionoideae; Glycine.REFERENCE1 (residues 1 to 453)AUTHORSYADAV, N. S., WIERZBICKI, A., AEGERTER, M., CASTER, C. S., PEREZ-GRAU, L., KINNEY, A. J., HITZ, W. D., BOOTH, J. R. JR.,SCHWEIGER, B., STECCA, K. L., ALLEN, S. M., BLACRWELL, M.,REITER, R. S., CARLSON, T. J., RUSSELL, S. H., FELDMANN, K. A.,PIERCE, J. and BROWSE J.TITLECloning of higher plant omega-3 fatty acid desaturasesJOURNALPlant Physiol. 103 (2), 467-476 (1993)MEDLINE94302147REMARKSEQUENCE FROM N.A.TISSUE=SEEDCOMMENT[FUNCTION] CHLOROFLAST OMEGA-3 FATTY ACID DESATURASEINTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 16:3AND 18:3 FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANTMEMBRANES. IT IS THOUGHT TO USE FERREDOXIN AS AN ELECTRONDONOR AND TO ACT ON FATTY ACIDS ESTERIFIED TO GALACTOLIPIDS,SULFOLIPIDS AND PHOSPHATIDYLGLYCEROL.[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.[SUBCELLULAR LOCATION] CHLOROPLAST, MEMBRANE-BOUND(PROBABLE). [DOMAIN] THE HISTIDINE BOX DOMAINS MAY CONTAINTHE ACTIVE SITE AND/OR BE INVOLVED IN METAL ION BINDING.[SIMILARITY] TO OTHER PLANT OMEGA-3 FATTY ACID DESATURASES.FEATURESLocation/Qualifierssource1 . . . 453/organism=″Glycine max/db_xref=″taxon:3847″T1 . . . 453Protein1 . . . 453/product=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLASTPRECURSOR″/EC_number=″1.14.99,-″Region1 . . . (2.453)/region_name=″Transit peptide″/note=″CHLOROPLAST.″Region(1.452) . . . 453/region_name=″Mature chain″/note=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST.″Region171 . . . 175/region_name=″Domain″/note=″HISTIDINE BOX 1.″Region207 . . . 211/region_name=″Domain″/note=″HISTIDINE BOX 2.″Region374 . . . 378./region_name=″Domain″/note=″HISTIDINE BOX 3.″ORIGIN(SEQ ID NO: 28)svd ltngtngveh eklpefdpga pppfnladir aaipkhcwvk dpwrsmsyvv rdviavfglaaaaaylnnwl vwplywaaqg tmfwalfvlg hdcghgsfsn nsklnsvvgh llhssilvpyhgwrishrth hqhhghaend eswhplpekl frsldtvtrm lrftapfpll afpvylfsrspgktgshfdp ssdlfvpner kdvitstacw aamlgllvgl gfvmgpiqll klygvpyvifvmwldlvtyl hhhghedklp wyrgkewsyl rgglttldrd ygwinnihhd igthvihhlfpqiphyhlve ateaakpvfg kyyrepkksa aplpfhlige iirsfktdhf vsdtgdvvyy qtdBAA22441 (Zea mays)LOCUS BAA22441 443 aa PLN Mar. 4, 1998DEFINITIONfatty acid desaturase.ACCESSIONBAA22441PIDg2446998VERSIONBAA22441.1 GI:2446998DBSOURCElocus D63954 accession D63954.1KEYWORDS.SOURCEZea mays.ORGANISMZea mays Eukaryota; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;Liliopsida; Poales; Poaceae; Zea.REFERENCE1 (residues 1 to 443)AUTHORSKusano, T.TITLEDirect SubmissionJOURNALSubmitted (Aug. 30, 1995) to the DDBJ/EMBL/GenBankdatabases. Tomonobu Kusano, Akita Prefectural College ofAgriculture, Biotechnology Institute; 2-2 Minami, Ohgatamura,Minamiakita-gun, Akita 010-04, Japan (E-mall:kusano@air.aklta-u.ac.jp,Tel:0185-45-2026(ex.403), Fax:0185-45-2678)REFERENCE2 (sites)AUTHORSBerberich, T., Harada, M., Sugawara, K., Kodama, H., Iba, K. andKusano, T.TITLETwo maize genes encoding omega-3 fatty acid desaturase andtheir differential expression to temperatureJOURNALPlant Mol. Biol. 36 (2), 297-306 (1998)MEDLINE98145435FEATURESLocation/Qualifierssource1 . . . 443/organism=″Zea mays/strain==″honey bantum″/db_xref=″taxon:4577″Protein1 . . . 443/product=″fatty acid desaturase″CDS1 . . . 443/gene=″FAD7″/coded_by=″join(D63954.1:2178 . . . 2665, 063954.l:2775 . . . 2864,063954.1:2944 . . . 3010, D63954.1:3113 . . . 3205,063954.1:3323 . . . 3508, 063954.1:3615 . . . 3695,063954.1:4259 . . . 4396, 063954.1:4492 . . . 4680)″ORIGIN(SEQ ID NO: 29)ga aaggefdpga pppfglaeir aaipkhcwvk dpwrsmsyvl rdvavvlgla aaaarldswlvwplywaaqg tmfwalfvlg hdcghgsfsn npklnsvvgh ilhssilvpy hgwrishrthhgnhghvekd eswhplperl yksldfmtrk lrftmpfpll afplylfars pgksgshfnpgsdlfqptek ndiitstasw lamvgvlagl tfimgpvpml klygvpyivf vawldmvtyihhhghedklp wyrgkewsyl rgglttldrd ygwinnihhd igthvihhlf pqiphyhlieateaakpvlg kyykepknsg alpwhlfrvl aqslkgdhyv shtgdvvyyq aeCAA07638 (Solanum tuberosum)LOCUS CAA07638 431 aa PLN Sep. 4, 1998DEFINITIONw-3 desaturase.ACCESSIONCAA07638PIDg3550663VERSIONCAA07638.1 GI:3550663DBSOURCEembl locus STU007739, accession AJ007739.1KEYWORDS.SOURCEpotato.ORGANISMSolanum tuberosumEukaryota; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; euphyliophytes; Spermatophyta; Magnoliophyta;eudicotyledons; Asteridae; Solananae; Solanales; Solanaceae;Solanum; Potatoe; section Petota.REFERENCE1 (residues 1 to 431)AUThORSLeon, J.TITLEDirect SubmissionJOURNALSubmitted (Aug. 20, 1998) Leon J., GeneticaMolecular de PLantas, Centre Nacional de Bioteenologia(CSIC), Campus de Cantoblanco Ctra. Colmenar Viejo Km 15,500,Madrid 28049, SPAINREFERENCE2 (residues 1 to 431)AUTHORSMartin, M.JOURNALUnpublishedFEATURESLocation/Qualifierssource1 . . . 431/organism=″Solanum tuberosum/cultivar=″Desiree″/db_xref=″taxon:4113″Protein1 . . . 431/product=″w-3 desaturase″CDS1 . . . 431/db_xrei=″SPTREMBL:O82068″/coded_by=″AJ007739.l:1 . . . 1296″ORIGIN(SEQ ID NO: 3D)eeeqt tnngdefdpg asppfklsdi kaaipkhcwv knpwtsmsyv vrdvaivfql aaaaayfnnwlvwplywfaq stmfwalfvi ghdcghgsfs nnhnlnsvag hilhssilvpyhgwrishrt hhqnhghven deswhpisek lynsldditk kfrftlpfpl laypfylwgrspgkkgshfd pssdlfvase kkdvitstvc wtamaallvg lsfvmgplqv lklygipywgfvmwidivty lhhhghedkv pwyrgeewsy lrgglttldr dygwinnihh digthvihhlfpqiphyhlv eateaakpvi gkyykepkks gpipfyllgy liksmkedhf vsdtgnvvyyqtdpnlyAAA86690 (Limnanthes douglasii)LOCUS AAA86690 436 aa PLN Nov. 21, 1995DEFINITIONdelta-15 lineoyl desaturase.ACCESSIONAAA86690PIDg699390VERSIONAAA8G690.1 GI:699390DBSOURCElocus LDU17063 accession U17063.1KEY WORDSSOURCEDouglas's meadowfoam.ORGANISMLimnanthes douglasiiEukaryota; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;eudicotyledons; core eudicots; Rosidae; eurosids II;Brassicales; Limnanthaceae; Limnanthes.REFERENCE1 (residues 1 to 436)AUTHORSBhella, R. S. and MacKenzie, S. L.TITLENucleotide sequence of a cDNA from Limnanthes douglasii L.Encoding a delta-15 linoleic acid desaturaseJOURNALPlant Physiol. 108 (2), 861 (1995)MEDLINE95334518REFERENCE2 (residues 1 to 436)AUTHORSMacKenzie, S. L.TITLEDirect SubmissionJOURNALSubmitted (Nov. 9, 1994) Samuel L. MacKenzie, PlantBiotechnology Institute, National Research Council of Canada,110 Gymnasium Place, Saskatoon, SK 57N 0W9, CanadaCOMMENTMethod: conceptual translation.FEATURESLocation/Qualifierssource1 . . . 436/organism=″Limnanthes douglasii/db_xref=″taxon:28973″/dev_stage=″seed, storage deposition stage″Protein1 . . . 438/product==″delta-l5 lineoyl desaturase″CDS1 . . . 436/function=″linoleic acid desaturation″/coded_by=″U17063.1:56 . . . 1366″/note=″omega-3-fatty acid desoturase″ORIGIN(SEQ ID NO: 31)v sapfqiastt peeedevaef dpgspppfkl adiraaipkh cwvknqwrsm syvvrdvvivlglaaaavaa nswavwplyw vaqgtmfwal fvighdcghg sfsnnhklns vvghllhssilvpyhgwrir hrthhqnhgh vendeswhpm seklfrsldk ialtfrfkap fpmlaypfylwerspgktgs hyhpdsdlfv psekkdvits ticwttmvgl liglsfvmgp iqilklyvvpywifvmwldf vtyldhhghe dklpwyrgee wsylrggltt ldrdyglinn ihhdigthvihhlfpqiphy hlveatqaak pifgkyykep akskplpfhl idvllkslkr dhfvpdtgdivyyqsdpqBAA07785 (Triticum aestivum)+TL, LOCUS BAA07785 380 aa PLN Jun. 18, 1999DEFINITIONplastid omega-3 fatty acid desaturase.ACCESSIONBAA07785PIDg1694615VERSIONBAA07785.1 GI:1694615DBSOURCElocus D43688 accession D43688.1KEYWORDS.SOURCEbread wheat.ORGANISMTriticum aestivumEukaryota; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;Liliopsida; Poales; Poaceae; TriticumREFERENCE1 (sites)AUTHORSHoriguchi, G., Iwakawa, H., Kodama, H., Kawakami, N., Nishimura, M.And Iba, K.TITLEExpression of a gene for plastid omega-3 fatty aciddesaturase and changes in lipid and fatty acid compositionsin light- and dark-grown wheat leavesJOURNALPhysiol. Plantarurn 96, 275-283 (1996)REFERENCE2 (residues 1 to 380)AUTHORSIwakawa, H.TITLEDirect SubmissionJOURNALSubmitted (Dec. 3, 1994) to the DDBJ/EMBL/GenSankdatabases. Hirotaka Iwakawa, Kyushu University, Facul.Science, Dept. Biology, Lab. Plant Physiology; 6-10-1Hakozaki, Higashi-ku,Fukuoka, Fukuoka 812, Japan (E-mail: koibascb@mbox.nc.kyushu-u.ac.jp, Tel:092-641-1101(ex.4414), Fax:092-632-2741)FEATURESLocation/Qualifierssource1 . . . 380/organism=″Triticum aestivum/strain=″cv. Chihoku″/db_xref=″taxon:4565″/clone_lib=″lambda-gt11″/tissue_type=″ieaf″Protein1 . . . 380/product=″plastid omega-3 fatty acid desaturase″CDS1 . . . 380/gene=″TaFAD7″/coded_by=″D43688.1:<1 . . . 1143″ORIGIN(SEQ ID NO: 32)fdpgapp pfgladiraa ipkhcwvkdh wssmgyvvrd vvvvialaat aarldswlaw pvywaaqgtmfwalfvlghd cghgsfsnna klnsvvghil hssiivpynq wrishrthhq nhghvendeswhplpeklyr sldsstrklr faipfpmlay pfylwsrspg ksgshfhpss dlfqpnekkdiltsttcwla magllagltv vmgpiqilkl yavpywifvm wldfvtylhh hghndklpwyrgkawsiytg glitldrdyg wlnnihhdig thvihhiipq iphyhiveat eaatvigkyyrepdksgpfp fhlfgalars mksdhyvsdt gdiiyyqtdp kBAA28358 (Triticum aestivum)LOCUS BAA28358 383 aa PLN May 30, 1998DEFINITIONomega-3 fatty acid desaturase.ACCESSIONBAA28358PIDg3157460VERSIONBAA28358.1 GI:3157480DBSOURCElocus D84678 accession D84578.1KEYWORDS.SOURCETriticum aestivum.ORGANISMTriticum aestivunEukaryota; Viridiplantee; Streptophyta; Embryophyta;Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;Liliopsida; Poales; Poaceae; Triticum.REFERENCE1 (residues 1 to 383)AUTHORSHoriguchi, G.TITLEDirect SubmissionJOURNALSubmitted (May 1, 1996) to the DDBJ/EMBL/GenBank databases.Gorou Horiguchi, Kyushu University, Faculty of Science,Department of Biology; 6-10-1 Hakozaki, Fukuoka, Fukuoka 812-8581, Japan (E-mail:ghoriscb@mbox.nc.kyushu-u.Sc.Jp, Tel:092-642-2621,Fax:092-642-2621)REFERENCE2 (sites)AUTHORSHoriguchi, G., Eawakami, N., Kusuml, K., Kodama, H. and Iba, K.TITLEDevelopmental regulation of genes for microsome and plastidomega-3 fatty acid desaturases in wheat (Triticum aestivumL.)JOURNALPlant Cell Physiol. 39, 540-544 (1998)FEATURESLocation/Qualifierssource1 . . . 383/organism=″Triticum aestivum/cultivar=″Chihoku″/db_xref=″taxon:4565″/clone=″pWFD3″/clone_lib=″lambda MOSE lox″/tissue_type=″leaf and root″Protein1 . . . 383/product=″omega-3 fatty acid desaturase″CDS1 . . . 383/gene=″TaFAD3″/coded_by=″D84E78.1:132 . . . 1283″ORIGIN(SEQ ID NO: 33)fdaakppp frigdvraav pahcwpqepp aslsyvardv avvaalaaaa wradswalwplywavqgtmf walfvlghdc ghgsfsdsgt lnsvvghIlh tfiivpyngw rishrthhqnhghidrdesw hpitekvyqk ieprtktlrf svpfpllafp vylwyrspgk egshfnpssdlftpkerrdv iisttcwftm ialligmacv fglvpvlkly gvpyivnvmw ldlvtylhhhghqdlpwyrg eewsylrggl ttvdrdygwi nnihhdigth vihhlfpqip hyhlveatkaarpvlgryyr epeksqplpm hlitvllksl rvdhfvsdvq dvvfyqtdps lBAA11397 (Oryza sativa)LOCUS BAA11397 381 aa PLN Feb. 5, 1997DEFINITIONw-3 fatty acid desaturase.ACCESSIONBAA11397PIDg1777376VERSIONBAA11397.1 GI:1777376DBSOURCElocus RICP181X2 accession D78506.1KEYWORDS.SOURCEOryza sativa.ORGANISMOryza sativaEukaryota; Viridiplantae; Streptophyta; Embryophyta;Trecheophyta; euphyllophytes; Spermatophyte; Magnoliophyta;Liliopsida;Poales; Poaceae; Oryza.REFERENCE1 (residues 1 to 381)AUTHORSAkagi, H.TITLEDirect SubmissionJOURNALSubmitted (Nov. 27, 1995) to the DDBJ/EMBL/GenBankdatabases. Hiromori Akaqi, Life Science Institute, MitsuiToatsu Chemicals Inc., Plant Biothechnology; Togo 1144,Mobara, Chiba 297, Japan(E-mail:tnirasaw@niguts.nig. ac. jp, Tel:0475-25-6729,Fax: 0475-25-6553)REFERENCE2 (residues 1 to 381)AUTHORSAkagi, H.TITLENucleotide sequence of a w-3 fatty acid desaturase gene ofriceJOURNALUnpublished (1996)REFERENCE3 (sites)AUTHORSKodama, H., Akagi, H., Kusumi, K., Fujimura, T. and Tba, K.TITLEStructure, chromosomal location and expression of a rice geneencoding the microsome omega-3 fatty acid desaturaseJOURNALPlant Mol. Biol. 33 (3), 493-502 (1997)MEDLINE97201483FEATURESLocation/Qualifierssource1 . . . 381/organism=″Oryza sativa/strain=″IR36″/db_xref=″taxon:4530″/clone=″pl8-lX2″Protein1 . . . 381/prcduct=″w-3 fatty acid desaturase″CDS1 . . . 381/coded_by=″join(D78506.1:674 . . . 975, D78506.1:1069 . . . 1158, D78506.1:1613 . . . 1679, D78506.1:2499 . . . 2582,D78506.1:2741 . . . 2926, D78506.1:3030 . . . 3107,D78506.1:3662 . . . 3799, D78506.1:3917 . . . 4117)″ORIGIN(SEQ ID NO:34)sedarif fdaakpppfr igdvraaipv hcwrktplrs lsyvardlii vaalfaaaas sidlawawawplywarqgtm vwalfvlghd cghgsfsdsa mlnnvvghll hsfilvpyhg wrfshrthhqnhghierdes whpiteklyw qletrtkklr ftlpftllaf pwyrspgktg shflpssdlfspkeksdviv sttcwcimis llvalacvfg pvpvlmlygv pylvfvmwld lvtylhhhghndlpwyrgee wsylrggltt vdrdygwinn ihhdigthvi hhlfpqiphy hlveatkaarpvlgryyrep eksgplplhl fgvllrtlrv dhfvsdvgdv vyyqtdhslAAB61352 (Synechococcus PCC7002)LOCUS AAB61352 350 aa BCT Jun. 17, 1997DEFINITIONomega-3 desaturase.ACCESSIONAAB61352PIDg2197199VERSIONAAB61352.1 GI:2197199DBSOURCElocus SPU36389 accession U36389.1KEYWORDS.SOURCESynechococcus PCC7002.ORGANISMSynechococcus PCC7002Bacteria; Cyanobacteria; Chroococcales; Synechococcus.REFERENCE1 (residues 1 to 350)AUTHORSSakamoto, T. and Bryant, D. A.TITLETemperature-regulated mRNA accumulation and stabilization forFatty acid desaturase genes in the cyanobacteriumSynechococcus sp.strain PCC 7002JOURNALMol. Microbial. 23 (6), 1281-1292 (1997)MEDLINE97260123REFERENCE2 (residues 1 to 350)AUTHORSSakamoto, T.TITLEDirect SubmissionJOURNALSubmitted (Sep. 14, 1995) Toshio Sakarnoto, Biochemistry andMolecular Biology, The Pennsylvania State University, S-232Frear Bldg., University Park, PA 16802, USAFEATURESLocation/Qualifierssource1 . . . 350/organism=″Synechococcus PCC7002″/db_xref=″taxon:32049″Protein1 . . . 350/function=″desaturarion of fatty acids at omega-3position″/product″=″omega-3 desaturase″CDS 1 . . . 350/gene=″desB″/coded_by=″U36389.1:747 . . . 1799″/transl_table=11ORIGIN(SEQ ID NO: 35)pf tlkdvkaaip dycfqpsvfr slayffldig iiaglyaiaa yldswffypi fwfaqgtmfwalfvvghdcg hgsfsrskfl ndlighlsht pilvpfhgwr ishrthhsnt gnidtdeswypipeskydqm gfaeklvrfy apilayplyl fkrspgrgpg shfspksplf kpaerndiilstaaiiamvq flgwftvqfg llafvkfyfv pyvifviwld lvtylhhtea dipwyrgddwyylkgalsti drdygifnei hhnigthvah hifhtiphyh lkdateaikp llgdyyrvshapiwrsffrs qkachyiadq gshlyyqS52650 (Synechocystis sp.)LOCUS S52650 359 aa BCT Mar. 13, 1997DEFINITIONdesaturase delta 15 - Synechocystis sp. (strain PCC6803)ACCESSIONS52650PIDg2126522VERSIONS52650 GI:2126522DBSOURCEpir: locus S52650;summary: #length 359 #molecular-weight 41919 #checksum 9162;genetic: #start_codon GTG;PIR dates: Oct. 28, 1996 #sequence revision Mar. 13, 1997#text_change Mar. 13, 1997.KEYWORDSSOURCESynechocystis sp.ORGANISMSynechocystis sp.Eubacteria; Cyanobacteria; Chroococcales; Synechocystis.REFERENCE1 (residues 1 to 359)AUTHORSSakamoto, T., Los, D. A., Higashi, S., Wada, H., Nishida, I.,Ohmori, M. and Murata, N.TITLECloning of omega 3 desaturase from cyanobacteria and its usein altering the degree of membrane-lipid unsaturationJOURNALPlant Mol. Biol. 26 (1), 249-263 (1994)MEDLINE95035996FEATURESLocation/Qualifierssource1 . . . 359/organism=″Synechocystis sp./db_xref=″taxon:1143″Protein1 . . . 359/product=″desaturase delta 15″ORIGIN(SEQ ID NO: 36)pftlqelrna ipadcfepsv vrslgyffid vgliagfyal aayldswffy pifwliqgtlfwslfvvghd cghgsfsksk tlnnwighis htpilvpyhg wrishrthha ntgnidtdeswypvsegkyn qmawyeklir fylpliaypi ylfrrspnrq gshfmpgspl frpgekaavltstfaiaafv gflgfltwqf gwifllkfyv apylvfvvwl dlvtflhhte dnipwyrgddwyflkgalst idrdygfinp ihhdigthva hhifsnmphy klrrateaik pilgeyyrysdepiwqaffk sywachfvpn qgsgvyyqsAAA61774 (Chloroplast Brassica napus)LOCUS AAA61774 329 aa PLN Jan. 31, 1995DEFINITIONomega-3 fatty acid desaturase.ACCESSIONAAA61774PIDg408490VERSIONAAA6l774.1 GI:408490DBSOURCElocus BNACPFADD accession L22963.1KEYWORDS.SOURCErape.ORGANISM Chloroplast Brassica napusEukaryota; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; euphyilophytes; Spermatophyta; Magnoliophyta;eudicotyledons; core eudicots; Rosidae; eurosids II;Brassicales; Brassicaceae; Brassica.REFERENCE1 (residues 1 to 329)AUTHORSYadav, N. S., Wierzbicki, A., Aegerter, M., Caster, C. S., Perez-Grau, L., Kinney, A. J., Hitz, W. D., Booth, J. R. Jr.,Schweiger, B., Stecca, K. L.TITLECloning of higher plant omega-3 fatty acid desaturasesJOURNALPlant Physiol. 103 (2), 467-476 (1993)MEDLINE94302147COMMENTMethod: conceptual translation.FEATURESLocation/Qualifierssource1 . . . 329/organism=″Brassica napus/chloroplast/db_xref=″taxon:3708″/tissue_type=″seed″Protein1 . . . 329/product=″=″omega-3 fatty acid desaturase″CDS1 . . . 329/gene=Fadd″/coded_by″L22963.1:226 . . . 1215″ORIGIN(SEQ ID NO: 37)msyvvrelai vfalaagaay innwlvwply wiaqgtmfwa lfvlghdcgh gsfsndprlnsvvghllhss ilvpyhgwri shrthhqnhg hvendeswhp msekiyksld kptrffrftlplvmlaypfy lwarspgkkg shyhpdsdlf lpkerndvlt stacwtamav livclnfvmgpmqmlklyvi pywinvmwld fvtylhhhgh edklpwyrgk ewsylrggit tldrdyglinnihhdigthv ihhifpqiph yhlveateaa kpvlgkyyre pdksgplplh ligilaksikedhfvsdegd vvyyeadpnl yBAA22439 (Zea mays)LOCUS BAA22439 262 aa PLNMar. 4, 1998DEFINITIONfatty acid desaturase.ACCESSIONBAA22439PIDg2446994VERSION2AA22439.1 GI:2446994DBSOURCElocus D63952 accession D63952.1KEYWORDS.SOURCEZea mays.ORGANISMZea maysEukaryota; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;Liliopsida; Poales; Poaceae; Zea.REFERENCE1 (residues 1 to 262)AUTHORSKusano, T.TITLEDirect SubmissionJOURNALSubmitted (Aug. 30, 1995) to the DDBJ/EMBL/GenBank databases.Tomonobu Kusano, Akita Prefectural College of Agriculture,Biotechnology Institute; 2-2 Minami, Ohgatarnura, Minamiakita-gun, Akita 010-04, Japan (E-mail:kusano@air.akita-u.ac.jp,Tel:0185-45-2026(ex.403), Fax:0185-45-2678)REFERENCE2 (sites)AUTHORSBerberich, T., Harada, M., Sugawara, K., Kodama, H., Iba, K. andKusano, T.TITLETwo maize genes encoding omega-3 fatty acid desaturase andtheir differential expression to temperatureJOURNALPlant Mol. Biol. 36 (2), 297-306 (1998)MEDLINE98145435FEATURESLocation/Qualifierssource1 . . . 262/organism=″Zea mays/strain=″honey bantum″/db_xref=″taxon:4577″Protein1 . . . 262/product=″fatty acid desaturase″CDS1 . . . 262/gene=″FAD7″/coded_by=″D63952.1:<1 . . . 791″ORIGIN(SEQ ID NO: 38)lhssilvpyh gwrishrthh qnhghvekde swhplperly ksldfmtrkl rftmptpllafplylfarsp gksgshfnpg sdlfqptekn diitstaswl amvgvlaglt flmgpvpmlklygvpylvfv awldmvtylh hhghedklpw yrgkewsylr gglttldrdy gwinnihhdigthvihhlfp qiphyhliea teaakpvlgk yykepknsga lpwhlfrvla qslkqdhyvshtgdvvyyqa eBAA11396 (Oryza sativa)LOCUS BAA11396 269 aa PLN Feb. 5, 1999DEFINITIONw-3 fatty acid desaturase.ACCESSIONBAA11396PIDg1785856VERSIONBAA11396.1 GI:1765856DBSOURCElocus RICPA11 accession D78505.1KEYWORDSSOURCEOryza sativa.ORGANISMOryza sativaEukaryota; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;Liliopsida; Poales; Poaceae; Oryza.REFERENCE1 (residues 1 to 269)AUTHORSAkagi, H.TITLEDirect SubmissionJOURNALSubmitted (Nov. 27, 1995) to the DDBJ/EMBL/GenBank databases.Hiromori Akagi, Life Science Institute, Mitsui ToatsuChemicalsInc., Plant Biothechnology; Togo 1144, Mobara, Chiba 297,Japan(E-mail:tnirasaw@niguts.nig.ac.jp, Tel:0475-25-6729,Fax: 0475-25-6553)REFERENCE2 (residues 1 to 269)AUTHORSAkagi, H.TITLEPartial nucleotide sequence of a w-3 fatty acid desaturasecDNA Of riceJOURNALUnpublished (1996)REFERENCE3 (sites)AUTHORSKodama, H., Akagi, H., Kusumi, I., Fujimura, T. and Iba, K.TITLEStructure, chromosomal location and expression of a rice geneencoding the microsome omega-3 fatty acid desaturaseJOURNALPlant Mel. Biol. 33 (3), 493-502 (1997)MEDLINE97201483COMMENTSequence updated (Jan. 20, 1997) by: Hiromori Akagi.FEATURESLocation/Qualifierssource1 . . . 269/organism=″Oryza sativa/strain=″Nipponbare″/db_xref=″taxon:4530″Protein1 . . . 269/product″w-3 fatty acid desaturase″CDS1 . . . 269/coded_by=″D78505.1:<1 . . . 810″ORIGIN(SEQ ID NO: 39)nnvvghllhs filvpyhgwr fshrthhqnh ghierdeswh piteklywql etrtkklrftlpftllafpw yrspgktgsh flpssdlfsp keksdvivst towoimisil valacvfqpvpvlmlygvpy lvfvmwldlv tylhhhghnd lpwyrgeews ylrgglttvd rdygwinnihhdigthvihh lfpqiphyhl veatkaarpv lgryyrepek sgplplhlfg vllrtlrvdhfvsdvgdvvy yqtdhslAAD41582 (Brassica rapa)LOCUS AF056572_1172 aa PLN Jul. 1, 1999DEFINITIONunknown.ACCESSIONAAD41582PIDg5305314VERSIONAA041582.1 GI:5305314DBSOURCElocus AF056572 accession AF056572.1KEYWORDS.SOURCEBrassica rapa.ORGANISMBrassica rapaEukaryoca; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;eudicotyledons; core eudicots; Rosidae; eurosids II;Brassicales; Brassicacese; Brassica.REFERENCE1 (residues 1 to 172)AUTHORSBrunel, D., Froger, N. and Pelletier, G.TITLEDevelopment of amplified consensus genetic markers (A.C.G.M.)in Brassica napusfrom Arabidopsis thalianasequences ofknown biological functionJOURNALUnpublishedREFERENCE2 (residues 1 to 172)AUTHORSBrunel, D., Froger, N. and Pelletier, G.TITLEDirect SubmissionJOURNALSubmitted (Apr. 1, 1998) Station de Genetique etd'Amelioration des Plantes, INRA, Route de St Cyr, Versailles78026, FranceCOMMENTMethod: conceptual translation.FEATURESLocation/Qualifierssource1 . . . 172/organism=″Brassica rapa/cultivar=R500″/db_xref=″taxon:3711″Protein<1 . . . >172/product=″unknown″CDS1 . . . 172/gene=″FAD31″/note=″similar to Arabidopsis thalianaFAD3″/codedby=″join(AF056572.1:<1 . . . 26, AF056572.1:557 . . . 623, AF056572.1:1221 . . . 1406,AF056572.1:1484 . . . 1564, AF056572.1:1652 . . . >1714)″ORIGIN(SEQ ID NO: 40)filvpyhgwr ishrthhqnh ghvendeswv plpeklyknl shstrmlryt vplpmlayplylwyrspgke gshynpyssl fapserkiia tsttcwsimi atlvylsflv gpvtvlkvygvpyiifvmwl davtyihhhg hddklpwyrg kewsylrggi ttidrdyqif nnAAD41581 (Brassica oleracea)LOCUS AF056571_1 141 aa PLN Jul. 1, 1999DEFINITIONunknown.ACCESSIONAAD41581PIDg5305312VERSIONAAD41581.1 GI:5305312DBSOURCElocus AF056571 accession AF056=7l.1KEYWORDS.SOURCEBrassica oleracea.ORGANISMBrassica oleraceaEukaryota; Viridiplantae; Streptophyta; Embryophyra;Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;eudicotyledons; core eudicots; Rosidae; eurosids II;Brassicales; Brassicaceae; Brassica.REFERENCE1 (residues 1 to 141)AUTHORSBrunel, D., Froger, N. and Pelletier, G.TITLEDevelopment of amplified consensus genetic markers (A.C.G.M.)in Brassica napusfrom Arabidopsis thalianasequences ofknown biological functionJOURNALUnpublishedREFERENCE2 (residues 1 to 141)AUTHORSBrunel, D., Froger, N. and Peiletier, G.TITLEDirect SubmissionJOURNALSubmitted (Apr. 1, 1998) Station de Genetique etd'Amelioration des Plantes, INRA, Route de St Cyr, Versailles78026, FranceCOMMENTMethod: conceptual translation.FEATURESLocation/Qualifierssource1 . . . 141/organism=″Brassica oleracea/cultivar=″Rapide Cycling″/db_xref=″taxon:3712″Protein<1 . . . >141/product=″unknown″CDS1 . . . 141/partial/gene=″FAD31″/note=″similar to Arabidopsis thalianaFAD3″coded_by-″join(AF056571.1:<235 . . . 327, AF056571.1:436 . . . 621, AF056571.1:699 . . . 779,AF056571.1:865 . . . >927)″ORIGIN(SEQ ID NO: 41)lpeklyknls hstrmlrytv plpmlayply lwyrspgkeg shynpysslf apserkliatsttcwsivla tlvylsflvg pvtvlkvygv pyiifvmwld avtylhhhgh ddklpwyrgk121 ewsylrgglt tvdrdygifn nAAD41580 (Brassica napus)LOCUS AF056570_1 141 aa PLN Jul. 1, 1999DEFINITIONunknown.ACCESSIONAAD41580PIDg5305310VERSIONAAD41580.1 GI:5305310DBSOURCElocus AF056570 accession AF056570.1KEYWORDS.SOURCErape.ORGANISMBrassica napusEukaryota; Viridiplantae; Streptophyta; Embryophyta;Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;eudicotyledons; core eudicots; Rosidae; eurosids II;Brassicales; Brassicaceae; Brassica.REFERENCE1 (residues 1 to 141)AUTHORSErunel, D., Froger, N. and Pelletier, G.TITLEDevelopment of amplified consensus genetic markers (A.C.G.M.)I in Brassica napusfrom Arabidopsis thalianasequences ofknown biological functionJOURNALUnpublishedREFERENCE2 (residues 1 to 141)AUTHORSBrunel, D., Froger, N. and Pelletier, G.TITLEDirect SubmissionJOURNALSubmitted (Apr. 1, 1998) Station de Genetique etd'Amelioration des Plantes, INRA, Route de St Cyr,Versailles 78026, FranceCOMMENTMethod: conceptual translation.FEATURESLocation/Qualifierssource1 . . . 141/organism=″Brassica napus/cultivar=″Darmor″/db_xref=″taxon:3708″Protein<1 . . . >141/product=″unknown″CDS1 . . . 141/partial/gene=″FAD32″/note=″similar to Arabidopsis thalianaFAD3″/coded_by=″join(AF056570.1:<107 . . . 199, AFD56570.1:308..493,AF056570.1:572 . . . 652, AF056570.1:738 . . . >800)″ORIGIN(SEQ ID NO: 42)lpeklyknls hstrmlrytv plpmlayply lwyrspgkeg shynpysslt apserkliatsttcwsivla slvylsflvg pvtvlkvygv pyiifvmwld avtylhhhgh ddklpwyrgkewsylrgglt tvdrdygifn n



Example 3

[0061] Cloning of the Fad3A gene by PCR from the ‘A’ genome of B. napus Apollo also amplified fragments of the ‘C’ genome which represent a second FAD3 gene, designated Fad3C herein, from the ‘C’ genome of the low linolenic acid B. napus variety Apollo. Sequence polymorphisms in the Fad3C sequence have been identified that facilitate mapping the Fad3C gene. A partial genomic DNA sequence of Fad3C is shown in FIG. 11, a partial cDNA sequence of Fad3C is shown in FIG. 7 and a partial amino acid seqence of Fad3C is shown in FIG. 2.



CONCLUSION

[0062] Although various embodiments of the invention are disclosed herein, many adaptations and modifications may be made within the scope of the invention in accordance with the common general knowledge of those skilled in this art. Such modifications include the substitution of known equivalents for any aspect of the invention in order to achieve the same result in substantially the same way. Numeric ranges are inclusive of the numbers defining the range. All documents referred to herein are hereby incorporated by reference, although no admission is made that any such documents constitute prior art. In the claims, the word “comprising” is used as an open-ended term, substantially equivalent to the phrase “including, but not limited to”.


Claims
  • 1. A recombinant nucleic acid encoding a plant fatty acid desaturase, wherein the nucleic acid sequence encodes an amino acid substitution in the desaturase at a position selected from the group consisting of positions corresponding to: amino acid 213 of Apollo Fad3A; amino acid 275 of Apollo Fad3A; amino acid 347 of Apollo Fad3A; amino acid 217 of Apollo Fad3C; amino acid 224 of Apollo Fad3C; and, amino acid 281 of Apollo Fad3C.
  • 2. A recombinant nucleic acid encoding a plant fatty acid desaturase, wherein the nucleic acid sequence encodes an amino acid substitution in the desaturaseat a position selected from the group consisting of: a position in the motif STTCWSIMLAT; a position in the motif STTCWSIMLATcorresponding to positions 210 to 220 of Apollo Fad3A; a position in the motif STTCWSIMLATLVYLSFL; a position in the motif STTCWSIMLATLVYLSFL corresponding to positions 210 to 227 of Apollo Fad3A; a position in the motif SYLRGGLTTIDRD; a position in the motif SYLRGGLTTIDRD corresponding to positions 272 to 284 of Apollo Fad3A; a position in the motif SXXXDHYVSD; and a position in the motif SXXXDHYVSD beginning at a position corresponding to position 347 of Apollo Fad3A.
  • 3. The recombinant nucleic acid of claim 1 or 2, wherein the plant fatty acid desaturase is a Fad3.
  • 4. The recombinant nucleic acid of claim 1, 2 or 3 wherein the amino acid substitution is a non-conserved amino acid substitution.
  • 5. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 213, 217 or 224.
  • 6. The recombinant nucleic acid of claim 1, wherein: a) the amino acid substitution is at position 213 and the substitution is the replacement of a cysteine residue with an amino acid selected from the group consisting of alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine; or, b) the amino acid substitution is at position 217 and the substitution is the replacement of a methionine residue with an amino acid selected from the group consisting of valine, Ile, Val, Gly, Thr, Ser, Trp, Tyr, Pro, His, Glu, Gln, Asp, Asn, Lys, and Arg.
  • 7. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is: a) at position 213 and the substitution is the replacement of a cysteine residue with an amino acid selected from the group consisting of Trp, Arg, Lys, Asp, Glu; or b) at position 217 and the substitution is the replacement of a valine residue a methionine residue.
  • 8. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 213 and the substitution is the replacement of a cysteine residue with an amino acid selected from the group consisting of Ile, Gly, Thr, Ser, Trp, Tyr, Pro, His, Glu, Gln, Asp, Asn, Lys and Arg.
  • 9. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 213 and the substitution is the replacement of a cysteine residue with an amino acid selected from the group consisting of Arg, Lys, Asp, Glu, Ser, Asn, Gln, Gly, Pro, Thr, Ala, His, Val, Leu, Ile, Tyr, Phe and Trp.
  • 10. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 213 and the substitution is the replacement of a cysteine residue with an amino acid selected from the group consisting of Gly, Thr, Ser, Trp, Tyr, Pro, His, Glu, Gln, Asp, Asn, Lys, Arg, Ile, Val and Leu.
  • 11. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 213 and the substitution is the replacement of a cysteine residue with an alanine residue.
  • 12. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 275.
  • 13. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 275 and the substitution is the replacement of an arginine residue with an amino acid selected from the group consisting of alanine, cysteine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine.
  • 14. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 275 and the substitution is the replacement of an arginine residue with an amino acid selected from the group consisting of Ser, Asn, Gln, Gly, Pro, Thr, Ala, His, Cys, Met, Val, Leu, Ile, Tyr, Phe and Trp.
  • 15. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 275 and the substitution is the replacement of an arginine residue with an amino acid selected from the group consisting of Ile, Val, Leu, Phe, Cys, Met, Ala, Gly, Thr, Ser, Trp, Tyr and Pro.
  • 16. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 275 and the substitution is the replacement of an arginine residue with an amino acid selected from the group consisting of Ile, Val, Leu, Phe.
  • 17. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 275 and the substitution is the replacement of an arginine residue with a cysteine.
  • 18. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 347.
  • 19. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 347 and the substitution is the replacement of a serine residue with an amino acid selected from the group consisting of alanine, cysteine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, arginine, threonine, tryptophan, tyrosine and valine.
  • 20. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 347 and the substitution is the replacement of a serine residue with an amino acid selected from the group consisting of Arg, Lys, Asp, Glu, Leu, Ile, Tyr, Phe and Trp.
  • 21. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 347 and the substitution is the replacement of a serine residue with an amino acid selected from the group consisting of Ile, Val, Leu, Phe, Cys, Met, Ala, His, Glu, Gln, Asp, Asn, Lys, and Arg.
  • 22. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 347 and the substitution is the replacement of a serine residue with an amino acid selected from the group consisting of Phe and Trp.
  • 23. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 347 and the substitution is the replacement of a serine residue with an amino acid selected from the group consisting of Ile, Val and Leu.
  • 24. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 347 and the substitution is the replacement of a serine residue with an arginine.
  • 25. The recombinant nucleic acid of any one of claims 1 through 24, wherein the nucleic acid is capable of altering the fatty acid composition of a plant.
  • 26. An isolated nucleic acid comprising 5 contiguous residues complimentary to a portion of the recombinant nucleic acid of any one of claims 1 through 25, wherein the isolated nucleic acid is capable of hybridizing to the recombined portion of the recombinant nucleic acid under selective hybridization conditions to identify the recombinant nucleic acid.
  • 27. An isolated protein encoded by the nucleic acid of any one of claims 1 through 26.
  • 28. An isolated vector comprising the nucleic acid of any one of claims 1 through 26.
  • 29. A method of modifying a plant comprising transforming the plant with the nucleic acid of any one of claims 1 through 26.
  • 30. The method of claim 29, wherein the plant is selected from the group consisting of Cruciferae family: canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.), and others; the Composirae family: sunflower (Helianthus spp.), safflower (Carthamus spp.), niger (Guizotia spp.) and others; the Palmae family: palm (Elaeis spp.), coconut (Cocos spp.) and others; the Leguminosae family: peanut (Arachis spp.), soybean (Glycine spp.) and others; and plants of other families such as maize (Zea spp.), cotton (Gossypium sp.), jojoba (Simonasia sp.), flax (Linum sp.), sesame (Sesamum spp.), castor bean (Ricinus spp.), olive (Olea spp.), poppy (Papaver spp.), spurge (Euphorbia, spp.), meadowfoam (Limnanthes spp.), mustard (Sinapis spp.) and cuphea (Cuphea spp.).
  • 31. The method of claim 29, wherein the plant is selected from the group consisting of members of the Cruciferae family, including canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.).
  • 32. The method of claim 29, wherein the plant is a Brassica.
  • 33. The method of claim 29, wherein the plant is a canola.
  • 34. A plant, or a part of the plant, comprising the nucleic acid of any one of claims 1 through 26.
  • 35. A plant product produced by a plant or a part of the plant, wherein the plant comprises the nucleic acid of any one of claims 1 through 26.
  • 36. The plant or part of the plant of claim 34 or 35, wherein the plant is selected from the group consisting of Cruciferae family: canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.), and others; the Composirae family: sunflower (Helianthus spp.), safflower (Carthamus spp.), niger (Guizotia spp.) and others; the Palmae family: palm (Elaeis spp.), coconut (Cocos spp.) and others; the Leguminosae family: peanut (Arachis spp.), soybean (Glycine spp.) and others; and plants of other families such as maize (Zea spp.), cotton (Gossypium sp.), jojoba (Simonasia sp.), flax (Linum sp.), sesame (Sesamum spp.), castor bean (Ricinus spp.), olive (Olea spp.), poppy (Papaver spp.), spurge (Euphorbia, spp.), meadowfoam (Limnanthes spp.), mustard (Sinapis spp.) and cuphea (Cuphea spp.).
  • 37. The plant or part of the plant of claim 34 or 35, wherein the plant is selected from the group consisting of members of the Cruciferae family, including canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.).
  • 38. The plant or part of the plant of claim 34 or 35, wherein the plant is a Brassica.
  • 39. The plant or part of the plant of claim 34 or 35, wherein the plant is a canola.
  • 40. A method of plant selection comprising: a) obtaining a progeny plant by (i) transformation of a parent plant, (ii) crossing parent plant lines or (iii) self crossing of the parent plant; and, b) identifying progeny plants that comprise the nucleic acid of any one of claims 1 through 26 by testing progeny plants for the presence of the nucleic acid.
  • 41. The method of claim 40, wherein the progeny plant is selected from the group consisting of Cruciferae family: canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.), and others; the Composirae family: sunflower (Helianthus spp.), safflower (Carthamus spp.), niger (Guizotia spp.) and others; the Palmae family: palm (Elaeis spp.), coconut (Cocos spp.) and others, the Leguminosae family: peanut (Arachis spp.), soybean (Glycine and others; and plants of other families such as maize (Zea spp.), cotton (Gossypium sp.), jojoba (Simonasia sp.), flax (Linum sp.), sesame (Sesamum spp.), castor bean (Ricinus spp.), olive (Olea spp.), poppy (Papaver spp.), spurge (Euphorbia, spp.), meadowfoam (Limnanthes spp.), mustard (Sinapis spp.) and cuphea (Cuphea spp.).
  • 42. The method of claim 40, wherein the progeny plant is selected from the group consisting of members of the Cruciferae family, including canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.).
  • 43. The method of claim 40, wherein the progeny plant is a Brassica.
  • 44. The method of claim 40, wherein the progeny plant is a canola.
  • 45. The progeny plant, or a part of the progeny plant, produced by the method of any one of claims 40 through 44.
  • 46. A plant product produced by the progeny plant produced by the method of any one of claims 40 through 44.
  • 47. A method of plant selection comprising: a) obtaining a progeny plant by (i) transformation of a parent plant, (ii) crossing parent plant lines or (iii) self crossing of the parent plant; and, b) identifying in the progeny plants a nucleic acid encoding a plant fatty acid desaturase, wherein the nucleic acid encodes an amino acid in the desaturase selected from the group consisting of: i) an amino acid other than cysteine at an amino acid position corresponding to amino acid 213 of Apollo Fad3A; ii) an amino acid other than arginine at an amino acid position corresponding to amino acid 275 of Apollo Fad3A; iii) an amino acid other than serine at an amino acid position corresponding to amino acid 347 of Apollo Fad3A; iv) an amino acid other than methionine at an amino acid position corresponding to amino acid 217 of Apollo Fad3A; v) an amino acid other than isoleucine at an amino acid position corresponding to amino acid 281 of Apollo Fad3A; and, vi) an amino acid other than leucine at an amino acid position corresponding to amino acid 224 of Apollo Fad3A.
  • 48. A method of plant selection comprising: a) obtaining a progeny plant by: (i) transformation of a parent plant, (ii) crossing parent plant lines or (iii) self crossing of the parent plant; and, b) identifying in the progeny plants a nucleic acid encoding a plant fatty acid desaturase, wherein the nucleic acid encodes an amino acid in the desaturase selected from the group consisting of: i) a non-conserved amino acid substituted in the motif STTCWSIM; ii) a non-conserved amino acid substituted in the motif STTCWSIM centered on a position corresponding to position 213 of Apollo Fad3A; iii) a non-conserved amino acid substituted in the motif SYLRGGL; iv) a non-conserved amino acid substituted in the motif SYLRGGL centered on a position corresponding to position 275 of Apollo Fad3A; v) a non-conserved amino acid substituted in the motif SXXXDHYVSD; vi) a non-conserved amino acid substituted in the motif SXXXDHYVSD beginning at a position corresponding to position 347 of Apollo Fad3A; vii) a non-conserved amino acid substituted in the motif STTCWSIMLAT; viii) a non-conserved amino acid substituted in the motif STTCWSIMLAT corresponding to positions 210 to 220 of Apollo Fad3A; ix) a non-conserved amino acid substituted in the motif SYLRGGLTTIDRD; x) a non-conserved amino acid substituted in the motif SYLRGGLTTIDRD corresponding to positions 272 to 284 of Apollo Fad3A.
  • 49. The method of claim 47 or 48, wherein the progeny plant is selected from the group consisting of Cruciferae family: canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.), and others; the Composirae family: sunflower (Helianthus spp.), safflower (Carthamus spp.), niger (Guizotia spp.) and others; the Palmae family: palm (Elaeis spp.), coconut (Cocos spp.) and others; the Leguminosae family: peanut (Arachis spp.), soybean (Glycine spp.) and others; and plants of other families such as maize (Zea spp.), cotton (Gossypium sp.), jojoba (Simonasia sp.), flax (Linum sp.), sesame (Sesamum spp.), castor bean (Ricinus spp.), olive (Olea spp.), poppy (Papaver spp.), spurge (Euphorbia, spp.), meadowfoam (Limnanthes spp.), mustard (Sinapis spp.) and cuphea (Cuphea spp.).
  • 50. The method of claim 47 or 48, wherein the progeny plant is selected from the group consisting of members of the Cruciferae family, including canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.).
  • 51. The method of claim 47 or 48, wherein the progeny plant is a Brassica.
  • 52. The method of claim 47 or 48, wherein the progeny plant is a canola.
  • 53. The progeny plant or a part of the progeny plant produced by the method of any one of claims 47 through 52.
  • 54. A plant product produced by the progeny plant produced by the method of any one of claims 47 through 52.
  • 55. A method of plant genotyping comprising identifying in a plant an Apollo Fad3 nucleic acid sequence.
  • 56. The method of claim 55, wherein the plant is selected from the group consisting of Cruciferae family: canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.), and others; the Composirae family: sunflower (Helianthus spp.), safflower (Carthamus spp.), niger (Guizotia spp.) and others; the Palmae family: palm (Elaeis spp.), coconut (Cocos spp.) and others; the Leguminosae family: peanut (Arachis spp.), soybean (Glycine spp.) and others; and plants of other families such as maize (Zea spp.), cotton (Gossypium sp.), jojoba (Simonasia sp.), flax (Linum sp.), sesame (Sesamum spp.), castor bean (Ricinus spp.), olive (Olea spp.), poppy (Papaver spp.), spurge (Euphorbia, spp.), meadowfoam (Limnanthes spp.), mustard (Sinapis spp.) and cuphea (Cuphea spp.).
  • 57. The method of claim 55, wherein the progeny plant is selected from the group consisting of members of the Cruciferae family, including canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.).
  • 58. The method of claim 55, wherein the progeny plant is a Brassica.
  • 59. The method of claim 55, wherein the progeny plant is a canola.
  • 60. An isolated plant Fad3 enzyme having an amino acid residue selected from the group consisting of: i) an amino acid other than cysteine at an amino acid position corresponding to amino acid 213 of Apollo Fad3A; ii) an amino acid other than arginine at an amino acid position corresponding to amino acid 275 of Apollo Fad3A; iii) an amino acid other than serine at an amino acid position corresponding to amino acid 347 of Apollo Fad3A; iv) an amino acid other than methionine at an amino acid position corresponding to amino acid 217 of Apollo Fad3A; v) an amino acid other than isoleucine at an amino acid position corresponding to amino acid 281 of Apollo Fad3A; and, vi) an amino acid other than leucine at an amino acid position corresponding to amino acid 224 of Apollo Fad3A.
  • 61. A plant other than a plant descended from Brassica napus line M11, wherein the plant comprises an Apollo Fad3A or Fad3C nucleic acid sequence.
  • 62. The plant of claim 61, wherein the plant is selected from the group consisting of Cruciferae family: canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.), and others; the Composirae family: sunflower (Helianthus spp.), safflower (Carthamus spp.), niger (Guizotia spp.) and others; the Palmae family: palm (Elaeis spp.), coconut (Cocos spp.) and others; the Leguminosae family: peanut (Arachis spp.), soybean (Glycine spp.) and others; and plants of other families such as maize (Zea spp.), cotton (Gossypium sp.), jojoba (Simonasia sp.), flax (Linum sp.), sesame (Sesamum spp.), castor bean (Ricinus spp.), olive (Olea spp.), poppy (Papaver spp.), spurge (Euphorbia, spp.), meadowfoam (Limnanthes spp.), mustard (Sinapis spp.) and cuphea (Cuphea spp.).
  • 63. The plant of claim 61, wherein the plant is selected from the group consisting of members of the Cruciferae family, including canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.).
  • 64. The plant of claim 61, wherein the plant is a Brassica.
  • 65. The plant of claim 61, wherein the plant is a canola.
Continuations (1)
Number Date Country
Parent PCT/CA00/01141 Oct 2000 US
Child 10115571 Apr 2002 US