Information
-
Patent Application
-
20030150020
-
Publication Number
20030150020
-
Date Filed
April 01, 200222 years ago
-
Date Published
August 07, 200321 years ago
-
Inventors
-
Original Assignees
-
CPC
-
US Classifications
-
International Classifications
- A01H005/00
- C07H021/04
- C12N009/04
- C12P021/02
- C12N005/04
Abstract
In one aspect, the invention provides new variants of the Fad3 enzyme, including amino acid substitutions, as well as nucleic acid sequences encoding such peptides. Other aspects of the invention include transgenic plants and plant parts. Vectors capable of transforming plant cells are provided, including the nucleic acids of the invention, including Fad3 coding sequences. Corresponding methods are provided for obtaining the transgenic plants of the invention. Methods are provided for using the plants of the invention, including selected plants and transgenic plants, to obtain plant products. Amplification primers for identifying the Fad3 alleles of the invention are provided, together with methods of obtaining plants using the Fad3 alleles of the invention as markers.
Description
FIELD OF THE INVENTION
[0001] The invention is in the field of plant biology, involving compositions and methods related to fatty acid metabolism in plants. Aspects of the invention include genes and enzymes involved in fatty acid metabolism in plants, as well as plants and plant parts having the genes and expressing the enzymes, and methods for making the plants and plant parts using the genes (including recombinant genetic engineering methods and classical plant breeding methods using markers of the invention).
BACKGROUND OF THE INVENTION
[0002] Fatty acids arc acyl lipids that are found in a variety of plant tissues, including the triacylglycerols in oil bodies of seeds and fruits, as well as the glycolipids and phospholipids in leaves, roots or shoots. Fatty acids include saturated and unsaturated monocarboxylic acids with unbranched even-numbered carbon chains, such as the unsaturated fatty acids: oleic (18:1, i.e. a C18 chain with a double bond in position 1), linoleic (18:2) and linolenic (18:3) acid.
[0003] Significant efforts have been made to manipulate the fatty acid profile of plants, particularly oil-seed varieties such as canola that are used for the large-scale production of commercial fats and oils (see for example U.S. Pat. No. 5,625,130 issued to Grant et al. Apr. 29, 1997; U.S. Pat. No. 5,668,299 issued to DeBonte et al. Sept. 16, 1997; U.S. Pat. No. 5,767,338 issued to Fan Jun. 16, 1998; U.S. Pat. No. 5,777,201 issued to Poutre et al. Jul. 7, 1998; U.S. Pat. No. 5,840,946 issued to Wong et al. Nov. 24, 1998; and U.S. Pat. No. 5,850,026 issued to DeBonte et al. Dec. 15, 1998).
[0004] A reduction in the linolenic acid content of plant oils may be desirable for some applications. Low linolenic acid cultivars of B. napus have for example been developed from the cultivar Oro (Röbbelen and Nitsch, 1975, L. Z PflanzenzÜchtg 75:93), by mutagenesis including the low linolenic acid cultivars Stellar (Scarth et al., 1988, Can J Plant Sci 68:509) and Apollo (Scarth et al., 1994, Can J Plant Sci 75:203). The Apollo line has been used to identify molecular markers associated with low linolenic acid loci in a double haploid population derived from a cross between the Apollo line (low linolenic) and a high linolenic line (YN90-1016), using random amplification of polymorphic DNAs and bulk segregant analysis (Somers et al., 1998, Theoretical and Applied Genetics 96(6/7):897). The rapeseed fad3 gene, one of 13 markers identified by Somers et al., supra, was mapped near the locus controlling 14% of the variation in linolenic acid content, confirming a link between the fad3 gene and a low linolenic acid phenotype (Jourdren et al., 1996, Theoretical and Applied Genetics 93:512).
[0005] The product of the Fad3 gene is a fatty acid desaturase known variously as delta-15 fatty acid desaturase, linoleic acid desaturase, omega-3 fatty acid desaturase, Fad3 or 15-DES (Arondel et al., 1992, Science 258:1353; Yadav et al., 1993, Plant Physiol. 103:467; WO 93/11245; and WO 98/56239 published Dec. 17, 1998), hereinafter called Fad3. Fad 3 is involved in the enzymatic conversion of linoleic acid to alpha-linolenic acid. In WO 98/56239, DeBonte et al. disclose mutant Fad3 genes, and identify regions of the Fad3 enzyme that are said to contain conserved amino acid motifs which may be mutated to alter fatty acid metabolism in a plant (see Tables 5 and 6 therein). The genomic regions identified by DeBonte et al. generally coincide with the first two of three ‘Histidine Box’ motifs that have been imputed to have a role in the functional activity of the Fad3 enzyme.
SUMMARY OF THE INVENTION
[0006] It has unexpectedly been discovered that plant fatty acid metabolism may be altered by mutations in the Fad3 enzyme, particularly by amino acid substitutions in regions of the protein outside of the regions taught to be functionally important in WO 98/56239. In one aspect, the invention accordingly provides new variants of the Fad3 enzyme, comprising non-conserved amino acid substitutions, as well as nucleic acid sequences encoding such peptides. It is disclosed herein that plants having the Fad3 alleles of the invention exhibit a low linolenic acid phenotype. Accordingly, other aspects of the invention include transgenic plants and plant parts. As used herein, ‘plant parts’ includes plant cells, seeds, pollen bearing the nucleic acids of the invention or expressing the Fad3 enzymes of the invention or having the Fad3 coding sequences of the invention. Vectors capable of transforming plant cells are provided, comprising the nucleic acids of the invention, including Fad3 coding sequences. Corresponding methods are provided for obtaining the transgenic plants of the invention. Methods are provided for using the plants of the invention, including selected plants and transgenic plants, to obtain plant products. As used herein, “plant products” includes anything derived from a plant of the invention, including plant parts such as seeds, meals, fats or oils, including such plant products having altered linolenic acid concentrations. Amplification primers for identifying the Fad3 alleles of the invention are provided, together with methods of obtaining plants using the Fad3 alleles of the invention as markers.
[0007] Marker assisted plant breeding programs are provided by the invention, wherein the Fad3 alleles of the invention, such as Fad3A and Fad3C, may be identified in plant lines subjected to selective breeding.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008]
FIG. 1 is a listing of the amino acid sequence of the Fad3A protein from the Apollo cultivar (SEQ ID NO: 1), showing positions of amino acid substitutions in accordance with various aspects of the invention, at positions 213, 275 and 347. One of the prior-art-identified histidine box sequences, HDCGH, is also boxed for reference.
[0009]
FIG. 2 is a pairwise alignment of the Apollo Fad3A (“ApolloA”) and partial Fad3C (“ApolloC”) sequences with the derived Brassica napus omega-3 fatty acid desaturase amino acid sequence which is GenBank accession number L22962 (SEQ ID NO:2), showing: Identities=369/380 (97%), Positives=372/380 (97%), Gaps=3/380, using the BLASTp program. In the Consensus sequence, two regions identified as functionally important in WO 98/56239 appear in boxes. A putative ‘histidine box’ within the first of these regions, identified in the prior art relating to Fad3 enzymes, is also boxed in the ApolloA and L22962 sequences.
[0010]
FIG. 3 a pairwise alignment of the Apollo Fad3A sequence and the derived Brassica napus omega-3 fatty acid desaturase amino acid sequence which is GenBank accession number L01418 (SEQ ID NO:3), showing: Identities=359/383 (93%), Positives=368/383 (95%), Gaps=3/383 (0%), using the BLASTp program.
[0011]
FIG. 4 is a pairwise alignment of the Apollo Fad3A sequence and the derived Arabidopsis thaliana omega-3 fatty acid desaturase amino acid sequence which is GenBank accession numbers D17579 and D26508 (SEQ ID NO:4), showing: Identities=347/386 (89%), Positives=361/386 (92%), Gaps=6/386 (1%), using the BLASTp program. Position 98 in the sequence is also highlighted, to provide a reference point with respect to the sequence shown in FIG. 5 which begins at residue 98.
[0012]
FIG. 5 is a partial pairwise alignment of the Apollo Fad3A and Fad3C sequences and the derived YN90-1016 Fad3 sequence (SEQ ID NO:5).
[0013]
FIG. 6 is a partial pairwise alignment of the Apollo Fad3A sequence and the derived N89-53 Fad3 sequence (SEQ ID NO:6).
[0014]
FIG. 7 shows an Apollo Fad3A cDNA sequence (SEQ ID NO:7) and a partial Fad3C cDNA sequence, aligned.
[0015]
FIG. 8 is the Apollo Fad3A genomic DNA sequence (SEQ ID NO:8).
[0016]
FIG. 9 is a multiple protein sequence alignment, carried out using BLASTP software, comparing the Apollo Fad3A sequence (SEQ ID NO:1) to a variety of known plant delta 15 fatty acid desaturase protein sequences (SEQ ID NO:9 to SEQ ID NO:42).
[0017]
FIG. 10 is a comparison of the partial genomic pFad3A (Apollo) and partial genomic pFad3Y (YN90-1016) sequences, discussed in the Examples, with a consensus sequence shown between them. The pFad3A sequence is the top sequence, and begins at nucleotide 954 of the Apollo Fad3A genomic DNA sequence of FIG. 8.
[0018]
FIG. 11 is a sequence alignment performed using the CLUSTALW program, showing the alignment betweeen a genomic Fad3A sequence (SEQ ID NO:8) and a partial genomic Fad3C sequence.
DETAILED DESCRIPTION OF THE INVENTION
[0019] In one aspect, the invention provides recombinant nucleic acids encoding a plant fatty acid desaturase. By recombinant, it is meant herein that a nucleic acid is not a naturally occurring sequence, or it is a sequence that is made by an artificial combination of two otherwise separated segments of nucleic acid sequence. Such combinations of sequences may be achieved by a wide variety of genetic engineering techniques, such as mutagenesis and site-specific-recombination of one or more nucleotides (Beetham et al., 1999, Proc. Natl. Acad. Sci. USA 96:8774; Zhu et al., 1999, Proc. Natl. Acad. Sci. USA 96:87768). By fatty acid desaturase, it is meant herein that a protein exhibits activity manifested as the introduction of a double bond in the biosynthesis of a fatty acid. For example, Fad3 enzymes are defined by the activity of introducing the third double bond in the biosynthesis of 16:3 or 18:3 fatty acids.
[0020] In various aspects of the invention, the nucleic acid sequence of the invention may encode an amino acid substitution in the desaturase. By substitution, it is meant that the amino acid sequence is other than it would have been but for the recombination of the nucleic acid encoding the protein. The amino acid substitution may for example be at a position selected from the group consisting of amino acid positions corresponding to amino acid positions 213, 217, 224, 275, 281 and 347 of Apollo Fad3A (SEQ ID NO:1). By ‘corresponding to’, in comparison to the Apollo Fad3A (or Fad3C) sequence, it is meant that the positions are aligned when the sequences being compared are optimally aligned, for example using the BLASTP algorithm, with gaps permitted, and allowing for conservative substitutions, as discussed further herein.
[0021] In alternative embodiments, amino acid substitutions in the desaturase may be made in particular motifs. For example, substitutions may be made within motifs, such as the motif STTCWSIM centered on a position corresponding to position 213 of Apollo Fad3A; the motif STTCWSIMLATLVYLSFL corresponding to positions 210 to 227 of Apollo Fad3A; the motif SYLRGGL centered on a position corresponding to position 275 of Apollo Fad3A; the motif SXXXDHYVSD (in which X represents any amino acid). beginning at a position corresponding to position 347 of Apollo Fad3A; a position in the motif STTCWSIMLAT corresponding to positions 210 to 220 of Apollo Fad3A; and, a position in the motif SYLRGGLTTIDRD corresponding to positions 272 to 284 of Apollo Fad3A.
[0022] It is well known in the art that some modifications and changes can be made in the structure of a polypeptide without substantially altering the biological function of that peptide, to obtain a biologically equivalent polypeptide. As used herein, the term “conserved amino acid substitutions” refers to the substitution of one amino acid for another at a given location in the peptide, where the substitution can be made without any appreciable loss or gain of function, to obtain a biologically equivalent polypeptide. In making such changes, substitutions of like amino acid residues can be made on the basis of relative similarity of side-chain substituents, for example, their size, charge, hydrophobicity, hydrophilicity, and the like, and such substitutions may be assayed for their effect on the function of the peptide by routine testing. Conversely, as used herein, the term “non-conserved amino acid substitutions” refers to the substitution of one amino acid for another at a given location in the peptide, where the substitution causes an appreciable loss or gain of function of the peptide, to obtain a polypeptide that is not biologically equivalent.
[0023] In some embodiments, conserved amino acid substitutions may be made where an amino acid residue is substituted for another having a similar hydrophilicity value (e.g., within a value of plus or minus 2.0), where the following hydrophilicity values are assigned to amino acid residues (as detailed in U.S. Pat. No. 4,554,101, incorporated herein by reference): Arg (+3.0); Lys (+3.0); Asp (+3.0); Glu (+3.0); Ser (+0.3); Asn (+0.2); Gln (+0.2); Gly (0); Pro (−0.5); Thr (−0.4); Ala (−0.5); His (−0.5); Cys (−1.0); Met (−1.3); Val (−1.5); Leu (−1.8); Ile (−1.8); Tyr (−2.3); Phe (−2.5); and Trp (−3.4). Non-conserved amino acid substitutions may be made were the hydrophilicity value of the residues is significantly different, e.g. differing by more than 2.0. For example, on this basis, the following amino acid substitutions for the wild type Cys (−1.0) at a position corresponding to amino acid 213 in Apollo Fad3A would be non-conserved substitutions: Trp (−3.4), Arg (+3.0); Lys (+3.0); Asp (+3.0); Glu (+3.0). Similarly the following amino acid substitutions for the wild type Arg (+3.0) at a position corresponding to amino acid 275 in Apollo Fad3A would be non-conserved substitutions: Ser (+0.3); Asn (+0.2); Gln (+0.2); Gly (0); Pro (−0.5); Thr (−0.4); Ala (−0.5); His (−0.5); Cys (−1.0); Met (−1.3); Val (−1.5); Leu (−1.8); Ile (−1.8); Tyr (−2.3); Phe (−2.5); and Trp (−3.4). Similarly the following amino acid substitutions for the wild type Ser (+0.3) at a position corresponding to amino acid 347 in Apollo Fad3A would be non-conserved substitutions: Arg (+3.0); Lys (+3.0); Asp (+3.0); Glu (+3.0); Leu (−1.8); Ile (−1.8); Tyr (−2.3); Phe (−2.5); and Trp (−3.4).
[0024] In alternative embodiments, conserved amino acid substitutions may be made where an amino acid residue is substituted for another having a similar hydropathic index (e.g., within a value of plus or minus 2.0). In such embodiments, each amino acid residue may be assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics, as follows: Ile (+4.5); Val (+4.2); Leu (+3.8); Phe (+2.8); Cys (+2.5); Met (+1.9); Ala (+1.8); Gly (−0.4); Thr (−0.7); Ser (−0.8); Trp (−0.9); Tyr (−1.3); Pro (−1.6His (−3.2); Glu (−3.5); Gln (−3.5); Asp (−3.5); Asn (−3.5); Lys (−3.9); and Arg (−4.5). Non-conserved amino acid substitutions may be made were the hydropathic index of the residues is significantly different, e.g. differing by more than 2.0. For example, on this basis, the following amino acid substitutions for the wild type Cys (+2.5) at a position corresponding to amino acid 213 in Apollo Fad3A would be non-conserved substitutions: Ile (+4.5); Gly (−0.4); Thr (−0.7); Ser (−0.8); Trp (−0.9); Tyr (−1.3); Pro (−1.6); His (−3.2); Glu (−3.5); Gln (−3.5); Asp (−3.5); Asn (−3.5); Lys (−3.9); and Arg (−4.5). Similarly the following amino acid substitutions for the wild type Arg (−4.5) at a position corresponding to amino acid 275 in Apollo Fad3A would be non-conserved substitutions: Ile (+4.5); Val (+4.2); Leu (+3.8); Phe (+2.8); Cys (+2.5); Met (+1.9); Ala (+1.8); Gly (−0.4); Thr (−0.7 ); Ser (−0.8); Trp (−0.9); Tyr (−1.3); Pro (−1.6). Similarly the following amino acid substitutions for the wild type Ser (−0.8) at a position corresponding to amino acid 347 in Apollo Fad3A would be non-conserved substitutions: Ile (+4.5); Val (+4.2); Leu (+3.8); Phe (+2.8); Cys (+2.5); Met (+1.9); Ala (+1.8); His (−3.2); Glu (−3.5); Gln (−3.5); Asp (−3.5); Asn (−3.5); Lys (−3.9); and Arg (−4.5). Similarly, the the following amino acid substitutions for the wild type Met (+1.9) at a position corresponding to amino acid 217 in Apollo Fad3A would be non-conserved substitutions: Ile (+4.5); Val (+4.2); Gly (−0.4); Thr (−0.7); Ser (−0.8); Trp (−0.9); Tyr (−1.3); Pro (−1.6); His (−3.2); Glu (−3.5); Gln (−3.5); Asp (−3.5); Asn (−3.5); Lys (−3.9); and Arg (−4.5). Similarly, the the following amino acid substitutions for the wild type Leu (+3.8) at a position corresponding to amino acid 224 in Apollo Fad3A would be non-conserved substitutions: Ala (+1.8); Gly (−0.4); Thr (−0.7); Ser (−0.8); Trp (−0.9); Tyr (−1.3); Pro (−1.6); His (−3.2); Glu (−3.5); Gln (−3.5); Asp (−3.5); Asn (−3.5); Lys (−3.9); and Arg (−4.5).
[0025] In alternative embodiments, conserved amino acid substitutions may be made where an amino acid residue is substituted for another in the same class, where the amino acids are divided into non-polar, acidic, basic and neutral classes, as follows: non-polar: Ala, Val, Leu, Ile, Phe, Trp, Pro, Met; acidic: Asp, Glu; basic: Lys, Arg, His; neutral: Gly, Ser, Thr, Cys, Asn, Gln, Tyr. Non-conserved amino acid substitutions may be made were the residues do not fall into the same class, for example substitution of a basic amino acid for a neutral or non-polar amino acid.
[0026] In alternative aspects of the invention, mutant plant fatty acid desaturases, such as Fad3 enzymes, are provided that have amino acid substitutions corresponding to the substitutions found in the Apollo Fad3A or Fad3C proteins: Ala substituted in position 213, or Cys substituted in position 275, or Arg substituted in position 347, or Val substituted in position 217, or Pro substituted in position 224, or Val substituted in position 281. In alternative embodiments, amino acid substitutions may be made at these positions that are at least as non-conserved as the substitutions found in Apollo Fad3A or Fad3C. For example, the substitution of Ala for Cys at position 213 of Apollo Fad3A constitutes a change on the foregoing hydrophilicity scale of −1.0 to −0.5, i.e. a difference of 0.5. Substitutions of similar magnitude of change would comprise substituting any one of the following amino acids for Cys (−1.0): Arg (+3.0); Lys (+3.0); Asp (+3.0); Glu (+3.0); Ser (+0.3); Asn (+0.2); Gln (+0.2); Gly (0); Pro (−0.5); Thr (−0.4); Ala (−0.5); His (−0.5); Val (−1.5); Leu (−1.8); Ile (−1.8); Tyr (−2.3); Phe (−2.5); and Trp (−3.4). Similarly, the substitution of Arg for Ser at position 347 of Apollo Fad3A constitutes a change on the foregoing hydrophilicity scale of +3.0 to +0.3, i.e. a difference of 2.7. Substitutions of similar magnitude of change would comprise substituting any one of the following amino acids for Ser (+0.3): Phe (−2.5); and Trp (−3.4).
[0027] In alternative embodiments, using amino acid substitutions based on the foregoing hydropathic index scale, the substitution of Ala for Cys at position 213 of Apollo Fad3A constitutes a change on the foregoing hydrophilicity scale of +2.5 to +1.8, i.e. a difference of 0.7. Substitutions of similar magnitude of change would comprise substituting any one of the following amino acids for Cys (+2.5): Gly (−0.4); Thr (−0.7); Ser (−0.8); Trp (−0.9); Tyr (−1.3); Pro (−1.6); His (−3.2); Glu (−3.5); Gln (−3.5); Asp (−3.5); Asn (−3.5); Lys (−3.9); and Arg (−4.5); Ile (+4.5); Val (+4.2); Leu (+3.8). Similarly, the substitution of Cys for Arg at position 275 of Apollo Fad3A constitutes a change on the foregoing hydropathic index of −4.5 to +2.5, i.e. a difference of 7.0. Substitutions of similar magnitude of change would comprise substituting any one of the following amino acids for Arg (−4.5): Ile (+4.5); Val (+4.2); Leu (+3.8); Phe (+2.8). Similarly, the substitution of Arg for Ser at position 347 of Apollo Fad3A constitutes a change on the foregoing hydropathic index of −0.8 to −4.5, i.e. a difference of 3.7. Substitutions of similar magnitude of change would comprise substituting any one of the following amino acids for Ser (−0.8): Ile (+4.5); Val (+4.2); Leu (+3.8).
[0028] One aspect of the invention is the recognition of functionally important sequence motifs in plant delta 15 fatty acid desaturases, particularly the motifs in the conserved regions that surround the amino acid substitutions in the Apollo Fad3 proteins: including the motif STTCWSIM centered on position 213; the motif SYLRGGL centered on position 275; and the motif SXXXDHYVSD beginning at position 347. Non-conservative amino acid substitutions within these motifs of plant delta 15 fatty acid desaturases are an aspect of the present invention. Plant delta 15 fatty acid desaturases having such non-conserved substitutions may be useful in transgenic plants of the invention to alter fatty acid metabolism, particularly the fatty acid composition of seed oils.
[0029] In various aspects, the invention provides isolated nucleic acid and protein sequences. By isolated, it is meant that the isolated substance has been substantially separated or purified away from other biological components with which it would other wise be associated, for example in vivo. The term ‘isolated’ therefore includes substances purified by standard purification methods, as well as substances prepared by recombinant expression in a host, as well as chemically synthesized substances.
[0030] The invention provides vectors comprising nucleic acids of the invention. A vector is a nucleic acid molecule that may be introduced into a host cell, to produce a transformed host cell. A vector may include nucleic acid sequences that permit it to replicate in the host cell, such as an origin of replication. A vector may also include one or more selectable marker genes and other genetic elements known in the art. A transformed cell is a cell into which has been introduced a nucleic acid molecule by molecular biology techniques. As used herein, the term transformation encompasses all such techniques by which a nucleic acid molecule might be introduced into a host cell, including transformation with Agrobacterium vectors, transfection with viral vectors, transformation with plasmid vectors and introduction of naked DNA by electroporation, lipofection and particle gun acceleration.
[0031] In one aspect the invention provides amplification primers or probes that may be used to identify Fad3 nucleic acid sequences of the invention, such as the Apollo Fad3A or Fad3C nucleic acid sequences, from other nucleic acid sequences. As used herein, the term “Apollo Fad3 nucleic acid sequences”, means the naturally occurring nucleic acid sequences, and portions thereof, encoding the Apollo Fad3 enzyme, including Fad3A and Fad3C. For example, primers or probes may be synthesized that are complimentary to portions of the Apollo microsomal Fad3A or Fad3C alleles that differ from the sequence of the Fad3 allele reported by Yadav et al. 1993, Plant Physiology 103:467. An example of such a primer is described in Example 1, wherein one of the selected primers is shown to be capable of distinguishing plants having high linolenic acid content from plants having low linolenic acid content. Such primers or probes may comprise 5 or more contiguous residues complimentary to a Fad3 nucleic acid sequence of the invention, such as Fad3A or Fad3C. In some embodiments, the isolated nucleic acid probe or primer may be capable of hybridizing to a characteristic portion of the recombinant nucleic acid (i.e. a part of the recombinant sequence which differs from other sequences, such as wild type sequences), under selective hybridization conditions. Selective hybridization of this sort may be used to identify a Fad3 nucleic acid sequence of the invention.
[0032] In one aspect, the invention provides amplification primers that may be used to incorporate a sequence polymorphism into an amplified nucleic acid sequence, such that a novel restriction site is produced. For example, primers may be synthesized that are substantially complementary to portions of an allele of interest, but differ from the sequence by one or more point mutations that introduce a restriction enzyme cleavage site (Michaels et al., 1998, The Plant Journal 14(3): 381-385, and Neff et al., 1998, The Plant Journal 14(3): 387-392; both of which are incorporated herein by reference). Primers such as those described in Example 1, may be adapted to produce by amplification a nucleic acid that contains a restriction enzyme site that is unique to an allele. The restriction site may be cleaved by a restriction endonuclease to provide sequence information from allele-specific polymorphisms.
[0033] One aspect of the invention comprises a method of selecting plants, such as Brassica napus seedlings, having a low linolenic acid content by utilizing PCR primers to selectively amplify a desired Fad3 allele. This method may be used, for example, to ensure that selected progeny carry a desired allele conferring a low linolenic acid oil phenotype. In accordance with an embodiment of the method, seedlings of a first segregating backcross population, may be subjected to PCR analysis to detect the mutant Fad3 nucleic acid, and the selected plants backcrossed again to a recurrent parental line. The backcrossing and PCR analysis of the first seedling population may, for example, proceed through at least two more cycles to create a third segregating backcross seedling population, which may be self-pollinated to create a third seedling population. The third seedling population may be subjected to PCR analysis for the mutant Fad3 nucleic acid, and homozygotes may be selected for further pedigree breeding, such as breeding of an elite, low linolenic acid content strain.
[0034] In various embodiments, the invention comprises plants expressing the desaturases of the invention. In some embodiments, such plants will exhibit altered fatty acid content in one or more tissues. These aspects of the invention relate to all higher plants, including monocots and dicots, such as species from the genera Fragaria. Lotus, Medicago, Onobrychis, Triforium, Trigonelia, Vigna, Citrus, Linum. Geranium, Manihot, Caucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Hyoscyamus, Lycopersicon, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocatlis, Nemesia, Pelargonium, Panicum, Penniserum, Ranunculus, Senecio, Salpiglossis, Cucarnis, Browallia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura. Such plants may include maize, wheat, rice, barley, soybean, beans, rapeseed, canola, alfalfa, flax, sunflower, cotton, clover, lettuce, tomato cucurbits, potato carrot, radish, pea lentils, cabbage, broccoli, brussel sprouts, peppers, apple, pear, peach, apricot, carnations and roses. More specifically, in alternative embodiments, plants for which the invention may be used in modifying fatty acid content include oil crops of the Cruciferae family: canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.), and others; the Composirae family: sunflower (Helianthus spp.), safflower (Carthamus spp.), niger (Guizotia spp.) and others; the Palmae family: palm (Elaeis spp.), coconut (Cocos spp.) and others; the Leguminosae family: peanut (Arachis spp.), soybean (Glycine spp.) and others; and plants of other families such as maize (Zea spp.), cotton (Gossypium sp.), jojoba (Simonasia sp.), flax (Linum sp.), sesame (Sesamum spp.), castor bean (Ricinus spp.), olive (Olea spp.), poppy (Papaver spp.), spurge (Euphorbia, spp.), meadowfoam (Limnanthes spp.), mustard (Sinapis spp.) and cuphea (Cuphea spp.).
[0035] In some aspects of the invention, nucleic acids encoding novel Fad3 proteins may be introduced into plants by transformation, and expression of such nucleic acids may be mediated by promoters to which such coding sequences are operably linked. One aspect of the invention comprises plants transformed with nucleic acid sequences encoding the fatty acid desaturases of the invention. Transformation may for example be carried out as described in WO 94/11516, which is hereby incorporated by reference. In the context of the present invention, “promoter” means a sequence sufficient to direct transcription of a gene when the promoter is operably linked to the gene. The promoter is accordingly the portion of a gene containing DNA sequences that provide for the binding of RNA polymerase and initiation of transcription. Promoter sequences are commonly, but not universally, located in the 5′ non-coding regions of a gene. A promoter and a gene are “operably linked” when such sequences are functionally connected so as to permit gene expression mediated by the promoter. The term “operably linked” accordingly indicates that DNA segments are arranged so that they function in concert for their intended purposes, such as initiating transcription in the promoter to proceed through the coding segment of a gene to a terminator portion of the gene. Gene expression may occur in some instances when appropriate molecules (such as transcriptional activator proteins) are bound to the promoter. Expression is the process of conversion of the information of a coding sequence of a gene into mRNA by transcription and subsequently into polypeptide (protein) by translation, as a result of which the protein is said to be expressed. As the term is used herein, a gene or nucleic acid is “expressible” if it is capable of expression under appropriate conditions in a particular host cell.
[0036] For the present invention, promoters may be used that provide for preferential gene expression within a specific organ or tissue, or during a specific period of development. For example, promoters may be used that are specific for embryogenesis (U.S. Pat. No. 5,723,765 issued Mar. 3, 1998 to Oliver et al.). Such promoters may, in some instances, be obtained from genomic clones of cDNAs. Depending upon the application of the present invention, those skilled in this art may choose a promoter for use in the invention which provides a desired expression pattern. Promoters may be identified from genes which have a differential pattern of expression in a specific tissue by screening a tissue of interest, for example, using methods described in U.S. Pat. No. 4,943,674 and European Patent Application EP-A 0255378.
[0037] Various aspects of the present invention encompass nucleic acid or amino acid sequences that are homologous to other sequences. As the term is used herein, an amino acid or nucleic acid sequence is “homologous” to another sequence if the two sequences are substantially identical and the functional activity of the sequences is conserved (for example, both sequences function as or encode a Fad3; as used herein, sequence conservation or identity does not infer evolutionary relatedness). Nucleic acid sequences may also be homologous if they encode substantially identical amino acid sequences, even if the nucleic acid sequences are not themselves substantially identical, for example as a result of the degeneracy of the genetic code.
[0038] Two amino acid or nucleic acid sequences are considered substantially identical if, when optimally aligned, they share at least about 70% sequence identity. In alternative embodiments, sequence identity may for example be at least 75%, at least 90% or at least 95%, Optimal alignment of sequences for comparisons of identity may be conducted using a variety of algorithms, such as the local homology algorithm of Smith and Waterman, 1981, Adv. Appl. Math 2: 482, the homology alignment algorithm of Needleman and Wunsch, 1970, J. Mol. Biol. 48:443, the search for similarity method of Pearson and Lipman, 1988, Proc. Natl. Acad Sci. USA 85: 2444, and the computerized implementations of these algorithms (such as GAP, BESTFIT, FASTA and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, Madison, Wis., U.S.A.). Sequence identity may also be determined using the BLAST algorithm, described in Altschul et al., 1990, J. Mol. Biol 215:403-10 (using the published default settings). Software for performing BLAST analysis may be available through the National Center for Biotechnology Information (through the internet at http://www.ncbi.nlm.nih.gov/). The BLAST algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence that either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighbourhood word score threshold. Initial neighbourhood word hits act as seeds for initiating searches to find longer HSPs. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extension of the word hits in each direction is halted when the following parameters are met: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLAST program may use as defaults a word length (W) of 11, the BLOSUM62 scoring matrix (Henikoff and Henikoff, 1992, Proc. Natl. Acad. Sci. USA 89: 10915-10919) alignments (B) of 50, expectation (E) of 10 (or 1 or 0.1 or 0.01 or 0.001 or 0.0001), M=5, N=4, and a comparison of both strands. One measure of the statistical similarity between two sequences using the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. In alternative embodiments of the invention, nucleotide or amino acid sequences are considered substantially identical if the smallest sum probability in a comparison of the test sequences is less than about 1, preferably less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.
[0039] An alternative indication that two nucleic acid sequences are substantially identical is that the two sequences hybridize to each other under moderately stringent, or preferably stringent, conditions. Hybridisation to filter-bound sequences under moderately stringent conditions may, for example, be performed in 0.5 M NaHPO4, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65° C., and washing in 0.2×SSC/0.1% SDS at 42° C. (see Ausubel, et al. (eds), 1989, Current Protocols in Molecular Biology, Vol. 1, Green Publishing Associates, Inc., and John Wiley & Sons, Inc., New York, at p. 2.10.3). Alternatively, hybridization to filter-bound sequences under stringent conditions may, for example, be performed in 0.5 M NaHPO4, 7% SDS, 1 mM EDTA at 65° C., and washing in 0.1×SSC/0.1% SDS at 68° C. (see Ausubel, et al. (eds), 1989, supra). Hybridization conditions may be modified in accordance with known methods depending on the sequence of interest (see Tijssen, 1993, Laboratory Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Acid Probes, Part I, Chapter 2 “Overview of principles of hybridization and the strategy of nucleic acid probe assays”, Elsevier, N.Y.). Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point for the specific sequence at a defined ionic strength and pH.
[0040] An alternative indication that two amino acid sequences are substantially identical is that one peptide is specifically immunologically reactive with antibodies that are also specifically immunoreactive against the other peptide. Antibodies are specifically immunoreactive to a peptide if the antibodies bind preferentially to the peptide and do not bind in a significant amount to other proteins present in the sample, so that the preferential binding of the antibody to the peptide is detectable in an immunoassay and distinguishable from non-specific binding to other peptides. Specific immunoreactivity of antibodies to peptides may be assessed using a variety of immunoassay formats, such as solid-phase ELISA immunoassays for selecting monoclonal antibodies specifically immunoreactive with a protein (see Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Publications, New York).
[0041] As used herein to describe nucleic acid or amino acid sequences the term “heterologous” refers to molecules or portions of molecules, such as DNA sequences, that are artificially introduced into a particular host cell. Heterologous DNA sequences may for example be introduced into a host cell by transformation. Such heterologous molecules may include sequences derived from the host cell. Heterologous DNA sequences may become integrated into the host cell genome, either as a result of the original transformation of the host cells, or as the result of subsequent recombination events.
[0042] In accordance with various aspects of the invention, plant cells may be transformed with heterologous nucleic acids. In this context, “heterologous” denotes any nucleic acid that is introduced by transformation. Transformation techniques that may be employed include plant cell membrane disruption by electroporation, microinjection and polyethylene glycol based transformation (such as are disclosed in Paszkowski et al. EMBO J 3:2717 (1984); Fromm et al., Proc. Natl. Acad. Sci. USA 82:5824 (1985); Rogers et al., Methods Enzymol. 118:627 (1986); and in U.S. Pat. Nos. 4,684,61 1; 4,801,540; 4,743,548 and 5,231,019), biolistic transformation such as DNA particle bombardment (for example as disclosed in Klein, et al., Nature 327: 70 (1987); Gordon-Kamm, et al. “The Plant Cell” 2:603 (1990); and in U.S. Pat. Nos. 4,945,050; 5,015,580; 5,149,655 and 5,466,587); Agrobacterium-mediated transformation methods (such as those disclosed in Horsch et al. Science 233: 496 (1984); Fraley et al., Proc. Nat'l Acad. Sci. USA 80:4803 (1983); and U.S. Pat. Nos. 4,940,838 and 5,464,763).
[0043] Transformed plant cells may be cultured to regenerate whole plants having the transformed genotype and displaying a desired phenotype, as for example modified by the expression of a heterologous Fad3 during growth or development. A variety of plant culture techniques may be used to regenerate whole plants, such as are described in Gamborg and Phillips, “Plant Cell, Tissue and Organ Culture, Fundamental Methods”, Springer Berlin, 1995); Evans et al. “Protoplasts Isolation and Culture”, Handbook of Plant Cell Culture, Macmillian Publishing Company, New York, 1983; or Binding, “Regeneration of Plants, Plant Protoplasts”, CRC Press, Boca Raton, 1985; or in Klee et al., Ann. Rev. of Plant Phys. 38:467 (1987).
[0044] Standard techniques may be used for plant transformation, such as transformation of Arabidopsis. For example, wild type (WT) A. thaliana seeds of ecotype “Columbia” may be planted in 4″ pots containing soil and plants grown in a controlled growth chamber or greenhouse. The vacuum infiltration method of in planta transformation (Bechtold et al., 1993) may be used to transform A. thaliana plants with overnight culture of A. tumefaciens strain GV3101 bearing both the helper nopoline plasmid and the binary construct containing the described chimeric gene. pMP90 is a disarmed Ti plasmid with intact vir region acting in trans, gentamycin and kanamycin selection markers as described in Koncz and Schell (1986). Following infiltration, plants may be grown to maturity and seeds (T1) collected from each pod individually. Seeds may be surface-sterilized and screened on selective medium containing 50 mg/L kanamycin with or without 200-300 mg/L timentin. After about four weeks on selection medium, the non-transformed seedlings will generally die. The transformed seedlings may be transferred to soil in pots. Leaf DNA may be isolated (Edwards et al., 1991) and analyzed by PCR for the presence of the DNA insertion. Genomic DNA may also be isolated and used in Southern hybridization (Southern, 1975) to determine the copy number of the inserted sequence in a given transformant. To determine the segregation, T2 seeds may be collected from T1 plants.
[0045] Alternative embodiments of the invention may make use of techniques for transformation of Brassica. Such as transformation of B. napus cv. Westar and B. carinala cv. Dodolla by co-cultivation of cotyledonary petioles or hypocotyl explants with A. tumefaciens bearing the plasmids described herein. Transformation of B. napus plants may, for example, be performed according to the method of Moloney et al., 1989, Plant Cell Rep 8: 238. Modifications of that method may include the introduction of a 7-day explant-recovery period following co-cultivation, on MS medium with the hormone benzyladenine (BA), and the antibiotic timentin for the elimination of Agrobacterium. Transformation of B. carinata plants may be performed according to the method by Babic et al., 1998, Plant Cell Rep 17: 183. Cotyledonary petiole explants may be dipped in suspension of Agrobacterium bearing the desired constructs and placed on 7-cm filter paper (Whatman no. 1) on top of the regeneration medium for 2 days. After co-cultivation, explants may be transferred onto the selection medium containing 50 mg/L kanamycin. Regenerated green shoots may first be transferred to a medium to allow elongation and then to a rooting medium all containing 50 mg/L kanamycin. Putative transformants with roots (T0) may be transferred to soil. Genomic DNA may be isolated from developing leaves for PCR and Southern analyses. Seeds (T1) from transgenic plants may then be harvested. Transgenic plants may be observed and characterized for alteration of traits, particularly fatty acid content, and more particularly fatty acid content of seed oils.
Isolation of Apollo Fad3 Sequences
[0046] Cloning and sequence analysis of the Fad3A gene is described below, the Fad3C gene from Apollo was cloned and characterized in a similar manner.
[0047] PCR primers described in a publication by Jourdren et al. (1996) were used to amplify the microsomal delta-15 fatty acid desaturase coding sequences (Fad3) from the following B. napus accessions: low linolenic acid variety Apollo (Scarth et al. 1994) and normal linolenic acid breeding lines YN90-1016 and N89-53 (Agriculture and Agri-Food Canada). The PCR reaction conditions used are described in Somers et al., 1998, Theor. Appl. Genet. 96: 897. The primer sequences were degenerate and named FAD3L and FAD3R (see Table 1). An amplified DNA fragment was cloned from each accession into pGEM (Promega Corp, Madison Wis., USA) and each of the clones (pFad3A, from Apollo; pFAD3Y, from YN90-1016; and pFad3N89 from N89-53) was sequenced using the di-deoxy terminator cycle sequencing technique. The initial clones containing the Fad3 coding sequence were lacking the 3′ and 5′ coding sequences. The 3′ end of the genomic sequence from Apollo was PCR amplified using a primer (A047F, Table 1) designed from the pFad3A clone and a primer (A047R, Table 1) derived from the terminus of the genebank sequence L01418, a B. napus microsomal Fad3 gene. The 5′ end of the genomic sequence from Apollo was PCR amplified using a primer (A046F, Table 1) designed from the pFad3A clone and a primer (A046R, Table 1) derived from the terminus of the genebank sequence L01418. The Fad3 genomic DNA sequences were then aligned with genebank sequence L01418 (cDNA) and based on this alignment, the Apollo, YN90-1016 and N89-53 Fad3 coding and non-coding sequences were distinguished, and the coding frame determined.
[0048] The three B. napus Fad3 coding sequences were converted to amino acid sequences using Lasergene, DNA STAR software and the protein sequences were aligned with the protein sequence derived from L01418. Differences at the protein sequence level between pFad3A and L01418, pFad3Y, pFad3N89 correlated to differences in the DNA coding sequence.
[0049] An alignment of the genomic DNA sequences in pFad3A, pFad3Y and pFad3N89 revealed several sequence differences within intron regions. PCR primers were derived from the pFad3A intron sequences and included the observed sequence polymorphisms (Table 1). DNA was extracted from many other oilseed accessions and these are described in Table 2.
1TABLE 1
|
|
PCR primer sequences derived from the
sequence of pFad3A
PrimerSEQ ID
nameSequence (5′-3′)NO's
|
A006RAAG AGT GGC CAA CAT GAT CG43
|
A007FATT CTT AGC ATC TGC CTC G44
|
A027FCCC CTT CTG AAT ACT GCG GT45
|
A028FTTC CGG TAA TCC CCC TCT CA46
|
A029RACT GTA GTC ATC CCC AAA CAA AT47
|
A036FGCA TCA AAA TCT TTA GCA TCG AA48
|
A037FGGT GCA TGT TAG CAA ACA GTA AT49
|
A046FCAT TTC ACT CAG AGC CCA CAC50
|
A046RGAC CAA CGC CAG TAT TCA GA51
|
A047FATT ACG GGA TCT TCA ACA ACC A52
|
A047RTAA AAA CAA CCA GAA ATA AGT AAA 53
|
A048CTA TCA ATA GTT GTT AAT CCT CCA CA54
|
A050TTG GAC GAC CAC TTG TCA GAT T55
|
|
FAD3LGTG GAC ATG GGA GTT TYT CNG A56
|
FAD3RTGG CAT CGA CCA ART GRT ART G57
|
[0050] The pFad3A genomic DNA sequence is 3007 bp (FIG. 8) and includes the entire coding sequence. The pFad3A and pFad3Y (1864 bp) sequences were aligned and there were several sequence polymorphisms observed throughout the sequences (FIG. 10). A number of polymorphisms are further exemplified herein, centered at nucleotides 191, 270, 693 and 1267 of pFad3A as shown in FIG. 10.
[0051] PCR primers that included sequence polymorphisms observed in the Apollo Fad3 coding sequences were designed from the pFad3A sequence (primers A028F, A029R, A036F, A037F shown in Table 1). These primers were paired with different conserved PCR primers (designated A006R, A007F and A027F in Table 1) to demonstrate the ability to selectively amplify the Apollo Fad3 allele over other alleles, particularly wild-type alleles such as the YN90-1016 Fad3 allele. A DNA fragment of the predicted size was amplified from the Apollo DNA template in each case and was not amplified from the YN90-1016 DNA template. Therefore, the sequence polymorphisms observed in the Apollo Fad3 gene may be used to selectively amplify and detect the mutant Fad3 allele from Apollo. Similar sequence alignments of the Apollo Fad3 allele to other crucifer oilseed Fad3 alleles may be routinely used to identify sequence polymorphisms that may be used as a basis for the selective amplification of the Apollo Fad3 allele.
[0052] The alignment of pFad3A, pFad3Y and pFad3N89 with the Fad3 Genebank sequence L01418 showed the position of introns and exons within pFad3A, pFad3Y and pFad3N89. The intron sequences were edited out to identify the coding sequence of pFad3A (852 bp in length) to be aligned with the coding sequence of pFad3Y (657 bp in length), showing a number of nucleotide polymorphisms (FIG. 10).
[0053] Both the pFad3A and pFad3Y coding sequences were converted to amino acid sequences and aligned (FIG. 5). A non-conserved change (mutation) in the amino acid sequence between these protein sequences was identified at amino acid 275 of the Apollo Fad3 sequence (Apollo, cysteine; YN90-1016, arginine). FIG. 9 shows the extent to which this mutation distinguishes the Apollo Fad3 enzyme from a very wide variety of other known delta-15 fatty acid desaturases. Similarly, FIG. 9 shows a number of other amino acid substitutions in the Apollo Fad3 sequence compared to other delta-15 fatty acid desaturases.
[0054] Identifying DNA sequence differences and primers.
[0055] The mutation at amino acid 275 (cysteine) is due to a single base pair mutation, shown boxed in FIG. 7 (cDNA) at nucleotide 823, boxed in FIG. 8 at nucleotide 2685 and at corresponding nucleotide 1734 of the pFad3A DNA sequence of FIG. 10 (the pFad3A sequence of FIG. 10 begins at nucleotide 954 of FIG. 8). The wild type L01418, YN90-1016 and N89-53 Fad3 alleles all included a CGT (arginine) codon and the mutant Apollo Fad3 allele includes a TGT (cysteine) codon (FIG. 9).
[0056] A PCR primer (A048, Table 1) was designed to include the DNA sequence polymorphism at a nucleotide corresponding to nucleotide 1734 of pFad3A (FIG. 10) where the final nucleotide in the 3′ end of the primer included an ‘A’ (Adenine) nucleotide to selectively PCR amplify the mutant Apollo Fad3 allele over corresponding wildtype Fad3 alleles.
[0057] Specificity of selective amplification of Apollo microsomal Fad3A allele.
[0058] The mutant microsomal Fad3 alleles of Apollo are thought to be derived from a low linolenic acid mutant line from Germany, designated ‘M11’ (Röbbelen G, Nitsch A, 1975, L. Z PflanzenzÜchtg 75:93). Amplification products indicative of the Apollo Fad3A allele were obtained using primers A048 and A050 (Table 1). A collection of genotypes were tested, as listed in table 2, for the presence of the C to T nucleotide polymorphism of the Apollo Fad3A allele. PCR amplification from an Apollo DNA template was also assayed as a control. Apart from Apollo, the only other genotypes showing the presence of the amplification product from the Apollo Fad3A gene included TO97-3414, S86-69 and Stellar. Stellar is the first spring canola quality B. napus variety developed carrying low linolenic acid and was derived from crosses with M11 (low linolenic acid) (Scarth et al. 1988). Accession S86-69 is a low linolenic acid B. napus line selected from the variety Apollo. TO97-3414 is a (BC3F4) B. juncea accession derived from interspecific crosses of B. juncea with S86-69 and selection for low linolenic acid. Therefore, all of the accessions showing amplification of the mutant Apollo Fad3A allele are related to Apollo, in the sense that they are all descended from B. napus line M11 (by “descended from” it is meant that a plant is derived from another by methods of classical plant breeding, including crossing parent plant lines or self crossing of parent plants, but this does not include methods of genetic engineering in which nucleic acid sequences are recombined to produce new strains). Such PCR tests may be highly specific, and may be used in one aspect of the invention as a selective amplification assay for the presence of the Apollo Fad3A or Fad3C alleles in a wide variety of genetic backgrounds.
2TABLE 2
|
|
Crucifer oilseed species/accessions tested for the presence of the
Fad3A allele using primers A048 and A050.
Species1TypeAccession2Linolenic acid content
|
B. junceaSpring/breedingJ90-2741High
B. junceaSpring/breedingJ90-4253High
B. junceaSpring/breedingJ90-223High
B. junceaSpring/breedingTO97-3422-1High
B. junceaSpring/breedingTO97-3421-1High
B. junceaSpring/breedingTO97-3414Low
B. junceaSpring/breedingTO97-3400High
B. napusSpring/breedingDH13830High
B. napusSpring/breedingDH13619High
B. napusSpring/breeding9592High
B. napusSpring/canolaRangeHigh
B. napusSpring/canolaDunkeldHigh
B. napusSpring/breedingN89-17High
B. napusSpring/breedingYN90-1016High
B. napusSpring/breeding264-663High
B. napusSpring/breeding1269High
B. napusSpring/breeding1526High
B. napusSpring/breedingS86-69Low
B. rapaSpring/canolaHorizonHigh
B. rapaSpring/canolaMavrickHigh
B. rapaSpring/canolaRewardHigh
B. rapaSpring/canolaTobinHigh
B. rapaSpring/rapeBronowskiHigh
B. rapaSpring/rapeCresorHigh
B. rapaSpring/rapeMidasHigh
B. rapaSpring/rapeOroHigh
B. napusSpring/canolaAC ElectHigh
B. napusSpring/canolaAC ExcelHigh
B. napusSpring/canolaAC H102High
B. napusSpring/canolaAltoHigh
B. napusSpring/canolaCycloneHigh
B. napusSpring/canolaDeltaHigh
B. napusSpring/canolaGarrisonHigh
B. napusSpring/canolaGlobalHigh
B. napusSpring/canolaHyola 417High
B. napusSpring/canolaKaratHigh
B. napusSpring/canolaLegacyHigh
B. napusSpring/canolaLegendHigh
B. napusSpring/canolaPoloHigh
B. napusSpring/canolaProfitHigh
B. napusSpring/canolaRegentHigh
B. napusSpring/canolaShiraleeHigh
B. napusSpring/canolaStellarLow
B. napusSpring/canolaTopasHigh
B. napusSpring/canolaTowerHigh
B. napusSpring/canolaTributeHigh
B. napusSpring/canolaWestarHigh
B. napusWinter/canolaCascadeHigh
B. napusWinter/canolaCeresHigh
B. napusWinter/canolaGlacierHigh
B. napusWinter/canolaMarHigh
B. napusWinter/canolaRubinHigh
B. napusWinter/canolaSamouraiHigh
B. napusWinter/canolaTandemHigh
B. napusWinter/canolaTapidorHigh
B. napusWinter/rapeMarcusHigh
B. napusWinter/rapeJet NeufHigh
B. junceaorientalAC VulcanHigh
B. junceaorientalForgeHigh
B. junceaBrownScimitarHigh
S. albaSpring/canolaWD96-2-3High
S. albaMustardEmergoHigh
B. rapaSpring/breeding7001High
B. rapaSpring/breeding6909High
B. rapaSpring/breeding6810High
B. rapaSpring/breeding6794High
|
1Winter and Spring represent the growth habit; canola indicates low in erucic acid and low in glucosinolate content, rape indicates high erucic acid content, breeding indicates unregistered lines.
2Low = <4% C18:3, High = >8% C18:3.
Example 2
[0059]
FIG. 9 shows a protein sequence alignment between the Apollo Fad3A protein and a wide variety of other Fad3 sequences, identified by database accession number, and more particularly described below. The alignment was produced using the BLASTP software available from the National Centre for Biotechnology Information (NCBI, Bethesda, Md., U.S.A.) through the internet at http://www.cnbi.nlm.nih.gov/BLAST/. A description of how to use this software, including how to optimally align sequences is available on the internet at http://www.cnbi.nlm.nih.gov/BLAST/blast/_help.html. In summary form, the database sequences are as follows, with the ‘Expect’ value of the match with the Apollo Fad3A sequence, as calculated by the BLAST algorithm:
3TABLE 3
|
|
Fad3 Sequences Compared2 to Apollo Fad3
AccessionExpect1
|
sp|P4G311|FD31_BRANA OMEGA-3 FATTY ACID DESATURASE, ENDOPLA . . . 0.0
sp|P48624|FD32_BRANA OMEGA-3 FATTY ACID DESATURASE, ENDOPLA . . . 0.0
sp|P48623|FD3E_ARATH OMEGA-3 FATTY ACID DESATURASE, ENDOPLA . . . 0.0
gi|3133289 (AF020204) omega-3 desaturase [Pelargonium×hor.e-171
sp|P32291|FD3E_PHAAU OMEGA-3 FATTY ACID DESATURASE, ENDOPLA . . . e-168
gi|4091113 (AF047172) omega-3 fatty acid desaturase [Vernic . . . e-168
sp|P48622|FD3D_ARATH TEMPERATURE-SENSITIVE OMEGA-3 FATTY AC . . . e-167
gb|AAD15744| (AF047039) omega-3 fatty acid desaturase [Peri . . .e-165
sp|P48619|FD3C_RICCO OMEGA-3 FATTY ACID DESATURASE, CHLOROP . . .e-165
gi|1754795 (059477) omega-3 fatty acid desaturase [Perilla . . .e-164
sp|P48620|FD3C_SESIN OMEGA-3 FATTY ACID DESATURASE, CHLOROP . . . e-164
sp|P46310|FD3C_ARATH OMEGA-3 FATTY ACID DESATURASE, CHLOROP . . . e-164
dbj|BAA11475| (D79979) omega-3 fatty acid desaturase (Nicot . . . e-163
sp|P48626|FD3E_TOBAC OMEGA-3 FATTY ACID DESATURASE, ENDOPLA . . . e-163
gi|4240385 (AF061027) omega-3 fatty acid desaturase precurs . . . e-162
gi|1786066 (075745) omega-3 fatty acid desaturase [Petrosel . . . e-162
sp|P48625|FD3E_SOYBN OMEGA-3 FATTY ACID DESATURASE, ENDOPLA . . . e-162
sp|P48618|FD3C_BRANA OMEGA-3 FATTY ACID DESATURASE, CHLOROP . . . e-162
dbj|BAA22440| (D63953) fatty acid desaturase [Zea mays] >g1 . . . e-162
sp|P48621|FD3C_SOYBN OMEGA-3 FATTY ACID DESATURASE, CHLOROP . . . e-161
dbj|BAA22441| (D63954) fatty acid desaturase [Zea mays[e-160
emb|CAA07638| (AJ007739) w-3 desaturase [Solanum tuberosum]e-160
gi|699590 (017065) delta-15 lineoyl desaturase [Limnanthes . . . e-155
dbj|BAA07785.1| (043698) plastid omega-3 fatty acid desatur . . . e-154
dbj|BAA2SS58| (D84678) omega-3 fatty acid desaturase [Triti . . . e-154
dbj|BAA11397| (D78506) w-3 fatty acid desaturase [Oryza sat . . . e-147
gi|408490 (L22963) omega-3 fatty acid desaturase [Brassica . . . e-145
dbj|BAA224S9| (D65952) fatty acid desaturase [Zea mays]e-113
dbj|BAA11396| (D76505) w-3 fatty acid desaturase [Oryza sat . . . e-110
gi|2197199 (D36389) omega-3 desaturase [Synechococcus PCC7002]e-102
gb|AAD41582.1|AF056572_1 (AF056572) unknown [Brassica rapa] . . . e-102
pir||S52650 desaturase delta 15—Synechocystis sp. (strain . . . 6e-96
gb|AAD41581.1|AF056571_1 (AF056571) unknown [Brassica olera . . . 6e-80
gb|AAD4158O.1|AF056570_1 (AF056570) unknown [Brassica napus]2e-79
|
1 Some "E" values shown as exponents, e.g. ‘e-171=1×10−171
2 The database used a basis for the BLASTP search was Non-redundant GenBank CDS (translations+PDB+SwissProt+SPupdate+PIR), Posted date: Sep. 14, 1999 3:12 PM (number of letters in database: 126,047,814; number of sequences in database: 411,698), using the following parameters:
LambdaKH
0.3240.1400.461
Gapped
LambdaKH
0.2700.04700.230
Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Hits to DB: 106686529
Number of Sequences: 411698
Number of extensions: 4746913
Number of successful extensions: 13626
Number of sequences better than 10.0: 129
Number of HSP's better than 10.0 without gapping: 102
Number of HSP's successfully gapped in prelim test: 27
Number of HSP's that attempted gapping in prelim test: 13347
Number of HSP's gapped (non-prelim): 139
length of query: 380
length of database: 126,047,814
effective HSP length: 48
effective length of query: 332
effective length of database: 106286310
effective search space: 35287054920
effective search space used: 35287054920
T: 11
A: 40
X1: 15 (7.0 bits)
X2: 38 (14.8 bits)
X3: 64 (24.9 bits)
S1: 40 (21.5 bits)
S2: 71 (32.1 bits)
|
[0060] Further particulars of the non-Apollo Fad3 sequences included in FIG. 9 are as follows:
4|
|
P46311 (Brassica navus)
LOCUS FD31_BRANA 377 aa PLN Feb. 1, 1996
DEFINITION OMEGA-3 FATTY ACID DESATURASE, ENDOPLASMIC RETICULUM
VERSION 1).
ACCESSION246311
PIDg1169600
VERSION246311 GI:1169600
DESOURCEswissprot: locus FD31_BRANA, accession P46311;
class: standard.
created: Nov 1, 1995.
sequence updated: Nov 1, 1995.
annotation updated: Feb 1, 1996.
xrefs: gi: 408491, gi: 408492
KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; ENDOPLASMIC
RETICULUM;
TRANSMEMBRANE.
SOURCErape.
ORGANISMBrassica napus
Eukaryotae; Viridiplantae; Charophyta/Einbryaphyta group;
Embryophyta; Tracheophyta; seed plants; Magnoliophyta;
eudicotyledons; Rosidae; Capparales; Brassicaceae; Brassica.
REFERENCE1 (residues 1 to 377)
AUTHORSYADAV, N. S., WIERZBICKI, A., AEGERTER, M., CASTER, C. S., PEREZ-
GRAU, L., KIMNEY, A. J., HITZ, W. D., BOOTH, J. R. JR., SCHWEIGER, B.,
STECCA, K. L., ALLEN, S. M., BLACKWELL, M.,
REITER, R. S., CARLSON, T. J., RUSSELL, S. H., FELDMANN, K. A.,
PIERCE, J. and BROWSE, J.
TITLECloning of higher plant omega-3 fatty acid desaturases
JOURNALPlant Physiol. 103 (2), 467-476 (1993)
MEDLINE 94302147
REMARKSEQUENCE FROM N.A.
TISSUE = SEED
COMMENT(FUNCTION) ER (MICROSOMAL) OMEGA-3 FATTY ACID DESATURASE
INTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 18:3
FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT MEMBRANES. IT IS
THOUGHT TO USE CYTOCHROME ES AS AN ELECTRON DONOR AND TO ACT
ON FATTY ACIDS ESTERIFIED TO PHOSPHATIDYLCHOLINE AND,
POSSIBLY, OTHER PHOSPHOLIPIDS.
[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.
[SUECELLULAR LOCATION] ENOOPLASMIC RETICULUM. [DOMAIN] THE
HISTIDINE BOX DOMAINS MAY CONTAIN THE ACTIVE SITE AND/OR BE
INVOLVED IN METAL ION BINDING.
[SIMILARITY] TO OTHER PLANT OMEGA-H FATTY ACID DESATURASES.
FEATURESLocation/Qualifiers
source1 . . . 377
/organism=″Brassica napus″
/db_xref=″taxon:3708″
1 . . . 377
Protein1 . . . 377
/product=″OMEGA-3 FATTY ACID DESATUPASE, ENDOPLASMIC
RETICULUM″
/EC_number=″1.14.99.-″
Region54 . . . 73
/region_name=″Transmembrane region″
Region92 . . . 96
/note=″HTSTIDINE BOX 1.″
/region_name=″Domain″
Region128 . . . 132
/note=″HISTIDINE BOX 2.″
/region_name=″Domain″
Region203 . . . 226
/region_name=″Transmembrane region″
Region233 . . . 251
/region_name=″Transmembrane region″
Region295 . . . 299
/note=″HISTIDINE BOX 3.″
/region_name=″Domain″
ORIGIN(SEQ ID NO: 9)
mvvamdgrsn angderfcips aqppfkigdi raaipkhcwv kspirsmsyv ardifavval
|
avaavyfdsw ffwpiywaaq gtlfwaitvl ghdcghgsfs dipilntavg hilhstiivp
|
yhgwrishrt hhqnhghven cieswvplpek lyknishstr mirytvpipm layplyiwyr
|
spgkegshyn pyssifapse rkiiatsttc wsimlatlvy lsflvgpvtv lkvygvpyii
|
fvmwldavty lhhhghddkl pwyrgkewsy lrggltticir dygifnnihh digthvihhl
|
fpqiphyhlv datksakhvl gryyrepkts gaipihives lvasikkdhy vsdtgciivfy
|
etdpdlyvya sdkskin
|
P48624 (Brassica navus)
LOCUSFD32_BRANA383 aa PLN Feb. 1, 1996
DEFINITIONOMEGA-3 FATTY ACID DESATURASE, ENDOPLASMIC RETICULUM
VERSION 2).
ACCESSIONP48624
PIDg1345967
VERSIONP48624 GI:1345967
DBSOURCEswissprot: locus FD32 BRANA, accession P48624;
class: standard.
created: Feb. 1, 1996.
sequence updated: Feb. 1, 1996.
annotation updated: Feb. 1, 1996.
xrefs: gi: 167147, gi: 167148
KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; ENDOPLASMIC
RETICULUM;
TRANEMEMBRANE.
SOURCE rape.
ORGANISMBrassica napus
Eukaryocae; Viridiplantae; Charophyta/Embryophyta group;
Embryophyta; Tracheophyta; seed plants; Magnoliophyta;
eudicotyledons; Rosidee; Capparales; Brassicaceae; Brassica.
REFERENCE1 (residues 1 to 383)
AUTHORSArondel, V., Lemieux, B., Hwang, I., Cibson, S., Goodmnan, H. M. and
Somerville, C. R.
TITLEMap-based cloning of a gene controlling omega-B fatty acid
desaturation in Arabidopsis
JOURNALScience 258 (5086), 1353-1355 (1992)
MEDLINE93088059
REMARKSEQUENCE FROM N.A.
COMMENT[FUNCTION] ER (MICROSOMAL) OMEGA-B FATTY ACID DESATURASE
INTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 18:3
FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT MEMBRANES. IT IS
THOUGHT TO USE CYTOCEROME ES AS AN ELECTRON DONOR AND TO ACT
ON FATTY ACIDS ESTERIFIED TO PHOSPHATIDYLCHOLINE AND,
POSSIBLY, OTHER PHOSPHOLIPIDS.
[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.
[SUBCELLULAR LOCATION] ENDOFLASMIC RETICULUM. [DOMAIN] THE
HISTIDINE BOX DOMAINS MAY CONTAIN THE ACTIVE SITE
AND/OR BE INVOLVED IN METAL ION BINDING.
[SIMILARITY] TO OTHER PLANT OMEGA-B FATTY ACID DESATURASES.
FEATURESLocation/Qualifiers
source1 . . . 383
/organism=″Brassica napus″
/db_xref=″taxon:3708″
1 . . . 383
Protein1 . . . 383
/product=″OMEGA-3 FATTY ACID DESATURASE, ENDOPLASMIC
RETICULUM″
/EC_number=″1.14.99.-″
Region53 . . . 73
/region_name=″Transmembrane region″
Region98 . . . 102
/note=″HISTIDINE BOX 1.″
/reqion name=″Domain″
Region134 . . . 138
/note=″HISTIDINE BOX 2.″
/region_name=″Domain″
Region210 . . . 230
/reqion name=″Transmembrane region″
Region234 . . . 254
/region_name=″Transmembrane region″
Region301 . . . 305
/note=″HISTIDINE BOX 3.″
/region_name=″Domain″
ORIGIN(SEQ ID NO: 10)
mvvamdqrsn vngdsgarke egfdpsaqpp fkigdiraai pkhcwvkspi rsmsyvtrdi
|
favaalamaa vyfdswflwp lywvaqgtlt waifvighdc ghgsfsdipl insvvghilh
|
sfilvpyhgw rishrthhqn hghvendesw vpipeklykn lphstrmlry tvplpmlayp
|
iyiwyrspgk egshfnpyss lfapserkii atsttcwsim lativylsil vdpvtvikvy
|
gvpyiifvmw idavtylhhh ghdekipwyr gkewsylrgg lttidrdygi tnnihhdigt
|
hvihhlfpqi phyhlvdatr aakhvlgryy repktsqaip ihivesivas ikkdhyvsdt
|
gdivfyetdp diyvyasdks kin
|
P48623 (thale cress, Arabidoysis thaliana)
Score = 753 bits (1922), Expect = 0.0
Identities = 348/386 90%), Positives 362/386(93%), Gaps = 6/386(1%)
LOCUSFD3E_ABATE386 aa PLN Oct. 1, 1996
DEFINITIONOMEGA-3 FATTY ACID DESATURASE, ENDOPLASMIC RETICULUM.
ACCESSIONP48623
FIDg1345973
VERSIONP48623 GI:1345973
OBSOURCEswissprot: locus FD3E_ARATH, accession P48623;
class: standard.
created: Feb. 1, 1996.
sequence updated: Feb. 1, 1996.
annotation updated: Oct 1, 1996.
xrefs: gi: 408482, gi: 408483, gi: 1030693, gi: 471091, gi:
511907, gi: 1197795
KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; ENDOPLASMIC
RETICULUM;
TRANSMEMBRANE.
SOURCEthale cress.
ORGANISMArabidopsis thaliana
Eukaryotae; Viridiplantae; Charophyta/Erubryophyta group;
Embryophyta; Tracheophyta; seed plants; Magnoliophyta;
eudicotyledons; Rosidae; Capparales; Brassicaceae;
Arabidopsis.
REFERENCE1 (residues 1 to 386)
AUTHORSYADAV, N. S., WIERZBICKI, A., AEGERTER, M., CASTER, C. S., PEREZ-
GRAU, L., KINNEY, A. J., HITZ, W. D., BOOTH, J. R. JR.,
SCHWEIGER, B., STECCA, K. L., ALLEN, S. M., BLACKWELL, M.,
REITER, R. S., CARLSON, T. J., RUSSELL, S. H., FELDMANN, K. A.,
PIERCE, J. and BROWSE, J.
TITLECloning of higher plant omega-3 fatty acid desaturases
JOURNALPlant Physiol. 103 (2), 467-476 (1993)
MEDLINE94302147
REMARKSEQUENCE FROM N.A.
STRAIN=CV. COLUMBIA; TISSUE=SEEDLING
REFERENCE2 (residues 1 to 386)
AUTHORSWATAHIKI, M. C. and YAMANOTO, K. T.
TITLEDirect Submission
JOURNALSubmitted (Sep. ?+48, 1993) TO EMBL/GENBANK/DDBJ DATA BANKS
REMARKSEQUENCE FROM N.A.
STRAIN=CV. COLUMBIA; TISSUE=HYPOCOTYL
REFERENCE3 (residues 1 to 386)
AUTHORSNishiuchi, T., Nishimura, M., Arondel, V. and Iba, K.
TITLEGenomic nucleotide sequence of a gene encoding a microsomal
omega-B fatty acid desaturase from Arabidopsis thaliana
JOURNALPlant Physiol. 105 (2), 767-768 (1994)
MEDLINE94345020
REMARKSEQUENCE FROM N.A.
STRAIN=CV. COLUMBIA
COMMENT[FUNCTION] MICROSOMAL (ER) OMEGA-B FATTY ACID DESATURASE
INTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 18:3
FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT MEMBRANES. IT IS
THOUGHT TO USE CYTOCHROME B5 AS AN ELECTRON DONOR AND TO ACT
ON FATTY ACIDS ESTERIFIED TO PHOSPHATIDYLCHOLINE AND,
POSSIBLY, OTHER PHOSPHOLIPIDS.
[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.
[SUBCELLULAR LOCATION] ENDOPLASMIC RETICULUM.
[TISSUE SPECIFICITY] ABUNDANT IN LEAVES AND SEEDLINGS. BARELY
DETECTABLE IN ROOT TISSUE. [DOMAIN] THE HISTIDINE BOX DOMAINS
MAY CONTAIN THE ACTIVE SITE AND/OR BE INVOLVED IN METAL ION
BINDING.
[SIMILARITY] TO OTHER PLANT OMEGA-3 FATTY ACID DESATURASES.
FEATURESLocation/Qualifiers
source1 . . . 386
/organism=″Arabidopsis thaliana″
/db_xref=″taxon:3702″
1 . . . 386
Protein1 . . . 386
/product=″OMEGA-3 FATTY ACID DESATURASE, ENDOPLASMIC
RETICULUM″
/EC_number=″1.14.99.-″
Region63 . . . 83
/region_name=″Transmembrane region″
Region101 . . . 105
/note=″HISTIDINE BOX 1.″
/reqion_name=″Domain″
Region137 . . . 141
/note=″HISTIDINE BOX 2.″
/region_name=″Domain″
Region220 . . . 240
/region_name=″Transmembrane region″
Region242 . . . 262
/region_name=″Transmembrane region″
Region304 . . . 308
/note=″HISTIDINE BOX 3.″
/region _name=″Domain″
ORIGIN(SEQ ID NO: 11)
rnvvamdqrtn vngdpgagdr kkeerfdpsa gppfkigdir aaipkhcwvk splrsmsyvv
|
rdiiavaala iaavyvdswf lwplywaaqg tlfwaifvlg hdcghgsfsd ipllnsvvgh
|
ilhsfiivpy hgwrishrth hgnhghvend eswvplperv ykkiphstrm lrytvplpml
|
ayplylcyrs pgkegshfnp ysslfapser kliatsttcw simfvsiial sfvfgplavi
|
kvygvpyiif vmwldavtyl hhhghdeklp wyrgkewsyi rggltticird ygifnnihhcl
|
igthvihhlf pqiphyhlvd atkaakhvlg ryyrepktsg aipihlvesl vasikkdhyv
|
sdtgdivfye tclpdlyvyas dkskin
|
3133289 (Pelargonium x hortorum)
LOCUSAAC16443 407 aa PLN May 15, 1998
DEFINITIONomega-3 desaturase.
ACCESSIONAAC16443
PIDg3133289
VERSIONAAC16443.1 GI:3133289
DBSOURCEaccession AF020204.1
KEYWORDS
SOURCEPelargonium x hortorum.
ORGANISMPelargonium x hortorum
Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;
eudicotyledons; core eudicots; Rosidae; Geraniales;
Geraniaceae; Pelargonium.
REFERENCE1 (residues 1 to 407)
AUTHORSSchultz, D. J., Mununa, R. O., Cox-Foster. D., Craig, R. and
Medford, J. I.
TITLEGeranium omega-3 desaturase
JOURNALUnpublished
REFERENCE2 (residues 1 to 407)
AUTHORSSchultz, D. J., Mumina, R. O., Cox-Foster, D., Craig, R. and
Medford, J. I.
TITLEDirect Submission
JOURNALSubmitted (Aug. 19, 1997) Botany, MSU, 166 Plant Biology
Building, East Lansing, MI 48824, USA
COMMENTMethod: conceptual translation supplied by author.
FEATURESLocation/Qualifiers
source1 . . . 407
/organism=″Pelargonium x hortorum″
/db_xref=″taxon: 4031″
Protein<1 . . . 407
/product=″omega-3 desaturase″
COB1 . . . 407
/gene=″pxh-15″
/codedby=″AF020204.1:<1 . . . 1226″
ORIGIN(SEQ ID NO: 12)
sdfdp sapppfrlge iraaipqhcw vkspwrsmsy vvrdivvvfa lavaafrlds wlvwpiywav
|
qgtmfwaifv lghdcghgsf sdshilnsvm ghilhssilv pyhgwrishk thhsnhghve
|
ndeswvplte kryksldvst rllrftipfp vfaypfylww rspgkkgshf npysdifaps
|
errdvltsti swsimvalla qlscvfglvp mlklyggpyw ifvmwldtvt ylhhhghddh
|
klpwyrqkew sylrgglttv drdyglfnni hhdigthvih hlfpqiphyh lveatraakp
|
vlgkyyrepk rsgpfpyhli dnlvksiked hyvsdtgdiv fyetdpeqfk sdpkkl
|
P32291 (mung bean, Vigna radiata)
Score = 591 bits (1507), Expect e−168
Identities = 259/359 (72%), Positives = 303/359 (84%)
LOCUSFD3E_PHAAU 380 aa PLN Feb. 01,1996
DEFINITIONOMEGA-3 FATTY ACID DESATURASE, ENDOPLASMIC RETICULUM
(INDOLE-3-ACETIC ACID INDUCED PROTEIN ARGi).
ACCESSIONP32291
PIDg416638
VERSIONP32291 GI:416638
OBSOURCEswissprot: locus FD3E PHAAU, accession P32291;
class: standard.
created: Oct 1, 1993.
sequence updated: Oct 1, 1993.
annotation updated: Feb. 1, 1996.
xrefs: gi: 287561, gi: 287562
KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; ENDOPLASMIC
RETICULUM; TRANSMEMBRANE.
SOURCEmung bean.
ORGANISMVigna radiara
Eukaryotee; Viridiplantae; Charophyta/Embryophyta group;
Embryophyta; Tracheophyta; seed plants; Magnoliophyta;
eudicotyledons; Rosidae; Fabales; Fabaceae; Papilionoideae;
Vigna.
REFERENCE1 (residues 1 to 380)
AUTHORSYAMAMOTO, K. T., MORI, H. and IMASEKI, H.
JOURNALPLANT CELL PHYSIOL. 33, 13-20 (1992)
REMARKSEQUENCE FROM N.A.
TISSUE=HYPOCOTYL
COMMENT[FUNCTION] MICROSOMAL (ER) OMEGA-3 FATTY ACID DESATURASE
INTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 18:3
FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT MENBRANES. IT IS
THOUGHT TO USE CYTOCHROME B5 AS AN ELECTRON DONOR AND TO ACT
ON FATTY ACIDS ESTERIFIED TO PHOSPHATIDYLCHOLINE AND,
POSSIBLY, OTHER PHOSPHOLIPIDS.
[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.
[SUSCELLULAR LOCATION] ENDOPLASMIC RETICULUM. INDUCTION] BY
AUXIN, ETHYLENE AND WOUNDING. [DOMAIN] THE HISTIDINE BOX
DOMAINS MAY CONTAIN THE ACTIVE SITE AND/OR BE INVOLVED IN
METAL ION BINDING. [SIMILARITY] TO OTHER PLANT OMEGA-3 FATTY
ACID DESATURASES.
FEATURESLocation/Qualifiers
source1 . . . 380
/organism=″Vigna radiata″
/db_xref=″taxon: 3916″
1 . . . 380
Protein1 . . . 380
/product=″OMEGA-3 FATTY ACID DESATURASE, ENDOPLASMIC
RETICULUM″
/EC_number=″1.14.99.-″
Region59 . . . 78
/region_name==″Transmembrane region″
Region97 . . . 101
/note=″HISTIDINE BOX 1.″
/region_name=″Domain″
Region133 . . . 137
/note=″HISTIDINE BOX 2.″
/region_name=″Domain″
Region208 . . . 231
/region_name=″Transmembrane region″
Region238 . . . 256
/region_name=″Transmembrane region==
Region300 . . . 304
/note=″HISTIDINE BOX 3.″
/region_name=″Domain″
ORIGIN(SEQ ID NO:13)
fdpgapppf kiadiraaip khcwekstlr slsyvircivl vvtalaasai sfnswffwpl
|
ywpaqgtrntw alfvighdcg hgsfsnsskl nsfvghilhs lilvpyngwr ishrthhqnh
|
ghvekdeswv pltekvyknl cidmtrmlrys fpfpifaypf ylwnrspgke gshfnpysnl
|
tspgerkgvv tstlcwgivl svllylslti gpifmlklyg vpylifvmwl dfvtylhhhg
|
ythklpwyrg qewsylrggl ttvdrdygwi nnvhhdigth vihhlfpqip byhlveatks
|
aksvlgkyyr epqksgplpf hilkyllqsi sqdhfvscttg divyyqtdpk lhqdswtksk
|
+UZ,4091113 ( Vernicia fordii)
Score 590 bits (1504), Expect = e−168
Identities = 265/377 (70%), Positives = 305/377 (80%), Gaps 7/377 (1%)
LOCUSAAC98967 387 aa PLN Jan. 01, 1999
DEFINITIONomega-3 fatty acid desaturase.
ACCESSIONAAC98967
PIDg4091113
VERSIONAAC98967.1 GI:4091113
DBSOURCElocus AF047172 accession AF047172.l
KEYWORDS
SOURCEVernicia fordii.
ORGANISMVernicia fordii
Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;
eudicotyledons; core eudicots; Rosidae; eurosids I;
Malpighiales; Euphorbiaceae; Vernicia.
REFERENCE1 (residues 1 to 387)
AUTHORSTang, F., Dyer, J. M., Lax, A. R., Shih, D. S., Chapital, D. C. and
Pepperman, A. B.
TITLENucleotide sequence of a cOMA clone for endoplasmic reticular
Fatty acid desaturase from Aleurites fordli seeds
JOURNALUnpublished
REFERENCE2 (residues 1 to 387)
AUTHORSTang, F.
TITLEDirect Submission
JOURNALSubmitted (Feb. 8, 1998) Southern Regional Research Center,
USDA-ARS, 1100 Robert E. Lee Blvd., New Orleans, LA 70179,
USA
COMMENTMethod: conceptual translation supplied by author.
FEATURESLocation/Qualifiers
source1 . . . 387
/organism=″Vernicia fordii″
/variety=″L-2″
/db_xref=″taxon:73154″
/devstage=″seed″
Protein1 . . . 387
/product=″omega-3 fatty acid desaturase″
CUS1 . . . 387
/gene=″Fad3″
/coded_by=″AF047172.1:39 . . . 1202″
ORIGIN(SEQ ID NO:14)
ngvngfha keeeeeedfd lsnpppfnlg qiraaipkhc wvknpwrslt yvfrdvvvvf
|
alaaaafyfn swlfwplywf aqgtmfwaif vighdcghgs tsnnsslnnv vghlihssil
|
vpyhgwrish rthhqnhgnv ekdeswvplp ekiykemdls trilrysvpl pmfalpfylw
|
wrspgkegsh fnpnsdf tap herkavitsn fcfsimalll lyscfvfgpv qvlkfygipy
|
lvfvmwldfv tymhhhghee klpwyrgkew sylrgglqtv drdygwinni hhdigthvih
|
hlfpqiphyh lieatkaakp vlgkyyrepk ksgpfpfhlf snlvrsmsed hyvscligdiv
|
fyqtdpdiyk vdkskln
|
P48622 (Arabidoysis thiazana)
LOCUSFD3D_ARATE435 aa PLN Feb. 1, 1996
DEFINITIONTEMPERATURE-SENSITIVE OMECA-3 FATTY ACID DESATURASE,
CHLOROPLAST PRECURSOR.
ACCESSIONP48622
PIDgl345972
VERSIONP48622 GI:1345972
DBSOURCEswissprot: locus FD3D_ARATH, accession P48622;
class: standard.
created: Feb. 1, 1996.
sequence updated: Feb. 1, 1996.
annotation updated: Feb. 1, 1996.
xrefs: gi: 516044, gi: 516045, gi: 497218, gi: 497219, gi:
1D3D694, gi: 471093
KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; CELOROPLAST;
MEMBRANE; TRANSIT PEPTIDE.
SOURCEthale cress.
ORGANISMArabidopsis thaliana Eukaryotae; Viridipiantae;
Charophyta/Embryophyta group; Embryophyta; Tracheophyta; seed
plants; Magnoliophyta; eudicetyledons; Rosidae; Capparales;
Brass icaceae; Arabidopsis.
REFERENCE1 (residues 1 to 435)
AUTHORSGibson, S., Arondel, V., Iba, K. and Somerville, C.
TITLECloning of a temperature-regulated gene encoding a
chloropiast omega-3 desaturase from Arabidopsis thaliana
JOURNALPlant Physiol. 106 (4), 1615-1621 (1994)
MEDLINE95148742
REMARK SEQUENCE FROM N.A.
STRAIN=CV. COLUMBIA; TISSUE=AERIAL PARTS
REFERENCE2 (residues 1 to 435)
AUTHORSWATAHIKI, M. C. and YAMAMOTO, K. T.
TITLEDirect Submission
JOURNALSubmitted (??-September 1993) TO EMBL/GENBANK/DDBJ DATA BANKS
REMARKSEQUENCE FROM N.A.
STRAIN=CV - COLUMBIA; TISSUE=HYPOCOTYL
COMMENT[FUNCTION] CHLOROPLAST OMEGA-B FATTY ACID DESATURASE
INTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 16:3
AND 18:3 FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT
MEMBRANES. IT IS THOUGHT TO USE FERREDOXIN AS AN ELECTRON
DONOR AND TO ACT ON FATTY ACIDS ESTERIFIED TO GALACTOLIPIDS,
SULFOLIPIDS AND PHOSPHATIDYLGLYCEROL.
[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.
[SUSCELLULAR LOCATION] CHLOROPLAST, MEMBRANE-BOUND
(PROBABLE). [INDUCTION] BY LOW TEMPERATURES. [DOMAIN] THE
HISTIDINE BOX DOMAINS MAY CONTAIN THE ACTIVE SITE
AND/OR BE INVOLVED IN METAL ION BINDING. [SIMILARITY] TO
OTHER PLANT OMEGA-B FATTY ACID DESATURASES.
FEATURESLocation/Qualifiers
source1 . . . 435
/organism=″Arabidopsis thaliana″
/db_xref=″taxon:3702″
1 . . . 435
Protein/product=″TEMPERATURE-1 . . . 435
SENSITIVE OMEGA-B FATTY ACID
DESATURASE, CHLOROPLAST PRECURSOR″
/EC_nurnber=″l.14.99.-″
Region1 . . . (2.435)
/region_name=″Transit peptide″
/note=″CHLOROPLAST.
Region(1.434)..435
/region_name=″Mature chain″
/note=″TEMPERATURE-SENSITIVE OMEGA-B FATTY ACID
DESATURASE, CHLOROPLAST.″
Region156 . . . 160
/region_name=″Domain″
/note=″HISTIDINE BUX 1.″
Region192 . . . 196
/region_name=″Domain″
/note=″HISTIDINE BOX 2.″
Region359 . . . 363
/region_name=″Domain″
/note=″HISTIDINE BOX 3.″
ORIGIN(SEQ ID NO:15)
r fdpgapppfn ladiraaipk hcwvknpwms msyvvrdvai vfglaavaay fnnwllwply
|
wfaqgtmfwa lfvlghdcgh gsfsndprln svaghlThss ilvpyhgwri shrthhqnhg
|
hvendeswhp ipesiyknle kttqmfrftl pfpmiaypfy iwnrspgkqg shyhpdsdif
|
lpkekkdvit stacwtamaa llvcinfvmg piqinlklygi pywifvmwld fvtylhhhgh
|
edkipwyrgk ewsyirgglt tidrdyqwin nihhdigthv ihhifpqiph yhlveateaa
|
kpvlgjkyyre pknsgpiplh ligsliksmk qdhfvsdtgd vvyyeadpkl
|
AAD15744 (Perilla frutescens)
LOCUSAAD15744 391 aa PLN Mar. 3, 1999
DEFINITIONomega-3 fatty acid desaturase.
ACCESSIONAAD15744
PIDg4321399
VERSIONAAD15744.1 GI:4321399
DBSOURCElocus AF047039 accession AF047039.1
KEYWORDS
SOURCEPerilla frutescens.
ORGANISMPerilla frutescens
Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
Tracheophyta; euphyliophytes; Spermatophyta; Magnoliophyta;
eudicotyledons; core eudicots; Asteridae; euasterids I;
Lamiales; Lamiaceae; Perilla.
REFERENCE1 (residues 1 to 391)
AUTHORSChung, C. -H., Kim, J. -L., Lee, Y. -C. and Choi, Y. -L.
TITLEMolecular cloning and characterization of a omega-3 cUNA from
perilla seed
JOURNALUnpublished
REFERENCE2 (residues 1 to 391)
AUTHORSChung, C. -H., Kim, J. -L., Lee, Y. -C. and Choi, Y. -L.
TITLEDirect Submission
JOURNALSubmitted (Feb. 7, 1998) Biotechnology, Dong-A University,
840, Ha-Dan-Dong, Sa-Ea-Gu, Pusan 604-714, South Korea
COMMENTMethod: conceptual translation.
FEATURESLocation/Qualifiers
source1 . . . 391
/organism=″Perillia frutescens″
/cultivar=″Suwon-8″
/db_xref=″taxon:48386″
/devstage=″seed″
Protein1 . . . 391
/product=″omega-3 fatty acid desaturase″
CDS1 . . . 391
/gene=″FAD3″
/coded_by==″AF047039.1:156 . . . 1331″
ORIGIN(SEQ ID NO:16)
gk raadkfdpaa pppfkiadir aaipahcwvk npwrslsyvv wdvaavfali aaavyinswa
|
fwpvywiaqq tmfwalfvlg hdcghgsfsd nttlnnvvgh vihssiivpy hgwrishrth
|
hqnhghvekd eswvplpenl ykklcifstkt irykipfpmf ayplylwyrs pgktgshfnp
|
ysdlfkpner giivtstrncw aamqvfliya stivgpnnmf klygvpylif vmwldtvtyl
|
hhhgydkklp wyrskewsyi rggittvciqci ygtfnkihhd igthvihhlf pqiphyhive
|
atreakrvlg nyyreprksg pvplhiipal lkslgrdhyv sdngdivyyq tdcielfI
|
P48619 (Ricinus communis)
LOCUSFD3C_RICCO460 aa PLN Dec. 15, 1998
DEFINITIONOMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST PRECURSOR.
ACCESSIONP48619
PIDgl345969
VERSIONP48619 GI:1345969
DBSOURCEswissprot: locus FD3C_RICCO, accession P48619;
class: standard.
created: Feb. 1, 1996.
sequence updated: Feb. 1, 1996.
annotation updated: Dec 15, 1998.
xrefs: gi: 414731, gi: 414732
xrefs (non-sequence databases) : PFAM PF00487
KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; CHLOROPLAST;
MEMBRANE; TRANSIT PEPTIDE.
SOURCEcastor bean.
ORGANISMRicinus communis
Eukaryota; Viridiplantee; Charophyta/Embryophyta group;
Embryophyta; Tracheophyta; euphyllophytes; Spermatophyta;
Magnuliophyta; eudicotyledons; Rosidae; Euphorbiales;
Euphorbiaceae; Ricinus.
REFERENCE1 (residues 1 to 460)
AUTHORSvan de Loo, F. J. and Somerviile, C.
TITLEPlasmid omeqa-3 fatty acid desaturase cONA from Ricinus
conmunis
JOURNALPlant Physiol. 105 (1), 443-444 (1994)
MEDLINE94302177
REMARKSEQUENCE FROM N.A.
STRAIN=CV. BAKER 296; TISSUE=SEED
[FUNCTION] CHLOROPLAST OMEGA-3 FATTY ACID DESATURASE
INTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 16:3
AND 18:3 FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT
MEMBRANES. IT IS THOUGHT TO USE FERREDOXIN AS AN ELECTRON
DONOR AND TO ACT ON FATTY ACIDS ESTERIFIED TO GALACTOLIPIDS,
SULFOLIPIDS AND PHOSPHATIDYLOLYCEROL.
[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.
[SUECELLULAR LOCATION] CHLOROPLAST, MEMBRANE-BOUND
(PROBABLE). [DOMAIN] THE HISTIDINE BOX DOMAINS MAY CONTAIN
THE ACTIVE SITE AND/OR BE INVOLVED IN METAL ION BINDING.
[SIMILARITY] TO OTHER PLANT OMEGA-B FATTY ACID DESATURASES.
FEATURESLocation/Qualifiers
source1 . . . 460
/organism=″Ricinus communis″
/db_xref=″taxon:3988″
1 . . . 460
Protein1 . . . 460
/product=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST
PRECURSOR″
/EC_number=″l.14.99.-″
Region1 . . . (2.460)
/note=″CHLOROPLAST.″
/region_name=″Transit peptide″
Region(1.459) . . . 46D
/note=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST.″
/region_name=″Mature chain″
Region177 . . . 181
/note=″HISTIDINE BOX 1.″
/region_name=″Domain″
Region213 . . . 217
/note=″HISTIDINE BOX 2.″
/region_name=″Domain″
Region380 . . . 384
/note=″HISTIDINE BOX 3.″
/region_name″Domain″
ORIGIN(SEQ ID NO:17)
ereefng ivnvdegkge ffdagapppf tladiraaip khcwvknpwr snsyvlrdvv vvtglaavaa
|
ytnnwvawpl ywfcqgtmfw alfvlghdcg hgsfsnnpkl nsvvghllhs siivpyhgwr
|
ishrthhqnh ghvendeswh pisekifksl dnvtktirfs lptpmlaypf ylwsrspgkk
|
gshfhpdsgl fvpkerkdii tstacwtama allvylnfsm gpvqmlklyg ipywifvnwl
|
dfvtylhhhg hedklpwyrg kawsylrggl ttldrdygwi nnihhdigth vihhlfpqip
|
hyhlveatea akpvrngkyyr epkksgplpl hilgslvrsm kedhyvsdtg dvvyyqkdpk
|
lsgiggekte
|
1754795 (Perilla frutescens)
LOCUS AAB39387 438 aa PLN Dec. 28, 1996
DEFINITIONomega-3 fatty acid desaturase.
ACCESSIONAAB39387
PIDg1754795
VERSIONAAB39387.1 GI:1754795
DESOURCElocus PFU59477 accession U59477.1
KEYWORDS.
SOURCEPerilla frutescens.
ORGANISMPerilla frutescens
Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
Tracheophyta; euphyllophytes; Spermatophyta; Nagnoliophyta;
eudicotyledons; core eudicots; Asteridae; euasterids I;
Lamiales; Larniaceae; Perilla.
REFERENCE1 (residues 1 to 438)
AUTHORSLee, S. -K., Kim, K. -H., Kim, Y. -M. and Hwang, Y. -S.
TITLECloning of plant omega-3 fatty acid desaturase gene from
Perilla frutescens
JOURNALUnpublished
REFERENCE2 (residues 1 to 438)
AUTHORSLee, S. -K.
TITLEDirect Submission
JOURNALSubmitted (May 30, 1996) Biochemistry, National Agricultural
Science and Technology Institute, 249 Seodundong, Suwon 441-
707, Republic of Korea
FEATURESLocation/Qualifiers
source1 . . . 438
/organism=″Perilla frutescens″
/strain=″Okdong″
/db_xref=″taxon:48386″
/clone=″Pfrfad7″
/devstage=″seedling″
Protein1 . . . 438
/product=″omega-3 fatty acid desaturase″
CDS1 . . . 438
/coded_by=″U59477.1:222 . . . 1538″
ORIGIN(SEQ ID NO: 18)
eergsv ivngvdefdp gapppfklsd iraaipkhcw vkdpwrsmsy vvrdvvvvfg laaaaayfnn
|
wavwpiywfa qstmfwalfv lqhdcghgsf sndpklnsva ghllhssilv pyhqwrishr
|
thhqnhghve ndeswhpipe kiyrtldfat kklrftlpfp mlaypfylwg rspqkkgshf
|
hpdsdlfvpn erkdvitstv cwtamvaila glsfvmgpvq liklygipyi gfvawidlvt
|
ylhhhghdek lpwyrgkews ylrgglttld rdygwinnih hdigthvihh lfpqiphyhl
|
ieataaakpv lgkyykepkk sgpfpfyllg vlqksmkkdh yvsdtgdivy yqtdpe
|
P48620 (sesame. Sesamum indicum)
LOCUS FD3C_SESIN 447 aa PLN Dec. 15, 1998
DEFINITIONOMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST PRECURSOR.
ACCESSIONP48620
PIDg1345970
VERSIONP48620 GI:1345970
DBSOURCEswissprot: locus FD3C_SESIN, accession P48620;
class: standard.
created: Feb. 1, 1996.
sequence updated: Feb. 1, 1996.
annotation updated: Dec. 15, 1998.
xrefs: gi: 870783, gi: 870784
xrefs (non-sequence databases): PFAM PF00487
KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; CHLOROPLAST;
MEMBRANE; TRANSIT PEPTIDE.
SOURCE sesame.
ORGANISMSesamurn indicum
Eukaryota; Viridiplantae; Charophyta/Embryophyta group;
Embryophyta; Tracheophyta; euphyllophytes; Spermatophyta;
Magnoliophyta; eudicotyledons; Asteridae; Centiananae;
Lamiales; Pedaliaceae; Sesamum.
REFERENCE1 (residues 1 to 447)
AUTHORSSHOJI, K.
TITLEDirect Submission
JOURNALSubmitted (Apr. ??, 1995) TO EMBL/GENBANK/DDBJ DATA BANKS
REMARKSEQUENCE FROM N.A.
STRAIN=CV. 4294; TISSUE=COTYLEDON
[FUNCTION] CHLOROPLAST OMEGA-3 FATTY ACID DESATURASE
INTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 16:3
AND 18:3 FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT
MEMBRANES. IT IS THOUGHT TO USE FERREDOXIN AS AN ELECTRON
DONOR AND TO ACT ON FATTY ACIDS ESTERIFIED TO GALACTOLIPIDS,
SULFOLIPIDS AND PHOSPHATIDYLGLYCEROL.
[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.
[SUBCELLULAR LOCATION] CHLOROPLAST, MEMBRANE-BOUND
(PROBABLE). [DOMAIN] THE HISTIDINE BOX DOMAINS MAY CONTAIN
THE ACTIVE SITE AND/OR BE INVOLVED IN METAL ION BINDING.
[SIMILARITY] TO OTHER PLANT OMEGA-3 FATTY ACID DESATURASES.
FEATURESLocation/Qualifiers
source1 . . . 447
/organism=″Sesamum indicum″
/db_xref=″taxon:4182″
1 . . . 447
Protein1 . . . 447
/product=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST
PRECURSOR″
/EC_number=″1.14.99.-″
Region1 . . . (2.447)
/note=″CHLOROPLAST.″
/region_name=″Transit peptide″
Region(1.446) . . . 447
/note=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST2″
/region_name=″Mature chain″
Region167 . . . 171
/note=″HISTIDINE BOX 1.″
/region_name=″Domain″
Region203 . . . 207
/note=″HISTIDINE BOX 2.″
/region_name=″Domain″
Region370 . . . 374
/note=″HISTIDINE BOX 3.″
/region_name=″Domain″
ORIGIN(SEQ ID NO:19)
e efdpgapppf klsdireaip khcwvkdpwr smgyvvrdva vvfglaavaa yfnnwvvwpl
|
ywfaqstmfw alfvlghdcg hgsfsndpkl nsvvghilhs silvpyhgwr ishrthhqnh
|
ghvendeswh pisekiyknl dtatkklrft ipfpllaypi ylwsrspgkq gshfhpdsdl
|
fvpnekkdvi tstvcwtaml allvglsfvi gpvqllklyg ipylgnvmwl divtylhhhg
|
hedklpwyrg kewsylrggl ttldrdygwi nnihhdigth vihhlfpqip hyhlieatea
|
akpvlgkyyr epkksaplpf hllgdltrsl krdhyvsdvg dvvyyqtdpq l
|
P46310 (Arabidopsis thaliana)
LOCUS FD3C_ARATH 446 aa PLN Feb. 1, 1996
DEFINITIONOMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST PRECURSOR.
ACCESSIONP46310
PIDg1169599
VERSIONP46310 GI:1169599
DBSOURCEswissprot: locus FD3C_ARATH, accession P46310;
class: standard.
created: Nov. 1, 1995.
sequence updated: Nov. 1, 1995.
annotation updated: Feb. 1, 1996.
xrefs: gi: 408480, gi: 408481, gi: 461160, gi: 541653, gi:
809491, gi: 468434
KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; CHLOROPLAST;
MEMBRANE; TRANSIT PEPTIDE.
SOURCEthale cress.
ORGANISMChioroplast Arabidopsis thaliana
Eukaryotae; Viridiplantae; Charophyta/Embryophyta group;
Embryophyta; Tracheophyta; seed plants; Magnoliophyta;
eudicotyledons; Rosidae; Capparales; Brassicaceae;
Arabidopsis.
REFERENCE1 (residues 1 to 446)
AUTHORSYADAV, N. S., WIERZBICKI, A., AEGERTER, M., CASTER, C. S., PEREZ-
GRAU, L., KINNEY, A. J., HITZ, W. D., BOOTH, J. R. JR.,
SCHWEIGER, B., STECCA, K. L., ALLEN, S. M., BLACKWELL, M.,
REITER, R. S., CARLSON, T. J., RUSSELL, S. H., FELDMANN, K. A.,
PIERCE, J. and BROWSE, J.
TITLECloning of higher plant omega-3 fatty acid desaturases
JOURNALPlant Physiol. 103 (2), 467-476 (1993)
MEDLINE94302147
REMARKSEQUENCE FROM N.A.
STRAIN=CV. COLUMBIA; TISSUE=HYPOCOTYL
REFERENCE2 (residues 1 to 446)
AUTHORSIba, K., Gibson, S., Nishiuchi, T., Fuse, T., Nishimura, M.,
Arondel, V., Hugly, S. and Somervllle, C.
TITLEA gene encoding a chloroplast omega-3 fatty acid desaturase
complements alterations in fatty acid desaturation and
chloroplast copy number of the fad7 mutant of Arabidopsis
thaliana
JOURNALJ. Biol. Chain. 268 (32), 24099-24105 (1993)
MEDLINE94043239
REMARKSEQUENCE FROM N.A.
STRAIN=CV. COLUMBIA; TISSUE=AERIAL PARTS
REFERENCE3 (residues 1 to 446)
AUTHORSWATAHIKI, M. and YAMANOTO, K.
TITLEDirect Submission
JOURNALSubmitted (Nov. ??, 1993) TO EMBL/GENBANK/DDBJ DATA BANKS
REMARKSEQUENCE FROM N.A.
STRAIN=CV. COLUMBIA; TISSUE=HYPOCOTYL
COMMENT[FUNCTION] CHLOROPLAST OMEGA-3 FATTY ACID DESATURASE
INTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 16:3
AND 18:3 FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT
MEMBRANES. IT IS THOUGHT TO USE FERREDOXIN AS AN ELECTRON
DONOR AND TO ACT ON FATTY ACIDS ESTERIFIED TO GALACTOLIPIDS,
SULFOLIPIDS AND PHOSPHATIDYLGLYCEROL.
[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.
[SUBCELLULAR LOCATION] CHLOROPLAST, MEMBRANE-BOUND
(PROBABLE). [TISSUE SPECIFICITY] MOST ABUNDANT IN LEAVES AND
SEEDLINGS. [DOMAIN] THE HISTIDINE BOX DOMAINS MAY CONTAIN THE
ACTIVE SITE AND/OR BE INVOLVED IN METAL ION BINDING.
[SIMILARITY] TO OTHER PLANT OMEGA-3 FATTY ACID DESATURASES.
FEATURESLocation/Qualifiers
source1 . . . 446
/organism=″Arabidcpsis thaliana″
/chloroplast
/db_xref=″taxon:3702″
1 . . . 446
Protein1 . . . 446
/product=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST
PRECURSOR″
/EC_number=″1.14.99.-″
Region1 . . . 92.446)
/note=″CHLOROPLAST.″
/region_name=″Transit peptide″
Region(1.445) . . . 446
/note=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST.″
/region_name=″Mature chain″
Region163 . . . 167
/note=″HISTIDINE BOX 1.″
/region_name=″Domain″
Region199 . . . 203
/note=″HISTIDINE BOX 2.″
/region_name=″Domain″
Region366 . . . 370
/note=″HISTIDINE BOX 3.″
/region_name=″Domain″
ORIGIN(SEQ ID NO:20)
eespi eednkqrfdp gapppfnlad iraaipkhcw vknpwkslsy vvrdvaivfa laagaaylnn
|
wivwplywla qgtmfwalfv lghdcghgsf sndpklnsvv ghllhssilv pyhgwrishr
|
thhqnhghve ndeswhpmse kiyntldkpt rffrttlplv mlaypfylwa rspgkkgshy
|
hpdsdlflpk erkdvltsta cwtamaallv clnftigpiq mlklygipyw invmwldfvt
|
ylhhhghedk lpwyrgkews ylrgglttld rdyglinnih hdigthvihh ifpqiphyhl
|
veateaakpv lgkyyrepdk sgplplhlle ilaksikedh yvsdegevvy ykadpnly
|
BAA11475 (Nicotiana tabacum)
LOCUS BAA11475 441 aa PLN Feb. 5, 1999
DEFINITIONomega-3 fatty acid desaturase.
ACCESSIONBAA11475
PIDg1694625
VERSIONBAA11475.1 GI:1694625
DBSOURCElocus D79979 accession D79979.1
KEYWORDS
SOURCEcommon tobacco.
ORGANISMNicotiana tabacum
Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
Tracheophyta; euphyllophytes; Spermatophyta; Nagnoliophyta;
eudicotyledons; Asteridae; Solananae; Solanales; Solanaceae;
Nicotiana.
REFERENCE1 (residues 1 to 441)
AUTHORSHamada, T.
TITLEDirect Submission
JOURNALSubmitted (Dec. 12, 1995) to the DDBJ/EMBL/GenBank
databases. Tatsurou Ramada, Faculty of Science, Kyushu
University, Department of Biology; 6-10-1 Hakozaki, Higasbi-
ku, Fukuoka, Fukuoka 812, Japan
(Tel:092-641-1101(ex.4414), Fax:092-632-2741)
REFERENCE2 (residues 1 to 441)
AUTHORSHamada, T.
JOURNALUnpublished (1995)
REFERENCE3 (residues 1 to 441)
AUTHORSHamada, T., Nishiuchi, T., Kodama, EL, Nishimura, M. and Iba. K.
TITLEcDNA cloning of a wounding-inducible gene encoding a plastid
omega-3 fatty acid desaturase from tobacco
JOURNALPlant Cell Physiol. 37 (5), 606-611 (1996)
MEDLINE96416425
FEATURESLocation/Qualifiers
source1 . . . 441
/organism=″Nicotiana tabacum″
/db_xref=″taxon:4097″
/clone=″lambda H 1″
/clone_lib=″lambda gtll″
Protein1 . . . 441
/product=″omega-3 fatty acid desaturase″
CDS1 . . . 441
/gene=″NtFAD7″
/coded_by==″D79979.l:28 . . . 1353″
ORIGIN(SEQ ID NO: 21)
eeesertn nsggeffdpg apppfklsdi kaaipkhcwv knpwksmsyv vrdvaivfgl
|
aaaaayfnnw vvwplywfaq stmfwalfvl ghdcghgsfs nnhklnsvvg hilhssilvp
|
yhgwrishrt hhqnhghven deswhpipek iynsldlatk klrftlpfpl laypfylwsr
|
spgkkgshfd pnsdlfvpse kkdvmtstlc wtamaallvg lsfvmgpfqv lklygipywg
|
fvmwldlvty lhhhghddkl pwyrgeewsy lrgglttldr dygwinnihh digthvihhl
|
fpqiphyhlv eateaakpvl gkyykepkks gplpfyllgv liksmkqdhy vsdtqdivyy
|
rtdpqlsgfq k
|
P48626 (Nicotiana tabacum)
LOCUS FD3E_TOBAC 379 aa PLN Oct. 1, 1996
DEFINITIONOMEGA-3 FATTY ACID DESATURASE, ENDOPLASMIC RETICULUM.
ACCESSIONP48626
PIDg1345975
VERSIONP48626 GI:1345975
DBSOURCEswissprot: locus FD3E_TOBAC, accession P48626;
class: standard.
created: Feb. 1, 1996.
sequence updated: Feb. 1, 1996.
annotation updated: Oct. 1, 1996.
xrefs: gi: 1311480, gi: 599592
KEYWORDSOXIDOREOUCTASE; FATTY ACID BIOSYNTHESIS; ENDOPLASMIC
RETICULUM;
TRANSMEMBRANE.
SOURCEcommon tobacco.
ORGANISMNicotiana tabacum
Eukaryotae; Viridiplantae; Charophyta/Embryophyta group;
Embryophyta; Tracheophyta; seed plants; Magnoliophyta;
eudicotyledons; Asteridae; Solananae; Solanales; Solanaceae;
Nicotiana.
REFERENCE1 (residues 1 to 379)
AUTHORSHamacla, T., Kodama. H., Nishimura, M. and Iba, K.
TITLECloning of a cDNA encoding tobacco omega-3 fatty acid
desaturase
JOURNALGene 147 (2), 293-294 (1994)
MEDLINE95011632
REMARKSEQUENCE FROM N.A.
STRAIN=CV. SR1; TISSUE=LEAF
COMMENT[FUNCTION] ER (MICROSOMAL) OMEGA-3 FATTY ACID DESATURASE
INTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 18:3
FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT MEMBRANES. IT IS
THOUGHT TO USE CYTOCHROME B5 AS AN ELECTRON DONOR AND TO ACT
ON FATTY ACIDS ESTERIFIED TO PHOSPHATIDYLCHOLINE AND,
POSSIBLY, OTHER PHOSPHOLIPIDS.
[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.
[SUBCELLULAR LOCATION] ENDOPLASMIC RETICULUM. [DOMAIN] THE
HISTIDINE BOX DOMAINS MAY CONTAIN THE ACTIVE SITE
AND/OR BE INVOLVED IN METAL ION BINDING. [SIMILARITY] TO
OTHER PLANT OMEGA-3 FATTY ACID DESATURASES.
FEATURESLocation/Qualifiers
source1 . . . 379
/organism=″=Nicotiana tabacum″
/db_xref=″taxon:4097″
1 . . . 379
Protein1 . . . 379
/product=″OMEGA-3 FATTY ACID DESATURASE, ENDOPLASMIC
RETICULUM″
/EC_number=″l.14.99.
Region52 . . . 72
/region_name=″Transmembrane region″
Region97 . . . 101
/note=″HISTIDINE BOX 12″
/region_name=″Domain″
Region133 . . . 137
/note=″HISTIDINE BOX 2.″
/ region_name=″Domain″
Region213 . . . 233
/region_name=″Transmembrane region″
Region236 . . . 256
/region_name=″Transmembrane region″
Region300 . . . 304
/note=″HISTIDINE BOX 3.″
/region_name=″Domain″
ORIGIN(SEQ ID NO; 22)
fdpsapppf rlaeirnvip khcwvkdplr slsyvvrdvi fvatligiai hldswifypl
|
ywaiqgtmfw aifvlghdcg hgsfsdsqll nnvvghilhs ailvpyhgwr ishkthhqnh
|
gnvetdeswv pmpeklynkv gystkflryk ipfpllaypm ylmkrspgks gshfnpysdl
|
fqpherkyvv tstlcwtvma alllylctaf qslqmfkiyg apylifvmwl dfvtylhhhg
|
yekklpwyrg kewsylrggl ttvdrdyglf nnihhdigth vihhlfpqip hyhlreatka
|
akpvlgkyyr epkksgpipf hlvkdltrsm kqdhyvsdsg eivfyqtdph if
|
AAD13527 ( Vernicia fordii)
LOCUS AAD13527 437 aa PLN Feb. 8, 1999
DEFINITIONomega-3 fatty acid desaturase precursor.
ACCESSIONAAD13527
PIDg4240385
VERSIONAAD13527.l GI:4240385
DBSOURCElocus AF061027 accession AF061027.1
KEYWORDS
SOURCEVernicia fordii.
ORGANISMVernicia fordii
Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;
eudicotyledons; core eudicots; Rosidae; eurosids I;
Malpighiales; Euphorbiaceae; Vernicia.
REFERENCE1 (residues 1 to 437)
AUTHORSTang, F., Dyer, J. M., Lax, A. R., Shih, D. S., Chapital. D. C. and
Pepperman, A. B.
TITLENucleotide sequence of a cDNA clone for omega-3 fatty acid
desaturase (Accession No. AF061027) from Aleurites fordii
seeds (PGR99-009)
JOURNALPlant Physiol. 119, 364 (1999)
REFERENCE2 (residues 1 to 437)
AUTHORSTang, F., Dyer, J. M., Lax, A. R., Shih, D. S. and Pepperman, A. B.
TITLEDirect Submission
JOURNALSubmitted (Apr. 21, 1998) Southern Regional Research Center,
USDA-ARS, 1100 Robert E. Lee Blvd., New Orleans, LA 70124,
USA
COMMENTMethod: conceptual translation.
FEATURESLocation/Qualifiers
source1 . . . 437
/organism=″Vernicia fordii″
/db_xref=″taxon:73154″
/tissue_type=″seeds″
Protein<1 . . . 437
/product=″omega-3 fatty acid desaturase precursor″
CDS1 . . . 437
/coded_by=″AF061027.l:<1 . . . 1316″
ORIGIN(SEQ ID NO: 23)
ereegin gvigiegeet efdpgapppf klsdireaip khcwvkdpwr smsyvvrdva
|
vvfglaaaaa ylnnwivwpl ywaaqgtmfw alfvlghdcg hgsfshnpkl nsvvghllhs
|
silvpyhgwr ishrthhqnh ghvendeswq plsekifrsl dymtrtlrft vpspmlaypf
|
ylwnrspgkt gshfhpdsdl fgpnerkdvi tstvcwtama allvglslvm gpiqllklyg
|
mpywifvmwl dfvtylhhhg heeklpwyrg newsylrggl ttlgrdygwi nnihhdigth
|
vihhffpqip hyhlidatea skpvlgkyyr epdksgplsf hligylirsi kkdhyvsdtg
|
dvvyyqtdpq l
|
AAB72241 (Petroselinum crispum)
LOCUS AA272241 438 aa PLN Oct. 8, 1997
DEFINITIONomega-3 fatty acid desaturase.
ACCESSIONAAB72241
PIDg1786066
VERSIONAAB72241.1 GI:1786066
DBSOURCElocus PCU75745 accession U75745.l
KEYWORDS.
SOURCEparsley.
ORGANISMPetroselinum crispum
Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
Tracheophyta; euphyllophytes; Spermacophyta; Magnoliophyta;
eudicotyledons; core eudicots; Asteridae; euasterids II;
Apiales; Apiaceae; Petroselinum.
REFERENCE1 (residues 1 to 438)
AUTHORSKirsch, C., Takamiya-Wik, M., Reinold, S., Hahlbrock, K. and
Somssich, I. E.
TITLERapid, transient, and highly localized induction of
plastidial omega-3 fatty acid desaturase mRNA at fungal
infection sites in Petroselinum crispum
JOURNALProc. Natl. Acad. Sci. U.S.A. 94 (5), 2079-2084 (1997)
MEDLINE97203190
REFERENCE2 (residues 1 to 438)
AUTHORSSomssich, I. E. and Kirsch, C.
TITLEDirect Submission
JOURNALSubmitted (Oct. 23, 1996) Biochemistry, Max-Planck-Institut f.
Zuchtungsforschung, Carl-von-Linne-Weg 10, Koln, NRW 50829,
Germany
COMMENTMethod: conceptual translation supplied by author.
FEATURESLocation/Qualifiers
source1 . . . 438
/organism=″Petroselinum crispum″
/db_xref=″taxon:4043″
/cell_type=″cultured parsley cells″
/clone=″15-1 and 25-2″
/note=″derived from two overlapping partial cDNAs″
Protein1 . . . 438
/product=″omega-3 fatty acid desaturase″
CDS1 . . . 438
/coded_by=″U75745.1:96 . . . 1412″
/note=″complements the Arabidopsis fad7/8 fatty acid
double mutant″
ORIGIN(SEQ ID NO:24)
e enefdpgaap pfklsdvraa ipkhcwvkdp vrsrasyvlrd vlivfglava asfvnnwavw
|
plywiaqgtm fwalfvlghd cghgsfsnda klnsvvghil hssilvpyhg wrishrthhq
|
nhghvendes whplseklfn slddltrkfr ftlpfpmlay pfylwgrspg kkgshydpss
|
dlfvpnerkd vitstvcwta maallvglnf vmgpvkmlml ygipywifvm wldfvtylhh
|
hghddklpwy rgkewsylrg glttldrdyg winnihhdig thvvhhlfpq iphyhlieat
|
eaakpvfgky yrepkksgpv pfhllatlwk sfkkdhfvsd tgdvvyyqah pe
|
P48625 (Glycine max)
LOCUS FD3E_SOYBN 380 aa PLN Oct, 1, 1996
DEFINITIONOMEGA-3 FATTY ACID DESATURASE, ENDOPLASMIC RETICULUM.
ACCESSIONP48625
PIDg1345974
VERSIONP48625 GI:1345974
DBSOURCEswissprot: locus FD3E_SOYBN, accession P48625;
class: standard.
created: Feb. 1, 1996.
sequence updated: Feb. 1, 1996.
annotation updated: Oct. 1, 1996.
xrefs: gi: 408793, gi: 408794, gi: 541946
KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; ENDOPLASMIC
RETICULUM; TRANSMEMBRANE.
SOURCEsoybean.
ORGANISMGlycine max
Eukaryotae; Viridiplantae; Charophyta/Embryophyta group;
Embryophyta; Tracheophyta; seed plants; Magnoliophyta;
eudicotyledons; Rosidae; Fabales; Fabaceae; Papilionoidese;
Glycine.
REFERENCE1 (residues 1 to 380)
AUTHORSYADAV, N. S., WIERZBICKI, A., AEGERTER, M., CASTER, C. S., PEREZ-
GRAU, L., KINNEY, A. J., HITZ,W. D., BOOTH, J. R. JR.,
SCHWEIGER, B., STECCA, K. L., ALLEN, S. M., BLACKWELL, M.,
REITER, R. S., CARLSON, T. J., RUSSELL, S. H., FELDMANN, K. A.,
PIERCE, J. and BROWSE, J.
TITLECloning of higher plant omega-3 fatty acid desaturases
JOURNALPlant Physiol. 103 (2), 467-476 (1993)
MEDLINE94302147
REMARKSEQUENCE FROM N.A.
TISSUE=SEED
COMMENT[FUNCTION] MICROSOMAL (ER) OMEGA-3 FATTY ACID DESATURASE
INTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 18:3
FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT MEMBRANES. IT IS
THOUGHT TO USE CYTOCHROME B5 AS AN ELECTRON DONOR AND TO ACT
ON FATTY ACIDS ESTERIFIED TO PHOSPHATIDYLCHOLINE AND,
POSSIBLY, OTHER PHOSPHOLIPIDS.
[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.
[SUBCELLULAR LOCATION] ENDOPLASMIC RETICULUM. [DOMAIN] THE
HISTIDINE BOX DOMAINS MAY CONTAIN THE ACTIVE SITE
AND/OR BE INVOLVED IN METAL ION BINDING. [SIMILARITY] TO
OTHER PLANT OMEGA-3 FATTY ACID DESATURASES.
FEATURESLocation/Qualifiers
source1 . . . 380
/organism==Glycine max″
/db_xref=″taxon:384T″
1 . . . 380
Protein1 . . . 380
/product=″OMEGA-3 FATTY ACID DESATURASE, ENDOPLASMIC
RETICULUM″
/EC_number=″1.14.99.-″
Region55 . . . 75
/region_name=″Transmembrane region″
Region100 . . . 104
/note=″HISTIDINE BOX 1.″
/region_name=″Domain″
Region136 . . . 140
/note=″HISTIDINE BOX 2.″
/region_name=″Domain″
Region212 . . . 232
/region_name=″Transmembrane region″
Region236 . . . 256
/reglon name=″Transmembrane region″
Region303 . . . 307
/note=″HISTIDINE BOX 3.″
/region_name=″Domain″
ORIGIN(SEQ ID NO:25)
fdpsap ppfkiaeira sipkhcwvkn pwrslsyvlr dvlviaaiva aaihtdnwll wliycpiqgt
|
mfwalfvlgh dcghgsfsds pllnslvghi lhssilvpyh gwrishrthh qnhghiekde
|
swvpltekiy knldsmtrli rftvpfplfv ypiylfsrsp gkegshfnpy snlfppserk
|
giaistlcwa tmfslliyls fitspllvlk lygipywifv mwldfvtylh hhghhqklpw
|
yrgkewsylr gglttvdrdy gwiynihhdi gthvihhlfp qiphyhlvea tqaakpvlgd
|
yyrepersap lpfhlikyli qsmrqdhfvs dtgdvvyyqt dslllhsqrd
|
P48618 (Brassica napus)
LOCUS FD3C_BRANA 404 aa PLN Feb. 1, 1996
DEFINITIONOMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST PRECURSOR.
ACCESSIONP48618
PIDg1345968
VERSIONP48618 GI:1345968
DBSOURCEswissprot: locus FD3C_BRANA, accession P48618;
class: standard.
created: Feb. 1, 1996.
sequence updated: Feb. 1, 1996.
annotation updated: Feb. 1, 1996.
xrefs: gi: 408489, gi: 408490, gi: 541916
KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; CHLOROPLAST;
MEMBRANE; TRANSIT PEPTIDE.
SOURCErape.
ORGANISMBrassica napus
Eukaryotae; Viridiplantae; Charophyta/Embryophyta group;
Embryophyta; Tracheophyta; seed plants; Magnoliophyta;
eudicotyledons; Rosidae; Capparales; Brassicaceae; Brassica.
REFERENCE1 (residues 1 to 404)
AUTHORSYADAV, N. S., WIERZBICKI, A., AEGERTER, M., CASTER, C. S., PEREZ-
GRAU, L., KINNEY, A. J., HITZ, W. D., BOOTH, J. R. JR.,
SCHWEIGER, B., STECCA, K. L., ALLEN, S. M., BLACKWELL, M.,
REITER, R. S., CARLSON, T. J., RUSSELL, S. H., FELDMANN, K. A.,
PIERCE, J. and BROWSE, J.
TITLECloning of higher plant omega-3 fatty acid desaturases
JOURNALPlant Physiol. 103 (2), 467-476 (1993)
MEDLINE94302147
REMARKSEQUENCE FROM N.A.
TISSUE=SEED
COMMENT[FUNCTION] CHLOROPLAST OMEGA-3 FATTY ACID DESATURASE
INTRODUCES
THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 16:3 AND 18:3
FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT MEMBRANES. IT IS
THOUGHT TO USE FERREDOXIN AS AN ELECTRON DONOR AND TO ACT ON
FATTY ACIDS ESTERIFIED TO GALACTOLIPIDS, SULFOLIPIDS AND
PHOSPHATIDYLGLYCEROL.
[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.
[SUBCELLULAR LOCATION] CHLOROPLAST, MEMBRANE-BOUND
(PROBABLE) . [DOMAIN] THE HISTIDINE BOX DOMAINS MAY CONTAIN
THE ACTIVE SITE AND/OR BE INVOLVED IN METAL ION BINDING.
[SIMILARITY] TO OTHER PLANT OMEGA-3 FATTY ACID DESATURASES.
FEATURESLocation/Qualifiers
source1 . . . 404
/organism==″Brassica napus
/db_xref=″taxon:3708=
1 . . . 404
Protein<1 . . . 404
/product=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST
PRECURSOR″
/EC_number=″l.14.99.-″
Region<1 . . . (2.404)
/note=″CHLOROPLAST.″
/region_name=″Transit peptide″
Region(1.403) . . . 404
/note=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST.″
/region_name=″Mature chain″
Region121 . . . 125
/note=″HISTIDINE BOX 1.″
/region_name=″Domain″
Region157 . . . 161
/note=″HISTIDINE BOX 22″
/region_name=″Domain″
Region324 . . . 323
/note==″HISTIDINE BOX 32″
/region_name=″Domain″
ORIGIN(SEQ ID NO: 26)
ieee pktqrfdpga pppfnladir aaipkhcwvk npwksmsyvv relaivfala agaaylnnwl
|
vwplywiaqg tmfwalfvlg hdcghgsfsn dprlnsvvgh llhssilvpy hgwrishrth
|
hqnhghvend eswhpmseki yksldkptrf frftlplvml aypfylwars pgkkgshyhp
|
dsdlflpker ndvltstacw tamavllvcl nfvmgpmqml klyvipywin vmwldfvtyl
|
hhhghedklp wyrgkewsyl rgglttldrd yglinnihhd igthvihhlf pqiphyhlve
|
ateaakpvlg kyyrepdksg piplhllgil aksikedhfv sdegdvvyye adpnly
|
BAA22440 (Zea mays)
LOCUS BAA22440 398 aa PLN Mar. 4, 1998
DEFINITIONfatty acid desaturase.
ACCESSIONBAA22440
PIDg2446996
VERSIONBAA22440.1 GI:2446996
DBSOURCElocus D63953 accession D63953.1
KEYWORDS.
SOURCEZea mays.
ORGANISMZea mays
Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;
Liliopsida; Poales; Poaceae; Zee.
REFERENCE1 (residues 1 to 398)
AUTHORSKusano, T.
TITLEDirect Submission
JOURNALSubmitted (Aug. 30, 1995) to the DDBJ/EMBL/GenBank databases.
Tomonobu Kusano, Akita Prefectural College of Agriculture,
Biotechnology Institute; 2-2 Minami, Ohgatamura, Minamiakita-
gun, Akita 010-04, Japan (E-mail:kusano@air.akita-u.ac.jp,
Tel:0185-45-2026(ex.403), Fax:0185-45-2678)
REFERENCE2 (sites)
AUTHORSBerberich, T., Harada, M., Sugawara, K., Kodama, H., Iba, K. and
Kusaflo, T.
TITLETwo maize genes encoding omega-3 fatty acid desaturase and
their differential expression to temperature
JOURNALPlant Mol. Biol. 36 (2), 297-306 (1998)
MEDLINE98145435
COMMENTSequence updated (Apr. 11, 1996) by: Tomonobu Kusano.
FEATURESLocation/Qualifiers
source1 . . . 398
/organism=″Zea mays″
/strain=″honey bantum″
/db_xref=″taxon:4577″
Protein1 . . . 398
/product=″fatty acid desaturase″
CDS1 . . . 398
/gene=″FAD8″
/codedphd —by=″D63953.1:<1 . . . 1198″
ORIGIN(SEQ ID NO: 27)
veedkr ssplgegdeh vaasgaaqge fdpgapppfg laeiraaipk hcwvkdpwrs mayvlrdvvv
|
vlglaaaaar ldswlvwply waaqqtmfwa lfvlghdcgh gsfsnnpkln svvghilhss
|
ilvpyhqwri shrthhqnhg hvekdeswhp lperlyksld fmtrklrftm pfpllafply
|
lfarspgksg shfnpssdlf qpnekkdiit staswlamvg vlagltflmg pvamlklygv
|
pyfvfvawld mvtylhhhgh edklpwyrgq ewsylrgglt tldrdyglin nihhdigthv
|
ihhlfpqiph yhlieateaa kpvlgkyyke pkksgplpwh lfgvlaqslk qdhyvsdtgd vvyyqtd
|
P48621 (Glycine max)
LOCUS FD3C_SOYBN 453 aa PLN Dec. 15, 1998
DEFINITIONOMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST PRECURSOR.
ACCESSIONP48621
PIDg1345971
VERSIONP48621 GI:1345971
DBSOURCEswissprot: locus FD3C_SOYBN, accession P48621;
class: standard.
created: Feb. 1, 1996.
sequence updated: Feb. 1, 1996.
annotation updated: Dec. 15, 1998.
xrefs: gi: 408791, gi: 408792, gi: 541947
xrefs (non-sequence databases) : PFAM PF00487
KEYWORDSOXIDOREDUCTASE; FATTY ACID BIOSYNTHESIS; CHLOROPLAST;
MEMBRANE; TRANSIT PEPTIDE.
SOURCEsoybean.
ORGANISMGlycine max
Eukaryota; Viridiplantae; Charophyta/Embryophyta group;
Embryophyta; Tracheophyta; euphyilophytes; Spermatophyta;
Magnoliophyta; eudicotyledons; Rosidae; Fabales; Fabaceae;
Papiiionoideae; Glycine.
REFERENCE1 (residues 1 to 453)
AUTHORSYADAV, N. S., WIERZBICKI, A., AEGERTER, M., CASTER, C. S., PEREZ-
GRAU, L., KINNEY, A. J., HITZ, W. D., BOOTH, J. R. JR.,
SCHWEIGER, B., STECCA, K. L., ALLEN, S. M., BLACRWELL, M.,
REITER, R. S., CARLSON, T. J., RUSSELL, S. H., FELDMANN, K. A.,
PIERCE, J. and BROWSE J.
TITLECloning of higher plant omega-3 fatty acid desaturases
JOURNALPlant Physiol. 103 (2), 467-476 (1993)
MEDLINE94302147
REMARKSEQUENCE FROM N.A.
TISSUE=SEED
COMMENT[FUNCTION] CHLOROFLAST OMEGA-3 FATTY ACID DESATURASE
INTRODUCES THE THIRD DOUBLEBOND IN THE BIOSYNTHESIS OF 16:3
AND 18:3 FATTY ACIDS, IMPORTANT CONSTITUENTS OF PLANT
MEMBRANES. IT IS THOUGHT TO USE FERREDOXIN AS AN ELECTRON
DONOR AND TO ACT ON FATTY ACIDS ESTERIFIED TO GALACTOLIPIDS,
SULFOLIPIDS AND PHOSPHATIDYLGLYCEROL.
[PATHWAY] POLYUNSATURATED FATTY ACID BIOSYNTHESIS.
[SUBCELLULAR LOCATION] CHLOROPLAST, MEMBRANE-BOUND
(PROBABLE). [DOMAIN] THE HISTIDINE BOX DOMAINS MAY CONTAIN
THE ACTIVE SITE AND/OR BE INVOLVED IN METAL ION BINDING.
[SIMILARITY] TO OTHER PLANT OMEGA-3 FATTY ACID DESATURASES.
FEATURESLocation/Qualifiers
source1 . . . 453
/organism=″Glycine max″
/db_xref=″taxon:3847″T
1 . . . 453
Protein1 . . . 453
/product=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST
PRECURSOR″
/EC_number=″1.14.99,-″
Region1 . . . (2.453)
/region_name=″Transit peptide″
/note=″CHLOROPLAST.″
Region(1.452) . . . 453
/region_name=″Mature chain″
/note=″OMEGA-3 FATTY ACID DESATURASE, CHLOROPLAST.″
Region171 . . . 175
/region_name=″Domain″
/note=″HISTIDINE BOX 1.″
Region207 . . . 211
/region_name=″Domain″
/note=″HISTIDINE BOX 2.″
Region374 . . . 378.
/region_name=″Domain″
/note=″HISTIDINE BOX 3.″
ORIGIN(SEQ ID NO: 28)
svd ltngtngveh eklpefdpga pppfnladir aaipkhcwvk dpwrsmsyvv rdviavfgla
|
aaaaylnnwl vwplywaaqg tmfwalfvlg hdcghgsfsn nsklnsvvgh llhssilvpy
|
hgwrishrth hqhhghaend eswhplpekl frsldtvtrm lrftapfpll afpvylfsrs
|
pgktgshfdp ssdlfvpner kdvitstacw aamlgllvgl gfvmgpiqll klygvpyvif
|
vmwldlvtyl hhhghedklp wyrgkewsyl rgglttldrd ygwinnihhd igthvihhlf
|
pqiphyhlve ateaakpvfg kyyrepkksa aplpfhlige iirsfktdhf vsdtgdvvyy qtd
|
BAA22441 (Zea mays)
LOCUS BAA22441 443 aa PLN Mar. 4, 1998
DEFINITIONfatty acid desaturase.
ACCESSIONBAA22441
PIDg2446998
VERSIONBAA22441.1 GI:2446998
DBSOURCElocus D63954 accession D63954.1
KEYWORDS.
SOURCEZea mays.
ORGANISMZea mays Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;
Liliopsida; Poales; Poaceae; Zea.
REFERENCE1 (residues 1 to 443)
AUTHORSKusano, T.
TITLEDirect Submission
JOURNALSubmitted (Aug. 30, 1995) to the DDBJ/EMBL/GenBank
databases. Tomonobu Kusano, Akita Prefectural College of
Agriculture, Biotechnology Institute; 2-2 Minami, Ohgatamura,
Minamiakita-
gun, Akita 010-04, Japan (E-mall:kusano@air.aklta-u.ac.jp,
Tel:0185-45-2026(ex.403), Fax:0185-45-2678)
REFERENCE2 (sites)
AUTHORSBerberich, T., Harada, M., Sugawara, K., Kodama, H., Iba, K. and
Kusano, T.
TITLETwo maize genes encoding omega-3 fatty acid desaturase and
their differential expression to temperature
JOURNALPlant Mol. Biol. 36 (2), 297-306 (1998)
MEDLINE98145435
FEATURESLocation/Qualifiers
source1 . . . 443
/organism=″Zea mays″
/strain==″honey bantum″
/db_xref=″taxon:4577″
Protein1 . . . 443
/product=″fatty acid desaturase″
CDS1 . . . 443
/gene=″FAD7″
/coded_by=″join(D63954.1:2178 . . . 2665, 063954.l:2775 . . . 2
864,
063954.1:2944 . . . 3010, D63954.1:3113 . . . 3205,
063954.1:3323 . . . 3508, 063954.1:3615 . . . 3695,
063954.1:4259 . . . 4396, 063954.1:4492 . . . 4680)″
ORIGIN(SEQ ID NO: 29)
ga aaggefdpga pppfglaeir aaipkhcwvk dpwrsmsyvl rdvavvlgla aaaarldswl
|
vwplywaaqg tmfwalfvlg hdcghgsfsn npklnsvvgh ilhssilvpy hgwrishrth
|
hgnhghvekd eswhplperl yksldfmtrk lrftmpfpll afplylfars pgksgshfnp
|
gsdlfqptek ndiitstasw lamvgvlagl tfimgpvpml klygvpyivf vawldmvtyi
|
hhhghedklp wyrgkewsyl rgglttldrd ygwinnihhd igthvihhlf pqiphyhlie
|
ateaakpvlg kyykepknsg alpwhlfrvl aqslkgdhyv shtgdvvyyq ae
|
CAA07638 (Solanum tuberosum)
LOCUS CAA07638 431 aa PLN Sep. 4, 1998
DEFINITIONw-3 desaturase.
ACCESSIONCAA07638
PIDg3550663
VERSIONCAA07638.1 GI:3550663
DBSOURCEembl locus STU007739, accession AJ007739.1
KEYWORDS.
SOURCEpotato.
ORGANISMSolanum tuberosum
Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
Tracheophyta; euphyliophytes; Spermatophyta; Magnoliophyta;
eudicotyledons; Asteridae; Solananae; Solanales; Solanaceae;
Solanum; Potatoe; section Petota.
REFERENCE1 (residues 1 to 431)
AUThORSLeon, J.
TITLEDirect Submission
JOURNALSubmitted (Aug. 20, 1998) Leon J., Genetica
Molecular de PLantas, Centre Nacional de Bioteenologia
(CSIC), Campus de Cantoblanco Ctra. Colmenar Viejo Km 15,500,
Madrid 28049, SPAIN
REFERENCE2 (residues 1 to 431)
AUTHORSMartin, M.
JOURNALUnpublished
FEATURESLocation/Qualifiers
source1 . . . 431
/organism=″Solanum tuberosum″
/cultivar=″Desiree″
/db_xref=″taxon:4113″
Protein1 . . . 431
/product=″w-3 desaturase″
CDS1 . . . 431
/db_xrei=″SPTREMBL:O82068″
/coded_by=″AJ007739.l:1 . . . 1296″
ORIGIN(SEQ ID NO: 3D)
eeeqt tnngdefdpg asppfklsdi kaaipkhcwv knpwtsmsyv vrdvaivfql aaaaayfnnw
|
lvwplywfaq stmfwalfvi ghdcghgsfs nnhnlnsvag hilhssilvp
|
yhgwrishrt hhqnhghven deswhpisek lynsldditk kfrftlpfpl laypfylwgr
|
spgkkgshfd pssdlfvase kkdvitstvc wtamaallvg lsfvmgplqv lklygipywg
|
fvmwidivty lhhhghedkv pwyrgeewsy lrgglttldr dygwinnihh digthvihhl
|
fpqiphyhlv eateaakpvi gkyykepkks gpipfyllgy liksmkedhf vsdtgnvvyy
|
qtdpnly
|
AAA86690 (Limnanthes douglasii)
LOCUS AAA86690 436 aa PLN Nov. 21, 1995
DEFINITIONdelta-15 lineoyl desaturase.
ACCESSIONAAA86690
PIDg699390
VERSIONAAA8G690.1 GI:699390
DBSOURCElocus LDU17063 accession U17063.1
KEY WORDS
SOURCEDouglas's meadowfoam.
ORGANISMLimnanthes douglasii
Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;
eudicotyledons; core eudicots; Rosidae; eurosids II;
Brassicales; Limnanthaceae; Limnanthes.
REFERENCE1 (residues 1 to 436)
AUTHORSBhella, R. S. and MacKenzie, S. L.
TITLENucleotide sequence of a cDNA from Limnanthes douglasii L.
Encoding a delta-15 linoleic acid desaturase
JOURNALPlant Physiol. 108 (2), 861 (1995)
MEDLINE95334518
REFERENCE2 (residues 1 to 436)
AUTHORSMacKenzie, S. L.
TITLEDirect Submission
JOURNALSubmitted (Nov. 9, 1994) Samuel L. MacKenzie, Plant
Biotechnology Institute, National Research Council of Canada,
110 Gymnasium Place, Saskatoon, SK 57N 0W9, Canada
COMMENTMethod: conceptual translation.
FEATURESLocation/Qualifiers
source1 . . . 436
/organism=″Limnanthes douglasii″
/db_xref=″taxon:28973″
/dev_stage=″seed, storage deposition stage″
Protein1 . . . 438
/product==″delta-l5 lineoyl desaturase″
CDS1 . . . 436
/function=″linoleic acid desaturation″
/coded_by=″U17063.1:56 . . . 1366″
/note=″omega-3-fatty acid desoturase″
ORIGIN(SEQ ID NO: 31)
v sapfqiastt peeedevaef dpgspppfkl adiraaipkh cwvknqwrsm syvvrdvviv
|
lglaaaavaa nswavwplyw vaqgtmfwal fvighdcghg sfsnnhklns vvghllhssi
|
lvpyhgwrir hrthhqnhgh vendeswhpm seklfrsldk ialtfrfkap fpmlaypfyl
|
werspgktgs hyhpdsdlfv psekkdvits ticwttmvgl liglsfvmgp iqilklyvvp
|
ywifvmwldf vtyldhhghe dklpwyrgee wsylrggltt ldrdyglinn ihhdigthvi
|
hhlfpqiphy hlveatqaak pifgkyykep akskplpfhl idvllkslkr dhfvpdtgdi
|
vyyqsdpq
|
BAA07785 (Triticum aestivum)
+TL, LOCUS BAA07785 380 aa PLN Jun. 18, 1999
DEFINITIONplastid omega-3 fatty acid desaturase.
ACCESSIONBAA07785
PIDg1694615
VERSIONBAA07785.1 GI:1694615
DBSOURCElocus D43688 accession D43688.1
KEYWORDS.
SOURCEbread wheat.
ORGANISMTriticum aestivum
Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;
Liliopsida; Poales; Poaceae; Triticum
REFERENCE1 (sites)
AUTHORSHoriguchi, G., Iwakawa, H., Kodama, H., Kawakami, N., Nishimura, M.
And Iba, K.
TITLEExpression of a gene for plastid omega-3 fatty acid
desaturase and changes in lipid and fatty acid compositions
in light- and dark-grown wheat leaves
JOURNALPhysiol. Plantarurn 96, 275-283 (1996)
REFERENCE2 (residues 1 to 380)
AUTHORSIwakawa, H.
TITLEDirect Submission
JOURNALSubmitted (Dec. 3, 1994) to the DDBJ/EMBL/GenSank
databases. Hirotaka Iwakawa, Kyushu University, Facul.
Science, Dept. Biology, Lab. Plant Physiology; 6-10-1
Hakozaki, Higashi-ku,
Fukuoka, Fukuoka 812, Japan (E-mail: koibascb@mbox.nc.kyushu-
u.ac.jp, Tel:092-641-1101(ex.4414), Fax:092-632-2741)
FEATURESLocation/Qualifiers
source1 . . . 380
/organism=″Triticum aestivum″
/strain=″cv. Chihoku″
/db_xref=″taxon:4565″
/clone_lib=″lambda-gt11″
/tissue_type=″ieaf″
Protein1 . . . 380
/product=″plastid omega-3 fatty acid desaturase″
CDS1 . . . 380
/gene=″TaFAD7″
/coded_by=″D43688.1:<1 . . . 1143″
ORIGIN(SEQ ID NO: 32)
fdpgapp pfgladiraa ipkhcwvkdh wssmgyvvrd vvvvialaat aarldswlaw pvywaaqgtm
|
fwalfvlghd cghgsfsnna klnsvvghil hssiivpynq wrishrthhq nhghvendes
|
whplpeklyr sldsstrklr faipfpmlay pfylwsrspg ksgshfhpss dlfqpnekkd
|
iltsttcwla magllagltv vmgpiqilkl yavpywifvm wldfvtylhh hghndklpwy
|
rgkawsiytg glitldrdyg wlnnihhdig thvihhiipq iphyhiveat eaatvigkyy
|
repdksgpfp fhlfgalars mksdhyvsdt gdiiyyqtdp k
|
BAA28358 (Triticum aestivum)
LOCUS BAA28358 383 aa PLN May 30, 1998
DEFINITIONomega-3 fatty acid desaturase.
ACCESSIONBAA28358
PIDg3157460
VERSIONBAA28358.1 GI:3157480
DBSOURCElocus D84678 accession D84578.1
KEYWORDS.
SOURCETriticum aestivum.
ORGANISMTriticum aestivun
Eukaryota; Viridiplantee; Streptophyta; Embryophyta;
Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;
Liliopsida; Poales; Poaceae; Triticum.
REFERENCE1 (residues 1 to 383)
AUTHORSHoriguchi, G.
TITLEDirect Submission
JOURNALSubmitted (May 1, 1996) to the DDBJ/EMBL/GenBank databases.
Gorou Horiguchi, Kyushu University, Faculty of Science,
Department of Biology; 6-10-1 Hakozaki, Fukuoka, Fukuoka 812-
8581, Japan (E-mail:ghoriscb@mbox.nc.kyushu-u.Sc.Jp, Tel:092-
642-2621,Fax:092-642-2621)
REFERENCE2 (sites)
AUTHORSHoriguchi, G., Eawakami, N., Kusuml, K., Kodama, H. and Iba, K.
TITLEDevelopmental regulation of genes for microsome and plastid
omega-3 fatty acid desaturases in wheat (Triticum aestivum
L.)
JOURNALPlant Cell Physiol. 39, 540-544 (1998)
FEATURESLocation/Qualifiers
source1 . . . 383
/organism=″Triticum aestivum″
/cultivar=″Chihoku″
/db_xref=″taxon:4565″
/clone=″pWFD3″
/clone_lib=″lambda MOSE lox″
/tissue_type=″leaf and root″
Protein1 . . . 383
/product=″omega-3 fatty acid desaturase″
CDS1 . . . 383
/gene=″TaFAD3″
/coded_by=″D84E78.1:132 . . . 1283″
ORIGIN(SEQ ID NO: 33)
fdaakppp frigdvraav pahcwpqepp aslsyvardv avvaalaaaa wradswalwp
|
lywavqgtmf walfvlghdc ghgsfsdsgt lnsvvghIlh tfiivpyngw rishrthhqn
|
hghidrdesw hpitekvyqk ieprtktlrf svpfpllafp vylwyrspgk egshfnpssd
|
lftpkerrdv iisttcwftm ialligmacv fglvpvlkly gvpyivnvmw ldlvtylhhh
|
ghqdlpwyrg eewsylrggl ttvdrdygwi nnihhdigth vihhlfpqip hyhlveatka
|
arpvlgryyr epeksqplpm hlitvllksl rvdhfvsdvq dvvfyqtdps l
|
BAA11397 (Oryza sativa)
LOCUS BAA11397 381 aa PLN Feb. 5, 1997
DEFINITIONw-3 fatty acid desaturase.
ACCESSIONBAA11397
PIDg1777376
VERSIONBAA11397.1 GI:1777376
DBSOURCElocus RICP181X2 accession D78506.1
KEYWORDS.
SOURCEOryza sativa.
ORGANISMOryza sativa
Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
Trecheophyta; euphyllophytes; Spermatophyte; Magnoliophyta;
Liliopsida;
Poales; Poaceae; Oryza.
REFERENCE1 (residues 1 to 381)
AUTHORSAkagi, H.
TITLEDirect Submission
JOURNALSubmitted (Nov. 27, 1995) to the DDBJ/EMBL/GenBank
databases. Hiromori Akaqi, Life Science Institute, Mitsui
Toatsu Chemicals Inc., Plant Biothechnology; Togo 1144,
Mobara, Chiba 297, Japan
(E-mail:tnirasaw@niguts.nig. ac. jp, Tel:0475-25-6729,
Fax: 0475-25-6553)
REFERENCE2 (residues 1 to 381)
AUTHORSAkagi, H.
TITLENucleotide sequence of a w-3 fatty acid desaturase gene of
rice
JOURNALUnpublished (1996)
REFERENCE3 (sites)
AUTHORSKodama, H., Akagi, H., Kusumi, K., Fujimura, T. and Tba, K.
TITLEStructure, chromosomal location and expression of a rice gene
encoding the microsome omega-3 fatty acid desaturase
JOURNALPlant Mol. Biol. 33 (3), 493-502 (1997)
MEDLINE97201483
FEATURESLocation/Qualifiers
source1 . . . 381
/organism=″Oryza sativa″
/strain=″IR36″
/db_xref=″taxon:4530″
/clone=″pl8-lX2″
Protein1 . . . 381
/prcduct=″w-3 fatty acid desaturase″
CDS1 . . . 381
/coded_by=″join(D78506.1:674 . . . 975, D78506.1:1069 . . . 115
8, D78506.1:1613 . . . 1679, D78506.1:2499 . . . 2582,
D78506.1:2741 . . . 2926, D78506.1:3030 . . . 3107,
D78506.1:3662 . . . 3799, D78506.1:3917 . . . 4117)″
ORIGIN(SEQ ID NO:34)
sedarif fdaakpppfr igdvraaipv hcwrktplrs lsyvardlii vaalfaaaas sidlawawaw
|
plywarqgtm vwalfvlghd cghgsfsdsa mlnnvvghll hsfilvpyhg wrfshrthhq
|
nhghierdes whpiteklyw qletrtkklr ftlpftllaf pwyrspgktg shflpssdlf
|
spkeksdviv sttcwcimis llvalacvfg pvpvlmlygv pylvfvmwld lvtylhhhgh
|
ndlpwyrgee wsylrggltt vdrdygwinn ihhdigthvi hhlfpqiphy hlveatkaar
|
pvlgryyrep eksgplplhl fgvllrtlrv dhfvsdvgdv vyyqtdhsl
|
AAB61352 (Synechococcus PCC7002)
LOCUS AAB61352 350 aa BCT Jun. 17, 1997
DEFINITIONomega-3 desaturase.
ACCESSIONAAB61352
PIDg2197199
VERSIONAAB61352.1 GI:2197199
DBSOURCElocus SPU36389 accession U36389.1
KEYWORDS.
SOURCESynechococcus PCC7002.
ORGANISMSynechococcus PCC7002
Bacteria; Cyanobacteria; Chroococcales; Synechococcus.
REFERENCE1 (residues 1 to 350)
AUTHORSSakamoto, T. and Bryant, D. A.
TITLETemperature-regulated mRNA accumulation and stabilization for
Fatty acid desaturase genes in the cyanobacterium
Synechococcus sp.strain PCC 7002
JOURNALMol. Microbial. 23 (6), 1281-1292 (1997)
MEDLINE97260123
REFERENCE2 (residues 1 to 350)
AUTHORSSakamoto, T.
TITLEDirect Submission
JOURNALSubmitted (Sep. 14, 1995) Toshio Sakarnoto, Biochemistry and
Molecular Biology, The Pennsylvania State University, S-232
Frear Bldg., University Park, PA 16802, USA
FEATURESLocation/Qualifiers
source1 . . . 350
/organism=″Synechococcus PCC7002″
/db_xref=″taxon:32049″
Protein1 . . . 350
/function=″desaturarion of fatty acids at omega-3
position″
/product″=″omega-3 desaturase″
CDS 1 . . . 350
/gene=″desB″
/coded_by=″U36389.1:747 . . . 1799″
/transl_table=11
ORIGIN(SEQ ID NO: 35)
pf tlkdvkaaip dycfqpsvfr slayffldig iiaglyaiaa yldswffypi fwfaqgtmfw
|
alfvvghdcg hgsfsrskfl ndlighlsht pilvpfhgwr ishrthhsnt gnidtdeswy
|
pipeskydqm gfaeklvrfy apilayplyl fkrspgrgpg shfspksplf kpaerndiil
|
staaiiamvq flgwftvqfg llafvkfyfv pyvifviwld lvtylhhtea dipwyrgddw
|
yylkgalsti drdygifnei hhnigthvah hifhtiphyh lkdateaikp llgdyyrvsh
|
apiwrsffrs qkachyiadq gshlyyq
|
S52650 (Synechocystis sp.)
LOCUS S52650 359 aa BCT Mar. 13, 1997
DEFINITIONdesaturase delta 15 - Synechocystis sp. (strain PCC6803)
ACCESSIONS52650
PIDg2126522
VERSIONS52650 GI:2126522
DBSOURCEpir: locus S52650;
summary: #length 359 #molecular-weight 41919 #checksum 9162;
genetic: #start_codon GTG;
PIR dates: Oct. 28, 1996 #sequence revision Mar. 13, 1997
#text_change Mar. 13, 1997.
KEYWORDS
SOURCESynechocystis sp.
ORGANISMSynechocystis sp.
Eubacteria; Cyanobacteria; Chroococcales; Synechocystis.
REFERENCE1 (residues 1 to 359)
AUTHORSSakamoto, T., Los, D. A., Higashi, S., Wada, H., Nishida, I.,
Ohmori, M. and Murata, N.
TITLECloning of omega 3 desaturase from cyanobacteria and its use
in altering the degree of membrane-lipid unsaturation
JOURNALPlant Mol. Biol. 26 (1), 249-263 (1994)
MEDLINE95035996
FEATURESLocation/Qualifiers
source1 . . . 359
/organism=″Synechocystis sp.″
/db_xref=″taxon:1143″
Protein1 . . . 359
/product=″desaturase delta 15″
ORIGIN(SEQ ID NO: 36)
pftlqelrna ipadcfepsv vrslgyffid vgliagfyal aayldswffy pifwliqgtl
|
fwslfvvghd cghgsfsksk tlnnwighis htpilvpyhg wrishrthha ntgnidtdes
|
wypvsegkyn qmawyeklir fylpliaypi ylfrrspnrq gshfmpgspl frpgekaavl
|
tstfaiaafv gflgfltwqf gwifllkfyv apylvfvvwl dlvtflhhte dnipwyrgdd
|
wyflkgalst idrdygfinp ihhdigthva hhifsnmphy klrrateaik pilgeyyrys
|
depiwqaffk sywachfvpn qgsgvyyqs
|
AAA61774 (Chloroplast Brassica napus)
LOCUS AAA61774 329 aa PLN Jan. 31, 1995
DEFINITIONomega-3 fatty acid desaturase.
ACCESSIONAAA61774
PIDg408490
VERSIONAAA6l774.1 GI:408490
DBSOURCElocus BNACPFADD accession L22963.1
KEYWORDS.
SOURCErape.
ORGANISM Chloroplast Brassica napus
Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
Tracheophyta; euphyilophytes; Spermatophyta; Magnoliophyta;
eudicotyledons; core eudicots; Rosidae; eurosids II;
Brassicales; Brassicaceae; Brassica.
REFERENCE1 (residues 1 to 329)
AUTHORSYadav, N. S., Wierzbicki, A., Aegerter, M., Caster, C. S., Perez-
Grau, L., Kinney, A. J., Hitz, W. D., Booth, J. R. Jr.,
Schweiger, B., Stecca, K. L.
TITLECloning of higher plant omega-3 fatty acid desaturases
JOURNALPlant Physiol. 103 (2), 467-476 (1993)
MEDLINE94302147
COMMENTMethod: conceptual translation.
FEATURESLocation/Qualifiers
source1 . . . 329
/organism=″Brassica napus″
/chloroplast
/db_xref=″taxon:3708″
/tissue_type=″seed″
Protein1 . . . 329
/product=″=″omega-3 fatty acid desaturase″
CDS1 . . . 329
/gene=Fadd″
/coded_by″L22963.1:226 . . . 1215″
ORIGIN(SEQ ID NO: 37)
msyvvrelai vfalaagaay innwlvwply wiaqgtmfwa lfvlghdcgh gsfsndprln
|
svvghllhss ilvpyhgwri shrthhqnhg hvendeswhp msekiyksld kptrffrftl
|
plvmlaypfy lwarspgkkg shyhpdsdlf lpkerndvlt stacwtamav livclnfvmg
|
pmqmlklyvi pywinvmwld fvtylhhhgh edklpwyrgk ewsylrggit tldrdyglin
|
nihhdigthv ihhifpqiph yhlveateaa kpvlgkyyre pdksgplplh ligilaksik
|
edhfvsdegd vvyyeadpnl y
|
BAA22439 (Zea mays)
LOCUS BAA22439 262 aa PLNMar. 4, 1998
DEFINITIONfatty acid desaturase.
ACCESSIONBAA22439
PIDg2446994
VERSION2AA22439.1 GI:2446994
DBSOURCElocus D63952 accession D63952.1
KEYWORDS.
SOURCEZea mays.
ORGANISMZea mays
Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;
Liliopsida; Poales; Poaceae; Zea.
REFERENCE1 (residues 1 to 262)
AUTHORSKusano, T.
TITLEDirect Submission
JOURNALSubmitted (Aug. 30, 1995) to the DDBJ/EMBL/GenBank databases.
Tomonobu Kusano, Akita Prefectural College of Agriculture,
Biotechnology Institute; 2-2 Minami, Ohgatarnura, Minamiakita-
gun, Akita 010-04, Japan (E-mail:kusano@air.akita-u.ac.jp,
Tel:0185-45-2026(ex.403), Fax:0185-45-2678)
REFERENCE2 (sites)
AUTHORSBerberich, T., Harada, M., Sugawara, K., Kodama, H., Iba, K. and
Kusano, T.
TITLETwo maize genes encoding omega-3 fatty acid desaturase and
their differential expression to temperature
JOURNALPlant Mol. Biol. 36 (2), 297-306 (1998)
MEDLINE98145435
FEATURESLocation/Qualifiers
source1 . . . 262
/organism=″Zea mays″
/strain=″honey bantum″
/db_xref=″taxon:4577″
Protein1 . . . 262
/product=″fatty acid desaturase″
CDS1 . . . 262
/gene=″FAD7″
/coded_by=″D63952.1:<1 . . . 791″
ORIGIN(SEQ ID NO: 38)
lhssilvpyh gwrishrthh qnhghvekde swhplperly ksldfmtrkl rftmptplla
|
fplylfarsp gksgshfnpg sdlfqptekn diitstaswl amvgvlaglt flmgpvpmlk
|
lygvpylvfv awldmvtylh hhghedklpw yrgkewsylr gglttldrdy gwinnihhdi
|
gthvihhlfp qiphyhliea teaakpvlgk yykepknsga lpwhlfrvla qslkqdhyvs
|
htgdvvyyqa e
|
BAA11396 (Oryza sativa)
LOCUS BAA11396 269 aa PLN Feb. 5, 1999
DEFINITIONw-3 fatty acid desaturase.
ACCESSIONBAA11396
PIDg1785856
VERSIONBAA11396.1 GI:1765856
DBSOURCElocus RICPA11 accession D78505.1
KEYWORDS
SOURCEOryza sativa.
ORGANISMOryza sativa
Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;
Liliopsida; Poales; Poaceae; Oryza.
REFERENCE1 (residues 1 to 269)
AUTHORSAkagi, H.
TITLEDirect Submission
JOURNALSubmitted (Nov. 27, 1995) to the DDBJ/EMBL/GenBank databases.
Hiromori Akagi, Life Science Institute, Mitsui Toatsu
Chemicals
Inc., Plant Biothechnology; Togo 1144, Mobara, Chiba 297,
Japan
(E-mail:tnirasaw@niguts.nig.ac.jp, Tel:0475-25-6729,
Fax: 0475-25-6553)
REFERENCE2 (residues 1 to 269)
AUTHORSAkagi, H.
TITLEPartial nucleotide sequence of a w-3 fatty acid desaturase
cDNA Of rice
JOURNALUnpublished (1996)
REFERENCE3 (sites)
AUTHORSKodama, H., Akagi, H., Kusumi, I., Fujimura, T. and Iba, K.
TITLEStructure, chromosomal location and expression of a rice gene
encoding the microsome omega-3 fatty acid desaturase
JOURNALPlant Mel. Biol. 33 (3), 493-502 (1997)
MEDLINE97201483
COMMENTSequence updated (Jan. 20, 1997) by: Hiromori Akagi.
FEATURESLocation/Qualifiers
source1 . . . 269
/organism=″Oryza sativa″
/strain=″Nipponbare″
/db_xref=″taxon:4530″
Protein1 . . . 269
/product″w-3 fatty acid desaturase″
CDS1 . . . 269
/coded_by=″D78505.1:<1 . . . 810″
ORIGIN(SEQ ID NO: 39)
nnvvghllhs filvpyhgwr fshrthhqnh ghierdeswh piteklywql etrtkklrft
|
lpftllafpw yrspgktgsh flpssdlfsp keksdvivst towoimisil valacvfqpv
|
pvlmlygvpy lvfvmwldlv tylhhhghnd lpwyrgeews ylrgglttvd rdygwinnih
|
hdigthvihh lfpqiphyhl veatkaarpv lgryyrepek sgplplhlfg vllrtlrvdh
|
fvsdvgdvvy yqtdhsl
|
AAD41582 (Brassica rapa)
LOCUS AF056572_1172 aa PLN Jul. 1, 1999
DEFINITIONunknown.
ACCESSIONAAD41582
PIDg5305314
VERSIONAA041582.1 GI:5305314
DBSOURCElocus AF056572 accession AF056572.1
KEYWORDS.
SOURCEBrassica rapa.
ORGANISMBrassica rapa
Eukaryoca; Viridiplantae; Streptophyta; Embryophyta;
Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;
eudicotyledons; core eudicots; Rosidae; eurosids II;
Brassicales; Brassicacese; Brassica.
REFERENCE1 (residues 1 to 172)
AUTHORSBrunel, D., Froger, N. and Pelletier, G.
TITLEDevelopment of amplified consensus genetic markers (A.C.G.M.)
in Brassica napusfrom Arabidopsis thalianasequences of
known biological function
JOURNALUnpublished
REFERENCE2 (residues 1 to 172)
AUTHORSBrunel, D., Froger, N. and Pelletier, G.
TITLEDirect Submission
JOURNALSubmitted (Apr. 1, 1998) Station de Genetique et
d'Amelioration des Plantes, INRA, Route de St Cyr, Versailles
78026, France
COMMENTMethod: conceptual translation.
FEATURESLocation/Qualifiers
source1 . . . 172
/organism=″Brassica rapa″
/cultivar=R500″
/db_xref=″taxon:3711″
Protein<1 . . . >172
/product=″unknown″
CDS1 . . . 172
/gene=″FAD31″
/note=″similar to Arabidopsis thalianaFAD3″
/coded≦by=″join(AF056572.1:<1 . . . 26, AF056572.1:557 . . . 62
3, AF056572.1:1221 . . . 1406,
AF056572.1:1484 . . . 1564, AF056572.1:1652 . . . >1714)″
ORIGIN(SEQ ID NO: 40)
filvpyhgwr ishrthhqnh ghvendeswv plpeklyknl shstrmlryt vplpmlaypl
|
ylwyrspgke gshynpyssl fapserkiia tsttcwsimi atlvylsflv gpvtvlkvyg
|
vpyiifvmwl davtyihhhg hddklpwyrg kewsylrggi ttidrdyqif nn
|
AAD41581 (Brassica oleracea)
LOCUS AF056571_1 141 aa PLN Jul. 1, 1999
DEFINITIONunknown.
ACCESSIONAAD41581
PIDg5305312
VERSIONAAD41581.1 GI:5305312
DBSOURCElocus AF056571 accession AF056=7l.1
KEYWORDS.
SOURCEBrassica oleracea.
ORGANISMBrassica oleracea
Eukaryota; Viridiplantae; Streptophyta; Embryophyra;
Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;
eudicotyledons; core eudicots; Rosidae; eurosids II;
Brassicales; Brassicaceae; Brassica.
REFERENCE1 (residues 1 to 141)
AUTHORSBrunel, D., Froger, N. and Pelletier, G.
TITLEDevelopment of amplified consensus genetic markers (A.C.G.M.)
in Brassica napusfrom Arabidopsis thalianasequences of
known biological function
JOURNALUnpublished
REFERENCE2 (residues 1 to 141)
AUTHORSBrunel, D., Froger, N. and Peiletier, G.
TITLEDirect Submission
JOURNALSubmitted (Apr. 1, 1998) Station de Genetique et
d'Amelioration des Plantes, INRA, Route de St Cyr, Versailles
78026, France
COMMENTMethod: conceptual translation.
FEATURESLocation/Qualifiers
source1 . . . 141
/organism=″Brassica oleracea″
/cultivar=″Rapide Cycling″
/db_xref=″taxon:3712″
Protein<1 . . . >141
/product=″unknown″
CDS1 . . . 141
/partial
/gene=″FAD31″
/note=″similar to Arabidopsis thalianaFAD3″
coded_by-″join(AF056571.1:<235 . . . 327, AF056571.
1:436 . . . 621, AF056571.1:699 . . . 779,
AF056571.1:865 . . . >927)″
ORIGIN(SEQ ID NO: 41)
lpeklyknls hstrmlrytv plpmlayply lwyrspgkeg shynpysslf apserkliat
|
sttcwsivla tlvylsflvg pvtvlkvygv pyiifvmwld avtylhhhgh ddklpwyrgk
|
121 ewsylrgglt tvdrdygifn n
|
AAD41580 (Brassica napus)
LOCUS AF056570_1 141 aa PLN Jul. 1, 1999
DEFINITIONunknown.
ACCESSIONAAD41580
PIDg5305310
VERSIONAAD41580.1 GI:5305310
DBSOURCElocus AF056570 accession AF056570.1
KEYWORDS.
SOURCErape.
ORGANISMBrassica napus
Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
Tracheophyta; euphyllophytes; Spermatophyta; Magnoliophyta;
eudicotyledons; core eudicots; Rosidae; eurosids II;
Brassicales; Brassicaceae; Brassica.
REFERENCE1 (residues 1 to 141)
AUTHORSErunel, D., Froger, N. and Pelletier, G.
TITLEDevelopment of amplified consensus genetic markers (A.C.G.M.)
I in Brassica napusfrom Arabidopsis thalianasequences of
known biological function
JOURNALUnpublished
REFERENCE2 (residues 1 to 141)
AUTHORSBrunel, D., Froger, N. and Pelletier, G.
TITLEDirect Submission
JOURNALSubmitted (Apr. 1, 1998) Station de Genetique et
d'Amelioration des Plantes, INRA, Route de St Cyr,
Versailles 78026, France
COMMENTMethod: conceptual translation.
FEATURESLocation/Qualifiers
source1 . . . 141
/organism=″Brassica napus″
/cultivar=″Darmor″
/db_xref=″taxon:3708″
Protein<1 . . . >141
/product=″unknown″
CDS1 . . . 141
/partial
/gene=″FAD32″
/note=″similar to Arabidopsis thalianaFAD3″
/coded_by=″join(AF056570.1:<107 . . . 199, AFD56570.1:308.
.493,
AF056570.1:572 . . . 652, AF056570.1:738 . . . >800)″
ORIGIN(SEQ ID NO: 42)
lpeklyknls hstrmlrytv plpmlayply lwyrspgkeg shynpysslt apserkliat
|
sttcwsivla slvylsflvg pvtvlkvygv pyiifvmwld avtylhhhgh ddklpwyrgk
|
ewsylrgglt tvdrdygifn n
|
Example 3
[0061] Cloning of the Fad3A gene by PCR from the ‘A’ genome of B. napus Apollo also amplified fragments of the ‘C’ genome which represent a second FAD3 gene, designated Fad3C herein, from the ‘C’ genome of the low linolenic acid B. napus variety Apollo. Sequence polymorphisms in the Fad3C sequence have been identified that facilitate mapping the Fad3C gene. A partial genomic DNA sequence of Fad3C is shown in FIG. 11, a partial cDNA sequence of Fad3C is shown in FIG. 7 and a partial amino acid seqence of Fad3C is shown in FIG. 2.
CONCLUSION
[0062] Although various embodiments of the invention are disclosed herein, many adaptations and modifications may be made within the scope of the invention in accordance with the common general knowledge of those skilled in this art. Such modifications include the substitution of known equivalents for any aspect of the invention in order to achieve the same result in substantially the same way. Numeric ranges are inclusive of the numbers defining the range. All documents referred to herein are hereby incorporated by reference, although no admission is made that any such documents constitute prior art. In the claims, the word “comprising” is used as an open-ended term, substantially equivalent to the phrase “including, but not limited to”.
Claims
- 1. A recombinant nucleic acid encoding a plant fatty acid desaturase, wherein the nucleic acid sequence encodes an amino acid substitution in the desaturase at a position selected from the group consisting of positions corresponding to: amino acid 213 of Apollo Fad3A; amino acid 275 of Apollo Fad3A; amino acid 347 of Apollo Fad3A; amino acid 217 of Apollo Fad3C; amino acid 224 of Apollo Fad3C; and, amino acid 281 of Apollo Fad3C.
- 2. A recombinant nucleic acid encoding a plant fatty acid desaturase, wherein the nucleic acid sequence encodes an amino acid substitution in the desaturaseat a position selected from the group consisting of: a position in the motif STTCWSIMLAT; a position in the motif STTCWSIMLATcorresponding to positions 210 to 220 of Apollo Fad3A; a position in the motif STTCWSIMLATLVYLSFL; a position in the motif STTCWSIMLATLVYLSFL corresponding to positions 210 to 227 of Apollo Fad3A; a position in the motif SYLRGGLTTIDRD; a position in the motif SYLRGGLTTIDRD corresponding to positions 272 to 284 of Apollo Fad3A; a position in the motif SXXXDHYVSD; and a position in the motif SXXXDHYVSD beginning at a position corresponding to position 347 of Apollo Fad3A.
- 3. The recombinant nucleic acid of claim 1 or 2, wherein the plant fatty acid desaturase is a Fad3.
- 4. The recombinant nucleic acid of claim 1, 2 or 3 wherein the amino acid substitution is a non-conserved amino acid substitution.
- 5. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 213, 217 or 224.
- 6. The recombinant nucleic acid of claim 1, wherein:
a) the amino acid substitution is at position 213 and the substitution is the replacement of a cysteine residue with an amino acid selected from the group consisting of alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine; or, b) the amino acid substitution is at position 217 and the substitution is the replacement of a methionine residue with an amino acid selected from the group consisting of valine, Ile, Val, Gly, Thr, Ser, Trp, Tyr, Pro, His, Glu, Gln, Asp, Asn, Lys, and Arg.
- 7. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is:
a) at position 213 and the substitution is the replacement of a cysteine residue with an amino acid selected from the group consisting of Trp, Arg, Lys, Asp, Glu; or b) at position 217 and the substitution is the replacement of a valine residue a methionine residue.
- 8. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 213 and the substitution is the replacement of a cysteine residue with an amino acid selected from the group consisting of Ile, Gly, Thr, Ser, Trp, Tyr, Pro, His, Glu, Gln, Asp, Asn, Lys and Arg.
- 9. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 213 and the substitution is the replacement of a cysteine residue with an amino acid selected from the group consisting of Arg, Lys, Asp, Glu, Ser, Asn, Gln, Gly, Pro, Thr, Ala, His, Val, Leu, Ile, Tyr, Phe and Trp.
- 10. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 213 and the substitution is the replacement of a cysteine residue with an amino acid selected from the group consisting of Gly, Thr, Ser, Trp, Tyr, Pro, His, Glu, Gln, Asp, Asn, Lys, Arg, Ile, Val and Leu.
- 11. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 213 and the substitution is the replacement of a cysteine residue with an alanine residue.
- 12. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 275.
- 13. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 275 and the substitution is the replacement of an arginine residue with an amino acid selected from the group consisting of alanine, cysteine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine.
- 14. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 275 and the substitution is the replacement of an arginine residue with an amino acid selected from the group consisting of Ser, Asn, Gln, Gly, Pro, Thr, Ala, His, Cys, Met, Val, Leu, Ile, Tyr, Phe and Trp.
- 15. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 275 and the substitution is the replacement of an arginine residue with an amino acid selected from the group consisting of Ile, Val, Leu, Phe, Cys, Met, Ala, Gly, Thr, Ser, Trp, Tyr and Pro.
- 16. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 275 and the substitution is the replacement of an arginine residue with an amino acid selected from the group consisting of Ile, Val, Leu, Phe.
- 17. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 275 and the substitution is the replacement of an arginine residue with a cysteine.
- 18. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 347.
- 19. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 347 and the substitution is the replacement of a serine residue with an amino acid selected from the group consisting of alanine, cysteine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, arginine, threonine, tryptophan, tyrosine and valine.
- 20. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 347 and the substitution is the replacement of a serine residue with an amino acid selected from the group consisting of Arg, Lys, Asp, Glu, Leu, Ile, Tyr, Phe and Trp.
- 21. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 347 and the substitution is the replacement of a serine residue with an amino acid selected from the group consisting of Ile, Val, Leu, Phe, Cys, Met, Ala, His, Glu, Gln, Asp, Asn, Lys, and Arg.
- 22. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 347 and the substitution is the replacement of a serine residue with an amino acid selected from the group consisting of Phe and Trp.
- 23. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 347 and the substitution is the replacement of a serine residue with an amino acid selected from the group consisting of Ile, Val and Leu.
- 24. The recombinant nucleic acid of claim 1, wherein the amino acid substitution is at position 347 and the substitution is the replacement of a serine residue with an arginine.
- 25. The recombinant nucleic acid of any one of claims 1 through 24, wherein the nucleic acid is capable of altering the fatty acid composition of a plant.
- 26. An isolated nucleic acid comprising 5 contiguous residues complimentary to a portion of the recombinant nucleic acid of any one of claims 1 through 25, wherein the isolated nucleic acid is capable of hybridizing to the recombined portion of the recombinant nucleic acid under selective hybridization conditions to identify the recombinant nucleic acid.
- 27. An isolated protein encoded by the nucleic acid of any one of claims 1 through 26.
- 28. An isolated vector comprising the nucleic acid of any one of claims 1 through 26.
- 29. A method of modifying a plant comprising transforming the plant with the nucleic acid of any one of claims 1 through 26.
- 30. The method of claim 29, wherein the plant is selected from the group consisting of Cruciferae family: canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.), and others; the Composirae family: sunflower (Helianthus spp.), safflower (Carthamus spp.), niger (Guizotia spp.) and others; the Palmae family: palm (Elaeis spp.), coconut (Cocos spp.) and others; the Leguminosae family: peanut (Arachis spp.), soybean (Glycine spp.) and others; and plants of other families such as maize (Zea spp.), cotton (Gossypium sp.), jojoba (Simonasia sp.), flax (Linum sp.), sesame (Sesamum spp.), castor bean (Ricinus spp.), olive (Olea spp.), poppy (Papaver spp.), spurge (Euphorbia, spp.), meadowfoam (Limnanthes spp.), mustard (Sinapis spp.) and cuphea (Cuphea spp.).
- 31. The method of claim 29, wherein the plant is selected from the group consisting of members of the Cruciferae family, including canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.).
- 32. The method of claim 29, wherein the plant is a Brassica.
- 33. The method of claim 29, wherein the plant is a canola.
- 34. A plant, or a part of the plant, comprising the nucleic acid of any one of claims 1 through 26.
- 35. A plant product produced by a plant or a part of the plant, wherein the plant comprises the nucleic acid of any one of claims 1 through 26.
- 36. The plant or part of the plant of claim 34 or 35, wherein the plant is selected from the group consisting of Cruciferae family: canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.), and others; the Composirae family: sunflower (Helianthus spp.), safflower (Carthamus spp.), niger (Guizotia spp.) and others; the Palmae family: palm (Elaeis spp.), coconut (Cocos spp.) and others; the Leguminosae family: peanut (Arachis spp.), soybean (Glycine spp.) and others; and plants of other families such as maize (Zea spp.), cotton (Gossypium sp.), jojoba (Simonasia sp.), flax (Linum sp.), sesame (Sesamum spp.), castor bean (Ricinus spp.), olive (Olea spp.), poppy (Papaver spp.), spurge (Euphorbia, spp.), meadowfoam (Limnanthes spp.), mustard (Sinapis spp.) and cuphea (Cuphea spp.).
- 37. The plant or part of the plant of claim 34 or 35, wherein the plant is selected from the group consisting of members of the Cruciferae family, including canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.).
- 38. The plant or part of the plant of claim 34 or 35, wherein the plant is a Brassica.
- 39. The plant or part of the plant of claim 34 or 35, wherein the plant is a canola.
- 40. A method of plant selection comprising:
a) obtaining a progeny plant by (i) transformation of a parent plant, (ii) crossing parent plant lines or (iii) self crossing of the parent plant; and, b) identifying progeny plants that comprise the nucleic acid of any one of claims 1 through 26 by testing progeny plants for the presence of the nucleic acid.
- 41. The method of claim 40, wherein the progeny plant is selected from the group consisting of Cruciferae family: canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.), and others; the Composirae family: sunflower (Helianthus spp.), safflower (Carthamus spp.), niger (Guizotia spp.) and others; the Palmae family: palm (Elaeis spp.), coconut (Cocos spp.) and others, the Leguminosae family: peanut (Arachis spp.), soybean (Glycine and others; and plants of other families such as maize (Zea spp.), cotton (Gossypium sp.), jojoba (Simonasia sp.), flax (Linum sp.), sesame (Sesamum spp.), castor bean (Ricinus spp.), olive (Olea spp.), poppy (Papaver spp.), spurge (Euphorbia, spp.), meadowfoam (Limnanthes spp.), mustard (Sinapis spp.) and cuphea (Cuphea spp.).
- 42. The method of claim 40, wherein the progeny plant is selected from the group consisting of members of the Cruciferae family, including canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.).
- 43. The method of claim 40, wherein the progeny plant is a Brassica.
- 44. The method of claim 40, wherein the progeny plant is a canola.
- 45. The progeny plant, or a part of the progeny plant, produced by the method of any one of claims 40 through 44.
- 46. A plant product produced by the progeny plant produced by the method of any one of claims 40 through 44.
- 47. A method of plant selection comprising:
a) obtaining a progeny plant by (i) transformation of a parent plant, (ii) crossing parent plant lines or (iii) self crossing of the parent plant; and, b) identifying in the progeny plants a nucleic acid encoding a plant fatty acid desaturase, wherein the nucleic acid encodes an amino acid in the desaturase selected from the group consisting of:
i) an amino acid other than cysteine at an amino acid position corresponding to amino acid 213 of Apollo Fad3A; ii) an amino acid other than arginine at an amino acid position corresponding to amino acid 275 of Apollo Fad3A; iii) an amino acid other than serine at an amino acid position corresponding to amino acid 347 of Apollo Fad3A; iv) an amino acid other than methionine at an amino acid position corresponding to amino acid 217 of Apollo Fad3A; v) an amino acid other than isoleucine at an amino acid position corresponding to amino acid 281 of Apollo Fad3A; and, vi) an amino acid other than leucine at an amino acid position corresponding to amino acid 224 of Apollo Fad3A.
- 48. A method of plant selection comprising:
a) obtaining a progeny plant by: (i) transformation of a parent plant, (ii) crossing parent plant lines or (iii) self crossing of the parent plant; and, b) identifying in the progeny plants a nucleic acid encoding a plant fatty acid desaturase, wherein the nucleic acid encodes an amino acid in the desaturase selected from the group consisting of:
i) a non-conserved amino acid substituted in the motif STTCWSIM; ii) a non-conserved amino acid substituted in the motif STTCWSIM centered on a position corresponding to position 213 of Apollo Fad3A; iii) a non-conserved amino acid substituted in the motif SYLRGGL; iv) a non-conserved amino acid substituted in the motif SYLRGGL centered on a position corresponding to position 275 of Apollo Fad3A; v) a non-conserved amino acid substituted in the motif SXXXDHYVSD; vi) a non-conserved amino acid substituted in the motif SXXXDHYVSD beginning at a position corresponding to position 347 of Apollo Fad3A; vii) a non-conserved amino acid substituted in the motif STTCWSIMLAT; viii) a non-conserved amino acid substituted in the motif STTCWSIMLAT corresponding to positions 210 to 220 of Apollo Fad3A; ix) a non-conserved amino acid substituted in the motif SYLRGGLTTIDRD; x) a non-conserved amino acid substituted in the motif SYLRGGLTTIDRD corresponding to positions 272 to 284 of Apollo Fad3A.
- 49. The method of claim 47 or 48, wherein the progeny plant is selected from the group consisting of Cruciferae family: canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.), and others; the Composirae family: sunflower (Helianthus spp.), safflower (Carthamus spp.), niger (Guizotia spp.) and others; the Palmae family: palm (Elaeis spp.), coconut (Cocos spp.) and others; the Leguminosae family: peanut (Arachis spp.), soybean (Glycine spp.) and others; and plants of other families such as maize (Zea spp.), cotton (Gossypium sp.), jojoba (Simonasia sp.), flax (Linum sp.), sesame (Sesamum spp.), castor bean (Ricinus spp.), olive (Olea spp.), poppy (Papaver spp.), spurge (Euphorbia, spp.), meadowfoam (Limnanthes spp.), mustard (Sinapis spp.) and cuphea (Cuphea spp.).
- 50. The method of claim 47 or 48, wherein the progeny plant is selected from the group consisting of members of the Cruciferae family, including canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.).
- 51. The method of claim 47 or 48, wherein the progeny plant is a Brassica.
- 52. The method of claim 47 or 48, wherein the progeny plant is a canola.
- 53. The progeny plant or a part of the progeny plant produced by the method of any one of claims 47 through 52.
- 54. A plant product produced by the progeny plant produced by the method of any one of claims 47 through 52.
- 55. A method of plant genotyping comprising identifying in a plant an Apollo Fad3 nucleic acid sequence.
- 56. The method of claim 55, wherein the plant is selected from the group consisting of Cruciferae family: canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.), and others; the Composirae family: sunflower (Helianthus spp.), safflower (Carthamus spp.), niger (Guizotia spp.) and others; the Palmae family: palm (Elaeis spp.), coconut (Cocos spp.) and others; the Leguminosae family: peanut (Arachis spp.), soybean (Glycine spp.) and others; and plants of other families such as maize (Zea spp.), cotton (Gossypium sp.), jojoba (Simonasia sp.), flax (Linum sp.), sesame (Sesamum spp.), castor bean (Ricinus spp.), olive (Olea spp.), poppy (Papaver spp.), spurge (Euphorbia, spp.), meadowfoam (Limnanthes spp.), mustard (Sinapis spp.) and cuphea (Cuphea spp.).
- 57. The method of claim 55, wherein the progeny plant is selected from the group consisting of members of the Cruciferae family, including canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.).
- 58. The method of claim 55, wherein the progeny plant is a Brassica.
- 59. The method of claim 55, wherein the progeny plant is a canola.
- 60. An isolated plant Fad3 enzyme having an amino acid residue selected from the group consisting of:
i) an amino acid other than cysteine at an amino acid position corresponding to amino acid 213 of Apollo Fad3A; ii) an amino acid other than arginine at an amino acid position corresponding to amino acid 275 of Apollo Fad3A; iii) an amino acid other than serine at an amino acid position corresponding to amino acid 347 of Apollo Fad3A; iv) an amino acid other than methionine at an amino acid position corresponding to amino acid 217 of Apollo Fad3A; v) an amino acid other than isoleucine at an amino acid position corresponding to amino acid 281 of Apollo Fad3A; and, vi) an amino acid other than leucine at an amino acid position corresponding to amino acid 224 of Apollo Fad3A.
- 61. A plant other than a plant descended from Brassica napus line M11, wherein the plant comprises an Apollo Fad3A or Fad3C nucleic acid sequence.
- 62. The plant of claim 61, wherein the plant is selected from the group consisting of Cruciferae family: canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.), and others; the Composirae family: sunflower (Helianthus spp.), safflower (Carthamus spp.), niger (Guizotia spp.) and others; the Palmae family: palm (Elaeis spp.), coconut (Cocos spp.) and others; the Leguminosae family: peanut (Arachis spp.), soybean (Glycine spp.) and others; and plants of other families such as maize (Zea spp.), cotton (Gossypium sp.), jojoba (Simonasia sp.), flax (Linum sp.), sesame (Sesamum spp.), castor bean (Ricinus spp.), olive (Olea spp.), poppy (Papaver spp.), spurge (Euphorbia, spp.), meadowfoam (Limnanthes spp.), mustard (Sinapis spp.) and cuphea (Cuphea spp.).
- 63. The plant of claim 61, wherein the plant is selected from the group consisting of members of the Cruciferae family, including canola, rapeseed (Brassica spp.), crambe (Crambe spp.), honesty (Lunaria spp.) lesquerella (Lesquerela spp.).
- 64. The plant of claim 61, wherein the plant is a Brassica.
- 65. The plant of claim 61, wherein the plant is a canola.
Continuations (1)
|
Number |
Date |
Country |
Parent |
PCT/CA00/01141 |
Oct 2000 |
US |
Child |
10115571 |
Apr 2002 |
US |