The present invention relates to a process for preparing trisilylamine from ammonia and monochlorosilane in the gas phase. The present invention further relates to a plant in which such a process can be carried out.
Trisilylamine (TSA), N(SiH3)3, is a mobile, colourless, spontaneously flammable and easily hydrolysable liquid having a melting point of −105.6° C. and a boiling point of +52° C. Nitrogen-containing silicon compounds such as trisilylamine are important substances in the semiconductor industry. Here, they are used in chip production as layer precursors for silicon nitride or silicon oxynitride layers, for example. Owing to its use in chip production, it is important to be able to prepare trisilylamine safely, without malfunctions and constantly in the required, generally high-purity quality.
Trisilylamine can be prepared from ammonia and monochlorosilane according to the equation (1): 3 H3SiCl+4NH3→N(SiH3)3+3NH4Cl. A by-product of the reaction is ammonium chloride. The reaction of monochlorosilane and ammonia is a spontaneous, exothermic reaction.
In Ber. Dtsch. Chem. Ges. 54, 740 ff., 1921, Alfred Stock and Karl Somieski describe the immediate reaction of monochlorosilane gas and ammonia gas at room temperature according to equation (1). The reaction proceeds in the presence of excess monochlorosilane to form trisilylamine in quantitative yield. Ammonium chloride precipitates as by-product.
WO 2010/141551 A1 describes the reaction of monochlorosilane with ammonia in the gas phase.
In J. Am. Chem. Soc. 88, 37 ff., 1966, Richard L. Wells and Riley Schaeffer describe the reaction of monochlorosilane with ammonia in the liquid phase. Here, monochlorosilane and ammonia are heated from −196° C. to room temperature. Apart from the formation of trisilylamine according to equation (1), subsequent reactions to form trisilylcyclotrisilazane and polymeric material are observed.
It is an object of the present invention to provide an industrial solution to the preparation of trisilylamine from ammonia and monochlorosilane in the gas phase. This object is achieved by the process described below. A plant in which such a process can be carried out is likewise described below.
The invention provides, in particular, a process for preparing trisilylamine in the gas phase, in which at least the starting materials ammonia and monohalosilane are fed in each case in gaseous form into a reactor, react there to form a product mixture containing trisilylamine and the product mixture is discharged from the reactor after the reaction, characterized in that the product mixture is discharged as a gaseous mixture from the reactor. The gaseous product mixture typically contains trisilylamine, hydrogen halide and ammonia.
In particular, the process of the invention is characterized in that the product mixture in the reactor is essentially free of solid ammonium halide.
In a preferred embodiment of the process of the invention, the temperature of the gas mixture comprising at least the starting materials and/or the product mixture in the reactor is higher than the decomposition temperature of the coproduct of hydrogen halide and ammonia and lower than the decomposition temperature of trisilylamine.
The temperature of the gas mixture in the reactor can be, for example, in the range from 340° C. to 550° C., preferably from 360° C. to 500° C., more preferably from 380° C. to 450° C.
In a preferred embodiment of the process of the invention, an inert gas, preferably nitrogen or argon, is also introduced into the reactor in addition to the introduction of at least the starting materials ammonia and monohalosilane.
The introduction of the gases comprising at least the starting materials ammonia and monohalosilane into the reactor is preferably carried out jointly. Particular preference is given to the gases being mixed in a mixer to form a homogeneous gas mixture before introduction into the reactor. Here, the inert gas can optionally be mixed, preferably homogeneously, into the gas mixture.
In a preferred embodiment of the process of the invention, the gases introduced together are heated to a temperature which is higher than the decomposition temperature of the coproduct of hydrogen halide and ammonia and lower than the decomposition temperature of trisilylamine before introduction. This can prevent solid ammonium halide being formed as by-product of the reaction between the starting materials ammonia and monohalosilane in the mixer or in the feed lines before reaching the reactor.
In a preferred embodiment of the process of the invention, the product mixture discharged from the reactor contains ammonia which together with hydrogen halide is precipitated in solid form as coproduct after discharge from the reactor. The precipitation preferably occurs in a precipitation vessel downstream of the reactor.
In a preferred embodiment of the process of the invention, the coproduct of hydrogen halide and ammonia precipitates in solid form on the surface of the wall of the precipitation vessel which comes into contact with the product mixture. To promote this precipitation, it is advantageous for at least the surface of the wall which comes into contact with the product mixture to have a temperature lower than the decomposition temperature of the coproduct of hydrogen halide and ammonia and a temperature higher than the boiling point of trisilylamine.
In an alternative embodiment of the process of the invention, the coproduct of hydrogen halide and ammonia does not precipitate on the surface of the wall of the precipitation vessel which comes into contact with the product mixture. In this case, it is advantageous for at least the surface of the wall which comes into contact with the product mixture to be heated to a temperature which is at least 200° C. but lower than the decomposition temperature of trisilylamine.
In a preferred embodiment of the process of the invention, the precipitation of the coproduct is brought about by cooling of the product mixture. Cooling can, for example, be effected by mixing an inert gas having a sufficiently low temperature into the product mixture before, during or after introduction into the precipitation vessel. Nitrogen or argon is preferably used as inert gas.
The coproduct which has been precipitated in solid form from the remaining gaseous product mixture is preferably filtered out by means of a filter.
In an alternative embodiment of the process of the invention, the coproduct which has precipitated in solid form can be removed from the remaining gaseous product mixture by means of a cyclone. In this case in particular, preference is given to the flow velocity in the cyclone being increased by additional introduction of an inert gas into the reactor. As an alternative or in addition, the flow velocity in the cyclone can be increased by mixing an inert gas having a sufficiently low temperature into the product mixture before, during or after introduction of the latter into the precipitation vessel. Here too, nitrogen or argon is preferably used as inert gas.
In a preferred embodiment of the process of the invention, the trisilylamine is condensed out from the product mixture. It can subsequently be purified by distillation.
In a variant of the process of the invention, the starting material monohalosilane can be obtained from dihalosilane and monosilane in a preceding synproportionation. Here, the monosilane is preferably used in a stoichiometric excess.
The invention also provides a plant for preparing trisilylamine in the gas phase, which comprises:
The above-described plant of the invention can be extended in such a way that the plant additionally comprises one, more than one or all of the following components:
In a preferred embodiment of the plant of the invention, the reactor can be heated and/or cooled to a temperature which is higher than the decomposition temperature of the coproduct of hydrogen halide and ammonia and lower than the decomposition temperature of trisilylamine.
Preference is likewise given to at least the surface of the wall of the precipitation vessel which comes into contact with the product mixture being able to be heated to a temperature of at least 200° C.
In a variant of the plant of the invention, it is possible to provide a plurality of precipitation vessels which are connected in parallel and can be operated simultaneously or alternately and can be individually taken out of operation for the purposes of removing precipitated coproduct or for the purposes of other maintenance while the remainder of the plant continues to operate.
The plant according to the invention shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2011 075 974.3 | May 2011 | DE | national |
This application is a divisional application of prior U.S. application Ser. No. 14/117,925, filed Nov. 15, 2013, the disclosure of which is incorporated herein by reference in its entirety. The parent application is the National stage of PCT/EP2012/57634, filed Apr. 26, 2012, the disclosure of which is incorporated herein by reference in its entirety. The parent application claims priority to German Application No. 102011075974.3, filed May 17, 2011, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 14117925 | Nov 2013 | US |
Child | 14744208 | US |