PLANT METABOLITE-MEDIATED INDUCTION OF BIOFILM FORMATION IN SOIL BACTERIA TO INCREASE BIOLOGICAL NITROGEN FIXATION AND PLANT NITROGEN ASSIMILATION

Information

  • Patent Application
  • 20230257758
  • Publication Number
    20230257758
  • Date Filed
    July 13, 2021
    3 years ago
  • Date Published
    August 17, 2023
    a year ago
Abstract
The present disclosure provides methods for increasing the yield of grain crops grown under reduced inorganic nitrogen conditions.
Description
REFERENCE TO AN ELECTRONIC SEQUENCE LISTING

The contents of the electronic sequence listing (081906-1252964_SL.txt; Size: 610,655 bytes; and Date of Creation: Dec. 2, 2022) is herein incorporated by reference in its entirety.


BACKGROUND OF THE INVENTION

In the soil, plants are constantly exposed to a microbe-rich environment that can be beneficial or detrimental to plant growth. When potentially compatible bacterial partners sense plant (host) signals, an extensive, multiple stage, chemical communication is established to develop a successful plant-microbe interaction (1, 2). By contrast, plants have unique defense mechanisms to fight pathogen infections, and the arms race between host plants and pathogens rapidly drives the coevolution of plant resistance genes and pathogen avirulence effectors (3, 4). The adaptation of plants to such environments involves shaping their microbiota through the action of root exudates (5). It was estimated that plants extrude up to 20% of their fixed carbon in exchange for benefits such as acquisition of phosphorus and nitrogen, defense against biotic and abiotic stresses (6, 7).


The best-characterized example of symbiosis between plant and bacteria is the association of legumes and nitrogen fixation rhizobia, with the characteristic formation of root nodules. The nodule is the main organ for nitrogen fixation and its formation requires common symbiotic pathways (1, 2). In the soil, Rhizobia sense the host chemical signals (for example, flavonoids) and further activate the expression of nod genes through the nodD-flavonoids interaction. Nod gene-encoded lipochitooligosaccharides (LCDs) can be recognized by the LysM receptor kinase, located at the plasma membrane of the legume root, and calcium spiking can be triggered in the nucleus. The calcium signal is decoded by Ca2+/CaM-dependent protein kinases (CCaMK) and the phosphorylation of the transcription factor CYCLOPS. A set of other transcription factors is then activated for the regulation of the curling of the host's root hairs and the growth of an infection thread, leading to the development of nodules (2, 8).


The legume-rhizobium symbiosis has a very strict specificity, such that each legume can interact with only a specific group of rhizobia and vice versa (9). This narrowed host range restricts the application of rhizobia to other important non-leguminous crops such as rice, wheat, or corn. On the other hand, non-leguminous crops may form mutualistic relationships with other plant growth promoting bacteria (PGPB) and benefit from their partners for their nitrogen needs. Nitrogen derived from air (Ndfa), estimated by 15N enrichment experiments, showed that biological nitrogen fixation (BNF) can contribute between 1.5˜21.0% of the total nitrogen requirement of rice, depending on the genotypes (10). Interestingly, the common symbiotic pathway seems to not be required for such interactions, at least for the case of Azoarcus sp.-rice interactions (11). How such mutualistic relationships are established or regulated remain to be investigated.


Biofilms are essential for optimal colonization of host plant and contribute to nitrogen fixation. Biofilms are often seeded by “aggregates” that are embedded in a self-produced matrix of extracellular polymeric substances (EPS) containing polysaccharides, proteins, lipids, and extracellular DNA (12). The matrix provides shelter and nutrients for the bacteria, and it contributes to tolerance/resistance toward antimicrobial compounds. In addition, biofilms enable effective interactions by chemical communication (quorum sensing) to remodel the soil bacterial community dynamically, making biofilms one of the most successful modes of life on earth (13). In some cases, biofilm formation is indispensable for a successful bacterial colonization. For example, the Gluconacetobacter diazotrophicus mutant MGD, which is defective in polysaccharide production, cannot form biofilm (does not produce EPS) and cannot attach to plant root surfaces nor colonize endophytically the roots (14).


The formation of the EPS matrix of biofilms also generates heterogeneity, including the establishment of stable gradients of nutrients, pH, and redox conditions. More importantly, because of the decreased oxygen diffusion across bacterial biofilms, free-living nitrogen-fixing bacteria (Azospirillum brasilense, Pseudomonas stutzeri, etc) are able to fix nitrogen under natural aerobic conditions (15), since the bacterial nitrogenase is protected from oxygen-induced damage due to the low oxygen concentration at the bacterial surface.


Flavonoids are a group of metabolites associated with cell signaling pathways, responses to microorganisms, and, in general, are correlated with the response of plants to oxidants. Flavonoids consist of benzene rings connected by a short carbon chain (3-4 carbons). Flavonoids comprise six major subtypes, including chalcones, flavones, isoflavonoids, flavanones, anthoxanthins, and anthocyanins (often responsible for the red/violet color of certain plant organs).


There is a need for new methods for developing crop plants with increased ability to fix atmospheric nitrogen, e.g., to allow them to grow under reduced inorganic nitrogen conditions. The present disclosure satisfies this need and provides other advantages as well.


BRIEF SUMMARY OF THE INVENTION

The present disclosure provides methods and compositions for increasing the ability of plants to assimilate atmospheric nitrogen, in particular by modifying the plants such that they produce increased levels of flavones. The flavones can be exuded by the roots of the plant, inducing increased biofilm formation and N-fixation by bacteria in the soil.


In one aspect, the present disclosure provides a method of increasing the ability of a crop plant to assimilate atmospheric nitrogen, the method comprising modifying the expression of a gene involved in flavone biosynthesis or degradation in one or more cells of the plant such that the plant produces an increased amount of one or more flavones, wherein the one or more flavones are exuded from the plant's roots.


In some embodiments of the method, the one or more flavones induces biofilm formation in N-fixing bacteria present in the soil in proximity to the plant's roots. In some embodiments, the biofilm formation leads to an increase in the ability of the bacteria to fix atmospheric nitrogen, and wherein the fixed atmospheric nitrogen is assimilated by the plant. In some embodiments, the at least one of the one or more flavones are glycosylated. In some embodiments, the one or more flavones comprise apigenin, apigenin-7-glucoside, or luteolin.


In some embodiments, the expression of the gene in the one or more cells of the plant is modified by editing an endogenous copy of the gene. In some such embodiments, the endogenous copy of the gene is modified by introducing into one or more cells of the plant a guide RNA targeting the gene and an RNA-guided nuclease. In some embodiments, the method further comprises introducing into the one or more cells a donor template comprising sequences homologous to the genomic region surrounding the target site of the guide RNA, wherein the RNA-guided nuclease cleaves the DNA at the target site and the DNA is repaired using the donor template. In some embodiments, the RNA-guided nuclease is Cas9 or Cpf1.


In some embodiments, the endogenous copy of the gene is modified so as to reduce or eliminate its expression. In some such embodiments, the endogenous copy of the gene is deleted. In some embodiments, the gene is CYP 75B3 or CYP 75B4, or a homolog or ortholog thereof. In some embodiments, the gene comprises a nucleotide sequence that is substantially identical (sharing at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more identity) to any one of SEQ ID NOS: 2, 4, 6 or 8, or encodes a polypeptide comprising an amino acid sequence that is substantially identical (sharing at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more identity) to any one of SEQ ID NOS: 1, 3, 5, 7, or 14-120.


In some embodiments, the guide RNA comprises a target sequence that is substantially identical (e.g., comprising 0, 1, 2, or 3 mismatches) to any one of SEQ ID NOS: 11-13. In some embodiments, the guide RNA comprises a target sequence that is substantially identical (e.g., comprising 0, 1, 2, or 3 mismatches) to a sequence within SEQ ID NO: 9 or SEQ ID NO:10.


In some embodiments, the endogenous copy of the gene is modified so as to increase its expression. In some such embodiments, the endogenous copy of the gene is modified by replacing the endogenous promoter with a heterologous promoter. In some embodiments, the heterologous promoter is an inducible promoter. In some embodiments, the heterologous promoter is a constitutive promoter. In some embodiments, the heterologous promoter is a tissue-specific promoter. In some embodiments, the heterologous promoter is a root-specific promoter. In some embodiments, the gene is CYP 93G1 or a homolog or ortholog thereof. In some embodiments, the gene encodes a polypeptide comprising an amino acid sequence that is substantially identical (sharing at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more identity) to any one of SEQ ID NOS: 121-145.


In some embodiments, the method further comprises generating a stable plant line from the one or more cells of the plant. In some embodiments, the crop plant is a grain crop. In some embodiments, the grain crop is rice. In some embodiments, the crop plant is selected from the group consisting of corn, wheat, rice, soy, cotton, canola, and sugarcane.


In another aspect, the present disclosure provides a genetically modified crop plant produced using the method of any one of the herein-described methods.


In another aspect, the present disclosure provides a genetically modified plant comprising: i) a mutation or deletion in a CYP75B3 or CYP75B4 gene, or homolog or ortholog thereof, that causes a reduced amount of CYP75B3 or CYP75B4 enzyme and/or enzymatic activity compared to a wild-type plant without the mutation or deletion in the CYP75B3 or CYP75B4 gene; or ii) an expression cassette comprising a polynucleotide encoding a CYP 93G1 gene, or a homolog or ortholog thereof, operably linked to a promoter, such that the plant comprises an increased amount of CYP93G1 enzyme and/or enzymatic activity compared to a wild-type plant without the expression cassette; wherein the genetically modified crop plant produces an increased amount of one or more flavones as compared to a wild-type plant that is not genetically modified, wherein the one or more flavones are exuded from the genetically modified crop plant's roots.


In some embodiments, the plant is selected from the group consisting of corn, wheat, rice, soy, cotton, canola, and sugarcane.


In another aspect, the present disclosure provides a method of increasing the assimilation of atmospheric nitrogen in a grain crop plant grown under reduced inorganic nitrogen conditions, the method comprising: providing a genetically modified crop plant in which the expression of a gene involved in flavone biosynthesis or degradation has been modified in one or more cells such that the roots of the plant exude increased amounts of one or more flavones as compared to a wild-type plant; and growing the plant in soil comprising an amount of inorganic nitrogen that is lower than a standard or recommended amount for the crop plant.


In some embodiments of the method, the crop plant is rice, and the amount of inorganic nitrogen in the soil is less than 50 ppm. In some such embodiments, the amount of inorganic nitrogen in the soil is about 25 ppm. In some embodiments, the genetically modified plant is any of the herein-described plants. In some embodiments, N2-fixing bacteria in the soil in which the genetically modified plant is grown show greater biofilm formation than control N2-fixing bacteria in soil in which a wild-type plant is grown. In some embodiments, N2-fixing bacteria in the soil in which the genetically modified plant is grown show greater adherence to the root surface and/or inside the root tissue of the plant than control N2-fixing bacteria in soil in which a wild-type plant is grown. In some embodiments, the crop plant is a grain crop, and wherein the number of tillers, tassels, or spikes in the genetically modified plant grown in the soil comprising the reduced amount of inorganic nitrogen is at least 30% greater than in a wild-type plant grown in equivalent soil. In some embodiments, the number of grain or seed-bearing organs and/or the seed yield in the genetically modified plant grown in the soil comprising the reduced amount of inorganic nitrogen is at least 30% greater than in a wild-type plant grown in equivalent soil. In some embodiments, the genetically modified plant grown in the soil comprising the reduced amount of inorganic nitrogen assimilates at least twice the amount of atmospheric nitrogen than the amount assimilated by a wild-type plant grown in equivalent soil.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1. Workflow for chemical screening.



FIG. 2. Biofilm formation of Glucanoacetobacter diazotrophicus incubated with wild type rice (Oryza sativa Kitaake) root exudates supplemented with FL-500 chemical library.



FIG. 3. Chemical screening identifies apigenin and luteolin as biofilm inducers for the nitrogen fixation bacteria Gluconacetobacter diazotrophicus. Biofilm formation of Glucanoacetobacter diazotrophicus was assessed incubated with wild-type rice (Oryza sativa Kitaake) root exudates supplemented with 2 μl of each of 500 flavonoid and derivated compounds of a chemical library (FL-500, TimTec) and 700 compounds (natural and synthetic) (NPDepo library). Chemical screening was performed in a 96-well plate with each well containing: 198 μL of the Kitaake exudate and 2 μL of the 10 mM compound from the chemical libraries. An equal volume (2 μL) of DMSO was added to each well and served as the negative control. Gluconacetobacter diazotrophicus was added to the final OD600=0.01 to each well and incubated in a shaker at 150 rpm, 28° C. for 3 days before biofilm quantification by crystal violet staining. The value of each well in biofilm quantification was normalized to that of the DMSO control in each plate (DMSO=1). The heatmap was generated by the mean value of 3 biological replicates for each compound.



FIG. 4. Chemical structures and hierarchical clustering of the top 21 positive regulators of biofilm based on pairwise compound similarities defined using the Atom Pair descriptors and Tanimoto coefficiency (chemmine.ucr.edu/). The chemicals are also clustered into 3 groups with different colors by the K-Means algorithm. MW: molecular weight.



FIGS. 5A-5C. Effects of the addition of luteolin or apigenin to biofilm formation in Glucanoacetobacter diazotrophicus. FIG. 5A: Effects of the addition of luteolin to biofilm formation in a Glucanoacetobacter diazotrophicus suspension. FIG. 5B: Effects of the addition of the aglycone or the 0-glucoside of apigenin to biofilm formation in a Glucanoacetobacter diazotrophicus suspension FIG. 5C: Apigenin and apigenin-7-O-glucoside promote nitrogen fixation in Glucanoacetobacter diazotrophicus as demonstrated by the acetylene reduction assay (ARA).



FIG. 6. Biosynthetic pathways of flavonoids in rice



FIG. 7. Effect of natural flavonoids on biofilm formation in Glucanoacetobacter diazotrophicus. Induction of biofilm production in Gluconacetobacter diazotrophicus exposed to Oryza sativa root exudates supplemented with 100 mM of the indicated compounds. Controls are exudates without compound and exudates with DMSO.



FIG. 8. Induction of biofilm production in facultative N2-fixing bacteria.



FIGS. 9A-9C. Effect of luteolin on biofilm production in Azoarcus sp. CIB (FIG. 9A), Azoarcus communis (FIG. 9B), and Burkholderia vietnamensis (FIG. 9C).



FIG. 10. Biosynthetic pathways of flavone-derived metabolites in rice. Apigenin, Luteolin, and chrysoeriol are synthesized from Naringenin. Apigenin and Luteolin are conjugated to their -5-O- and -7-0-glycosylated forms.



FIG. 11. Effects of Naringenin, Apigenin, Apigenin-7-Glucoside, and Luteolin on biofilm formation on Gluconacetobacter diazotrophicus. Values are the Mean±SD (n=6).



FIGS. 12A-12C. Effects of flavones (Naringenin, Apigenin, Apigenin-7-Glucoside) on bacterium N2-fixation. FIG. 12A: Activity was assessed by measuring the conversion of acetylene to ethylene by Gas Chromatography. FIG. 12B: Assimilation of Nitrogen by Kitaake rice plants, incubated with Glucanoacetobacter in the absence (DMSO) or presence of Apigenin. Nitrogen assimilation was assessed by feeding 15N2 and measuring assimilated inorganic 15N in leaf tissues after 2 weeks, using Mass Spectroscopy. FIG. 12C: Kitaake rice roots incubated with Glucanoacetobacter in the absence (DMSO) or presence of Apigenin. Adherence of bacteria to the root surface and inside the root tissue can be seen in the presence of Apigenin (Bacteria constitutively expressing a fluorescent marker).



FIG. 13. Glucanoacetobacter detected in the intracellular space of rice roots.



FIG. 14. Silencing of CYP75B3/B4 (Os10g17260/Os16974) would decrease the synthesis of Luteolin, increasing the concentration of apigenin and Apigenin-glucoside derivatives.



FIGS. 15A-15C. Apigenin and apigenin-conjugates contents in roots and root exudates of wild-type (Kitaake) and cyp75b3/b4 homozygous knockouts (CRISPR lines #87 and #104). FIG. 15A: Relative gene expression, as measured by qRT-PCR, of genes encoding CYP75B3 and CYP75B4 in wild-type (Kitaake) and T1 homozygous CRISPR/Cas9-silenced cyp75bB3/and cyp75bB4 lines (CRISPR lines #87 and #104). FIG. 15B: Amount of Apigeninapigenin, Apigeninapigenin-7-Glucoronide and Apigeninapigenin-7-Glucoside in root extracts of wild-type and cyp75b3/b4 lines. FIG. 15C: Amount of apigenin, apigenin-7-Glucoronide and apigenin-7-Glucoside in root exudates of wild-type and cyp75b3/b4 lines. Values are the Mean±S.E (n=5). *P<0.05, **P<0.01 and ***P<0.001 (Student t-test compared with Kitaake control).



FIGS. 16A-16D. cyp75b3/b4-silenced lines induce enhanced biofilm production in bacteria and induce nitrogen fixation in rice plants. Root extracts (FIG. 16A) and root exudates (FIG. 16B) from cyp75b3/b4-silenced rice lines (CRISPR) generate enhanced biofilm production in Gluconacetobacter diazotrophicus. Values are the Mean±S.D. (n=4-6). ** and *** indicate P<0.01 and ***P<0.001, respectively (Student t-test compared with Kitaake control). Root exudate of the CRISPR line induced higher expression of the gumD gene (responsible for the first step in exopolysaccharide (EPS) production of biofilm in Gluconacetobacter diazotrophicus). FIG. 16C: The Gluconacetobacter diazotrophicus was double-labelled by a constitutive expressed mcherry (genpro::mcherry) and the promoter of the gumD gene-driven GFP (gumDpro::GFP). FIG. 16D: The CRISPR line incorporated more nitrogen from the air (delta 15N) when grown in the greenhouse at both 8 weeks and 16 weeks after germination. Kitaake control and the CRISPR lines were grown in soil for the indicated time. A 10 ml-segment of the root (5 cm below the root-shoot junction) was harvested, after shaking off the loosely attached soil, and sealed in a 20 ml glass tube. Soil from the pots was sampled as bulk soil control. Ten ml of the air was then replaced by 15N2 and the tube with each individual sample was incubated at 28° C. for three days. Material from the tubes was dried at 60° C. for seven days before 15N analysis at UC Davis Stable Isotope Facility. * and *** indicate P<0.05 and P<0.001, respectively (Student t-test compared with Kitaake control).



FIGS. 17A-17D. Wild Type Kitaake rice and cyp75b3/b4 knockout lines were grown in the greenhouse and supplemented with only 30% of the Nitrogen (25 ppm) needed to attain full growth. FIG. 17A: Knockout plants displayed enhanced growth and seed yield. Although the knockout plants were somewhat shorter than the wild-type plants (FIG. 17B), they displayed an increased number of panicles/plant (FIG. 17C) and increased seeds/plant (FIG. 17D).



FIG. 18. Chromosome region of CYP75B3 and the (gRNA) target sequences. Figure discloses SEQ ID NOS 146-151, 11, 13 and 12, respectively, in order of appearance.





DETAILED DESCRIPTION OF THE INVENTION
1. Introduction

The present disclosure provides methods for generating and using genetically modified plants to induce biofilm formation in N-fixing bacteria, increasing their ability to fix atmospheric nitrogen that is then assimilated by the plants, and thereby allowing them to grow efficiently under reduced inorganic nitrogen conditions. The disclosure is based on the surprising discovery that increasing the production of flavones such as apigenin in the roots of the plants allows for the enhanced growth of the plants under such reduced nitrogen conditions. Without being bound by the following theory, it is believed that the flavones produced by the present plants are secreted into the soil and enhance biofilm formation by N-fixing bacteria in the soil. It is believed that the increased biofilm formation allows the enhanced interaction of the plant roots with the N-fixing bacteria, allowing nitrogen uptake by the plant and efficient growth even in the presence of reduced inorganic nitrogen in the soil.


2. Definitions

As used herein, the following terms have the meanings ascribed to them unless specified otherwise.


The terms “a,” “an,” or “the” as used herein not only include aspects with one member, but also include aspects with more than one member. For instance, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a cell” includes a plurality of such cells and reference to “the agent” includes reference to one or more agents known to those skilled in the art, and so forth.


The terms “about” and “approximately” as used herein shall generally mean an acceptable degree of error for the quantity measured given the nature or precision of the measurements. Typically, exemplary degrees of error are within 20 percent (%), preferably within 10%, and more preferably within 5% of a given value or range of values. Any reference to “about X” specifically indicates at least the values X, 0.8X, 0.81X, 0.82X, 0.83X, 0.84X, 0.85X, 0.86X, 0.87X, 0.88X, 0.89X, 0.9X, 0.91X, 0.92X, 0.93X, 0.94X, 0.95X, 0.96X, 0.97X, 0.98X, 0.99X, 1.01X, 1.02X, 1.03X, 1.04X, 1.05X, 1.06X, 1.07X, 1.08X, 1.09X, 1.1X, 1.11X, 1.12X, 1.13X, 1.14X, 1.15X, 1.16X, 1.17X, 1.18X, 1.19X, and 1.2X. Thus, “about X” is intended to teach and provide written description support for a claim limitation of, e.g., “0.98X.”


The “CRISPR-Cas” system refers to a class of bacterial systems for defense against foreign nucleic acids. CRISPR-Cas systems are found in a wide range of eubacterial and archaeal organisms. CRISPR-Cas systems fall into two classes with six types, I, II, III, IV, V, and VI as well as many sub-types, with Class 1 including types I and III CRISPR systems, and Class 2 including types II, IV, V and VI; Class 1 subtypes include subtypes I-A to I-F, for example. See, e.g., Fonfara et al., Nature 532, 7600 (2016); Zetsche et al., Cell 163, 759-771 (2015); Adli et al. (2018). Endogenous CRISPR-Cas systems include a CRISPR locus containing repeat clusters separated by non-repeating spacer sequences that correspond to sequences from viruses and other mobile genetic elements, and Cas proteins that carry out multiple functions including spacer acquisition, RNA processing from the CRISPR locus, target identification, and cleavage. In class 1 systems these activities are effected by multiple Cas proteins, with Cas3 providing the endonuclease activity, whereas in class 2 systems they are all carried out by a single Cas, Cas9. Endogenous systems function with two RNAs transcribed from the CRISPR locus: crRNA, which includes the spacer sequences and which determines the target specificity of the system, and the transactivating tracrRNA. Exogenous systems, however, can function which a single chimeric guide RNA that incorporates both the crRNA and tracrRNA components. In addition, modified systems have been developed with entirely or partially catalytically inactive Cas proteins that are still capable of, e.g., specifically binding to nucleic acid targets as directed by the guide RNA, but which lack endonuclease activity entirely, or which only cleave a single strand, and which are thus useful for, e.g., nucleic acid labeling purposes or for enhanced targeting specificity. Any of these endogenous or exogenous CRISPR-Cas system, of any class, type, or subtype, or with any type of modification, can be utilized in the present methods. In particular, “Cas” proteins can be any member of the Cas protein family, including, inter alia, Cas3, Cas5, Cas6, Cas7, Cas8, Cas9, Cas10, Cas12 (including Cas12a, or Cpf1), Cas13, Cse1, Cse2, Csy1, Csy2, Csy3, GSU0054, Csm2, Cmr5, Csx11, Csx10, Csf1, Csn2, Cas4, C2c1, C2c3, C2c2, and others. In particular embodiments, Cas proteins with endonuclease activity are used, e.g., Cas3, Cas9, or Cas12a (Cpf1).


“Flavones” are a class of molecules in the flavonoid family comprising a backbone of 2-phenylchromen-4-one. Any flavone produced by a grain crop plant used in the invention is encompassed by the term, including derivatives such as glycosylated forms of the flavones. Flavones of the invention include, but are not limited to, apigenin, luteolin, tricin, chrysoeriaol, apigenin-5-O-glucoside, apigenin-7-O-glucoside, luteolin-5-O-glucoside, or luteolin-7-O-glucoside.


“CYP75B3” and “CYP75B4” refer to genes, and homologs, orthologs, variants, derivatives, and fragments thereof, that encode the flavonoid 3′-monooxygenase CYP75B3 and CYP75B4 enzymes, which catalyze, e.g., the 3′ hydroxylation of the flavonoid B-ring to the 3′,4′-hydroxylated state, the 3′ hydroxylation of apigenin to form luteolin, the conversion of naringenin to eriodictyol, the conversion of kaempferol to quercetin, and other reactions. See, e.g., UniProt Refs Q7G602 and Q8LM92, the entire disclosures of which are herein incorporated by reference.


“CYP93G1” refers to a gene, and homologs, orthologs, variants, derivatives, and fragments thereof, that encodes cytochrome P450 93G1, an enzyme that functions as a flavone synthase II (FNSII) that catalyzes the direct conversion of flavanones to flavones. See, e.g., UniProt Ref Q0JFI2, the entire disclosure of which is herein incorporated by reference.


The term “nucleic acid sequence encoding a polypeptide” refers to a segment of DNA, which in some embodiments may be a gene or a portion thereof, that is involved in producing a polypeptide chain (e.g., an RNA-guided nuclease such as Cas9). A gene will generally include regions preceding and following the coding region (leader and trailer) involved in the transcription/translation of the gene product and the regulation of the transcription/translation. A gene can also include intervening sequences (introns) between individual coding segments (exons). Leaders, trailers, and introns can include regulatory elements that are necessary during the transcription and the translation of a gene (e.g., promoters, terminators, translational regulatory sequences such as ribosome binding sites and internal ribosome entry sites, enhancers, silencers, insulators, boundary elements, replication origins, matrix attachment sites and locus control regions, etc.). A “gene product” can refer to either mRNA or other RNA (e.g. sgRNA) or protein expressed from a particular gene.


The terms “expression” and “expressed” refer to the production of a transcriptional and/or translational product, e.g., of a nucleic acid sequence encoding a protein (e.g., a guide RNA or RNA-guided nuclease). In some embodiments, the term refers to the production of a transcriptional and/or translational product encoded by a gene (e.g., a gene encoding a protein) or a portion thereof. The level of expression of a DNA molecule in a cell may be assessed on the basis of either the amount of corresponding mRNA that is present within the cell or the amount of protein encoded by that DNA produced by the cell.


The term “recombinant” when used with reference, e.g., to a polynucleotide, protein, vector, or cell, indicates that the polynucleotide, protein, vector, or cell has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. For example, recombinant polynucleotides contain nucleic acid sequences that are not found within the native (non-recombinant) form of the polynucleotide.


As used herein, the terms “polynucleotide,” “nucleic acid,” and “nucleotide,” refer to deoxyribonucleic acids (DNA) or ribonucleic acids (RNA) and polymers thereof. The term includes, but is not limited to, single-, double-, or multi-stranded DNA or RNA, genomic DNA, cDNA, and DNA-RNA hybrids, as well as other polymers comprising purine and/or pyrimidine bases or other natural, chemically modified, biochemically modified, non-natural, synthetic, or derivatized nucleotide bases. Unless specifically limited, the term encompasses nucleic acids containing known analogs of natural nucleotides that have similar binding properties as the reference nucleic acid. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions), homologs, and complementary sequences as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); and Rossolini et al., Mol. Cell. Probes 8:91-98 (1994)).


The terms “vector” and “expression vector” refer to a nucleic acid construct, e.g., plasmid or viral vector, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid sequence (e.g., a guide RNA and/or RNA-guided nuclease) in a cell. In some embodiments, a vector includes a polynucleotide to be transcribed, operably linked to a promoter, e.g., a constitutive or inducible promoter. Other elements that may be present in a vector include those that enhance transcription (e.g., enhancers), those that terminate transcription (e.g., terminators), those that confer certain binding affinity or antigenicity to a protein (e.g., recombinant protein) produced from the vector, and those that enable replication of the vector and its packaging (e.g., into a viral particle). In some embodiments, the vector is a viral vector (i.e., a viral genome or a portion thereof).


The terms “polypeptide,” “peptide,” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. All three terms apply to amino acid polymers in which one or more amino acid residues are an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymers. As used herein, the terms encompass amino acid chains of any length, including full-length proteins, wherein the amino acid residues are linked by covalent peptide bonds.


3. Generating Crop Plants with Increased N2 Assimilation
Plants

The present methods can be used to modify any plant, including monocots and dicots, grains, trees, and vegetable crops, in order to increase its ability to interact with nitrogen-fixing bacteria in the soil. In particular embodiments, the plant is a crop species such as corn, wheat, rice, soy, cotton, canola, or sugarcane. In particular embodiments, the crop plant is a grain crop. Crops that can be used include, but are not limited to, cereals, oilseeds, pulses, hays, and others. A non-limiting list of cereals that can be used includes rice (e.g., Oryza, Zizani spp.), wheat (e.g., Triticum aestivum), barley (e.g., Hordeum vulgare), oat (e.g., Avena sativa), rye (e.g., Secale cereal), triticale (e.g., Triticosecale spp.), corn (e.g., Zea mays), sorghum Sorghum spp., millet (e.g., Digitaria, Echinochloa, Eleusine, Panicum, Setaria, Pennisetum, spp.), canary seed (e.g., Phalaris canariensis), teff (e.g., Eragrostis abyssinica), and Job's Tears (e.g., Coix lacryma-jobi). In particular embodiments, the plant is rice, e.g., Oryza sativa. A non-limiting list of oilseeds includes soybeans (e.g., Glycine spp.), peanuts (e.g., Arachis hypogaea), canola and mustard (e.g., Brassica spp., Brassica napus), sunflower, (e.g., Helianthus annuus), safflower (e.g., Carthamus spp., and flax (e.g., Linum spp.). A non-limiting list of pulses include pinto beans (e.g., Phaseolus vulgaris), lima beans (e.g., Phaseolus lunatus), mungo beans (e.g., Phaseolus mung), adzuki beans (e.g., Phaseolus angularis), chickpeas (e.g., Cicer arietinum), field, green and yellow peas (e.g., Pisum spp.), lentils (e.g., Lens spp.), fava beans (e.g., Vicia faba), and others including Dolichos, Cajanus, Vigna, Pachyrhizus, Tetragonolobus, spp. A non-limiting list of hay and pasture plants includes grasses such as Meadow Foxtail (e.g., Alopecurus pratensis), Brome (e.g., Bromus spp.), Orchard Grass (e.g., Dactylis glomerata), Fescue (e.g., Festuca spp.), rye grass (e.g., Lolium spp.), reed canary grass (e.g., Phalaris arundinacea), Kentucky blue grass (e.g., Poa pratensis), Timothy (e.g., Phleum pretense), and redtop (e.g., Agropyron spp.), as well as legumes such as alfalfa and yellow trefoil (e.g., Medicago spp., Medicago sativa), clovers (Trifolium spp.), birdsgoot trefoil (e.g., Lotus corniculatus), and vetch (e.g., Vicia spp.). Other plants that can used includes buckwheat, tobacco, hemp, sugar beets, and amaranth. In some embodiments, the plant is a shrub such as cotton (e.g., Gossypium hirsutum, Gossypium barbadense.) In some embodiments, the plant is a grass such as sugarcane (e.g., Saccharum officinarum). A non-limiting list of plants that can be used is shown, e.g., in Tables 1 and 2.


In some embodiments, the plant is a tree. Any tree can be modified using the present methods, including angiosperms and gymnosperms. A non-limiting list of trees includes, e.g., cycads, ginkgo, conifers (e.g., araucarias, cedars, cypresses, Douglas firs, firs, hemlocks, junipers, larches, pines, podocarps, redwoods, spruces, yews), monocotyledonous trees (e.g., palms, agaves, aloes, dracaenas, screw pines, yuccas) and dicotyledons (e.g., birches, elms, hollies, magnolias, maples, oaks, poplars, ashes, and willows). In a particular embodiment, the tree is a poplar (e.g., cottonwood, aspen, balsam poplar), e.g., Populus alba, Populus grandidentata, Populus tremula, Populus tremuloides, Populus deltoids, Populus fremontii, Populus nigra, Populus angustifolia, Populus balsamifera, Populus trichocarpa, or Populus heterophylla.


In some embodiments, the plant is a vegetable. Vegetables that can be used include, but are not limited to, Arugula (Eruca sativa), Beet (Beta vulgaris vulgaris), Bok choy (Brassica rapa), Broccoli (Brassica oleracea), Brussels sprouts (Brassica oleracea), Cabbage (Brassica oleracea), Celery (Apium graveolens), Chicory (Cichorium intybus), Chinese mallow (Malva verticillata), Garland Chrysanthemum (Chrysanthemum coronarium), Collard greens (Brassica oleracea), Common purslane (Portulaca oleracea), Corn salad (Valerianella locusta), Cress (Lepidium sativum), Dandelion (Taraxacum officinale), Dill (Anethum graveolens), Endive (Cichorium endivia), Grape (Vitis), Greater plantain (Plantago major), Kale (Brassica oleracea), Lamb's lettuce (Valerianella locusta), Land cress (Barbarea verna), Lettuce (Lactuca sativa), Mustard (Sinapis alba), Napa cabbage (Brassica rapa), New Zealand Spinach (Tetragonia tetragonioides), Pea (Pisum sativum), Poke (Phytolacca Americana), Radicchio (Cichorium intybus), Sorrel (Rumex acetosa), Sour cabbage (Brassica oleracea), Spinach (Spinacia oleracea), Summer purslane (Portulaca oleracea), Swiss chard (Beta vulgaris cicla), Turnip greens (Brassica rapa), Watercress (Nasturtium officinale), Water spinach (Ipomoea aquatic), and Yarrow (Achillea millefolium). Also included are fruits and flowers such as gourds, squashes, Pumpkins, Avocado, Bell pepper, Cucumber, Eggplant, Sweet pepper, Tomato, Vanilla, Zucchini, Artichoke, Broccoli, Caper, and Cauliflower.


Modifying Flavone Production

In the present methods, the plants are modified to increase the production of one or more flavones, in particular in the roots of the plant. Any flavone that increases biofilm formation in facultative N2-fixing bacteria can be used. In some embodiments, the flavones increased in the plants include apigenin, luteolin, tricin, chrysoeriaol, apigenin-5-O-glucoside, apigenin-7-O-glucoside, luteolin-5-O-glucoside, or luteolin-7-O-glucoside, or combinations thereof. In particular embodiments, the flavone increased in the plant is apigenin, apigenin-5-O-glucoside, or apigenin-7-O-glucoside.


It will be appreciated that, in addition to flavones, other plant molecules can be identified using the herein-described assays that have biofilm-inducing activity, and plants can be generated that produce elevated levels of the molecules. For example, heterooctacyclic compounds, anthraquinones, or other flavonoids can be used. Methods to increase the production of such non-flavone molecules, as described herein for flavones, can be carried out in combination with, or in place of, the present methods to increase the production of flavones, with the effects of the molecules on biofilm formation and/or atmospheric nitrogen fixation assessed, e.g., using any of the methods for detecting and/or quantifying biofilm formation or nitrogen fixation described herein.


In particular embodiments, the modification of the plants involves the upregulation or downregulation of one or more genes encoding enzymes involved in flavone biosynthesis or degradation. The enzymes can be any enzyme that affects the production or degradation of one or more flavones. Some such enzymes, in rice and other plants, are indicated, for example, in FIGS. 6, 10, and 14.


Flavone Synthase (e.g., CYP93G1) Upregulation

In some embodiments, a flavone synthase (e.g., a flavone synthase I or flavone synthase II such as CYP 93G1 (CYP93G1) in rice, or an equivalent flavone synthase, e.g., another CYP 93 or CYP 93G enzyme, or a homolog or ortholog thereof, in another plant species) is upregulated so as to increase the synthesis of, e.g., apigenin from naringenin (see, e.g., Lam et al. (2014) Plant Physiol. 165(3):1315-1327; Du et al. (2009) J. Exper. Bot. 61(4):983-994; Du et al. (2016) PlosOne doi.org/10.1371/journalpone.0165020; the entire disclosure of each of which is herein incorporated by reference in its entirety). CYP93G1 sequences can be found, e.g., at NCBI accession nos. AK100972.1 and UniProt Q0JFI2, and additional information, including information useful for identifying homologs in other species, can be found, e.g., at the Plant Metabolic Network (PMN, plantcyc.org) entry for CYP93G1. In addition, sequences of suitable CYP93G1 enzymes in diverse species are presented herein as SEQ ID NOS: 121-145.


Such enzymes can be upregulated in any of a number of ways, as described in more detail elsewhere herein. For example, the enzymes can be upregulated by introducing a transgene into the plant encoding any of the herein-described CYP93G1 enzymes, or homologs or orthologs thereof, or derivatives, variants, analogs, or fragments of any of the enzymes, homologs, or orthologs. In some embodiments, a transgene is introduced that encodes any one of SEQ ID NOS:121-145 or a fragment of any one of SEQ ID NOS:121-145, or encodes a polypeptide having at least about 50%, 55%, 60%. 65%. 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more identity to any one of SEQ ID NOS:121-145 or a fragment of any one of SEQ ID NOS:121-145, or any of the genes listed in Table 2. As described in more detail herein, the transgene can be introduced using any of a number of suitable methods, including, e.g., CRISPR-mediated genetic modification. In particular embodiments, the transgene is introduced as an expression cassette, e.g., a coding sequence as described herein, operably linked to a promoter, e.g., a constitutive, inducible, or organ/tissue-specific promoter. A non-limiting list of suitable promoters includes promoters from, e.g., CaMV 35S, Ubi-1, CAM19, MMV, SVBV, nos, ocs, Act1, HSP18.2, Rd29, adh, rbcS-3A, Chn48, PvSR2, cgmt1, HVADhn45, PtDr102, CaPrx, R2329, R2184, OsNAC6, PPP, Zmglp1, PnGLP, PDX1, and others. In particular embodiments, a root-specific promoter is used, including, but not limited to, promoters from TobRB7, rolD, SIREO, CaPrx, 0503g01700, 0502g37190, EgTIP2, ET304, and others.


Hydroxylase (e.g., CYP75B3/B4) Inhibition

In some embodiments, an enzyme, or gene encoding an enzyme, that converts a flavone to another flavone is inhibited. For example, in particular embodiments, apigenin levels are increased by inhibiting a hydroxylase such as CYP 75B3 (or CYP75B3) and/or CYP 75B4 (or CYP75B4) in rice, or an equivalent enzyme, e.g., homolog or ortholog, in another species, which are involved in the conversion of, e.g., apigenin to luteolin (see, e.g., Lam et al. (2019) New Phyt. doi.org/10.1111/nph.15795; Shih et al. (2008) Planta 228:1043-1054; Lam et al. (2015) Plant. Phys. 175:1527-1536; Park et al. (2016) Int. J. Mol. Sci. 17:e1549; the entire disclosure of each of which is herein incorporated by reference in its entirety). The enzymes can be inhibited in any of a number of ways. In some embodiments, the enzymes are inhibited by generating transgenic plants: i) with a deletion or mutation in the CYP75B3/B4 gene that causes decreased or abolished expression of the enzyme; ii) that express an inhibitor of CYP75B3/B4 gene expression (e.g., siRNA, miRNA), or iii) that express an inhibitor of CYP75B3/B4 enzymatic activity (e.g., peptide inhibitor, antibody). In some embodiments, the enzymes are inhibited through the application of an inhibitor, e.g., small molecule inhibitor, to the plants.


The sequence of an exemplary CYP75B3 from Oryza sativa Japonica can be found, e.g., at NCBI accession no. AK064736 and UniProt Q7G602, and additional information, including for identifying homologs in other species can be found, e.g., at the Plant Metabolic Network (PMN) entry for CYP75B3. The sequence of an exemplary CYP75B4 from Oryza sativa Japonica can be found, e.g., at NCBI accession nos. AK070442 and UniProt Q8LM92, and additional information, including information useful for identifying homologs in other species, can be found, e.g., at the Plant Metabolic Network (PMN, plantcyc.org) entry for CYP75B4. Suitable amino acid sequences for CYP75B3/B4 from Oryza sativa japonica and indica are also shown as SEQ ID NOS: 1, 3, 5, 7, and suitable nucleotide sequences are also shown as SEQ ID NOS: 2, 4, 6, and 8. Exemplary amino acid sequences for orthologs in other species are shown, e.g., as SEQ ID NOS: 14-120. Any polypeptide from any plant species comprising at least about 50%, 55%, 60%. 65%. 70%. 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or more identity to any one of SEQ ID NOS:1, 3, 5, 7, 14-120, or a fragment thereof, or any polynucleotide from any plant species comprising at least about 50%, 55%, 60%. 65%. 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or more identity to SEQ ID NO:2, 4, 6, or 8, or a fragment thereof, or encoding any one of SEQ ID NOS:1, 3, 5, 7, 14-120, or a fragment thereof, can be used (e.g., targeted for inhibition) in the present methods, as can any of the orthologs listed in Table 1.


In particular methods, the gene or encoded protein is inhibited using a CRISPR-Cas system, e.g., by introducing a guide RNA targeting the gene of interest (e.g., a CYP75B3/B4 gene), a Cas enzyme such as Cas9 or Cpf1, and a homologous template, in order to inactivate the gene by deleting or mutating it. For example, a CYP75B3 and/or CYP75B4 gene can be targeted by using a guide RNA with a target sequence falling within the genomic locus encoding the enzyme. For example, the guide RNA can have a target sequence comprising any of the sequences, or fragments thereof, shown in FIG. 18 or presented as SEQ ID NOS: 11-13, or having about 50%, 55%, 60%. 65%. 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or more identity to any of the sequences, or fragments thereof, shown in FIG. 18 or presented as SEQ ID NOS: 11-13.


In some embodiments, a CYP75B3 and/or CYP75B4 gene is targeted using a guide RNA with a target sequence located within a genomic sequence shown as SEQ ID NO: 9 or SEQ ID NO:10, located within a genomic sequence corresponding to any of the Gene ID numbers shown in Table 1, or comprising at least about 50%, 55%, 60%. 65%. 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% to any subsequence within SEQ ID NOS: 9 or SEQ ID NO:10 or any of the genomic sequences corresponding to any of the Gene ID numbers shown in Table 1.


A non-limiting list of orthologs from various species, any of which can be inhibited using any of the herein-described methods, can be found, e.g., in the website: bioinformatics.psb.ugent.be/plaza/versions/plaza_v4_5_monocots/gene_families/view/ORTH O04x5M002123, the entire contents of which are herein incorporated by reference. This website provides, e.g., sequence and other genetic information about 119 genes in the ORTHO04x5M002123 family in 32 spermatophyte species, any of which can be inhibited using the present methods. In particular, a non-limiting list of exemplary orthologs that can be inhibited in the present methods is shown in Table 1.









TABLE 1







A non-limiting list of CYP75B3/B4 orthologs from other species.


Sequences and other information for each of the genes can be found,


e.g., at the website: bioinformatics.psb.ugent.be/plaza/versions/


plaza_v4_5_monocots/gene_families/view/ORTHO04x5M002123 and


elsewhere herein, and as SEQ ID NOS: 14-120.










Species
Gene ID








Oryza sativa ssp. indica

OsR498G1018420100




Oryza sativa ssp. indica

OsR498G1018427100




Oryza sativa ssp. japonica

LOC_Os10g16974




Oryza sativa ssp. japonica

LOC_Os10g17260




Triticum aestivum

TraesCS1A02G442200




Triticum aestivum

TraesCS1A02G442300




Triticum aestivum

TraesCS1B02G476400




Triticum aestivum

TraesCS1D02G450100




Triticum aestivum

TraesCS2B02G613200




Triticum aestivum

TraesCS6A02G012600




Triticum aestivum

TraesCS6B02G018800




Triticum aestivum

TraesCS6D02G015200




Triticum aestivum

TraesCS6D02G015300




Triticum aestivum

TraesCS7A02G411700




Triticum aestivum

TraesCS7B02G310900




Triticum aestivum

TraesCS7D02G404900




Zea mays B73

Zm00001d010521




Zea mays B73

Zm00001d017077




Zea mays B73

Zm00001d050955




Zea mays B104

Zm00007a00002679




Zea mays B104

Zm00007a00006475




Zea mays B104

Zm00007a00021951




Zea mays B104

Zm00007a00044616




Zea mays PH207

Zm00008a016611




Zea mays PH207

Zm00008a022212




Zea mays PH207

Zm00008a031477




Triticum turgidum

TRITD1Av1G229990




Triticum turgidum

TRITD1Av1G230000




Triticum turgidum

TRITD2Bv1G262360




Triticum turgidum

TRITD6Av1G001970




Triticum turgidum

TRITD6Bv1G003180




Triticum turgidum

TRITD7Av1G223010




Triticum turgidum

TRITD7Bv1G170910




Setaria italica

Seita.9G242900




Setaria italica

Seita.9G244600




Cenchrus americanus

Pgl_GLEAN_10033465




Cenchrus americanus

Pgl_GLEAN_10033479




Sorghum bicolor

Sobic.004G200800




Sorghum bicolor

Sobic.004G200833




Sorghum bicolor

Sobic.004G200900




Sorghum bicolor

Sobic.004G201100




Sorghum bicolor

Sobic.009G162500




Brachypodium distachyon

Bradi1g17180




Brachypodium distachyon

Bradi1g24840




Brachypodium distachyon

Bradi3g04750




Brachypodium distachyon

Bradi4g16560




Hordeum vulgare

HORVU6Hr1G002400




Gossypium raimondii (the putative

XP_012438857



contributor of the D subgenome to



the economically important fiber-



producing cotton species




Gossypium hirsutum and





Gossypium barbadense.)





Gossypium raimondii

XP_012478317




Gossypium raimondii

KJB51033




Gossypium raimondii

XP_012454458




Gossypium raimondii

XP_012490769




Gossypium hirsutum(90% of the

NP_001314443



world's cotton production)




Gossypium hirsutum

XP_016741685




Gossypium hirsutum

ACY06905




Gossypium hirsutum

NP_001314550




Gossypium hirsutum

NP_001314530




Gossypium hirsutum

ACY06904




Gossypium hirsutum

XP_016710494




Gossypium hirsutum

KAG4120389




Gossypium hirsutum

NP_001314163.1




Gossypium barbadense(5% of the

KAB2053485



world's cotton production)




Gossypium barbadense

KAB1669149




Gossypium barbadense

PPD88185




Gossypium barbadense

PPR81792




Gossypium barbadense

KAB2021362




Gossypium barbadense

KAB2074130




Gossypium barbadense

KAB2074128




Gossypium barbadense

KAB2057053




Gossypium barbadense

KAB2007859




Brassica napus cultivar Darmor_v5

BnaC09g47980D




Brassica napus cultivar Darmor_v5

BnaA10g23330D




Brassica napus cultivar ZS11

BnaA10G0256900ZS




Brassica napus cultivar ZS11

BnaC09G0570900ZS




Brassica napus cultivar Gangan

BnaA10G0251000GG




Brassica napus cultivar Gangan

BnaC09G0516100GG




Brassica napus cultivar Quinta

BnaA10G0248800QU




Brassica napus cultivar Quinta

BnaC09G0534300QU




Brassica napus cultivar Shengli

BnaA10G0220400SL




Brassica napus cultivar Shengli

BnaC09G0396500SL




Brassica napus cultivar Tapidor

BnaA10G0249900TA




Brassica napus cultivar Tapidor

BnaC09G0550200TA




Brassica napus cultivar Westar

BnaA10G0251800WE




Brassica napus cultivar Westar

BnaC09G0543700WE




Brassica napus cultivar Zheyou7

BnaA10G0234400ZY




Brassica napus cultivar Zheyou7

BnaC09G0517700ZY




Saccharum hybrid cultivar R570

AGT17103




Saccharum hybrid cultivar R570

AGT17101




Saccharum hybrid cultivar R570

AGT16621




Saccharum hybrid cultivar R570

AGT16132




Saccharum hybrid cultivar R570

AGT17102




Saccharum hybrid cultivar R570

AGT16178




Saccharum hybrid cultivar R570

AGT16989




Saccharum hybrid cultivar R570

AGT16177




Saccharum hybrid cultivar R570

AGT16905




Saccharum hybrid cultivar R570

AGT16500




Saccharum hybrid cultivar R570

AGT16853




Saccharum hybrid cultivar R570

AGT17443




Saccharum officinarum

AWA44852




Saccharum officinarum

AWA44857




Saccharum officinarum

AWA44838




Saccharum officinarum

AWA44954




Glycine max

Glyma.06G202300




Glycine max

Glyma.05G021800




Glycine max

Glyma.05G021900




Glycine max

Glyma.05G022100




Glycine max

Glyma.17G077700

















TABLE 2







A non-limiting list of CYP93G1 orthologs


from other species. Sequences and other information


for each of the genes can be found, e.g., at the


website: bioinformatics.psb.ugent.be/plaza/versions/


plaza_v4_5_monocots/gene_families/view/and as


SEQ ID NOS: 121 to 145.










Species
Gene ID








Oryza sativa ssp. japonica

LOC_Os04g01140




Oryza sativa ssp. indica

OsR498G0407413200




Brachypodium distachyon

Bradi5g02460




Triticum aestivum

TraesCS2D02G043500




Triticum aestivum

TraesCS2A02G044900




Triticum aestivum

TraesCS2B02G057100




Triticum turgidum

TRITD2Av1G010200




Triticum turgidum

TRITD2Bv1G013440




Setaria italica

Seita.1G019400




Cenchrus americanus

Pgl_GLEAN_10038007




Cenchrus americanus

Pgl_GLEAN_10012559




Sorghum bicolor

Sobic.004G108200




Sorghum bicolor

Sobic.006G001000




Zea mays B104

Zm00007a00042926




Zea mays B104

Zm00007a00044196




Zea mays B104

Zm00007a00044088




Zea mays B104

Zm00007a00049351




Zea mays PH207

Zm00008a021549




Zea mays PH207

Zm00008a037571




Zea mays PH207

Zm00001d004555




Zea mays PH207

Zm00008a008017




Zea mays PH207

Zm00008a037570




Zea mays B73

Zm00001d016151




Zea mays B73

Zm00001d024946




Zea mays B73

Zm00001d024943










Other Modifications

In some embodiments, the level of glycosylation of one or more flavones is modified by upregulating or downregulating an enzyme such as a UDP-dependent glycosyltransferase (UGT) such as UGT 707A2-A5 or UGT 706D1-E1 (see, e.g., Peng et al. (2017) Nature Comm. 8: 1975; the entire disclosure of which is herein incorporated by reference), e.g., OsUGT707A2 in rice, or an equivalent enzyme in another species. Sequence and other information about OsUGT707A2, including information useful for identifying homologs in other species, can be found, e.g., at the Rice Genome Annotation Project (rice.plantbiology.msu.edu) entry for LOC/Os07g32060. Sequence and other information about OsUGT706D1, including information useful for identifying homologs in other species, can be found, e.g., at the Rice Genome Annotation Project (rice.plantbiology.msu.edu) entry for LOC/Os01g53460.


It will be appreciated that more than one modification in gene expression, or an alteration in enzyme activity or stability, can be made in a single plant, e.g., upregulating a flavone synthase (such as CYP 93G1) to increase the level of multiple flavones and simultaneously inhibiting an enzyme (such as CYP 73B3 or CYP 73B4) to increase the level of a specific flavone such as apigenin, and/or modulating the expression of a glycosyltransferase to alter the glycosylation of one or more flavones.


Methods of Altering Expression or Activity

The expression of the genes can be modified in any of a number of ways. For example, to increase the level of expression of a gene, the endogenous promoter can be replaced with a heterologous promoter capable of overexpressing the gene. The heterologous promoter can be inducible or constitutive, and can be ubiquitous or tissue specific (e.g., expressed particularly in the roots). Any promoter capable of driving overexpression of the gene in plant cells can be used, e.g., a CaMV35S promoter, an Act1 promoter, an Adh1 promoter, a ScBV promoter, or a Ubi1 promoter. Examples of inducible promoters that can be used include, but are not limited to, EST (induced by estrogen) and DEX (induced by dexamethasone). In some embodiments, instead of modifying the endogenous gene, a transgene is introduced comprising a coding sequence for the gene, operably linked to a promoter. In some embodiments, the expression of a gene is inhibited or silenced, e.g., by disrupting or deleting an endogenous copy of the gene. In some embodiments, an inhibitor of the enzyme or its expression is expressed, e.g., by RNAi, e.g., siRNA, miRNA, peptide inhibitors, antibody inhibitors, etc.


It will be appreciated that the inhibition of genes involved in flavone biosynthesis or degradation, e.g., CYP73B3 or CYP73B4, can be achieved not only by deleting or otherwise silencing the gene through, e.g., CRISPR-mediated genomic editing or through expression of an inhibitor such as RNAi, but also by other standard means, e.g., through the application of molecules to the plants that inhibit the enzymatic activity or decrease the stability of the enzymes, e.g., the products of CYP73B3 and/or CYP73B4, or that decrease the stability or translation of mRNA transcribed from the genes.


In typical embodiments, the plants are genetically modified using an RNA-guided nuclease, e.g. endonuclease. In particular embodiments, a CRISPR-Cas system is used to modify one or more target genes involved in the synthesis or degradation of one or more flavones. Other methods can also be used, e.g. transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and others. Any type of genetic modification can be performed, including insertions of one or more sequences into the genome (e.g., to introduce a transgene or regulatory element), deletions of one or more sequences in the genome (e.g., to inactivate an gene), replacement of one or more sequences in the genome (e.g., to replace an endogenous promoter with a heterologous promoter), and alteration of one or more nucleotides in the genome (e.g., to modify the regulation and/or the expression level of a gene).


In particular embodiments of the disclosure, a CRISPR-Cas system is used, e.g., Type II CRISPR-Cas system. The CRISPR-Cas system includes a guide RNA, e.g., sgRNA, that targets the genomic sequence to be altered, and a nuclease that interacts with the guide RNA and cleaves or binds to the targeted genomic sequence. The guide RNA can take any form, including as a single guide RNA, or sgRNA (e.g., a single RNA comprising both crRNA and tracrRNA elements) or as separate crRNA and tracrRNA elements. Standard methods can be used for the design of suitable guide RNAs, e.g., sgRNAs, e.g., as described in Cui et al. (2018) Interdisc. Sci.: Comp. Life Sci. 10(2):455-465; Bauer et al. (2018) Front. Pharmacol: 12 Jul. 2018, doi.org/10.3389/fphar.2018.00749; Mohr et al. (2016) FEBS J., doi.org/10.1111/febs.13777, the entire disclosures of which are herein incorporated by reference.


Any CRISPR nuclease can be used in the present methods, including, but not limited to, Cas9, Cas12a/Cpf1, or Cas3, and the nuclease can be from any source, e.g., Streptococcus pyogenes (e.g. SpCas9), Staphylococcus aureus (SaCas9), Streptococcus thermophiles (StCas9), Neisseria meningitides (NmCas9), Francisella novicida (FnCas9), and Campylobacter jejuni (CjCas9). The guide RNA and nuclease can be used in various ways to effect genomic modifications in the cells. For example, two guide RNAs can be used that flank an undesired gene or genomic sequence, and cleavage of the two target sites leads to the deletion of the gene or genomic sequence. In some embodiments, a guide RNA targeting a gene or genomic sequence of interest is used, and the cleavage of the gene or genomic sequence of interest and subsequent repair by the cell leads to the generation of an insertion, deletion, or mutation of nucleotides at the site of cleavage. In some embodiments, one or more additional polynucleotides are introduced into the cells together with the guide RNA and nuclease, e.g., a donor template comprising regions sharing homology to the targeted genomic sequence (e.g., homology to both sides of the guide RNA target site), with sequences present between the homologous regions effecting a deletion, insertion, or alteration of the genomic sequence via homologous recombination. In particular embodiments, the guide RNA used comprises a target sequence that is substantially identical (e.g., with 0, 1, 2, or 3 mismatches) to any one of SEQ ID NOS:11-13, or that falls within any of the genomic sequences shown as SEQ ID NOS: 9-10 or as listed in Table 1 or Table 2.


In particular embodiments, one or more polynucleotides are introduced into cells of the plant encoding a guide RNA and encoding the RNA-guided nuclease, e.g., Cas9. For example, a vector, e.g., a viral vector, plasmid vector, or Agrobacterium vector, encoding one or more guide RNAs and an RNA-guided nuclease is introduced into plant cells, e.g., by transfection, wherein the one or more guide RNAs and the RNA-guided nuclease are expressed in the cells. In some embodiments, one or more guide RNAs are preassembled with RNA-guided nucleases as ribonucleoproteins (RNPs), and the assembled ribonucleoproteins are introduced into plant cells.


The elements of the CRISPR-Cas system can be introduced in any of a number of ways. In some embodiments, the elements are introduced using polyethylene glycol (PEG), e.g., polyethylene glycol-calcium (PEG-Cat). In some embodiments, the elements are introduced using electroporation. Other suitable methods include microinjection, DEAE-dextran treatment, lipofection, nanoparticle-mediated transfection, protein transduction domain-mediated transfection, and biolistic bombardment. Methods for introducing RNA-guided nucleases into plant cells to effect genetic modifications that can be used include those disclosed in, e.g., Toda et al. (2019) Nature Plants 5(4):363-368; Osakabe et al. (2018) Nat Protoc 13(12):2844-2863; Soda et al. (2018) Plant Physiol Biochem 131:2-11; WO2017061806A1; Mishra et al. (2018) Frontiers Plant Sci. 19, doi.org/10.3389/fpls.2018.03161; the entire disclosures of which are herein incorporated by reference.


Using the present methods, plant lines can be generated (e.g., generated from transfected cells or protoplasts) comprising the genetic modification and producing one or more flavones at higher levels than in wild-type plants. For example, plant lines can be generated by introducing guide RNA, an RNA-guided nuclease, and optionally a template DNA into isolated plant cells or protoplasts, and generating plants from the cells using standard methods.


Assessing Compounds and Plants

Any of a number of assays can be used to assess plants generated using the present methods, as well as to assess candidate plant molecules (e.g., other flavones) for their ability to upregulate biofilm production and assimilation of N2-fixing bacteria. For example, to confirm that the plants are exuding increased levels of the one or more flavones, root exudates from the plants can be isolated and the quantities and identities of the flavones determined, e.g., using mass spectrometry. In addition, the exudates (or other candidate biofilm-inducing molecules) can be incubated with N2-fixing bacteria, e.g., Glucanoacetobacter diazotrophicus, and the biofilm produced by the bacteria assessed. The biofilm can be quantified, e.g., by incubating the exudate (or candidate molecule or molecules) and bacteria in the wells of a microtiter plate, removing the cultures from the plate, washing the wells, adding a solution of crystal violet, rinsing and drying the plate, and then adding ethanol and measuring absorbance at, e.g., 540 nm. See, e.g. Example 1 and www.jove.com/video/2437/microtiter-dish-biofilm-formation-assay, the entire disclosure of which is herein incorporated by reference.


The activity of the exudate or of candidate molecules can also be assessed in vivo, e.g., by using transgenic N2-fixing bacteria such as Glucanoacetobacter diazotrophicus that constitutively express a label such as mCherry. The bacteria can also express labeled components of biofilms, e.g., in bacteria transformed with gumDpro::GFP. The double labeling in such bacteria allows the visualization of the bacteria and, independently, the development of biofilm in the presence or absence of the exudate or candidate molecule.


The N2-fixing activity of the bacteria can be assessed, e.g., using an acetylene reduction assay (ARA), in which bacteria are cultured in the presence of acetylene gas, and the conversion of acetylene to ethylene measured by, e.g., gas chromatography.


As noted above, the present assays can be used both to assess the presence and biofilm-inducing activity of flavones in plant exudates, as well as to assess the relative biofilm-inducing activities of different flavones or other molecules. For example, the assays can be used to determine which flavones or other molecules, or combinations of flavones and/or other molecules, have the greatest biofilm-inducing activity. The identification of such molecules or combinations of molecules can guide the selection of plant gene or genes to be upregulated or downregulated using the present methods.


The genetically modified plants themselves can also be assessed in any of a number of ways. For example, plants can be grown in the presence of fluorescently labeled N2-fixing bacteria, and the adherence of the bacteria to the plant root hairs, either attached to the root surface or present inside the plant tissues, can be determined. The plants can also be assessed by determining the number of tillers and/or the seed yield. In some embodiments, the assimilation of N2 fixed by bacteria in the soil is assessed by, e.g., growing the plants in the presence of 15N2 gas, and then measuring the level of 15N assimilated in the plant leaves, e.g., using Mass spectroscopy.


In some embodiments, plants generated using the present methods show an increase in the amount of one or more flavones exuded of at least 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more as compared to the amount exuded in a wild-type plant. In some embodiments, plants generated using the present methods show an increase of at least 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, or more in the number of tillers/tassels/spikes and/or in the seed yield as compared to in wild-type plants. In some embodiments, plants generated using the present methods, or exudates from said plants, induce an increase of at least about 0.1 (i.e., an increase of about 10%), 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1-fold, 2-fold, 3-fold, 4-fold, or more, in biofilm formation in Glucanoacetobacter diazotrophicus or other N2-fixing bacteria as compared to wild-type plants, or exudates from wild-type plants. In some embodiments, plants generated using the present methods induce an increase of at least about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1-fold, 2-fold, 3-fold, 4-fold, or more, of nitrogen assimilation when grown under low nitrogen conditions as compared to wild-type plants.


Because of the increased assimilation of N2-fixing bacteria by the plants as enabled by the present methods, the present plants can assimilate sufficient nitrogen to produce high yields even when inorganic nitrogen levels in the soil are low. As used herein, “reduced” or “low” or “minimal” inorganic “nitrogen conditions” or “nitrogen levels” refers to conditions in which the level of inorganic nitrogen, e.g., the level resulting from the introduction of fertilizer, is lower than the level that would normally be used for the crop plant, or which is recommended for the crop plant. For example, for rice plants, a level of inorganic nitrogen of less than 50 ppm can be used, e.g. about 25 ppm. In some embodiments, the level of inorganic nitrogen is at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, or 80% lower than the normal or recommended level.


4. Kits

In another aspect, kits are provided herein. In some embodiments, the kit comprises one or more element for producing genetically modified grain crop plants according to the present invention. The kit can comprise, e.g., one or more elements described herein for practicing the present methods, e.g., a guide RNA, an RNA-guided nuclease, a polynucleotide encoding an RNA-guided nuclease, a CRISPR-Cas RNP, culture medium, transfection reagents, etc.


Kits of the present invention can be packaged in a way that allows for safe or convenient storage or use (e.g., in a box or other container having a lid). Typically, kits of the present invention include one or more containers, each container storing a particular kit component such as a reagent, and so on. The choice of container will depend on the particular form of its contents, e.g., a kit component that is in liquid form, powder form, etc. Furthermore, containers can be made of materials that are designed to maximize the shelf-life of the kit components. As a non-limiting example, kit components that are light-sensitive can be stored in containers that are opaque.


In some embodiments, the kit contains one or more containers or devices, e.g. petri dish, flask, syringe, for practicing the present methods. In yet other embodiments, the kit further comprises instructions for use, e.g., containing directions (i.e., protocols) for the practice of the methods of this invention (e.g., instructions for using the kit for generating and using plants with increased flavone production). While the instructional materials typically comprise written or printed materials they are not limited to such. Any medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.


5. Examples

The present invention will be described in greater detail by way of specific examples. The following examples are offered for illustrative purposes only, and are not intended to limit the invention in any manner. Those of skill in the art will readily recognize a variety of noncritical parameters which can be changed or modified to yield essentially the same results.


Example 1. Plant Metabolite-Mediated Induction of Biofilm Formation in Soil Bacteria Increases Biological Nitrogen Fixation of Crop Plants

We hypothesized that under low Nitrogen soil content conditions, the induction of biofilm formation in N2-fixing bacteria by plant metabolites will decrease the Oxygen concentration in the vicinity of the bacterial cell, eliminating the inhibition of bacterial Nitrogenase by Oxygen and thereby the increasing bacterial atmospheric N2 fixation activity. As a consequence, the soil N-fertilization required to attain agricultural yield production of non-leguminous crops will decrease. This not only will reduce the costs associated with the fertilization of agricultural lands, but will also significantly contribute to reducing the environmental burden generated by nitrates leaching into water aquifers, with a concomitant increase in nitrate concentrations and negative consequences for human health (15).


Our strategy is based on the following steps: (1) Screen the effects of different compounds on their ability to promote the formation of biofilms in N2-fixing bacteria; (2) Identify plant metabolites—secreted by the plant roots—that increase —N2-fixing bacteria biofilm production; and (3) Manipulate plant metabolic pathways (for example, via CRISPR/Cas9-mediated silencing) to increase the production (and secretion by the plant roots) of the metabolites identified.


We also hypothesized that these compounds that selectively induce biofilm formation will also benefit overall plant fitness in the soil and rhizosphere, thereby contributing to an efficient mutualistic relationship with the host plants.


Chemical Screening of Biofilm Inducers

To assess the effect(s) of different chemicals on biofilm formation in N2-fixing bacteria, we used a published protocol (www.jove.com/video/2437/microtiter-dish-biofilm-formation-assay). Basically, bacteria were grown in a 96-well plate in a rich-nutrient medium at 28° C. The compound to be tested was added and the culture was grown overnight. Plant exudates and 2 μl of the compound were added to the well and the bacteria grown for 3 days under shaking (200 rpm). After 3 days, the planktonic bacterial cultures were discarded and the wells were thoroughly washed with water. A solution of 1% of crystal violet was added to each well of the plate and the plate shaken for 10-15 min at 200 rpm. The plates are rinsed 3-4 times with water (by submerging the plants in a tub of water), shaken vigorously and blotted on a stack of paper towels (to eliminate excess of cells and dye), the microliter plate was placed upside down and air dried. To quantify the amount of biofilm that adhered to the well walls, 200 μl of ethanol were added to each well, the plates shacked at 200 rpm, at 28° C. for 10-15 min. The absorbance of the solution was measured at 540 nm, using ethanol as a blank (FIG. 1).


Flavonoids secreted by soybean roots have been shown to play roles in attracting rhizobia and in inducing the expression of rhizobial nod genes. In order to assess whether flavonoids could play some role in the induction of biofilm formation in N2-fixing bacteria, we screened a chemical library comprised of 500 flavonoid derivatives of different origin (bacteria, plant and animal) (TimTec, Tampa, Fla., USA). Using the protocol described above, we tested biofilm synthesis using Glucanoacetobacter diazotrophicus as a representative of N2-fixing bacteria. Several compounds enhanced biofilm production (FIGS. 2 and 3).


Characterization of Some Compounds Inducing Biofilm Formation in G. diazotrophicus.


In order to assess structure-function of the different compounds, we performed a hierarchical clustering of the 20 compounds (chosen per their ability to induce biofilm formation in Glucanoacetobacter and other bacteria. To obtain the clustering we used Workbench Tools, an online service useful for the analysis and clustering of small molecules by structural similarities and physicochemical properties (ChemMine.ucr.edu/tools) (FIG. 4).


Our results indicated clustering among common moieties, particularly among heterooctacyclic compounds (e.g., Staurosporine) and flavonols (e.g., luteolin, apigenin) and anthraquinones (e.g. 2H03 and 4G03—Papaverine). (FIG. 4). Interestingly, flavonoids and flavonols have been shown to play essential roles in legume-rhizobium interaction for nodule formation (8). Therefore we assessed the effects of luteolin and apigenin in vivo. First we assessed the formation of chemical-induced formation of biofilm in bacterial cultures. For this, we generated transgenic Glucanoacetobacter constitutively expressing mCherry (transformed with pSEVAGeng-Luc-mCherry) in order to visualize mCherry fluorescent bacteria. Then we transformed the mCherry expressing bacteria with gumDpro::GFP. GumD encodes for components of the bacterial Exopolysacharides (EPS)] in order to visualize GFP-labelled biofilms. Thus the double labelling allowed as to follow the development of biofilm while visualizing the bacteria. The addition of luteolin to a suspension of Glucanoacetobacter showed the induction of biofilm formation by increasing amounts of luteolin (FIG. 5A). The addition of apigenin or its conjugate apigenin 7-O-glucoside showed the induction of biofilm formation (FIG. 5B).


Flavonoids perform several functions; pigments producing colors, inhibitors of cell cycle and also chemical messengers. Secretion of flavonoids was shown to aid symbiotic relationships between rhizobia and plants. Some flavonoids are associated with the response of plants to plant diseases. A representation of the different biosynthetic pathways in rice is shown in FIG. 6.


In order to assess the effect of compounds representing different group of flavonoids, we evaluated the formation of biofilm in Gluconacetobacter diazotrophicus exposed for 3 days to root exudates from Oryza sativa supplemented with Naringenin or Eriodictyol or Luteolin or Quercetin or Myricetin or AHL (Acyl Homoserine Lactone), a well-known compound shown to mediate interaction of bacteria and plant roots. Only luteolin induced a significant increase in biofilm production in Glucanoacetobacter (FIG. 7).


The effects of luteolin on the induction of biofilm production was tested in a number of N2-fixing bacteria (FIG. 8). While Burkholderia vietnamensis and Azoarcus sp. CIB displayed a luteolin-induced biofilm synthesis, Azospirillum sp. 8510, Azoarcus communis, and Herbaspirillum seropedicae did not show an enhanced biofilm production. Also the response of the bacteria to luteolin was not uniform; Azoarcus sp. CIB displayed a lesser response to luteolin than Burkholderia vietnamensis. These results suggested a variety-specific differences on the synthesis of biofilms in response to flavonoids (see FIG. 9).


Flavones are a class of flavonoids synthesized directly from flavanones (i.e., Naringenin) (FIG. 10). Flavone formation is catalyzed by a flavone synthase which belongs to the plant cytochrome P450 superfamily. Most flavonoids, including flavones such as Apigenin and Luteolin, occur as glycosides. Glycosylation increases the chemical stability, bioavailability, and bioactivity of flavonoids. Glycosylation of Apigenin and Luteolin are catalyzed by flavonoid-glucosyltransferases. We tested the effects of Naringenin, Luteolin, Apigenin and Apigenin-7-glucoside on biofilm formation of Glucanoacetobacter diazotrophicus. The bacteria was incubated with 3 days with Oryza sativa root exudates supplemented with indicated concentrations of flavone-compounds (FIG. 11). The results clearly indicated the strongest biofilm induction in the bacteria incubated with apigenin and apigenin-7-glucoside, followed by Luteolin and Naringenin.


We investigated whether the increased flavone-induced bacterial biofilm production (elicited by the addition of the flavones Naringenin, Apigenin or Apigenin-7-Glucoside) increased bacteria N2-fixation. Also, we tested whether the plant took up the nitrogen assimilated by the bacteria. It should be noted that we used Apigenin instead of Luteolin for 2 reasons: a) Apigenin induced a larger biofilm production than Luteolin (FIG. 11); b) Apigenin and its glucoside-derivative are less expensive than Luteolin.


To assess the effects of the flavones on bacteria N2 fixation, we used the acetylene reduction assay (ARA), where gas acetylene is added, and the resulting ethylene is measured by Gas Chromatography. The Bacterium was grown in tubes with Kitaake rice root exudates and 100 μM, shaken for 3 days at 28° C. Ten % of the air in the tube was replaced by acetylene, the cells incubated for 4 days and ethylene was measured by gas chromatography (FIG. 12A). We also assessed whether the N2 fixed by the bacteria is assimilated by the plant. Rice seedlings were grown in soil in the presence of bacteria and Apigenin or DMSO (control). 15N2 gas was added, the tubes closed and plants were incubated for 2 days. Following incubation, the leaves were cut and dried and the 15N-assimilated in the leaves was measured. Our results showed that the plants incubated with Apigenin displayed a significant increase in 15N into Nitrogen compounds, indicating that the bacteria fixed the 15N2 and the resulting ammonium was assimilated by the plants (FIG. 12B).


Microscopic observation of the rice root hairs showed extensive adherence of the bacteria (labelled with a fluorescence marker) to the biofilm (FIG. 12C). No bacteria was seen on the control treatments. Initial Confocal measurements would indicate that the bacteria also colonized the intracellular spaces of the rice roots. Quantitative experiments are underway to quantitate number of bacterial cells inside the plant tissues (FIG. 13) and number of cells adhered to the roots. However, clearly, the bulk of the bacteria is in the attached to the root surface (not shown).


Our results showed that flavones and their glucoside derivatives induced biofilm formation in the N2-fixing bacteria. The development of a biofilm, with its low permeability to Oxygen, provides a protection to the bacterial Nitrogenase from oxidative damage, thus allowing N2-fixation by the free-living bacteria. Our hypothesis is that it is possible to increase N-assimilation in crop plants, if the plants can produce more flavones (which will be extruded to the soil by the roots). Interestingly, the larger effect of the flavone-glycoside derivatives on bacterial biofilm formation, would make feasible to alter the flavones (for example, Apigenin) biosynthetic pathway (including its glucosylation). An analysis of the flavone-derived metabolites in rice (and in most crops) (see FIG. 14) would indicate that changing the expression of genes encoding enzymes associated with flavone biosynthesis/degradation (whether overexpression with inducible promoters or gene silencing) could be used to increase flavone concentrations. For example, silencing Os10g17260/Os10g16974 encoding the cyt P450 CYP75B3/75B4, would generate an excess of Apigenin (since its conversion to Luteolin would be inhibited) and part of the Apigenin could be converted to Apigenin 5-O-glucoside and/or Apigenin 7-O-glucoside. (see FIG. 14), and larger amounts of Apigenin and its glucoside derivative(s) would be exuded by the roots to the soil with the concomitant effect on biofilm formation and N2-fixation.


We generated CRISPR/Cas9 constructs, transformed rice plants and obtained plant lines with decreased expression of cyp75B3 and cyp75B4 (FIG. 15A). We obtained a number of transgenic homozygous lines and measured their flavone contents. The silencing of Os10g17260/Os10g16974 resulted in a reduction of the Cyt P450 (CYP75B3/75B4), mediating the formation of Luteolin from Apigenin, and induced a significant increase in Apigenin and its derivative, Apigenin-7-Glucoside in both roots (FIG. 15B) and root exudates (FIG. 15C).


Root extracts and root exudates, obtained from cyp75b3/cyp75b4 (Os10g17260/Os10g16974) CRISPR/Cas9 knockout plants, increased biofilm production in Glucanoacetobacter diazotrophicus suspension (FIGS. 16A, 16B). The root exudate of the CRISPR line induced higher expression of the gumD gene, which is responsible for the first step in exopolysaccharide (EPS) production of biofilm in Gluconacetobacter diazotrophicus (FIG. 16C). The CRISPR/Cas9 rice lines incorporated more nitrogen from air (delta 15N) when grown in the greenhouse at both 8 weeks and 16 weeks of germination (FIG. 16D).


Kitaake wild-type and Crispr #87 and Crispr #104 silenced lines were grown in the greenhouse at standard growth conditions, the plants were fertilized, but the Nitrogen levels were kept at only 30% of the concentration recommended (25 ppm N). Notably, the silenced plants were somewhat shorter (FIG. 17B) but displayed a 40% increase in tiller number (FIG. 17C).


Plants were grown to maturity and seeds were harvested, dried and weighed. The silenced plants displayed a 40% yield increase as compared to the wild type plants grown at the same conditions (FIG. 17D).


Our results suggest the generation of Nitrogen-fixation in rice and other grain crops. The strategy involves the silencing of pathways associated with the catabolism of flavones (Apigenin, Luteolin, etc.). This strategy induced the accumulation of these metabolites inside the plant and the exudation of the flavones from the roots into the soil, where they activated the biofilm synthesis in the N2-fixing bacteria. If plants are grown under minimal (deficient) inorganic N-conditions, the biofilm synthesis in the bacteria facilitates their N2-fixation. The colonization of the plant roots by the N2-fixing bacteria and its concomitant N2-fixation will allow the reduction of agronomical operational costs (by reducing N-input) and also will provide an important tool to reduce nitrate contamination of groundwater, reducing its leaching into the water supplies.


REFERENCES



  • 1. Martin F M, Uroz S, Barker D G. Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science 356, (2017).

  • 2. Zipfel C, Oldroyd G E D. Plant signalling in symbiosis and immunity. Nature 543, 328-336 (2017).

  • 3. Khan M, Subramaniam R, Desveaux D. Of guards, decoys, baits and traps: pathogen perception in plants by type III effector sensors. Current opinion in microbiology 29, 49-55 (2016).

  • 4. Bialas A, et al. Lessons in Effector and NLR Biology of Plant-Microbe Systems. Molecular plant-microbe interactions: MPMI 31, 34-45 (2018).

  • 5. Sasse J, Martinoia E, Northen T. Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? Trends in plant science 23, 25-41 (2018).

  • 6. Haichar F E Z, Heulin T, Guyonnet J P, Achouak W. Stable isotope probing of carbon flow in the plant holobiont. Current opinion in biotechnology 41, 9-13 (2016).

  • 7. Backer R, et al. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Front Plant Sci 9, 1473 (2018).

  • 8. Oldroyd G E, Murray J D, Poole P S, Downie J A. The rules of engagement in the legume-rhizobial symbiosis. Annual review of genetics 45, 119-144 (2011).

  • 9. Wang D, Yang S, Tang F, Zhu H. Symbiosis specificity in the legume: rhizobial mutualism. Cellular microbiology 14, 334-342 (2012).

  • 10. Shrestha R K, Ladha J K. Genotypic Variation in Promotion of Rice Dinitrogen Fixation as Determined by Nitrogen-15 Dilution. Soil Sci Soc Am J 60, 1815-1821 (1996).

  • 11. Chen X, et al. Rice responds to endophytic colonization which is independent of the common symbiotic signaling pathway. The New phytologist 208, 531-543 (2015).

  • 12. Flemming H C, Wingender J. The biofilm matrix. Nature reviews Microbiology 8, 623-633 (2010).

  • 13. Flemming H C, Wingender J, Szewzyk U, Steinberg P, Rice S A, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nature reviews Microbiology 14, 563-575 (2016).

  • 14. Meneses C H, Rouws L F, Simoes-Araujo J L, Vidal M S, Baldani J I. Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Molecular plant-microbe interactions: MPMI 24, 1448-1458 (2011).

  • 15. Ward M H, Jones R R, Brender J D, de Kok T M, Weyer P J, Nolan B T, Villanueva C M and van Breda S G. Int. J. Environm. Res. Public Health 15, 1557 (2018)

  • 16. Wang D, Xu A, Elmerich C, Ma L Z. Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions. The ISME journal 11, 1602-1613 (2017).

  • 17. Voges M, Bai Y, Schulze-Lefert P, Sanely E S. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proceedings of the National Academy of Sciences of the United States of America 116, 12558-12565 (2019).



Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, one of skill in the art will appreciate that certain changes and modifications may be practiced within the scope of the appended claims. In addition, each reference provided herein is incorporated by reference in its entirety to the same extent as if each reference was individually incorporated by reference.












INFORMAL SEQUENCE LISTING















SEQ ID NO: 1



Oryza sativa ssp. Indica (OsR498G1018420100.01)



Amino acid sequence


MEVAAMEISTSLLLTTVALSVIVCYALVFSRAGKARAPLPLPPGPRGWPVLGNLPQL


GGKTHQTLHEMTKVYGPLIRLRFGSSDVVVAGSAPVAAQFLRTHDANFSSRPRNSG


GEHMAYNGRDVVFGPYGPRWRAMRKICAVNLFSARALDDLRAFREREAVLMVRSL


AEASAAPGSSSPAAVVLGKEVNVCTTNALSRAAVGRRVFAAGAGEGAREFKEIVLE


VMEVGGVLNVGDFVPALRWLDPQGVVARMKKLHHRFDDMMNAIIAERRAGSLLK


PTDSREEGKDLLGLLLAMVQEQEWLAAGEDDRITDTEIKALILNLFVAGTDTTSTIVE


WTMAELIRHPDILKQAQEELDVVVGRDRLLLESDLSHLTFFHAIIKETFRLHPSTPLSL


PRMASEECEIAGYRIPKGAELLVNVWGIARDPAIWPDPLEYKPSRFLPGGTHTDVDV


KGNDFGLIPFGAGRRICAGLSWGLRMVTMTAATLVHAFDWQLPADQTPDKLNMDE


AFTLLLQRAEPLVVHPVPRLLPSAYNIA





SEQ ID NO: 2



Oryza sativa ssp. Indica (OsR498G1018420100.01)



Nucleotide sequence


ATGGAGGTCGCCGCCATGGAGATCTCTACCTCATTGCTCCTCACCACCGTGGCTC


TCTCCGTCATCGTGTGCTACGCCCTGGTCTTCTCCCGCGCCGGGAAGGCGCGTGC


GCCGCTGCCGCTGCCGCCTGGCCCCAGGGGATGGCCGGTGCTGGGCAACCTGCC


GCAGCTGGGCGGGAAGACGCACCAGACGCTGCACGAGATGACCAAGGTGTACG


GCCCGCTGATCCGGCTCCGGTTCGGGAGCTCCGACGTGGTGGTCGCCGGCTCGGC


GCCGGTGGCGGCGCAGTTCCTCCGCACCCACGATGCCAACTTCAGCAGCCGGCC


ACGCAACTCCGGCGGCGAGCACATGGCGTACAACGGCCGGGACGTCGTGTTCGG


GCCGTACGGGCCGCGGTGGCGCGCCATGCGGAAGATTTGCGCCGTCAACCTCTTC


TCCGCGCGCGCGCTCGACGACCTGCGCGCTTTCCGGGAGCGGGAGGCCGTGCTG


ATGGTTAGGTCGCTGGCGGAGGCGAGCGCCGCCCCTGGGTCGTCGTCTCCAGCG


GCGGTGGTCCTGGGAAAGGAGGTGAATGTCTGCACGACGAACGCGCTGTCGCGC


GCCGCGGTCGGGCGCCGCGTGTTCGCCGCCGGCGCGGGCGAGGGCGCGAGGGAG


TTCAAAGAGATCGTGCTGGAGGTGATGGAGGTGGGTGGTGTGCTGAACGTCGGC


GACTTCGTGCCGGCGCTCCGGTGGCTGGACCCGCAGGGCGTGGTAGCGAGGATG


AAAAAGCTGCACCACCGGTTCGACGACATGATGAACGCGATCATCGCGGAGAGG


AGGGCCGGATCACTACTCAAACCAACCGACAGTCGTGAGGAAGGTAAGGACTTG


CTTGGCTTGCTCCTGGCTATGGTGCAGGAGCAGGAGTGGCTCGCCGCCGGCGAG


GACGACAGGATCACCGACACGGAAATCAAGGCCCTTATCCTGAATCTATTCGTG


GCGGGCACAGACACAACATCAACCATAGTTGAGTGGACAATGGCAGAGCTGATT


CGACACCCAGATATCCTCAAGCAGGCCCAAGAGGAGCTAGATGTTGTTGTGGGT


CGTGATAGGCTCCTCTTAGAGTCGGATCTATCACATCTCACCTTCTTCCATGCTAT


CATCAAGGAGACATTCCGTCTTCATCCATCAACCCCGCTCTCGCTGCCACGCATG


GCATCTGAGGAGTGTGAGATCGCAGGCTACCGTATCCCCAAGGGTGCAGAGTTG


CTGGTCAATGTGTGGGGGATCGCCCGTGACCCAGCCATATGGCCTGACCCACTAG


AGTACAAGCCCTCTCGGTTCCTCCCCGGTGGGACGCACACTGATGTGGATGTCAA


GGGAAATGATTTCGGACTTATACCATTCGGTGCAGGGCGAAGGATATGCGCCGG


CCTCAGTTGGGGCCTGCGGATGGTCACCATGACAGCGGCCACGCTGGTGCATGC


ATTCGACTGGCAGCTACCAGCGGACCAGACGCCAGACAAGCTCAATATGGATGA


GGCGTTTACCCTCCTGCTGCAAAGGGCAGAGCCATTGGTGGTTCACCCGGTACCA


AGGCTTCTCCCATCCGCTTACAATATTGCATAA





SEQ ID NO: 3



Oryza sativa ssp. Indica (OsR498G1018427100.01)



Amino acid sequence


MEVAAMEISTSLLLTTVALSVIVCYALVFSRAGKARAPLPLPPGPRGWPVLGNLPQL


GGKTHQTLHEMTKVYGPLIRLRFGSSDVVVAGSAPVAAQFLRTHDANFSSRPRNSG


GEHMAYNGRDVVFGPYGPRWRAMRKICAVNLFSARALDDLRAFREREAVLMVRSL


AEASAAPGSSSPAAVVLGKEVNVCTTNALSRAAVGRRVFAAGAGEGAREFKEIVLE


VMEVGGVLNVGDFVPALRWLDPQGVVARMKKLHHRFDDMMNAIIAERRAGSLLK


PTDSREEGKDLLGLLLAMVQEQEWLAAGEDDRITDTEIKALILNLFVAGTDTTSTIVE


WTMAELIRHPDILKQAQEELDVVVGRDRLLLESDLSHLTFFHAIIKETFRLHPSTPLSL


PRMASEECEIAGYRIPKGAELLVNVWGIARDPAIWPDPLEYKPSRFLPGGTHTDVDV


KGNDFGLIPFGAGRRICAGLSWGLRMVTMTAATLVHAFDWQLPADQTPDKLNMDE


AFTLLLQRAEPLVVHPVPRLLPSAYNIA





SEQ ID NO: 4



Oryza sativa ssp. Indica (OsR498G1018427100.01)



Nucleotide sequence


ATGGAGGTCGCCGCCATGGAGATCTCTACCTCATTGCTCCTCACCACCGTGGCTC


TCTCCGTCATCGTGTGCTACGCCCTGGTCTTCTCCCGCGCCGGGAAGGCGCGTGC


GCCGCTGCCGCTGCCGCCTGGCCCCAGGGGATGGCCGGTGCTGGGCAACCTGCC


GCAGCTGGGCGGGAAGACGCACCAGACGCTGCACGAGATGACCAAGGTGTACG


GCCCGCTGATCCGGCTCCGGTTCGGGAGCTCCGACGTGGTGGTCGCCGGCTCGGC


GCCGGTGGCGGCGCAGTTCCTCCGCACCCACGATGCCAACTTCAGCAGCCGGCC


ACGCAACTCCGGCGGCGAGCACATGGCGTACAACGGCCGGGACGTCGTGTTCGG


GCCGTACGGGCCGCGGTGGCGCGCCATGCGGAAGATTTGCGCCGTCAACCTCTTC


TCCGCGCGCGCGCTCGACGACCTGCGCGCTTTCCGGGAGCGGGAGGCCGTGCTG


ATGGTTAGGTCGCTGGCGGAGGCGAGCGCCGCCCCTGGGTCGTCGTCTCCAGCG


GCGGTGGTCCTGGGAAAGGAGGTGAATGTCTGCACGACGAACGCGCTGTCGCGC


GCCGCGGTCGGGCGCCGCGTGTTCGCCGCCGGCGCGGGCGAGGGCGCGAGGGAG


TTCAAAGAGATCGTGCTGGAGGTGATGGAGGTGGGTGGTGTGCTGAACGTCGGC


GACTTCGTGCCGGCGCTCCGGTGGCTGGACCCGCAGGGCGTGGTAGCGAGGATG


AAAAAGCTGCACCACCGGTTCGACGACATGATGAACGCGATCATCGCGGAGAGG


AGGGCCGGATCACTACTCAAACCAACCGACAGTCGTGAGGAAGGTAAGGACTTG


CTTGGCTTGCTCCTGGCTATGGTGCAGGAGCAGGAGTGGCTCGCCGCCGGCGAG


GACGACAGGATCACCGACACGGAAATCAAGGCCCTTATCCTGAATCTATTCGTG


GCGGGCACAGACACAACATCAACCATAGTTGAGTGGACAATGGCAGAGCTGATT


CGACACCCAGATATCCTCAAGCAGGCCCAAGAGGAGCTAGATGTTGTTGTGGGT


CGTGATAGGCTCCTCTTAGAGTCGGATCTATCACATCTCACCTTCTTCCATGCTAT


CATCAAGGAGACATTCCGTCTTCATCCATCAACCCCGCTCTCGCTGCCACGCATG


GCATCTGAGGAGTGTGAGATCGCAGGCTACCGTATCCCCAAGGGTGCAGAGTTG


CTGGTCAATGTGTGGGGGATCGCCCGTGACCCAGCCATATGGCCTGACCCACTAG


AGTACAAGCCCTCTCGGTTCCTCCCCGGTGGGACGCACACTGATGTGGATGTCAA


GGGAAATGATTTCGGACTTATACCATTCGGTGCAGGGCGAAGGATATGCGCCGG


CCTCAGTTGGGGCCTGCGGATGGTCACCATGACAGCGGCCACGCTGGTGCATGC


ATTCGACTGGCAGCTACCAGCGGACCAGACGCCAGACAAGCTCAATATGGATGA


GGCGTTTACCCTCCTGCTGCAAAGGGCAGAGCCATTGGTGGTTCACCCGGTACCA


AGGCTTCTCCCATCCGCTTACAATATTGCATAA





SEQ ID NO: 5



Oryza sativa ssp. Japonica (LOC_Os10g16974)



Amino acid sequence


MEVAAMEISTSLLLTTVALSVIVCYALVFSRAGKARAPLPLPPGPRGWPVLGNLPQL


GGKTHQTLHEMTKVYGPLIRLRFGSSDVVVAGSAPVAAQFLRTHDANFSSRPRNSG


GEHMAYNGRDVVFGPYGPRWRAMRKICAVNLFSARALDDLRAFREREAVLMVRSL


AEASAAPGSSSPAAVVLGKEVNVCTTNALSRAAVGRRVFAAGAGEGAREFKEIVLE


VMEVGGVLNVGDFVPALRWLDPQGVVARMKKLHRRFDDMMNAIIAERRAGSLLKP


TDSREEGKDLLGLLLAMVQEQEWLAAGEDDRITDTEIKALILNLFVAGTDTTSTIVE


WTMAELIRHPDILKHAQEELDVVVGRDRLLSESDLSHLTFFHAIIKETFRLHPSTPLSL


PRMASEECEIAGYRIPKGAELLVNVWGIARDPAIWPDPLEYKPSRFLPGGTHTDVDV


KGNDFGLIPFGAGRRICAGLSWGLRMVTMTAATLVHAFDWQLPADQTPDKLNMDE


AFTLLLQRAEPLVVHPVPRLLPSAYNIA





SEQ ID NO: 6



Oryza sativa ssp. Japonica (LOC_Os10g16974)



Nucleotide sequence


ATGGAGGTCGCCGCCATGGAGATCTCTACCTCATTGCTCCTCACCACCGTGGCTC


TCTCCGTCATCGTGTGCTACGCCCTGGTCTTCTCCCGCGCCGGGAAGGCGCGTGC


GCCGCTGCCGCTGCCGCCTGGCCCCAGGGGATGGCCGGTGCTGGGCAACCTGCC


GCAGCTGGGCGGGAAGACGCACCAGACGCTGCACGAGATGACCAAGGTGTACG


GCCCGCTGATCCGGCTCCGGTTCGGGAGCTCCGACGTGGTGGTCGCCGGCTCGGC


GCCGGTGGCGGCGCAGTTCCTCCGCACCCACGATGCCAACTTCAGCAGCCGGCC


ACGCAACTCCGGCGGCGAGCACATGGCGTACAACGGCCGGGACGTCGTGTTCGG


GCCGTACGGGCCGCGGTGGCGCGCCATGCGGAAGATTTGCGCCGTCAACCTCTTC


TCCGCGCGCGCGCTCGACGACCTGCGCGCTTTCCGGGAGCGGGAGGCCGTGCTG


ATGGTTAGGTCGCTGGCGGAGGCGAGCGCCGCCCCTGGGTCGTCGTCTCCAGCG


GCGGTGGTCCTGGGAAAGGAGGTGAATGTCTGCACGACGAACGCGCTGTCGCGC


GCCGCGGTCGGGCGCCGCGTGTTCGCCGCCGGCGCGGGCGAGGGCGCGAGGGAG


TTCAAAGAGATCGTGCTGGAGGTGATGGAGGTGGGTGGTGTGCTGAACGTCGGC


GACTTCGTGCCGGCGCTCCGGTGGCTGGACCCGCAGGGCGTGGTAGCGAGGATG


AAAAAGCTGCACCGCCGGTTCGACGACATGATGAACGCGATCATCGCGGAGAGG


AGGGCCGGATCACTACTCAAACCAACCGACAGTCGTGAGGAAGGTAAGGACTTG


CTTGGCTTGCTCCTGGCTATGGTGCAGGAGCAGGAGTGGCTCGCCGCCGGCGAG


GACGACAGGATCACCGACACGGAAATCAAGGCCCTTATCCTGAATCTATTCGTG


GCGGGCACAGACACAACATCAACCATAGTTGAGTGGACAATGGCAGAGCTGATT


CGACACCCAGATATCCTCAAGCACGCCCAAGAGGAGCTAGATGTTGTTGTGGGT


CGTGATAGGCTCCTCTCAGAGTCGGATCTATCACATCTCACCTTCTTCCATGCTAT


CATCAAGGAGACATTCCGTCTACATCCATCAACACCGCTCTCGCTGCCACGCATG


GCATCTGAGGAGTGTGAGATCGCAGGCTACCGTATCCCCAAGGGTGCAGAGTTG


CTGGTCAATGTGTGGGGGATCGCCCGTGACCCAGCCATATGGCCTGACCCACTAG


AGTACAAGCCCTCTCGGTTCCTCCCCGGTGGGACGCACACTGATGTGGATGTCAA


GGGAAATGATTTCGGACTTATACCATTCGGTGCAGGGCGAAGGATATGCGCCGG


CCTCAGTTGGGGCCTGCGGATGGTCACCATGACAGCGGCCACGCTGGTGCATGC


ATTCGACTGGCAGCTACCAGCGGACCAGACGCCAGACAAGCTCAATATGGATGA


GGCGTTTACCCTCCTGCTGCAAAGGGCAGAGCCATTGGTGGTTCACCCGGTACCA


AGGCTTCTCCCATCCGCTTACAATATTGCATAA





SEQ ID NO: 7



Oryza sativa ssp. Japonica (LOC_Os10g17260)



Amino acid sequence


MDVVPLPLLLGSLAVSAAVWYLVYFLRGGSGGDAARKRRPLPPGPRGWPVLGNLP


QLGDKPHHTMCALARQYGPLFRLRFGCAEVVVAASAPVAAQFLRGHDANFSNRPPN


SGAEHVAYNYQDLVFAPYGARWRALRKLCALHLFSAKALDDLRAVREGEVALMV


RNLARQQAASVALGQEANVCATNTLARATIGHRVFAVDGGEGAREFKEMVVELMQ


LAGVFNVGDFVPALRWLDPQGVVAKMKRLHRRYDNMMNGFINERKAGAQPDGVA


AGEHGNDLLSVLLARMQEEQKLDGDGEKITETDIKALLLNLFTAGTDTTSSTVEWAL


AELIRHPDVLKEAQHELDTVVGRGRLVSESDLPRLPYLTAVIKETFRLHPSTPLSLPRE


AAEECEVDGYRIPKGATLLVNVWAIARDPTQWPDPLQYQPSRFLPGRMHADVDVK


GADFGLIPFGAGRRICAGLSWGLRMVTLMTATLVHGFDWTLANGATPDKLNMEEA


YGLTLQRAVPLMVQPVPRLLPSAYGV





SEQ ID NO: 8



Oryza sativa ssp. Japonica



Nucleotide sequence


AAACCCGCATTTCCCATCGTACAACGAGCGAGCGGATCATACGGTCATGGACGTT


GTGCCTCTCCCGCTGCTGCTCGGCTCCCTGGCCGTGTCCGCCGCCGTGTGGTACCT


TGTGTACTTCCTCCGCGGCGGCAGCGGCGGCGACGCGGCGAGGAAGCGGCGGCC


TTTGCCACCCGGGCCACGCGGGTGGCCCGTGCTGGGCAACCTGCCGCAGCTCGGC


GACAAGCCGCACCACACCATGTGCGCCCTGGCGCGGCAGTACGGCCCGCTGTTC


CGGCTCCGGTTCGGCTGCGCCGAGGTGGTGGTGGCCGCGTCGGCGCCCGTGGCTG


CGCAGTTCCTGCGCGGGCACGATGCCAACTTCAGCAACCGCCCGCCCAACTCGG


GCGCCGAGCACGTCGCGTACAACTACCAGGACCTCGTCTTCGCGCCCTACGGTGC


TCGCTGGCGCGCCCTGCGGAAGCTGTGCGCGCTCCACCTCTTCTCGGCCAAGGCG


CTCGACGACCTCCGAGCAGTCCGGGAGGGCGAGGTCGCGCTCATGGTGAGGAAC


CTCGCTCGGCAGCAGGCGGCGTCAGTGGCGCTGGGGCAGGAAGCGAACGTCTGC


GCCACGAACACGCTGGCCCGCGCCACCATCGGTCACCGGGTGTTCGCCGTCGAC


GGCGGGGAAGGCGCAAGGGAGTTCAAGGAGATGGTTGTGGAGCTGATGCAGCTC


GCCGGCGTTTTCAACGTCGGGGACTTCGTGCCGGCGCTCCGGTGGCTCGACCCGC


AGGGCGTCGTGGCAAAGATGAAGAGGCTGCACCGTCGGTACGACAACATGATGA


ACGGATTCATCAACGAAAGGAAGGCCGGGGCGCAGCCCGACGGGGTCGCCGCTG


GCGAGCACGGCAACGACCTTCTAAGCGTGCTGCTGGCGAGGATGCAGGAGGAGC


AGAAGCTGGACGGCGACGGCGAAAAGATCACCGAAACTGACATCAAAGCTCTGC


TCCTGAACCTATTCACTGCGGGGACGGATACGACATCGAGCACGGTGGAGTGGG


CACTGGCGGAGCTGATCCGGCACCCGGACGTCCTCAAGGAGGCCCAGCATGAGC


TTGACACCGTCGTCGGTAGGGGTCGTCTCGTGTCCGAGTCTGACCTTCCACGCCT


CCCCTACCTCACCGCGGTGATCAAGGAGACGTTTCGGCTTCACCCGTCAACGCCG


CTCTCACTGCCTCGGGAGGCTGCAGAGGAGTGTGAGGTGGACGGCTACCGTATC


CCCAAGGGCGCTACCCTCCTAGTCAACGTCTGGGCTATAGCCCGTGACCCGACCC


AATGGCCCGACCCGCTACAGTACCAGCCTTCTCGGTTTCTCCCCGGCAGGATGCA


TGCAGACGTGGATGTCAAGGGTGCTGATTTCGGCCTGATACCATTCGGAGCAGG


ACGGAGAATATGCGCTGGCCTTAGTTGGGGCTTGCGGATGGTCACACTGATGACT


GCCACGCTAGTGCACGGGTTCGACTGGACCTTGGCTAACGGCGCGACTCCGGAC


AAGCTCAACATGGAGGAGGCCTATGGGCTCACCTTGCAGAGGGCCGTGCCGTTG


ATGGTCCAGCCCGTGCCAAGGCTGCTTCCATCGGCTTATGGAGTATAAAACCGGT


CTACTTACTAGTACCACTTTAAATTAAGGTCAGAAATCGGTGGAGACTACTTGCA


GTGTTGGCCGCATTATATGACGTATTATTTTGTTTTGTTTGTTGGTGGAAAAATAA


AGTAGTCTATCTCAGTGTTATCTGGCACTAAAGGAACTCTAGAAATGGTGGCAAA


ATAGAGTACTATCGTGGAATCATAAAAAAGGATTATTTGGTGTATAATACAGAA


AAATTTATG





SEQ ID NO: 9


Genomic sequence, rice CYP75B3


Exons, Target sequences, PAM (NGG), Target-like sequence


>CYP75B3_LOC_Os10g17260_chr10_8679310-8681284


TAAACCCGCATTTCCCATCGTACAACGAGCGAGCGGATCATACGGTCATGGACGTTGTGCCT


CTCCCGCTGCTGCTCGGCTCCCTGGCCGTGTCCGCCGCCGTGTGGTACCTTGTGTACTTCCT


CCgcggcggcagcggcggcgacgcggcgaggaagcggcggcCTTTGCCACCCGGGCCACGCG


GGTGGCCCGTGCTGGGCAACCTGCCGCAGCTCGGCGACAAGCCGCACCACACCATGTGCGCC


CTGGCGCGGCAGTACGGCCCGCTGTTCCGGCTCCGGTTCGGCTGCGCCGAGGTGGTGGTGGC


CGCGTCGGCGCCCGTGGCTGCGCAGTTCCTGCGCGGGCACGATGCCAACTTCAGCAACCGCC


CGCCCAACTCGGGCGCCGAGCACGTCGCGTACAACTACCAGGACCTCGTCTTCGCGCCCTAC


GGTGCTCGCTGGCGCGCCCTGCGGAAGCTGTGCGCGCTCCACCTCTTCTCGGCCAAGGCGCT


CGACGACCTCCGAGCAGTCCGGGAGGGCGAGGTCGCGCTCATGGTGAGGAACCTCGCTCGGC


AGCAGGCGGCGTCAGTGGCGCTGGGGCAGGAAGCGAACGTCTGCGCCACGAACACGCTGGCC


CGCGCCACCATCGGTCACCGGGTGTTCGCCGTCGACGGCGGGGAAGGCGCAAGGGAGTTCAA


GGAGATGGTTGTGGAGCTGATGCAGCTCGCCGGCGTTTTCAACGTCGGGGACTTCGTGCCGG


CGCTCCGGTGGCTCGACCCGCAGGGCGTCGTGGCAAAGATGAAGAGGCTGCACCGTCGGTAC


GACAACATGATGAACGGATTCATCAACGAAAGGAAGGCCGGGGCGCAGCCCGACGGGGTCGC


CGCTGGCGAGCACGGCAACGACCTTCTAAGCGTGCTGCTGGCGAGGATGCAGGAGGAGCAGA


AGCTGGACGGCGACGGCGAAAAGATCACCGAAACTGACATCAAAGCTCTGCTCCTGGTAAGT


TCCTGATGACCGTGCCTTTTCAGATTATCGCAACACCACTTCCATGTTGACATGATCTTTCT


TCTTTCTTTTTGTGGATCGTGATAGAACCTATTCACTGCGGGGACGGATACGACATCGAGCA


CGGTGGAGTGGGCACTGGCGGAGCTGATCCGGCACCCGGACGTCCTCAAGGAGGCCCAGCAT


GAGCTTCACACCGTCGTCGGTAGGGGTCGTCTCGTGTCCGAGTCTGACCTTCCACGCCTCCC


CTACCTCACCGCGGTGATCAAGGAGACGTTTCGGCTTCACCCGTCAACGCCGCTCTCACTGC


CTCGGGAGGCTGCAGAGGAGTGTGAGGTGGACGGCTACCGTATCCCCAAGGGCGCTACCCTC


CTAGTCAACGTCTGGGCTATAGCCCGTGACCCGACCCAATGGCCCGACCCGCTACAGTACCA


GCCTTCTCGGTTTCTCCCCGGCAGGATGCATGCAGACGTGGATGTCAAGGGTGCTGATTTCG


GCCTGATACCATTCGGAGCAGGACGGAGAATATGCGCTGGCCTTAGTTGGGGCTTGCGGATG


GTCACACTGATGACTGCCACGCTAGTGCACGGGTTCGACTGGACCTTGGCTAACGGCGCGAC


TCCGGACAAGCTCAACATGGAGGAGGCCTATGGGCTCACCTTGCAGAGGGCCGTGCCGTTGA


TGGTCCAGCCCGTGCCAAGGCTGCTTCCATCGGCTTATGGAGTATAAAACCGGTCTACTTAC


TAGTACCACTTTAAATTAAGGTCAGAAATCGGTGGAGACTACTTGCAGTGTTGGCCGCATTA


TATGACGTATTATTTTGTTTTGTTTGTTGGTGGAAAAATAAAGTAGTCTATCTCAGTGTTAT


CTGGCACTAAAGGAACTCTAGAAATGGTGGCAAAATAGAGTACTATCGTGGAATCATAAAAA


AGGATTATTTGGTGTATAATACAGAAAAATTTATGAACACGCTGGTATATATG





SEQ ID NO: 10


>CYP75B4_LOC_Os10g16974_chr10_8494248-8504329


GGTGGTAGGTAAGGGATCTCAGGATGGGACCTGGCACCCATATCCACCAACCACTGTTGTCC


CTGAGATAATAGACGCGTGCTTTGCAGAGTGATCCAAAGCTAGCTAGTCCTACCAACAATGG


AGGTCGCCGCCATGGAGATCTCTACCTCATTGCTCCTCACCACCGTGGCTCTCTCCGTCATC


GTGTGCTACGCCCTGGTCTTCTCCCGCGCCGGGAAGGCGCGTGCGCCGCTGCCGCTGCCGCC


TGGCCCCAGGGGATGGCCGGTGCTGGGCAACCTGCCGCAGCTGGGCGGGAAGACGCACCAGA


CGCTGCACGAGATGACCAAGGTGTACGGCCCGCTGATCCGGCTCCGGTTCGGGAGCTCCGAC


GTGGTGGTCGCCGGCTCGGCGCCGGTGGCGGCGCAGTTCCTCCGCACCCACGATGCCAACTT


CAGCAGCCGGCCACGCAACTCCGGCGGCGAGCACATGGCGTACAACGGCCGGGACGTCGTGT


TCGGGCCGTACGGGCCGCGGTGGCGCGCCATGCGGAAGATTTGCGCCGTCAACCTCTTCTCC


GCGCGCGCGCTCGACGACCTGCGCGCTTTCCGGGAGCGGGAGGCCGTGCTGATGGTTAGGTC


GCTGGCGGAGGCGAGCGCCGCCCCTGGGTCGTCGTCTCCAGCGGCGGTGGTCCTGGGAAAGG


AGGTGAATGTCTGCACGACGAAcgcgctgtcgcgcgccgcggtcgggcgccgcgtgttcgcc


gccggcgcgggcgagggcgcgAGGGAGTTCAAAGAGATCGTGCTGGAGGTGATGGAGGTGGG


TGGTGTGCTGAACGTCGGCGACTTCGTGCCGGCGCTCCGGTGGCTGGACCCGCAGGGCGTGG


TAGCGAGGATGAAAAAGCTGCACCGCCGGTTCGACGACATGATGAACGCGATCATCGCGGAG


AGGAGGGCCGGATCACTACTCAAACCAACCGACAGTCGTGAGGAAGGTAAGGACTTGCTTGG


CTTGCTCCTGGCTATGGTGCAGGAGCAGGAGTGGCTCGCCGCCGGCGAGGACGACAGGATCA


CCGACACGGAAATCAAGGCCCTTATCCTGGTTCGTGATTCATGCTCTGATTTAGTAGATAGA


CACTCACTCGTTCATTGCatattaactaagtagctataattttttaagaaaaataataaaat


atattagtatataatatattactttacaaacatataaattaaattaaatttgatttttataa


ataacatataGATTATAAGATCCACGTTAAATGAGTCTACATCCACTCAATTATTAGAATCT


GTCCCCTGAACTTTTTTACTGTTGTCTGTCTACGTCATGTCCAAAACACTAGTAATGTTTGT


TTCTCCTTTGTTGAGAATCTGTTTTTCCCACGTCGATGTGCTTTCTGTTCGGAATTTGGTTT


GGGAATTTGGGGATATGCGTCGTTTTGCGCACCAGAAGACCAGAACACGTACTTGTCGTCAT


CACCACTCATTTGGGTAACAGATTATCAAGTAGACTGGTTGTCGGGCTTCCAATAGTAAAAT


CTAATTCGAGAGCCCTCCTGTTTTAGCGCTATCATTCGACGCTGGCAGAGCCGTCTGATCGC


TCGCGTCATTATCGAGTCCATCTGCGTAGGCCTCGCAGTCTACtggtaattcttacgatcac


agataaaatccgcaagcgcacgggtatacagatgtagcacttcccctacggagtattccaaa


gggtatcgaatccaaggaaacatgtgtggtcagttcttcctccggttcatccaagaacacca


agcaaaggatagggcgggatagcgaggattcactggtgagaaatagtgtctaggaaagttta


agtttaatcctaacgtaatacttcaggcactggtaacccgctattcccagatgttgctctac


tacgtacccggacagggaagacttaagtgatctcgagggctgtcaccacctctacacctacc


tcaaacgtactgtgggatacacagtaattactggataacaattacctaaacaccacgtctaa


gcaattaatatctactttagtatttataactcaccaaagcaatctctatatttcagttgatt


atagtgaacgataatcccgtatgctatttaggaactaaccaagagataattctcacaagata


aatctaaattactcaggaagaatattatattgaaatcagagtaatgaacaaaataaaagaaa


tgagagaagattaccgacaactccagaattcttccgacttcttctactctactctcttccta


ttctagtatacaatatagtacaatagagcctcttataatttagctcaatcttggaagtgtgt


gtaagagtgaaggagtgaaactccttatatagaggtaggtatgactgttacacgatgcgaat


tgtcggaaatgccccgcaaccgccatcaggagatgatcaggaccatccacgccaaaccccag


cctgaacggctgagattttggttcggccgaaccaaggggttcggccgaacgtgggctaggcc


cacctggcctggccttcggcccatctcctccgctggtcctcctttatccatttctcggagtt


ttgagctgagtctttgatattttgatgatcacaacccatccttgtatgaatacacgtttctc


ctcactttagtctgattttactcccaacttcggggttcaacacctgcatacaaatgaacacc


aacactagtggaatatgtgagattaaacacctatcgctatattgaatgtgttattatctgga


ctttatgcagaggttggcggtatagaatcagcatttaacagccgccaacaTAGTCGTAGGCA


TGGCTTTCTGGATAAGGATCGAGATGAAACCACTCCAACCACACGTCACACGCAAATCCTGC


TTTAGAGAGTCACAGAGAGAGAGGTTACAGTTTCTCCCCcatgtccttttcctcttcaaaca


atgttttctctcaaattacctatccgatcaacaatccgattacaccattgtgttcgttacaa


ttaaatcatcacaacaagctctgacatgattatattacgatgaaaaaatatttatatttata


aattacttttattatatatgtaagttacttttatcatacatataagttgcttttagatttga


ctaaattacttttatatttgacATAtaaaagtaaatttaataaagtctgaaagtagtttaca


tatattataaaattaacttaaaacaaaacggaagtaactttgtcacgacattagaagtaaat


tcgttgtagggataaaaatataactttatctaaaattaaatttaattagcacaaatcaACAC


ACGTAAGTTTAACAATTTTTAAAAGTAACTTCAATGTTAATTGGAAGTAACTTTTGCATGGT


TCAAGTTGAAAGGAGATACTAGATGGAGTACAAACTAGCTACCACTAGCTGTGTAGTCACGT


CCAATGAAAAAATGCATTAATTAaagttactttctttttgttatagttacttctataatata


tttaaattacttttaggctttattgaatttacttttatatgtctaagaagtaatttagtgaa


atctaaaaataatttagatatattataaaagtaatttattatttttcatcaaaatataatca


tgtgagatcttgttataaagatttaattgttacaaacacaacgatataatcggatcgtagat


cagataactagtttaagagaaaattgtatTTGAAATATAGGTGGACAATGTCTCTCATATAT


GGAGTGGTAGCTGGTTTAGACAAATCAGCTACCACTTGCTGTGTAGTCACGTTCCCAATCGT


AAAATCCTCCTTTTCCGTGGGAATAGGATAATGCACCACCTAAATTATTTTAATGCTACCTT


ACTCTAAACTTCGGATATCCGCACGGTCTTCAAAGCAGTGACAAATCTAGAATTTTTATTTT


GGTGTGCCCACACAATCCTCAAAAGCCAAATCAGAGTCACTCATATACACAAATACAGTAAA


AGTTCtttttttaaaggaacacaacaagggagggccccattgctaaaagattattattaaaa


aagaaagaaggttacaaagcaaattacaacaaaaggatccaatctctgactacatgttgatc


actcactttcaacctaaacagcaaaaggaggaagtctcctttaagaagttgcctccaagaaa


aaaacaaaggtaatctgttctcaaaaatgaaaccattcctttctttccaaatattccaagcc


cctaaaaggaacttttctataaagcattgcccattgtaaacatgtttagccttcatgatcat


attgctcaaactgagagaactatcccacaagatgcctaaataagtgcaacaagtcaccgaga


aagggcacttaaagaaaagatgcattaaagtgtcagtacatctctaccgacaaagaacacaa


aacaaatcataatctggtggagcacagtgtttgtgatccagcataaattagtgttcaatcta


tccatgaaaacaagccagctaaatactttaaccttggagaaaaccttactcttccaaagcca


cacaaagtgctgagggggctgcaagtgcctaaaattcagagcataaaacttctgggaagtat


atttcaaaccaccccaaatataggaccaaatatatggctatctcactctcctgagaaagatc


aatagtgctaataaaatctgaaagagcctgaaactcagtataagcttggtgagacaaaggca


gctgaaaattgtctgacatttgagctgacagatagccatgcacaaatgatattttgttggca


gcaaatgaataaagtctaggcattgagaaactgagagggggattatcagaccaaatatcctc


ccaaaaagaacatgttaaaccattccccacattgcatctagcaatccctctatagaaatcca


tcagcttataaatatctctacaccaaaaagaccctttagagatgacaaatgaggggccactt


gatcataataagaggaccagataagatcaacccatggcacattccttctattatagaatttg


tccaaaaatttcaccaaaagagcttgattccgaatagaaaggttgataacaccaagcccccc


ttttactttaggtttacaaactttgtcccaagctgctaaattttctgcttgaattcacatat


gaacatctccaaagacaatgtttccttgcactatcaatattatcaattactgtcttaggcaa


cattatagtgcacatgtaattggttggcaaggaggagaaaactgaattaactagagtaagcc


tattaccatataacaagaaatctgagtttgcagacaatctcctttcaattccttcaactaga


ggagcaaaatcaaccactctaggcttagttgttcccaaaggcagaccaagataagtaaaggg


gagtgaaccaattttgcaaccagaaaccctagcaagcatctcatcttttccatcactcaagt


ttttagggattaaacatgatttttgatagttaacctttaatctagtaccttgagcaaaagat


tgaagcagaacttttagagtaaaaagctccttcccacaatccttaacatataaaagagtatc


atctgcatattggaccactgggaagttattgtcctgactatagggcaatggcttggataaca


aatacaaatggtgtgctatgtttattaaagattgcagaagatcagctcccacaacaaacaac


ggcggtgaaaggggtcttacaccccccctccccccccccccgcctacaatgaaaattctttc


taggaactccattcagaagaactgaagagaagcagaagaaaagatcttctgaatccagttta


accattttctaaaaaccccatagctttcatcaccaacaaaatagcttcatgttcaatagtat


caaaggctttctcaaagtccaactttaaaagaacgatttcccttcttgagtggtgacattga


tgaagaaactcaaaattccaagcaaggcaatcctgaatagttctcccttttataaaactata


ttgatttggatgtattactgataggattaccatctgcaatctgccagccaacaacttcgtca


aaatcttcagagaaatccccataagagaaataggcctatagtgatttatagtctcaggacac


aattttttaggcaccaaagtgatgaaagagtgattcaaaggattcaagtctagagagcctca


atgaaaatcagcgcataatttataataatcttgacatataatgggccagcatttcttaataa


aaaggccattaaaaccatccgaatcaggagctctatcaatagggagattcttaataagctta


tcaacctcattcttagaaaagggggcatccaggatttccaaaccgtcttgtgaagggattaa


agaagggagatcaaaaggcatacattcaaaacaagaaattcccatcctcatcttaaaagcat


tccaagcagtatgggctttagcctcatgatcagagagggttgacccatccacatcaaccaaa


atagctatagaattcttcctgtatgattcagttgccattgcatggaaaaaatttgtgttttc


ccctccaaatttagcccatctaatagtacaccttttcttccagtatgtttgcttatatttct


aagtatgtaagcaacttagatctgacaaaaactctgaaattccattccaacacagtgagatc


tctatattcctcaatgatatcaaaaaaaaaaagatcacaacattacattttgtgatgagttt


ctgaagcttacatagattcctactccattttataagcccctttcttaaagctttgagtttag


atgaaatatttctagcagcatccaaaaaactgccatgattagcccaaatagattggactaaa


tcaaaaaacctttcatgctcaacctataaattctcaaacctgaacacatttgatctaggaat


aacaactgcacaatacaggcggtatgatcagaagttgacctagctaaaggcttgaataaagt


attaggaaaagaggaagaccaactagtagaagtgaaaaaccagtccaattgctcaagttgag


ggtgattttgcatgttactccaggtaaaggccatgcccttaatagggacttccactaaaccc


aaattactgatgacctcattaaaaagaaaaatatcattcatatccgctcctggcttatttct


atttagaactgaacgatagaagttaaaatcaccaagcaacagccaaaaatcaccaacaggaa


tttggagactataaagccaagccaaaaaaattagacctttcaacaccagtacagggctcata


aatagtaaccattgtccaagataaactagaatcattagaagtaaaagtgagctggacaacaa


aactttcaattgtgatattcataacagagaagacataactattccagcaaaccaaaataccc


ccaaatgcacccctagaaggggaaaaaagcaaatttgtcaaaacgcttaggggtgaacttcc


taatgaaggaatgatcaaaattacttctcttagtttcatgtaaacaaaaaaaaatgcacatc


cgctttcctctatcttattcctaatagccaaccacccatcatcagaatttatgcctcttaca


ttctaacacagaacattccagtcctaaaagcaccattcatttTAAACAGTGATAGTAGTGTA


GATCATATCTTACATAACACAAACAAAGAAATGAAACAATGTTAATGAAACACTTTTTTAAG


CTTAGAAATGCTTGCACGCACCATCATTAATGATTCATTGTAACTTATTGATTTCACATTTC


ACAAATATGCATCATCCAAACAAAGTAAAATTGTAAAAGCTAGAAAATTAGCTGTGCTACGA


GCCTACTAACTTGCCTGATTACCCCCTATACTGGTTAGGATAATGGTTATAATagccgtaac


cagcaaatcgagactaaagatctcgatctttagtaccggttgaaataacaagtactaaagat


gcataccaagtcAAAAAACTATATGTGGGATGTGGGACTCAAACTTACGATCTCTCACCCCA


ATCCTCACGTGCGTTACCATCCCACCTAGTACACACATCTGACTTAGATAAATATGCTTTCT


TTTTAATCTAATCGTAAAGACATCTTTAGtaaaaatatcattagtccaagttagtattacca


acagagaataaagatcctccagcattatttttggttggtgataccaaccggtactaaagaag


tatttttagtaccgattagtaacattaaccatgagtaaaactgtttctagggagttagactt


ttagaatcggtactaaagaatcttataccagttcttaatccaaccaagatattttttatttt


ggATACCACAATAAAAAGATCAGTTATATAGTAAATGTTGGTGCTACTTGACTGGTTGGCGG


TGACAACTACCGTCGGCCATAGCGTGCCTGCGTGTCGTGGGCTGCACCACTACGCTGGACTC


CATCTCACTGCCCGTTGTGCAGCGCTCGCCGCTTCGCATGTGCCACAAGACGAGAGATGAGA


TACAGAGAAAACCCTATACACGCACGTGCACGCCCGATAGATTCGTGTGCTGGTGGAGTCCA


GACAATGCAGCGGGGCCTTGCACTCTATTTCGGCATTTATTTATTTATTGTGACCAGGCACC


AACCGATCATTTAGGCCTATTGCTGCATACTGCTTTTTAAAATTATTTTGCAAATTTTGGGT


ATGCTGCCAGTCCATACCGGGAAGGCAGGAACCCGTCCGCCCCTCTTTGAAGTACTACTAAT


ACATGTTACATTATCATTTTTAATAATATGTTTATAAAAATATTGAAAACATTGCCACATGA


ATGTGtttatattataaatatattattatataccatttttcatatattaaattttagttatt


tttatataGACCCATCCTATGATGTCATATGTCTTTCTGCTGACTATGCAGAATCTATTCGT


GGCGGGCACAGACACAACATCAACCATAGTTGAGTGGACAATGGCAGAGCTGATTCGACACC


CAGATATCCTCAAGCACGCCCAAGAGGAGCTAGATGTTGTTGTGGGTCGTGATAGGCTCCTC


TCAGAGTCGGATCTATCACATCTCACCTTCTTCCATGCTATCATCAAGGAGACATTCCGTCT


ACATCCATCAACACCGCTCTCGCTGCCACGCATGGCATCTGAGGAGTGTGAGATCGCAGGCT


ACCGTATCCCCAAGGGTGCAGAGTTGCTGGTCAATGTGTGGGGGATCGCCCGTGACCCAGCC


ATATGGCCTGACCCACTAGAGTACAAGCCCTCTCGGTTCCTCCCCGGTGGGACGCACACTGA


TGTGGATGTCAAGGGAAATGATTTCGGACTTATACCATTCGGTGCAGGGCGAAGGATATGCG


CCGGCCTCAGTTGGGGCCTGCGGATGGTCACCATGACAGCGGCCACGCTGGTGCATGCATTC


GACTGGCAGCTACCAGCGGACCAGACGCCAGACAAGCTCAATATGGATGAGGCGTTTACCCT


CCTGCTGCAAAGGGCAGAGCCATTGGTGGTTCACCCGGTACCAAGGCTTCTCCCATCCGCTT


ACAATATTGCATAAAGATTTACGAGTTGAATATAATTAACGAAAAGTTATTTCCGTGTGTGT


GGCATCAAATAAATAGAGGGTATGAACTTTTGTCATGGTGTTGCATCATTGTTGTATGTTGG


TAGATTGGTTTTTCACGAGTATCTATACTCCTTATAAAAAGGAGTAGTGGTGATGATTCTGC


TACCACCCCACTACCAACTCTTATCtttttttAAGGACATCTAGGATTAGTGGGCCCATATG


TCATTACTCTCACCAACTTTTATTCTTGTGAAAGGTTATTACCGTGCGAATAAATAGTGGGT


TTGAACTGTCGTTGTGTTATATCATTCGATGTATGTTGATTGGTTTTGTTTTTCACAAGGAG


TATACATATATTAAGGGACAGAATAATTGTCAGTCGCT





SEQ ID NO: 11


GRNA1;


TGCGGCAGGTTGCCCAGCAC





SEQ ID NO: 12


GRNA2;


CCGCTGTTCCGGCTCCGGTT





SEQ ID NO: 13


GRNA3;


ACTTCGTGCCGGCGCTCCGG





CYP75B3/B4 SEQUENCES


SEQ ID NO: 14



Oryza sativa ssp. indica



OsR498G1018420100


MEVAAMEISTSLLLTTVALSVIVCYALVFSRAGKARAPLPLPPGPRGWPVLGNLPQL


GGKTHQTLHEMTKVYGPLIRLRFGSSDVVVAGSAPVAAQFLRTHDANFSSRPRNSG


GEHMAYNGRDVVFGPYGPRWRAMRKICAVNLFSARALDDLRAFREREAVLMVRSL


AEASAAPGSSSPAAVVLGKEVNVCTTNALSRAAVGRRVFAAGAGEGAREFKEIVLE


VMEVGGVLNVGDFVPALRWLDPQGVVARMKKLHHRFDDMMNAIIAERRAGSLLK


PTDSREEGKDLLGLLLAMVQEQEWLAAGEDDRITDTEIKALILNLFVAGTDTTSTIVE


WTMAELIRHPDILKQAQEELDVVVGRDRLLLESDLSHLTFFHAIIKETFRLHPSTPLSL


PRMASEECEIAGYRIPKGAELLVNVWGIARDPAIWPDPLEYKPSRFLPGGTHTDVDV


KGNDFGLIPFGAGRRICAGLSWGLRMVTMTAATLVHAFDWQLPADQTPDKLNMDE


AFTLLLQRAEPLVVHPVPRLLPSAYNIA*





SEQ ID NO: 15



Oryza sativa ssp. indica



OsR498G1018427100


MDVVPLPLLLGSLAVSAAVWYLVYFLRGGSGGDAARKRRPLPPGPRGWPVLGNLP


QLGDKPHHTMCALARQYGPLFRLRFGCAEVVVAASAPVAAQFLRGHDANFSNRPPN


SGAEHVAYNYQDLVFAPYGARWRALRKLCALHLFSAKALDDLRAVREGEVALMV


RNLARQQAASVALGQEANVCATNTLARATIGHRVFAVDGGEGAREFKEMVVELMQ


LAGVFNVGDFVPALRWLDPQGVVAKMKRLHRRYDNMMNGFINERKAGAQPDGVA


AGEHGNDLLSVLLARMQEEQKLDGDGEKITETDIKALLLNLFTAGTDTTSSTVEWAL


AELIRHPDVLKEAQHELDTVVGRGRLVSESDLPRLPYLTAVIKETFRLHPSTPLSLPRE


AAEECEVDGYRIPKGATLLVNVWAIARDPTQWPDPLQYQPSRFLPGRMHADVDVK


GADFGLIPFGAGRRICAGLSWGLRMVTLMTATLVHGFDWTLANGATPDKLNMEEA


YGLTLQRAVPLMVQPVPRLLPSAYGV*





SEQ ID NO: 16



Oryza sativa ssp. japonica



LOC_Os10g16974


MEVAAMEISTSLLLTTVALSVIVCYALVFSRAGKARAPLPLPPGPRGWPVLGNLPQL


GGKTHQTLHEMTKVYGPLIRLRFGSSDVVVAGSAPVAAQFLRTHDANFSSRPRNSG


GEHMAYNGRDVVFGPYGPRWRAMRKICAVNLFSARALDDLRAFREREAVLMVRSL


AEASAAPGSSSPAAVVLGKEVNVCTTNALSRAAVGRRVFAAGAGEGAREFKEIVLE


VMEVGGVLNVGDFVPALRWLDPQGVVARMKKLHRRFDDMMNAIIAERRAGSLLKP


TDSREEGKDLLGLLLAMVQEQEWLAAGEDDRITDTEIKALILNLFVAGTDTTSTIVE


WTMAELIRHPDILKHAQEELDVVVGRDRLLSESDLSHLTFFHAIIKETFRLHPSTPLSL


PRMASEECEIAGYRIPKGAELLVNVWGIARDPAIWPDPLEYKPSRFLPGGTHTDVDV


KGNDFGLIPFGAGRRICAGLSWGLRMVTMTAATLVHAFDWQLPADQTPDKLNMDE


AFTLLLQRAEPLVVHPVPRLLPSAYNIA*





SEQ ID NO: 17



Oryza sativa ssp. japonica



LOC_Os10g17260


MDVVPLPLLLGSLAVSAAVWYLVYFLRGGSGGDAARKRRPLPPGPRGWPVLGNLP


QLGDKPHHTMCALARQYGPLFRLRFGCAEVVVAASAPVAAQFLRGHDANFSNRPPN


SGAEHVAYNYQDLVFAPYGARWRALRKLCALHLFSAKALDDLRAVREGEVALMV


RNLARQQAASVALGQEANVCATNTLARATIGHRVFAVDGGEGAREFKEMVVELMQ


AGEHGNDLLSVLLARMQEEQKLDGDGEKITETDIKALLLNLFTAGTDTTSSTVEWAL


AELIRHPDVLKEAQHELDTVVGRGRLVSESDLPRLPYLTAVIKETFRLHPSTPLSLPRE


AAEECEVDGYRIPKGATLLVNVWAIARDPTQWPDPLQYQPSRFLPGRMHADVDVK


GADFGLIPFGAGRRICAGLSWGLRMVTLMTATLVHGFDWTLANGATPDKLNMEEA


YGLTLQRAVPLMVQPVPRLLPSAYGV*





SEQ ID NO: 18



Triticum aestivum



TraesCS1A02G442200



MDHSLLLLLASLAAVAVAAVWHLRSHGRRTKLPLPPGPRGWPVLGNLPQLGAMPH




HTMAALARQHGPLFRLRFGSVEVVVTASAKVARSFLRAHDTNFSDRPPTSGAEHLA




YNYQDLVFAPYGARWCALRKLCALHLFSARALDALRTIRQDEARLMVTHLLSSSSP




AGVAVNLCAINVRATNALARAAIGGRMFGDGVGEGAREFKDMVVELMQLAGVLNI




GDFVPALRWLDPQGVVAKMKRLHRRYDRMMDGFISERGQHAGEMEGNDLLSVML




ATIRWQSPADAGEEDGIKFTEIDIKALLLNLFTAGTDTTSSTVEWALAELIRDPCILKQ




LQHELDGVETFRLHPATPLSLPRVAAEDCEVDGYHVSKGTTLIMNVWAIARDPASW




GPDPLEFRPVRFLPGGLHESADVKGGDYELIPFGAGRRICAGLGWGLRMVTLMTATL




VHAFDWSLVDGTMPEKLNMEEAYGQTLQRAVPLVVQPVPRLLSSAYTV*






SEQ ID NO: 19



Triticum aestivum



TraesCS1A02G442300



MDHDLLLLLLASLVAVVAATVWHLRGHGSGARKPKLPLPPGPRGWPVLGNLPQLG




DKPHHTMAALARHHGPLFRLRFGSAEVVVAASAKVAGSFLRAHDANFSDRPPNSGA




EHVAYNYQDLVFAPYGARWRALRKLCAQHLFSARALDALRQVRQDEARLMVTRLL




SSSDSPAGLAVGQEANVCATNALALAAVGRRVFGDGVGEGAREFKDMVVELMQLA




GVFNIGDFVPALRWLDPQGVVGKMKRLHRRYDLMMDGFISERGDRADGDGNDLLS




VMLGMMRQSPPAAGEEDGIKFNETDIKALLLNLFTAGTDTTSSTVEWALAELIRHPD




VLKKLQHELDDVVGNGHLVTETDLPQLTFLAAVIKETFRLHPSTPLSLPRVAAEDCE




VDGYRIPKDTTLLVNVWAIARDPASWGDDVLEFRPTRFLPGGLHESVDVKGGDYELI




PFGAGRRICAGLSWGLRMVTLMTATLVHAFDWTLVDGMTPEKLDMEEAYGLTLQR




AVPLMVQPVPRLLPSAYTM*






SEQ ID NO: 20



Triticum aestivum



TraesCS1B02G476400


MDHDLLLLLLASLAAVAAAAVWHLRGAKSPKLPLPPGPRGWPVLGNLPQLGDKPH


HTMAALARLHGPLFRLRFGSAEVVVAASAKVAAAFLRGHDANFSDRPPNSGAEHVA


YNYQDLVFAPYGARWRALRKLCALHLFSARALDALRTVRQDETRLMVTRLLSSSSG


SVSPAGLAVGQEANVCATNALARAAVGRRVFGDGVGEGAREFKDMVAELMQLAG


VFNIGDFVPALRWLDPQGVVAKMKRLHRRYDRMMDGFISERGDRADGDGNDLLSV


MLGMMRQSPPAAGEEDGIKFNETDIKALLLNLFTAGTDTTSSTVEWALAELIRHPNV


LKKLQHELDDVVGNGRLVTESDLPQLTILAAVIKETFRLHPSTPLSLPRVTAEDCEVD


GYRIPKDTTLLVNVWAIARDPASWGDDVLEFRPVRFLAGGSHETVDVKGGDYELIPF


GAGRRICAGLSWGLRMVTLMTATLVHAFDWTLVDGMTPEKLDMEEAYGLTLQRA


VPLMVQPVPRLLPSAYTV*





SEQ ID NO: 21



Triticum aestivum



TraesCS1D02G450100


MPCARPTNKQTSPHPLPPSMTPAAMDHDLLLLLASLAAVIVAAVWHLRGHGSGARK


PKLPLPPGPRGWPVLGNLPQLGDKPHHTMAALARLHGLLFRLRFGSAEVVVAASAK


VAGSFLRAHDANFSDRPPNSGAEHVAYNYQDLVFAPYGARWRALRKLCAQHLFSA


RALDALRTVRQDEARLMVTRLLSSSDSPAGLAVGQEANVCATNALALAAVGRRVF


GDGVGEGAREFKDMVVELMQLAGVFNIGDFVPALRWLDPQGVVAKMKRLHRRYD


RMMDGFISERGDRADGDGNDLLSVMLGMMRQSPPAGGEEDGIKFNETDIKALLLNL


FTAGTDTTSSTVEWALAELIRHPDVLKKLQHELDDVVGNGRLVTESDLPQLTFLAAV


IKETFRLHPSTPLSLPRVAAEDCEVDGYRIPKDTTLLVNVWAIARDPASWGDDVLEFR


PTRFLPGGSHESVDVKGGDYELIPFGAGRRICAGLSWGLRMVTLTTATLVHAFDWTL


VDGMTPEKLDMEEAYGLTLQRAVPLMVQPVPRLLPSAYTM*





SEQ ID NO: 22



Triticum aestivum



TraesCS2B02G613200


MDHDLLLLLASLAAVAVAAVCYLRSHGSGAKLPLPPGPRGWPVLGNLPQLGAKPH


HTMAALARQHGPLFRLRFGSAELVVAASAKVAGSFLRAHDANFSDRPPNSGAEHVA


YNYQDLVFAPYGARWRALRMLCALHLFSARALDALRSVRQDEARLMVTHLLSASS


SPAQGVAIGQEANVCATNALARAAVGRRVVGDGVGESAREFKGMVVELMQLAGA


FNIGDFVPALRWLDPQGVVAKMKHLHRRYDRIMDGFISEREHLAGEEEGKDLLSIML


AKMRQPLHADAGEDGIKFTETNIKALLLNLLTAGTDTTSSTVEWALAELIRHPDTLK


QLQREVDDVVGTSRLVTEADLPRLTFLTAVIKETFRLHPSTPLSLPRVAAEDCEVDGY


HVAKGTTLLVNVWAISRDPASWGADALEFRPARFLPGGSHETVDVKGGDYELIPFG


AGRRMCAGLSWGLRIVTLMTATLVHAFDLSLVNGMTPDKLDMEEAYGLTLQRAVP


LLVQPMPRLLPSAYAT*





SEQ ID NO: 23



Triticum aestivum



TraesCS6A02G012600


MEIPLPLLLSTFAISVTICYVIIFFFRADKGRAPLPPGPRGWPVLGNLPQLGGKTHQTL


HEMTRLYGPMLRLRFGSSLVVVAGSADVAKQFLRTHDAKFSSRPPNSGGEHMAYN


YQDVVFAPYGPRWRAMRKVCAVNLFSARALDDLRAFREWEAALMVRCLADAAAA


GMAVALAKTANVCTTNSLSRATVGLRVFDTAGSKLGAEEFNEIVLKLIEVGGVLNV


GDFVPVLRWLDPQGVVAKMKKLHRRFDDMMNRIIAERRAGAFATTAGEEGGKDLL


GLLLAMVQEDKSLTGAEENKITDTDVKALILNLLVAGTDTTSITVEWAMAELIRHPDI


MKQAQEELDAVMGRERLVSESDLPRLTSLSAIIKETFRLHPSTPLSLPRMATEDCKVA


GYCIPKGTELLVKVWGIARDPALWPDPLEFRPARFLPGGSHADVDVKGGDFGLIPFG


AGRRICAGLSWGIRMVTVTTATLVHSFDWELPAGQTPDMEETFSLLLQLAVPLMVH


PVPRLLPSAYQIA*





SEQ ID NO: 24



Triticum aestivum



TraesCS6B02G018800


MEIPLPLLLSTFAISVTICYVIFFFFHADKGRAPLPPGPRGWPVLGNLPQLGGKTHRTL


HEMTRLYGPMLRLRFGSSLVVVAGSADVAKQFLRTHDAKFSSRPPNSGGEHMAYN


YQDVVFAPYGPRWRAMRKVCAVNLFSSRALDDLRGFREREAALMVRCLADSAATG


GAVALAKAANVCTTNALSRATVGLRVFATAGSELGAEDFNEIVLKLIEVGGVLNVG


DFVPALRWLDPQGVVAKMKKLHRRFDDMMNRIIAERRAGAIATKAGEEGGKDLLC


LLLAMVQEDKSLTGGSEEDRMTDTDVKALILNLFVAGTDTTSITVEWAMAELIRHPD


ILKQAQKELDAVIGRDRLVLESDLPRLNFLNAIIKETFRLHPSTPLSLPRMATEECEVA


GYRIPKGTELLVNVWGIARDPALWTDPLEFRPARFLPGGSHADIDIKGGDFGLIPFGA


GRRICAGLSWGIRMVAVTTATLVHSFDWELPAGQMPDMEETFSLLLQLAVPLMVHP


VPRLLPSAYQIA*





SEQ ID NO: 25



Triticum aestivum



TraesCS6D02G015200



MEIPLPLLLSTFAISVTICYVILFFRADMGRAPLPPGPRGWPVLGNLPQLGGKTHKTLH




EMARLYGPMLRLRFGSSLVVVAGSADVAKLFLRTHDAKFSSRPPNSGGEHMAYNY




QDVVFAPYGPRWRAMRKVCAVNLFSARALDDLRAFREWEAALMVRCLADAAAAG




MAVALGKAANVCTTNALSRATVGLRVFATAGSELGAEEFNEIVLKLIEVGGVLNVG




DFVPALRWLDPQGVVAKMKKLHRRFDDMMNRIIAERRAGAFATTASEEGGKDLIGL




LLAMVQEDKSLTGAEENKITDTEVKALILNLFVAGTDTTSITVEWAMAELIRHPDIM




KQAQEELDAIVGRERLVSESDLPRLTFLSAIIKETFRLHPSTPLSLPRMTTEECEVAGY




CIPKGTELLVNVWGIARDPALWPDPLEFRPARFLPGGSHADVDVKGGDFGLIPFGAG




PRLLPSAYQIA*






SEQ ID NO: 26



Triticum aestivum



TraesCS6D02G015300



MHSTCMQNLFVAGTDTTLIMVEWAMAELIRHPDTLKQAQEELDTIVGRERLISESHL




PRLTFLSAVIKDTFRLHPSTPLLLLRMATEECETAGYRIPKGTELLVNVWGIAHDPAL




WPDSLEFRPAWFLPGGSHADVDVKGGDFGLIPFGAGRRICAGLSRGIRMVAVTTATL




VHSFNWELPAGQTPDMEGTFSLLLQLAVPLMVHPVPRLLPSAYQIA*






SEQ ID NO: 27



Triticum aestivum



TraesCS7A02G411700


MNTRAPAVLAYRSNATMHLVAMDIPLPLLLSTLAVAVGVCYVLATFFRADKGRAPL


PPGPRGWPVLGNLPQLGGKTHQTMHEMSKVYGPVLRLRFGSSVVVVAGSAGAAEQ


FLRTHDAKFSSRPPNSGGEHMAYNYQDVVFAPYGPRWRAMRKVCAVNLFSARALD


DLRGFREREAALMVRSLVDAAATGGVVAVGKAANVCTTNALSRAAVGLRVFAAA


GAELGAKEFKEIVLEVMEVGGVLNVGDFVPALRWLDPQGVVARLKKLHRRFDDM


MNGIIAERRAGGSTAGEEKEGKDLLGLLLAMVQEDKSLTGGEEDRITDTDVKALILN


LFVAGTETTSTIVEWAVAELIRHPDMLKRAQEEMDAVVGRDRLVSESDLPRLTFLNA


VIKETFRLHPSTPLSLPRMASEECEVAGYRIPKGTELLVNVWGIARDPALWPDPLEFR


PARFLPGGTHADVDVKGGDFGLIPFGAGRRICAGLSWGLRVVTVTAATLVHSFDWE


LPAGQTPDKLNMEEAFSLLLQRAVPLMAHPVPRLLPSAYEIA*





SEQ ID NO: 28



Triticum aestivum



TraesCS7B02G310900


MHLVAMGIPLPLLLSTLAIAVTICYVLATFFRADKGRAALPPGPRGWPVLGNLPQLG


GKTHQTMHEMSKVYGPVLRLRFGSSVVVVAGSAAVAEQFLRTHDAKFSSRPPNSGG


EHMAYNNQDVVFAPYGPRWRAMRKVCAVNLFSARALDDLRGFREREAALMVRSL


VDAASGGGVVAVGKAANVCTTNALSRAAVGLRVFAAAGTELGAKEFKEIVLEVME


VGGVLNVGDFVPALRWLDPQGVVARLKKLHRRFDDMMNGIIAERRAGGSTAGEEK


EGKDLLGLLLAMVQEDKSLTGGEEDRITDTDVKALILNLFVAGTETTSTIVEWAVAE


LIRHPDMLKRAQEEMDAVVGRDRLVSESDLPRLTFLNAVIKETFRLHPSTPLSLPRMA


SEECEVAGYRIPKGTELLVNVWGIARDPALWPDPLEFRPARFLPGGTHADVDVKGG


LQRAVPLMVHPVPRLLPSAYQIA*





SEQ ID NO: 29



Triticum aestivum



TraesCS7D02G404900


MHLVAMDIPLPLLLSTLAVAVTICYVLFFRADKGRAPLPPGPRGWPVLGNLPQLGGK


THQTMHEMSKVYGPVLRLRFGSSVVVVAGSAAVAEQFLRTHDAKFSSRPPNSGGEH


MAYNYQDVVFAPYGPRWRAMRKVCAVNLFSARALDDLRGFREREAAFMVRSLAD


AASGGGLVAVGKAANVCTTNALSRAAVGLRVFAAAGTELGAKEFKEIVLEVMEVG


GVLNVGDFVPALRWLDPQGVVARLKKLHRRFDDMMNGIIAERRAGAGTAGEEKEG


KDLLGLLLAMVQEDKSLTGGEEDRITDTDVKALILNLFVAGTETTSTIVEWAVAELIR


HPDMLKRAQEEMDAVVGRGRLVAESDLPRLTFLNAVIKETFRLHPSTPLSLPRMASE


ECEVAGYRIPKGTELLVNVWGIARDPALWPDPLEFRPARFLPGGTHADVDVKGGDF


GLIPFGAGRRICAGLSWGLRVVTVTAATLVHSFDWELPTGQTPDKLNMEEAFSLLLQ


RAVPLMVHPVPRLLPSAYEIA*





SEQ ID NO: 30



Zea mays B73



Zm00001d010521


MELFVTTPDLPTPLLLSTLTIVSVVVCYVLFWKQQAAARRAPLPPGPRGWPVLGNLP


QLGGKTHQTLHEMTKVYGPLLRLRFGSSTVVVAGSAAVAQQFLRAHDANFSSRPPN


SGGELMAYNYQDVVFAPYGPRWRAMRKVCAVNLFSARALDDVRGVREREAALMV


RSLAEQAHGGLDAPPAAVPVGKAINVCTTNALSRAAVGRRVFAAAGGDGGAREFK


EIVLEVMQVGGVLNVGDFVPALRWLDPQGVAAKMKKLHRRFDDMMDEIIAGYREA


RRVAADGEESKDLLGLLLSMVDERPFDSGEEVRITETDVKALILNLFVAGTDTTSTIV


EWSLAELIRHPEILRQAQEEMDAVAGRGRLVTESDLRSLTFFNAVIKETFRLHPSTPLS


LPRMAAEECEVAGYRVPRGSELLVNVWGIARDPALWPDPLEFRPARFLPGGSHADV


EAFTLLLQRAVPLVARPVPRLLPSAYEIA*





SEQ ID NO: 31



Zea mays B73



Zm00001d017077


MDVPLPLLLGSVAVSLVVWCLLLRRGGAGKGKRPLPPGPRGWPVLGNLPQVGAKP


HHTMCAMAREYGPLFRLRFGSAEVVVAASARVAAQFLRAHDANFSNRPPNSGAEH


VAYNYQDLVFAPYGSRWRALRKLCALHLFSAKALDDLRGVREGEVALMVRELARQ


GERGRAAVALGQVANVCATNTLARATVGRRVFAVDGGEGAREFKEMVVELMQLA


GVFNVGDFVPALAWLDPQGVVGRMKRLHRRYDDMMNGIIRERKAAEEGKDLLSVL


LARMREQQPLAEGDDTRFNETDIKALLLNLFTAGTDTTSSTVEWALAELIRHPDVLR


KAQQELDAVVGRDRLVSESDLPRLTYLTAVIKETFRLHPSTPLSLPRVAAEECEVDGF


RIPAGTTLLVNVWAIARDPEAWPEPLEFRPARFLPGGSHAGVDVKGSDFELIPFGAGR


RICAGLSWGLRMVTLMTATLVHALDWDLADGMTADKLDMEEAYGLTLQRAVPLM


VRPAPRLLPSAYAE*





SEQ ID NO: 32



Zea mays B73



Zm00001d050955


MDVPLPLLLGSLAVSVMVWCLVLRRGGDGKGKRPLPPGPRGWPVLGNLPQVGAKP


HHTMCALAREYGPLFRLRFGSAEVVVAASARVAAQFLRAHDANFSNRPPNSGAEHV


AYNYRDLVFAPYGSRWRALRKLCALHLFSAKALDDLRGVREGEVALMVRELARPR


RGEGGRAAAVALGQVANVCATNTLARATVGRRVFAVDGGEGAREFKEMVVELMQ


LAGVFNVGDFVPALAWLDPQGVVGRMKRLHRRYDHMMNGIIRERKAAEEGKDLLS


VLLARMRDQQQQPLAEGEDNRINETDVKALLLVSLLALTTSQRANGMDNCSGALRA


VEESACDAEVVRPLSKLPNSSIGLYDSSFECDACGVGFVAELSGDYKHVTVNDTIEM


LERMAHRGACGCEKNTGDGAGIMVALPHDFFKEVAKDAGIELPPLGEYAVAMFFM


PTDEKRRKKGKAEFKKVAESLGHLYILRRLSIISVRASLNIKRGGERDFYMCSLSSRA


TVGMLLGVEDMHRFPVRSPWMDRGDLIRSPAARQIVSNYFSMFGPVQDVRIPYQQK


RMFGFVTFVYAETVKVILSKGNPHFVCDARVLVKPYKEKGKVPGRFRKLQHTHHGG


AEFVGCASPTGLLDSRDPYALLLLSGAQNLFTAGTDTTSSTVEWALAELIRHPDVLR


KAQQELDAVVGRDRLVSESDLPRLTYLTAVIKETFRLHPSTPLSLPRVAAEECEVDGF


RIPAGTTLLVNVWAIARDPEAWPEPLQFRPARFLPGGSHAGVDVKGSDFELIPFGAGR


RICAGLSWGLRMVTLMTATLVHALEWDLADGVTAEKLDMEEAYGLTLQRAVPLM


VRPAPRLLPSAYAAQ*





SEQ ID NO: 33



Zea mays B104



Zm00007a00002679


MDVPLPLLLGSLAVSVMVWCLVLRRGGDGKGKRPLPPGPRGWPVLGNLPQVGAKP


HHTMCALAREYGPLFRLRFGSAEVVVAASARVAAQFLRAHDANFSNRPPNSGAEHV


AYNYRDLVFAPYGSRWRALRKLCALHLFSAKALDDLRGVREGEVALMVRELARPR


RGEGGRAAAVALGQVANVCATNTLARATVGRRVFAVDGGEGAREFKEMVVELMQ


LAGVFNVGDFVPALAWLDPQGVVGRMKRLHRRYDHMMNGIIRERKAAEEGKDLLS


VLLARMRDQQQQPLAEGEDNRINETDVKALLLASRVPNNHPAKRKPPPPPPPPPGRR


RTSPTVAWKKEDKPRRRLEGGGQAPPPPPSHCQPLPTAPTPALQLPPRRMLPNALYN


PGESRDGRMTVRVVMRYLVNKLGLEDDSQVNDTIEMLERMAHRGACGCEKNTGD


GAGIMVALPHDFFKEVAKDAGIELPPLGEYAVAMFFMPTDEKRRKKGKAEFKKVGC


RITGTWRQWACCSGVEDMHRFPVRSPWMDRGDLIRSPAARQIVSNYFSMFGPVQDV


RIPYQQKRMFGFVTFVYAETVKVILSKGNPHFVCDARVLVKPYKEKGKVPGRFRKL


QHTHHGGAEFVGCASPTGLLDSRDPYALLLLSGAQNLFTAGTDTTSSTVEWALAELI


RHPDVLRKAQQELDAVVGRDRLVSESDLPRLTYLTAVIKETFRLHPSTPLSLPRVAAE


ECEVDGFRIPAGTTLLVNVWAIARDPEAWPEPLQFRPARFLPGGSHAGVDVKGSDFE


LIPFGAGRRICAGLSWGLRMVTLMTATLVHALEWDLADGVTAEKLDMEEAYGLTL


QRAVPLMVRPAPRLLPSAYAAQ*





SEQ ID NO: 34



Zea mays B104



Zm00007a00006475


MELFVTTPDLPTPLLLSTLTIVSVVVCYVLFWKQQAAARRAPLPPGPRGWPVLGNLP


QLGGKTHQTLHEMTKVYGPLLRLRFGSSTVVVAGSAAVAQQFLRAHDANFSSRPPN


SGGELMAYNYQDVVFAPYGPRWRAMRKVCAVNLFSARALDDVRGVREREAALMV


RSLAEQAHGGLDAPPAAVPVGKAINVCTTNALSRAAVGRRVFAAAGGDGGAREFK


EIVLEVMQVGGVLNVGDFVPALRWLDPQGVAAKMKKLHRRFDDMMDEIIAGYREA


RRVAADGEESKDLLGLLLSMVDERPFDSGEEVRITETDVKALILNLFVAGTDTTSTIV


EWSLAELIRHPEILRQAQEEMDAVAGRGRLVTESDLRSLTFFNAVIKETFRLHPSTPLS


LPRMAAEECEVAGYRVPRGSELLVNVWGIARDPALWPDPLEFRPARFLPGGSHADV


DVKGADFGLIPFGAGRRICAGLSWGLRMVTLTSATLVHAFDWELPAGQTPDKLNME


EAFTLLLQRAVPLVARPVPRLLPSAYEIA*





SEQ ID NO: 35



Zea mays B104



Zm00007a00021951


MDVPLPLLLGSVAVSLVVWCLLLRRGGAGKGKRPLPPGPRGWPVLGNLPQVGAKP


HHTMCAMAREYGPLFRLRFGSAEVVVAASARVAAQFLRAHDANFSNRPPNSGAEH


VAYNYQDLVFAPYGSRWRALRKLCALHLFSAKALDDLRGVREGEVALMVRELARQ


GERGRAAVALGQVANVCATNTLARATVGRRVFAVDGGEGAREFKEMVVELMQLA


GVFNVGDFVPALAWLDPQGVVGRMKRLHRRYDDMMNGIIRERKAAEEGKDLLSVL


LARMREQQPLAEGDDTRFNETDIKALLLNLFTAGTDTTSSTVEWALAELIRHPDVLR


KAQQELDAVVGRDRLVSESDLPRLTYLTAVIKETFRLHPSTPLSLPRVAAEECEVDGF


RIPAGTTLLVNVWAIARDPEAWPEPLEFRPARFLPGGSHAGVDVKGSDFELIPFGAGR


RICAGLSWGLRMVTLMTATLVHALDWDLADGMTADKLDMEEAYGLTLQRAVPLM


VRPAPRLLPSAYAE*





SEQ ID NO: 36



Zea mays B104



Zm00007a00044616


MELFVTTPDLPTPLLLSTLTIVSVVVCYVLFWKQQAAARRAPLPPGPRGWPVLGNLP


QLGGKTHQTLHEMTKVYGPLLRLRFGSSTVVVAGSAAVAQQFLRAHDANFSSRPPN


SGGELMAYNYQDVVFAPYGPRWRAMRKVCAVNLFSARALDDVRGVREREAALMV


RSLAEQAHGGLDAPPAAVPVGKAINVCTTNALSRAAVGRRVFAAAGGDGGAREFK


EIVLEVMQVGGVLNVGDFVPALRWLDPQGVAAKMKKLHRRFDDMMDEIIAGYREA


RRVAADGEESKDLLGLLLSMVDERPFDSGEEVRITETDVKALILLTQQFRTKRISSFSL


ILSFMLARGHVRQNLFVAGTDTTSTIVEWSLAELIRHPEILRQAQEEMDAVAGRGRL


VTESDLRSLTFFNAVIKETFRLHPSTPLSLPRMAAEECEVAGYRVPRGSELLVNVWGI


ARDPALWPDPLEFRPARFLPGGSHADVDVKGADFGLIPFGAGRRICAGLSWGLRMV





SEQ ID NO: 37



Zea mays PH207



Zm00008a016611


MDVPLPLLLGSLAVSVMVWCLVLRRGGDGKGKRPLPPGPRGWPVLGNLPQVGAKP


HHTMCALAREYGPLFRLRFGSAEVVVAASARVAAQFLRAHDANFSNRPPNSGAEHV


AYNYRDLVFAPYGSRWRALRKLXXXXXXXXDGGEGAREFKEMVVELMQLAGVFN


VGDFVPALAWLDPQGVVGRMKRLHRRYDHMMNGIIRERKAAEEGKDLLSVLLAR


MRDQQQLAEGEDSRINETDVKALLLNLFTAGTDTTSSTVEWALAELIRHPDVLRKAQ


QELDAVVGRDRLVSESDLPRLTYLTAVIKETFRLHPSTPLSLPRVAAEECEVDGFRIPA


GTTLLVNVWAIARDPEAWPEPLQFRPARFLPGGSHAGVDVKGSDFELIPFGAGRRIC


AGLTWGLRMVTLMTATLVHALDWDLADGVTAEKLDMEEAYGLTLQRAVPLMVRP


APRLLPSAYAAQ*





SEQ ID NO: 38



Zea mays PH207



Zm00008a022212


MDVPLPLLLGSVAVSLVVWCLLLRRGGAGKGKRPLPPGPRGWPVLGNLPQVGAKP


HHTMCALAREYGPLFRLRFGSAEVVVAASARVAAQFLRAHDANFSNRPPNSGAEHV


AYNYQDLVFAPYGSRWRALRKLCALHLFSAKALDDLRGVREGEVALMVRELARQG


ERERAAVALGQVANVCATNTLARATVGRRVFAVDGGEGAREFKEMVVELMQLAG


VFNVGDFVPALAWLDPQGVVGRMKRLHRRYDDMMNGIIRERKAAEEGKDLLSVLL


ARMREQQPLAEGDDTRFNETDIKALLLNLFTAGTDTTSSTVEWALAELIRHPDVLRK


AQQELDAVVGRDRLVSESDLPRLTYLTAVIKETFRLHPSTPLSLPRVAAEECEAWPEP


LEFRPGRFLPGGSHAGVDVKGSDFELIPFGAGRRICAGLSWGLRMVTLMTATLVHAL


DWDLADGMTADKLDMEEAYGLTLQRAVPLMVRPAPRLLPSAYAE*





SEQ ID NO: 39



Zea mays PH207



Zm00008a031477


MELVLTTPDLPTPLLLSTLTIVSVVVCYVLFWKQQAAARRAPLPPGPRGWPVLGNLP


QLGGKTHQTLHEMTKVYGPLLRLRFGSSTVVVAGSAAVAQQFLRAHDANFSSRPPN


SGGELMAYNYQDVVFAPYGPRWRAMRKVCAVNLFSARALDDVRGVREREAALMV


RSLAEQAHGGLDAPPAAVPVGKAINVCTTNALSRAAVGRRVFAAAAGDGGAREFK


EIVLEVMQVGGVLNVGDFVPALRWLDPQGVAAKMKKLHRRFDDMMDEIIAGYREA


RRVAADGEESKDLLGLLLSMVDERPFDSGEEVRITETDVKALILNLFVAGTDTTSTIV


EWSLAELIRHPEILRQAQEELDAVAGRGRLVSESDLRSLTFFNAVIKETFRLHPSTPLS


LPRMAAEECEVAGYRVPRGSELLVNVWGIARDPALWPDPLEFRPARFLPGGSHADV


DVKGADFGLIPFGAGRRICAGLSWGLRMVTLTSATLVHAFDWELPAGQTPDKLNME


EAFTLLLQRAVPLVARPVPRLLPSAYEIA*





SEQ ID NO: 40



Triticum turgidum



TRITD1Av1G229990



MNVWAIARDPASWGPDPLEFRPVRFLPGGLHESADVKGGDYELIPFGAGRRICAGLG




WGLRMVTLMTATLVHAFDWSLVDGTTPEKLNMEEAYGQTLQRAVPLVVQPVPRLL




SSAYTV*






SEQ ID NO: 41



Triticum turgidum



TRITD1Av1G230000


MDHDLLLLLLASLAAVVAATVWHLRGHGSGARKPKLPLPPGPRGWPVLGNLPQLG


DKPHHTMAALARHHGPLFRLRFGSAEVVVAASAKVAGSFLRAHDANFSDRPPNSGA


EHVAYNYQDLVFAPYGARWRALRKLCAQHLFSARALDALRQVRQDEARLMVTRLL


SSSDSPAGLAVGQEANVCATNALALAAVGRRVFGDGVGEGAREFKDMVVELMQLA


GVFNIGDFVPALRWLDPQGVVGKMKRLHRRYDLMMDGFISERGDRADGDGNDLLS


VMLGMMRQSPPAAGEEDGIKFNETDIKALLLNLFTAGTDTTSSTVEWALAELIRHPD


VLKKLQHELDDVVGNGHLVTETDLPQLTFLAAVIKETFRLHPSTPLSLPRVAAEDCE


VDGYRIPKDTTLLVNVWAIARDPASWGDDVLEFRPTRFLPGGLHESVDVKGGDYELI


PFGAGRRICAGLSWGLRMVTLMTATLVHAFDWTLVDGMTPEKLDMEEAYGLTLQR


AVPLMVQPVPRLLPSAYTM*





SEQ ID NO: 42



Triticum turgidum



TRITD2Bv1G262360


MDHDLLLLLASLAAVAVAAVCYLRSHGSGAKLPLPPGPRGWPVLGNLPQLGAKPH


HTMAALARQHGPLFRLRFGSAEVVVAASAKVAGSFLRAHDANFSDRPPNSGAEHVA


YNYQDLVFAPYGARWRALRMLCALHLFSARALDALRSVRQDEARLMVTHLLSASS


SPAQGVAIGQEANVCATNALARAAVGRRVVGDGVGESAREFKGMVVELMQLAGA


FNIGDFVPALRWLDPQGVVAKMKHLHRRYDRIMDGFISEREHLAGEEEGKDLLSIML


AKMRQPLHADAGEDGIKFTETNIKALLLNLLTAGTDTTSSTVEWALVELIRHPDTLK


QLQREVDDVVGTSRLVTEADLPRLTFLTAVIKETFRLHPSTPLSLPRVAAEDCEVDGY


HVAKGTTLLVNVWAISRDPASWGADALEFRPARFLPGGSHETVDVKGGDYELIPFG


AGRRMCAGLSWGLRIVTLMTATLVHAFDLSLVNGMTPDKLDMEEAYGLTLQRAVP


LLVQPMPRLLPSAYATPCVN*





SEQ ID NO: 43



Triticum turgidum



TRITD6Av1G001970


MEIPLTLLLSTFAISVTICYVIIFFFRADKGRAPLPPGPRGWPVLGNLPQLGGKTHQTL


HEMTRLYGPMLRLRFGSSLVVVAGSADVAKQFLRTHDAKFSSRPPNSGGEHMAYN


YQDVVFAPYGPRWRAMRKVCAVNLFSARALDDLRAFREWEALGAEEFNEIVLKLIE


VGGVLNVGDFVPVLRWLDPQGVVAKMKKLHRRFDDMMNRIIAERRAGGFATTAGE


EGGKDLLGLLLAMVQEDKSLTGAEENKITDTDVKALILLPAGQTPVMEETFSLLLQL


AVPLMVHPVPRLLPSAYQIA*





SEQ ID NO: 44



Triticum turgidum



TRITD6Bv1G003180


MEIPLPLLLSTFAISVTICYVIFFFFHADKGRAPLPPGPRGWPVLGNLPQLSGKTHQTL


HEMTKLYGPMLRLRFGSSLVVVAGSADVAKQFLRTHDARFSSRPPNSGGEHMAYN


YQDVVFAPYGPRWRAMRKVCAVNLFSARALDDLRAFREREATEPGAVDFNEIVLKL


IEVGGVLNVGDFVPALRWLDPQGVVAKMKKLHRRFDDMMNRIITERRTGAIAATAG


EEDGKDLLGLLLAMVQEDKSLTGGSEEDRMTDTDVKALILLPAGKTPDMEETFSLLL


QLAVPLMARPVPRLLPSAYQIA*





SEQ ID NO: 45



Triticum turgidum



TRITD7Av1G223010


MNTRAPAVLAYRSNATMHLVAMDIPLPLLLSTLAVAVGVCYVLATFFRADKGRAPL


PPGPRGWPVLGNLPQLGGKTHQTMHEMSKVYGPVLRLRFGSSVVVVAGSAGAAEQ


FLRTHDAKFSSRPPNSGGEHMAYNYQDVVFAPYGPRWRAMRKVCAVNLFSARALD


DLRGFREREAALMVRSLVDAAATGGVVAVGKAANVCTTNALSRAAVGLRVFAAA


GAELGAKEFKEIVLEVMEVGGVLNVGDFVPALRWLDPQGVVARLKKLHRRFDAM


MNGIIAERRAGGSTAGEEKEGKDLLGLLLAMVQEDKSLTGGEEDRITDTDVKALILN


LFVAGTETTSTIVEWAVAELIRHPDMLKRAQEEMDAVVGRDRLVSESDLPRLTFLNA


VIKETFRLHPSTPLSLPRMASEECEVAGYRIPKGTELLVNVWGIARDPALWPDPLEFR


PARFLPGGTHADVDVKGGDFGLIPFGAGRRICAGLSWGLRVVTVTAATLVHSFDWE


LPAGQTPDKLNMEEAFSLLLQRAVPLMAHPVPRLLPSAYEIA*





SEQ ID NO: 46



Triticum turgidum



TRITD7Bv1G170910


MHLVAMGIPLPLLLSTLAIAVTICYVLATFFRADKGRAALPPGPRGWPVLGNLPQLG


GKTHQTMHEMSKVYGPVLRLRFGSSVVVVAGSAAVAEQFLRTHDAKFSSRPPNSGG


EHMAYNNQDVVFAPYGPRWRAMRKVCAVNLFSARALDDLRGFREREAALMVRSL


VDAASGGGVVAVGKAANVCTTNALSRAAVGLRVFAAAGTELGAKEFKEIVLEVME


VGGVLNVGDFVPALRWLDPQGVVARLKKLHRRFDDMMNGIIAERRAGGSTAGEEK


EGKDLLGLLLAMVQEDKSLTGGEEDRITDTDVKALILNLFVAGTETTSTIVEWAVAE


LIRHPDMLKRAQEEMDAVVGRDRLVSESDLPRLTFLNAVIKETFRLHPSTPLSLPRMA


SEECEVAGYRIPKGTELLVNVWGIARDPALWPDPLEFRPARFLPGGTHADVDVKGG


DFGLIPFGAGRRICAGLSWGLRVVTVTAATLVHSFDWELPAGQTPDKLNMEEAFSLL


LQRAVPLMVHPVPRLLPSAYQIA*





SEQ ID NO: 47



Setaria italica



Seita.9G242900


MDVPLPLLLGTVAVAAAAAWYLLLRRGGGGGKRPLPPGPRGWPVLGNLPQLGAKP


HHTMAAMAREHGPLFRLRFGSAEVVVAASAAVAAQFLRAHDANFSNRPPNSGAEH


VAYNYQDLVFAPYGARWRALRKLCALHLFSARALDDLRAVREGEVALMVRELARQ


RGPAVALGQAANVCATNTLARATVGRRVFAVDGGEGAREFKEMVVELMQLAGVF


NVGDFVPALAWLDPQGVVGRMKRLHRRYDDMMDRIIREREAAGGDGNDLLGVLL


TRMREHRPLADGEDGTINETDIKALLLNLFTAGTDTTSSTVEWALAELIRHPDVLAK


AQQELDAVVGRGRLVSESDLPRLTYLTAVIKETFRLHPSTPLSLPRVAAEDCEVGGY


LVPAGTTLLVNVWAIARDPDAWPEPLEFRPDRFLSGGPHAGVDVKGSDFELIPFGAG


RRICAGLSWGLRMVTLMTAALVHGLDWHLAGGVDADKLDMEEAYGLTLQRAVPL


MVRPEPRLLPSAYASVE*





SEQ ID NO: 48



Setaria italica



SEITA.9G244600


MHMPCISFPRMSSDGKSMEIGRTMDIPTPLLLSTLAVSVVICYVLFWKQVATRKPAA


RPTPGGEHMAYNYQDVVFAPYGPRWRAMRKVCAVNLFSARALDDLRAVREREAA


LMVRSLAAAGQATAAVPLGRAVNVCTTNALSRAAVGRRVFAAGAGDDEGAREFKE


IVLEVMQVGGVLNVGDFVPALRWLDPQGVVAKMKKLHRRFDDMMNGIIADRRKA


GVTEEGKDLLGLLLAMVKDAGGEEDRITETNAKALILNLFVAGTDTTSTIVEWSLAE


LIRHPAILKQAQAELDAVVGRGRLLSESDLPRLTFFNAVIKETFRLHPSTPLSLPRMAA


AECEVAGYRIPKGSELLVNVWGIARDPALWGPDPLEFRPARFLPGGSHADVDVKGG


DFGLIPFGAGRRICAGLSWGLRMVTLASATLVHAFDWEMPAGQTPDELDMEEAFTL


LLQRAVPLMVHPVPRLLPLAYEIA*





SEQ ID NO: 49



Cenchrus americanus



Pgl_GLEAN_10033465


MDLPLSLLLGTVAVAAVAAAWEAAGGDGPDLLGVLLARMREHQPLADGEDGTINE


TDMKALLLNLFTAGTDTTSSTVEWALAELLRHPDVLAKAQQELDAVVGRGRLVSES


DLARLTYLTAVIKETFRLHPSTPLPDRFLPGGQHAGVDVKGSDFELIPFGAGRRICAG


LSWGLRMVTLMTAALVHGLDWHLAGGVDADKLDMEEAYGLTLQRAVPLMVRPEP


RLPPSAYAASSVE*





SEQ ID NO: 50



Cenchrus americanus



Pgl_GLEAN_10033479


MDNIPTPLLLSTLAVSLVICYVLFWKQQAATRTKPQRAPLPPGPRGWPVLGNLPQLG


GKTHQTLHEMTKVYGPLLRLRFGSSDVVVAGSAAVAEQFLRVHDANFSCRPPNSGG


AAVGRRVFAAGGSGDDEGGAREFKEIVLEVMRVGGVLNVGDFVPALRWLDPQGVV


AKMKKLHRRFDSMMNGIIADRRKAAGVTTEEGKDLLGLLLEMVKDERPLAGGEED


RITETDAKALILNLFVAGTDTTSTIVEWSLAELIRHPTILKQAQEELDAVVGRGRLVA


ESDLPRLTFFAAVFRPARFLPGGSHAGVDVKGGDFGLIPFGAGRRICAGLSWGLRMV


TLASATLVHAFDWELPAGQTPDKLDMEEAFTLLLQRATPLMVQPVPRLLPSAYEIA*





SEQ ID NO: 51



Sorghum bicolor



Sobic.004G200800


MDVPLPLLLGSLAVSVVVWCLLLRRGGDGKGKGKRPMPPGPRGWPVLGNLPQLGS


HPHHTMCALAKKYGPLFRLRFGSAEVVVAASARVAAQFLRTHDANFSNRPPNSGAE


HVAYNYQDMAFAPYGSRWRALRKLCALHLFSAKALDDLRSIREGEVALLVRELSRH


QHQHAGVPLGQVANVCATNTLARATVGRRVFAVDGGEEAREFKDMVVELMQLAG


VFNVGDFVPALARLDLQGVVGKMKRLHRRYDDMMNGIIRERKAAEEGKDLLSVLL


ARTREQQSIADGEDSRITETEIKALLLNLFTAGTDTTSSTVEWALAELIRHPDVLKKA


QEELDAVVGRNRLVSELDLPRLTYLTAVIKETFRMHPSTPLSLPRIAAEECEVDGFRIP


AGTTLLVNVWAIARDPEAWPEPLQFRPDRFLPGGSHAGVDVKGSDFELIPFGAGRRI


CAGLSWGLRMVTLMTATLVHALDWDLADGMTADKLDMEEAYGLTLQRAVPLKV


RPAPRLLPSAYAAE*





SEQ ID NO: 52



Sorghum bicolor



Sobic.004G200833


MDVPLPLLLGSLAVSVVVWCLLLRRGGDGKGKGKRPMPPGPRGWPVLGNLPQLGS


HPHHTMCALAKKYGPLFRLRFGSAEVVVAASARVAAQFLRTHDANFSNRPPNSGAE


HVAYNYQDMAFAPYGSRWRALRKLCALHLFSAKALDDLRSIREGEVALLVRELSRH


QHQHAGVPLGQVANVCATNTLARATVGRRVFAVDGGEEAREFKDMVVELMQLAG


VFNVGDFVPALARLDLQGVVGKMKRLHRRYDDMMNGIIRERKAAEEGKDLLSVLL


ARTREQQSIADGEDSRITETEIKALLLNLFTAGTDTTSSTVEWALAELIRHPDVLKKA


QEELDAVVGRNRLVSELDLPRLTYLTAVIKETFRMHPSTPLSLPRIAAEECEVDGFRIP


AGTTLLVNVWAIARDPEAWPEPLQFRPDRFLPGGSHAGVDVKGSDFELIPFGAGRRI


CAGLSWGLRMVTLMTATLVHALDWTSPTA*





SEQ ID NO: 53



Sorghum bicolor



Sobic.004G200900


MHVPLLLGSLAVSVVVWCLLLRRGGDGKGKGNGKRPLPPGPRGWPVLGNLPQVGS


HPHHTMYALAKEYGPLFRLRFGSADVVVAASARVAVQFLRAHDANFSNRPPNSGAE


HMAYNYQDMVFAPYGSRWRALRKLCALHLFSAKALDDLRGVREGEVALMVRQLA


LHQHQHAGVPLGQVANVCATNTLARATVGRRVFAVDGGEEAREFKDMVVELMQL


AGVFNVGDFVPALAWLDLQGVVGKMKRLHRRYDDMMNSIIRKRKAAEEGKDLLS


VLLARMREQQSLADGEDSRINETGIKALLLDLFTAGTDTTSSTVEWALAELIRHPDVL


KKAQEELDAVVGRDRLVSETDLPRLTYLTAVIKETFRLHPSTPLSLPRVAAEECEVDG


FRIPAGTTLLVNVWAIARDPEAWPEPLQFRPDRFLPGGSHAGVDVKGSDFELIPFGAG


RRICAGLSWGLRMVTLMTATLVHALDWDLADGMTADKLDMEEAYGLTLQRAVPL


MVRPTPRLLPSAYAAE*





SEQ ID NO: 54



Sorghum bicolor



Sobic.004G201100


MQVASVYIDEPLSLANHTRTTLSPTPSAPPVNRATQTMDVPLPLLLGSLAVSVVVWC


LLLRRGGNGKGKGKRPLPPGPRGWPVLGNLPQVGSHPHHTMCALAKEYGPLFRLRF


GSAEVVVAASARVAAQFLRAHDANFSNRPPNSGAEHVAYNYQDLVFAPYGSRWRA


LRKLCALHLFSAKALDDLRGVREGEVALMVRELARHQHQHAGVPLGQVANVCATN


TLARATVGRRVFAVDGGEEAREFKDMVVELMQLAGVFNVGDFVPALAWLDLQGV


VGKMKRLHRRYDDMMNGIIRERKAVEEGKDLLSVLLARMREQQSLADGEDSMINE


TDIKALLLNLFTAGTDTTSSTVEWALAELIRHPDVLKKAQEELDAVVGRDRLVSESD


LPRLTYLTAVIKETFRLHPSTPLSLPRVAAEECEVDGFRIPAGTTLLVNVWAIARDPEA


WPEPLQFRPDRFLPGGSHAGVDVKGSDFELIPFGAGRRICAGLSWGLRMVTLMTATL


VHALDWDLADGMTANKLDMEEAYGLTLQRAVPLMVRPAPRLLPSAYAAE*





SEQ ID NO: 55



Sorghum bicolor



Sobic.009G162500


MVMELVLATPDLPTPLLLSALTVAVSVAVCYVLFWKQQQAAARRAPLPPGPRGWP


VLGNLPQLGGKTHQTLHELTKVYGPLLRLRFGSSDVVVAGSAAVAEQFLRVHDANF


SCRPPNSGGELMAYNYQDVVFAPYGPRWRAMRKVCAVNLFSARALDDICDVRERE


AALMVRSLAEQAARDRNTPVALGKAVNVCTTNALSRAAVGRRVFAAAGAGDEGA


REFKEIVLEVMEVGGVLNVGDFVPALRWLDPQGVVGRMKKLHRRFDDMMNGIIAD


SRKARATPADGEESKDLLGLLLSMVEDEGSDDEVRITETDVKALILNLFIAGTDTTSTI


AEWSLAELIRHPDILKQAQEELDTVVGRGRLVTESDLRHLTFFNAVIKETFRLHPSTP


LSLPRMAAEECEIAGYSIPKGCELLVNVWGIARDPALWPDPLEFRPARFLPGGSHSDV


DVKGGNFGLIPFGAGRRICAGLSWGLRMVTLTSATLVHAFDWELPVGQTPDKLNME


EAFTLLLQRAVPLMAHPIPRLLPSAYEIA*





SEQ ID NO: 56



Brachypodium distachyon



Bradi1g17180


MEDMPLPLLIGSLFIILAMWYILFHHGSENNAKWSRLPLPPGPCGWPLLGNLPQLGA


KPHHTMCALAWEHGPLFRLRLGSTEVVVASSAGIAMQFLRHHDANFSNRPPNSGAE


HIAYNYQDLVFASYGTRWRALRKLCALHLFSAKALNNLRNVREGEVRLMVRELAW


AAAGPAPAVALGQQANMCVTNTLARATIGRRVFAVDTAREFKEMVVELMQLAGVF


NLGDFVPALRWLDPQGVVAKMKRLHRRYDNMMNGFIKEREPACLSAGAEAKDLLS


VMLVKMREQQPLYHEEGKLTNTDIKALLLNLFTAGTDTASSTVEWALAELIRHPDV


LKQVQRELDVVVGNDRLVSESDLPGLTFLPAVIKETFRLHPPTPLSLPRVAAEECEVN


GYHIPKGTTLLVNVWAIARDPASWPDHPLEFRPVRFLPGGSHESLDVKGSDYELIPFG


AGRRICAGLGWGIQMVTLMTTTLVHAFDWSLVDGMTPDKLDMEEAYGLTLQRAM


PLFVQPVPRLLPSAYAM*





SEQ ID NO: 57



Brachypodium distachyon



Bradi1g24840


MLAFCMSKRSNSWRATAEACMELIGALDVPLRLPWLVSALAISVTVCYILFFSRAGK


GNGKGLPPGPRGWPVLGNLPQLGGKTHQTLHELTKVYGPVLRLRLGSSVAVVAGTA


GTAEQFLRAHDAQFRDRPPNSGGEHMAYNVFGPYGPRWRAMRKVCAVNLFSARAL


DGLRGFREREAALMVKSLAAAAASAAEPVALGKAANVCTTNALSRAAVGRRVFDE


MGGSAGGELKEIVLEVIDVGGVLNVGDFVPALRWLDPQGVVARMKKLHRRFDDM


MNGIIGERLQGTDAAGEKDLLGLLLDAMMKEDKSLSGGEELTHTDIKALILNLFVAG


TDTTSSIVEWAMSELIRHPDLLQQAQEELDAVVGRARLVSESDMSRLPFLTAVIKETF


RPHPSTPLSLPRMASEECFVAGYRIPKGTELVVNVWGIARDPALWPDPLEFRPARFLI


GGSNSVVDLKGSNFELIPFGAGRRICAGLSWGLRIVMIAVATLVHAFDWKLPVGQTP


DELNMEEALSLLLLRAVPLMVHPAPRLLPSAYEIA*





SEQ ID NO: 58



Brachypodium distachyon



Bradi3g04750


MDDFLLVAGSLALALTVCYYFIIHDNNNKAKKLPLPLPPGPRGWPVLGNLPQLGAAP


HQTMRALAAEHGPLFRLRFGSAEVVVAASASVAARFLRGHDANFGDRPPNSGAEHV


AYNYRDLVFAPYGARWRALRKLLALHLFSAKAIDALRGVRELEVALMVKGLRVSSS


APAGVAVGQEANVCATNALARAAVGRRVFFSGGGGGADSREFKEMVVELMQLAG


VFNLGDFIPALRWLDPQGVVAKMKKLHRRYDDMMNGFIKERDAGAGAEQGKDLLS


VMLGKMRELGGDDNNGGEEGEFTEVDIKALLLNLFTAGTDTTSSTVEWALAELIRH


PDVLRQLQQELDAVVGKDRLVSESDLPRLAFLAAVIKETFRLHPSTPLSLPRLAAEEC


EVDGYRIPKGTTLLVNVWAIARDPASWADPLEFRPARFLPGGSHEGVDVKGGDYELI


PFGAGRRICAGLSWGLRMVTLMTATLVHGFDWALVNGMTPDKLDMEEAYGLTLQ


RAVPLMVQPVPRLLPSAYAVQCDG*





SEQ ID NO: 59



Brachypodium distachyon



Bradi4g16560


MELLDGLDVPLLPALLSALAISLTICYVLFFSRAGKGLPPGPRGWPVLGNLPQLGGKT


HQTLHEMSKLYGPVLRLRFGSSVVVVAGSAGAAEQFLRTNDAKFSNRPPNSGGEHM


AYNYQDVVFGPYGPRWRAMRKVCAVNLFSARALDDLRGFREREASLMVKSLADA


AAASGAGPVVALGKAANVCTTNALSRAAVGRRVFAAAGGEGAREFKEIVLEVMEV


GGVLNVGDFVPALRWLDPQGVVARMKKLHRRFDDMMNGIIAEREGGCGMAPGED


GKEKDLLGLLLGMMQEEKSLTGGEEDDKITHTDIKALVLNLFVAGTETTSTIVEWAV


AELIRHPDLLQQAQEELDAVVGRARVVSEADLPRLPFFTAVIKETFRLHPSTPLSLPR


MASEECFVAGYRIPKGTELLVNIWGIARDPALWPDPLEFRPSRFLAGGSHADVDLKG


LLQRAMPLMVHPVRRLLPSAYEIV*





SEQ ID NO: 60



Hordeum vulgare



HORVU6Hr1G002400


MEIPLPLLLSTLAISVTICYVIFFFFRSDKGCAPLPPGPRGWPVLGNLPQLGGKTHQTL


HEMTRLYGPMFRLWFGSSLVVVAGSADMAKLFLRTHDAKFSSRPPNSGGEHMAYN


YQDVVFAPYGPRWRAMRKVCAVNLFSARALDDLHSFREREAALMVRCLADSAAV


GRVVALAKAANVCTTNALSRATVGLRVFATAGSELGAEDFNEIVLKLIEVGGILNVG


DFVPALRWLDPQGVVAKMKKLHRRFDDMMNRIIAQRRAVSTTAGKDLLALLLAMV


QEDKSLTGVEEDKIRDTDVKALILNLFVAGTDTTSITVEWAMAELIRHPHILKQAQEE


LDAVVGRDRLVLESDLPHLTFLNAVIKETFRLHPSTPLSLPRMAIEECEVAGHRIPKGT


QLLVNVWGIARDPTLWPDPLEFRPARFLPGGSHAGVDVKGGDFGLIPFGAGRRICAG


LSWGIRMVTVTTATLVHSFDWEMSAGQMPDMEETFSLLLQLAVPLMVHPVPRLLPS


AYEIT*





SEQ ID NO: 61



Gossypium raimondii (the putative contributor of the D subgenome to the



economically important fiber-producing cotton species Gossypium hirsutum


and Gossypium barbadense.) XP_012438857


MASFVLYSILSAVFLYFVFITSRKRRRLPLPPGPKPWPIIGNLPHMSPVPHQGLAAMA


KVYGPLMHLRLGFVDVVVAASASMAAQFLKVHDSNFSSRPPNAGAKYVAYNYQDL


VFAPYGPRWRLLRKISSLHLFSGKALDDFRQIREEEIRVLVRALASAKTKVNLGQLLN


VCTVNALGQVMMGKRVFGDGSGGSDPEADEFKSMVVELMQLAGVFNIGDFIPALE


WLDLQGVQAKMKKLHNRFDRFLSAILEEHKTKARQSNGQVKHKDFLSTLISLENVD


GAEGGKLSDTEIKALLLNMFTAGTDTSSSTVEWAMAELIRHPNIMAQVRKELDSVV


GRDRLVSDLDLPNLTYFQAVIKETFRIHPSTPLSLPRMASDSCDINGYHIPKGATLLVN


VWAISRDPNEWNNPLEFRPERFLPGGERPNADVRGNDFEVIPFGAGRRICAGMSLGL


RMVQLLTATLAHAFEWELADGLMPEKLDMEEAYGLTLQRAAPLMVHPRPRLSKHA


Y





SEQ ID NO: 62



Gossypium raimondii



XP_012478317


MPSFDTILLRDLVAAACLFFITRYFIRRLLSNPKRTLPPGPKGWPIVGALPLLGSMPHV


ELAKLAKKYGPVMYLKMGTCNMVVASTPDAARAFLKTLDLNFSNRPSNAGATHIA


YNSQDMVFAEYGPRWKLLRKLSNLHMLGGKALEDWSQVRAVELGHMLRAMCESS


RKGEPVVVPEMLTYAMANMIGQVILSRRVFVTKGSESNEFKDMVVELMTSAGLFNI


GDFIPSIAWMDLQGIEGEMKKLHNRWDVLLTKMMKEHEETAYERKGKPDFLDIIMD


NRENSAGERLSLTNVKALLLNLFTAGTDTSSSIIEWALAEILKNPKILNKAHEEMDKV


IGRNRRLEESDIPKLPYLQAICKETFRKHPSTPLNLPRVSTQACEINGYYIPKNTRLSVN


IWAIGRDPDVWGNPLDFTPERFLSGRFAKIDPRGNDFELIPFGAGRRICAGTRMGIVL


VEYILGTLLHSFDWMLPPGNGELNMDEAFGLALQKAVPLSAMVRPRLAPTAYVS





SEQ ID NO: 63



Gossypium raimondii



KJB51033


MASFVLYSILSAVFLYFVFITSRKRRRLPLPPGPKPWPIIGNLPHMSPVPHQGLAAMA


KVYGPLMHLRLGFVDVVVAASASMAAQFLKVHDSNFSSRPPNAGAKYVAYNYQDL


VFAPYGPRWRLLRKISSLHLFSGKALDDFRQIREEEIRVLVRALASAKTKVNLGQLLN


VCTVNALGQVMMGKRVFGDGSGGSDPEADEFKSMVVELMQLAGVFNIGDFIPALE


WLDLQGVQAKMKKLHNRFDRFLSAILEEHKTKARQSNGQVKHKDFLSTLISLENVD


GAEGGKLSDTEIKALLLNMFTAGTDTSSSTVEWAMAELIRHPNIMAQVRKELDSVV


GRDRLVSDLDLPNLTYFQAVIKETFRIHPSTPLSLPRMASDSCDINGYHIPKGSCPAAK


GRTLMLGAMILRSYRSAPGVESVPE





SEQ ID NO: 64



Gossypium raimondii



XP_012454458


MATPSWFSYLTPWLATLALILFSLRLCRRRKLNLPPGPKPWPIIGNLNLIGSLPHQSIH


ALSRKYGPIMQLKFGSFPVVVASSVEMAKAVLKTNDVIFTDRPKTAAGKYTTYNYS


DITWSPYGPYWRQARKICLTELFNAKRLESYQYIRREEMNLFLKRLYESSGTQIVLKD


HLSSLSLNVISRMVFGKKYTEGSGENEIVTPNEFKEMLDELFLLNGVLDIGDSIPWLSF


LDLQGYIKRMKALSKRFDRFLEHVLDEHNARREGAEDYVAKDMVDVLLQLSEDPN


LEVKLERHGVKAFTQDMIAGGTESSAVTVEWAISELLKKPEILAKATEELDMVIGRE


RWVEEKDVVSLPYIDSIAKETMRLHPVAPMLVPRVARQDCEIAGYDIPKGTRAFVNV


WTIGRDPSLWDNPNEFWPDRFMGKSIDVKGHDFELLPFGAGRRMCPGYPLGIKVIQA


SLANVLHGFTWKLPNNTTKEDLNMEEIFGLSTPKKYPLEAIAEPRLPLHMYS





SEQ ID NO: 65



Gossypium raimondii



XP_012490769


MESPSWVSYLTAWLATLALILLSLRFRPRRKLNFPPGPKPWPVIGNLDLICSLPHRSIH


ALSQKYGPLMQLKFGSFPVVVASSVEMAKAFLKTHDVIFAGRPKIAAGEYTTYNYS


DITWSPYGPYWRQARKMCMTELFSAKRLESYEYIRREEMKLLLKGLYESSGVPIVLK


DRLSDLSLNVISRMVFGKKYTEGTGENEIVTPKEFKEMLDELFLLNGVLDIGDSIPWL


RFLDLQGNIKRMKALSKKFDKFLEHVLDEHNARRRDVKDYVAKDMVDVLLQLADD


PNLDVKLERHGVKAFSQDMIAGGTESSAVTVEWAISEMLKKPEIFAKATEELDRVIG


RERWVEERDIENLPYIDSIAKETMRLHPVAPMLVPRMTREDCQVDGYDILKGTRALV


NVWTIGRDPTVWDNPNEFCPERFIDKTIDVKGHDFQLLPFGAGRRMCPGYPLGIKVI


QASLANLLHGFTWKLPGNMTKEDLDMEEIFGLSTPKKCPLQAVAVPKLPLHLYSH





SEQ ID NO: 66



Gossypium hirsutum (90% of the world's cotton production)



NP_001314443


MASFVLYSILSAVFLYFVFITSRKRRRLPLPPGPKPWPIIGNLPHMSPVPHQGLAAMA


KVYGPLMHLRLGFVDVVVAASASMAAQFLKVHDSNFSSRPPNAGAKYVAYNYQDL


VFAPYGPRWRLLRKMSSLHLFSGKALDDFRQIREEEIRVLVRALASAKTKVNLGQLL


NVCTVNALGQVMMGKRVFGDGSGGSDPEADEFKSMVVELMQLAGVFNIGDFIPAL


EWLDLQGVQAKMKKLHNKFDRFLSAILEEHKTKARQSNGQVKHKDFLSTLISLENV


DGAEGGKLSDTEIKALLLNMFTAGTDTSSSTVEWAMAELIRHPNIMAQVRKELDSV


VGRDRLVSDLDLPNLTYFQAVIKETFRLHPSTPLSLPRMASDSCDINGYHIPKGATLL


VNVWAISRDPNEWNNPLEFRPERFLPGGERPNADVRGNDFEVIPFGAGRRICAGMSL


GLRMVQLLTATLAHAFEWELADGLMPEKLDMEEAYGLTLQRAAPLMVHPRPRLSK


HAY





SEQ ID NO: 67



Gossypium hirsutum



XP_016741685


MASFVLYSILSTVFLYFVFIISRKRRRLPLPPGPKPWPIIGNLPHMSPVPHQGLAAMAK


VYGPLMHLRLGFVDVVVAASASMAAQFLKVHDSNFSSRPPNAGAKYVAYNYQDLV


FAPYGPRWRLLRKISSVHLFSGKALDDFRHIREEEIRVLVRALASAKTKVNLGQLLNV


CTVNALGQVMMGKRVFGDGSGGADPEADEFKSMVVELMQLAGVFNIGDFIPALEW


LDLQGVQAKMKKLHNRFDRFLSGILEEHKTKARQSNGQVKHKDLLSTLISLENADG


AEGGKLSDTEIKALLLNMFTAGTDTSSSTVEWAMAELIRHPNIMAQVRKELDSVVGR


DRLVSDLDLPNLTYFQAVIKETFRLHPSTPLSLPRMASDSCDINGYHIPKDATLLVNV


WAISRDPNEWNNPLEFRPERFLPGGERPNADVRGNDFEVIPFGAGRRICAGMSLGLH


MVQLLTATLAHAFDWELADGLMPEKLDMEEAYGLTLQRAAPLMVHPRPRLSKHAY





SEQ ID NO: 68



Gossypium hirsutum



ACY06905


MAPFVLYSILSAVFLYFVFITSRKRRRLPLPPGPKPWPSIGNLPHMSPVPHQGLAAMA


KVYGPLMHLRLGFVDVVVAASASMAAQFLKVHDSNFSSRPPNAGAKYVAYNYQDL


VFAPYGPRWRLLRKMSSLHLFSGKALDDFRQIREEEIRVLVRALASAKTKVNLGQLL


NVCTVNALGQVMMGKRVFGDGSGGSDPEADEFKSMVVELMQLAGVFNIGDFIPAL


EWLDLQGVQAKTKKLHNKFDRFLSAILEEHKTKARQSNGQVKHKDFLSTLISLENV


DGAEGGKLSDTEIKALLLNMFTAGTDTSSSTVEWAMAELIRHPNIMAQVRKELDSV


VGRDRLVSDLDLPNLTYFQAVIKETFRLHPSTPLSLPRMASDSCDINGYHIPKGATLL


VNVWAISRDPNEWNNPLEFRPERFLPGGERPNADVRGNDFEVIPFGAGRRICAGMSL


GLRMVQLLTATLAHAFEWELADGLMPEKLDMEEAYGLTLQRAAPLMVHPRPRLSK


HAY





SEQ ID NO: 69



Gossypium hirsutum



NP_001314550


MPSFDTILLRDLVAAACLFFITRYFIRRLLSNPKRTLPPGPKGWPIVGALPLLGSMPHV


ELAKLAKKYGPVMYLKMGTCN





SEQ ID NO: 70



Gossypium hirsutum



NP_001314530


MPSFDTILLRDLVAAACLFFITRYFIRRLLSNPKRTLPPGPKGWPVVGALPLLGSMPH


VELAKLAKKYGPVMYLKMGTCNMVVASTPDTARAFLKTLDLNFSNRPSNAGATHI


AYNSQDMVFAEYGPRWKLLRKLSNLHMLGGKALEDWSQVRAVELGHMLRAMWE


SSRKGEPVVVPEMLTYAMANMIGQVILSRRVFVTKGSESNEFKDMVVELMTSAGLF


NIGDFIPSIAWMDLQGIEGEMKKLHNRWDVLLTKMMKEHEETAYERKGKPDFLDII


MDNRENSAGERLSLTNVKALLLNLFTAGTDTSSSIIEWALAEILKNPKILNKAHEEMD


KVIGRNRRLEESDIPKLPYLQAICKETFRKHPSTPLNLPRVSTQPCEINGYYIPKNTRLS


VNIWAIGRDPDVWGNPLDFTPERFLSGRFAKIDPRGNDFELIPFGAGRRICAGTRMGI


VLVEYILGTLLHSFDWMLPPGTGELNMDESFGLALQKTVPLSAMVRPRLAPTAYVS





SEQ ID NO: 71



Gossypium hirsutum



ACY06904


MPSFDTILLRDLVAAACLFFITRYFIRRLLSNPKRTLPPGPKGWPVVGALPLLGSMPH


VELAKLAKKYGPVMYLKMGTCNMVVASTPDTARAFLKTLDLNFSNRPSNAGATHI


AYNSQDMVFAEYGPRWKLLRKLSNLHMLGGEALEDWSQVRAVELGHMLRAMWE


SSRKGEPVVVPEMLTYAMANMIGQVILSRRVFVTKGSESNEFKDMVVELMTSAGLF


NIGDFIPSIAWMDLQGIEGEMKKLHNRWDVLLTKMMKGHEETAYERKGKPDFLDII


MDNRENSAGERLSLTNVKALLLNLFTAGTDTSSSIIEWALAEILKNPKILNKAHEEMD


RVIGRNRRLEESDIPKLPYLQAICKETFRKHPSTPLNLPRVSTQACEINGYYIPKNTRLS


VNIWAIGRDPDVWGNPLDFTPERFLSGRFAKIDPRGNDFELIPFGAGRRICAGTRMGI


VLVEYILGTLLHSFDWMLPPGTGELNMDEAFGLALQKAVPLSAMVRPRLAPTAYVS





SEQ ID NO: 72



Gossypium hirsutum



XP_016710494


MESPSWVSYLIAWLATLALILLSLRFRPRRKLNLPPGPKPWPVIGNLDLIGSLPHRSIH


SLSQKYGPLMQLKFGSFPVVVASSVEMAKAFLKTHDVIFAGRPKIAAGEYTTYNYSD


ITWSPYGPYWRQARKMCMTELFSAKRLESYEYIRREEMKLLLKGFYESSGVPIVLKD


HLSDLSLNVISRMVFGKKYTEGTGENEIVTPKEFKEMLDELFLLNGVLDIGDSIPWLR


FLDLQGNIKRMKALSKKFDKFLEHVLDEHNARRRDVKDYVAKDMVDVLLQLADDP


NLDVKLERHGVKAFSQDLIAGGTESSAVTVEWAISEMLKKPEIFAKATEELDRVIGRE


RWVEERDIVNLPYIDSIAKETMRLHPVAPMLVPRMTREDCQVDGYDILKGTRALVN


VWTIGRDPTVWDNPNEFFPERFIDKTIDVKGHDFQLLPFGAGRRMCPGYPLGIKVIQA


SLANLLHGFNWKLPGNMTKDDLDMEEIFGLSTPKKCPLQAVAVPKLPLHMYSH





SEQ ID NO: 73



Gossypium hirsutum



KAG4120389


MESPSWVSYLTAWLATLALILLSLRFRPRRKLNFPPGPKPWPVIGNLDLIGSLPHRSIH


ALSQKYGPLMQLKFGSFPVVVASSVEMAKAFLKTHDVIFAGRPKIAAGEYTTYNYS


DITWSPYGPYWRQARKMCMTELFSAKRLESYEYIRREEMKLLLKGLYESSGVPIVLK


DRLSDLSLNVISRMVFGKKYTEGTGENEIVTPKEFKEMLDELFLLNGVLDIGDSIPWL


RFLDLQGNIKRMKALSKKFDKFLEHVLDEHNARRRDVKDYAAKDMVDVLLQLADD


PNLDVKLERHGVKAFSQDLIAGGTESSAVTVEWAISEMLKKPEIFAKATEELDRVIGR


ERWVEERDTVNLPYIDSIAKETMRLHPVAPMLVPRMTREDCQVDGYDILKGTRALV


NVWTIGRDPTVWDNPNEFCPERFIDKTIDVKGHDFQLLPFGAGRRMCPGYPLGIKVI


QASLANLLHGFTWKLPGNMTKENLDMEEIFGLSTPKKCPLQAVAVPKLPLHLYSH





SEQ ID NO: 74



Gossypium hirsutum



NP_001314163.1


MTQQAILLSLRFRPRRKLNFPPGPKPWPVIGNLDLIGSLPHRSIHALSQKYGPLMQLKF


GSFPVVVASSVEMAKAFLKTHDVIFAGRPKIAAGEYTTYNYSDITWSPYGPYWRQA


RKMCMTELFSAKRLESYEYIRREEMKLLLKGLYESSGVPIVLKDRLSDLSLNVISRMV


FGKKYTEGTGENEIVTPKEFKEMLDELFLLNGVLDIGDSIPWLRFLDLQGNIKRMKAL


SKKFDKFLEHVLDEHNARRRDVKDYAAKDMVDVLLQLADDPNLDVKLERHGVKA


FSQDLIAGGTESSAVTVEWAISEMLKKPEIFAKATGELDRVIGRERWVEERDTVNLPY


IDSIAKETMRLHPVAPMLVPRMTREDCQVDGYDILKGTRALVNVWTIGRDPTVWDN


PNEFCPERFIDKTIDVKGHDFQLLPFGAGRRMCPGYPLGIKVIQASLANLLHGFTWKL


PGNMTKENLDMEEIFGLSTPKKCPLQAVAVPKLPLHLYSH





SEQ ID NO: 75



Gossypium barbadense (5% of the world's cotton production)



KAB2053485


MTSFVLYSILSTVFLYFVFIISRKRRRLPLPPGPKPWPIIGNLPHMSPVPHQGLAAMAK


VYGPLMHLRLGFVDVVVAASASMAAQFLKVHDSNFSSRPPNAGAKYVAYNYQDLV


FAPYGPRWRLLRKISSVHLFSGKALDDFRHIREEEIRVLVRALASAKTKVNLGQLLNV


CTVNALGQVMMGKRVFGDGSGGADPEADEFKSMVVELMQLAGVFNIGDFIPALEW


LDLQGVQAKMKKLHNRFDRFLSGILEEHKTKARQSNGQVKHKDLLSTLISLENADG


AEGGKLSNTEIKALLLNMFTAGTDTSSSTVEWAMAELIRHPNIMAQVRKELDSVVGR


DRLVSDLDLPNLTYFQAVIKETFRLHPSTPLSLPRMASDSCDINGYHIPKGATLLVNV


WAISRDPDEWNNPLEFRPERFLPGGERPNADVRGNDFEVIPFGAGRRICAGMSLGLR


MVQLLTATLAHAFDWELADGLMPEKLDMEEAYGLTLQRAAPLMVHPRPRLSKHAY





SEQ ID NO: 76



Gossypium barbadense



KAB1669149


MASFVLYSILSAVFLYFVFITSRKRRRLPLPPGPKPWPIIGNLPHMSPVPHQGLAAMA


KVYGPLMHLRLGFVDVVVAASASMAAQFLKVHDSNFSSRPPNAGAKYVAYNYQDL


VFAPYGPRWRLLRKMSSLHLFSGKALDDFRQIREEEIRVLVRALASAKTKVNLGQLL


NVCTVNALGQVMMGKRVFGDGSGGSDPEADEFKSMVVELMQLAGVFNIGDFIPAL


EWLDLQGVQAKMKKLHNKFDRFLSAILEEHKTKARQSNGQVKHKDFLSTLISLENV


DGAEGGKLSDTEIKALLLNMFTAGTDTSSSTVEWAMAELIRHPNIMAQVRKELDSV


VGRDRLVSDLDLPNLTYFQAVIKETFRLHPSTPLSLPRMASDSCDINGYHIPKGATLL


VNVWAISRDPNEWNNPLEFRPERFLPGGERPNADVRGNDFEVIPFGAGRRICAGMSL


GLRMVQLLTATLAHAFEWELADGLMPDKLDMEEAYGLTLQRAAPLMVHPRPRLSK


HAY





SEQ ID NO: 77



Gossypium barbadense



PPD88185


MASFVLYSILSAVFLYFVFITSRKRRRLPLPPGPKPWPIIGNLPHMSPVPHQGLAAMA


KVYGPLMHLRLGFVDVVVAASASMAAQFLKVHDSNFSSRPPNAGAKYVAYNYQDL


VFAPYGPRWRLLRKMSSLHLFSGKALDDFRQIREEEIRVLVRALASAKTKVNLGQLL


NVCTVNALGQVMMGKRVFGDGSGGSDPEADEFKSMVVELMQLAGVFNIGDFIPAL


EWLDLQGVQAKMKKLHNRFDRFLSGILEEHKTKARQSNGQVKHKDLLSTLISLENA


DGAEGGKLSNTEIKALLLNMFTAGTDTSSSTVEWAMAELIRHPNIMAQVRKELDSV


VGRDRLVSDLDLPNLTYFQAVIKETFRLHPSTPLSLPRMASDSCDINGYHIPKGATLL


VNVWAISRDPNEWNNPLEFRPERFLPGGERPNADVRGNDFEVIPFGAGRRICAGMSL


GLRMVQLLTATLAHAFDWELADGLMPEKLDMEEAYGLTLQRAAPLMVHPRPRLSK


HAY





SEQ ID NO: 78



Gossypium barbadense



PPR81792


MLVPHQGLAAMAKVYGPLMHLRLGFVDVVVAASASMAAQFLKVHDSNFSSRPPNA


GARYVAYNYQDLEEIRVLVRALASAKTKVNLGQLLNVCTVNALGQVMMGKRVFG


DGSGGADPEADEFKSMVVELMQLAGVFNIGDFIPALEWLDLQGVQAKMKKLHNRF


DRFLSGILEEHKTKARQSNGQVKHKDLLSTLISLENADGAEGGKLSNTEIKALLLNMF


TAGTDTSSSTVEWAMAELIRHPNIMAQVRKELDSVVGRDRLVSDLDLPNLTYFQAVI


KETFRLHPSTPLSLPRMASDSCDINGYHIPKGATLLVNVWAISRDPDEWNNPLEFRPE


RFLPGGERPNADVRGNDFEVIPFGAGRRICAGMSLGLRMVQLLTATLAHAFDWELA


DGLMPEKLDMEEAYGLTLQRAAPLMVHPRPRLSKHAY





SEQ ID NO: 79



Gossypium barbadense



KAB2021362


MPSFDTILLRDLVAAACLFFITRYFIRRLLSNPKRTLPPGPKGWPIVGALPLLGSMPHV


ELAKLAKKYGPVMYLKMGTCNMVVASTPDAARAFLKTLDLNFSNRPSNAGATHIA


YNSQDMVFAEYGPRWKLLRKLSNLHMLGGKALEDWSQVRAVELGHMLRAMCESS


RKGEPVVVPEMLTYAMANMIGQVILSRRVFVTKGSESNEFKDMVVELMTSAGLFNV


GDFIPSIAWMDLQGIEGEMKKLHNRWDVLLTKMMKEHEETAYERKGKPDFLDIIMD


NRENSAGERLSLTNVKALLLNLFTAGTDTSSSIIEWALAEILKNPKILNKAHEEMDKV


IGRNRRLEESDIPKLPYLQAICKETFRKHPSTPLNLPRVSTQACEINGYYIPKNTRLSVN


IWAIGRDPDVWGNPLDFTPERFLSGRFAKIDPRGNDFELIPFGAGRRICAGTRMGIVL


VEYILGTLLHSFDWMLPPGTGELNMDEAFGLALQKAVPLSAMVRPRLAPTAYVS





SEQ ID NO: 80



Gossypium barbadense



KAB2074130


MPSFDTILLRDLVAAACLFFITRYFIRRLLSNPKRTLPPGPKGWPVVGALPLLGSMPH


VELAKLAKKYGPVMYLKMGTCNMVVASTPDTARAFLKTLDLNFSNRPSNAGATHI


AYNSQDMVFAEYGPRWKLLRKLSNLHMLGGKALEDWSQVRAVELGHMLRAMWE


SSRKGEPVVVPEMLTYAMANMIGQVILSRRVFVTKGSESNEFKDMVVELMTSAGLF


NIGDFIPSIAWMDLQGIEGEMKKLHKRWDVLLTKMMKEHEETAYERKGKPDFLDII


MENRENSAGERLSLTNVKALLLNLFTAGTDTSSSIIEWALAEILKNPKILNKAHEEMD


KVIGRNRRLEESDIPKLPYLQAICKETFRKHPSTPLNLPRVSTQPCEINGYYIPKNTRLS


VNIWAIGRDPDVWGNPLDFTPERFLSGRFAKIDPRGNDFELIPFGAGRRICAGTRMGI


VLVEYILGTLLHSFDWMLPPGTGELNMDESFGLALQKTVPLSAMVRPRLAPTAYVS





SEQ ID NO: 81



Gossypium barbadense



KAB2074128


MPSFDTILLRDLVAAAFLFFITRYFIRRILSNPKRILPPGPNGWPVVGALPLLGSMPHV


ELAKLAKKYGPVMYLKMGTCNMVVASTPDAARAFLKTLDLNFSNRPSNAGATHIA


YDSQDMVFAEYGPRWKLLRKLSNLHMLGGRALEDWSQVRAVELGHMLRAMCESS


RKGEPVVVPEMLTYAMANMIGQVILSRRVFVTKGSESNEFKDMVVELMTSAGLFNI


GDFIPSIAWMDLQGIEGEMKKLHKRWDVLLTKMMKEHEETAYERKGKPDFLDIIMD


NRENSAGERLSLTNVKALLLNLFTAGTDTSSSIIEWALAEILKNPKILNKAHEEMDKV


IGRNRRLEESDVLKLPYLQAICKETFRKHPSTPLNLPRVSTQPCEINGYYIPKNTRLSV


NIWAIGRDPDVWGNPLDFTPERFLSGRFAKIDPRGNDFELIPFGAGRRICAGTRMGIV


LVEYILGTLLHSFDWMLPPGTGELNMDESFGLALQKTVPLSAMVRPRLAPTAYVS





SEQ ID NO: 82



Gossypium barbadense



KAB2057053


MESPSWVSYLIAWLATLALILLSLRFRPRRKLNLPPGPKPWPVIGNLDLIGSLPHRSIH


SLSQKYGPLMQLKFGSFPVVVASSVEMAKAFLKTHDVIFAGRPKIAAGEYTTYNYSD


ITWSPYGPYWRQARKMCMTELFSAKRLESYEYIRREEMKLLLKGFYESSGVPIVLKD


HLSDLSLNVISRMVFGKKYTEGTGENEIVTPKEFKEMLDELFLLNGVLDIGDSIPWLR


FLDLQGNIKRMKALSKKFDKFLEHVLDEHNARRRDVKDYVAKDMVDVLLQLADDP


NLDVKLERHGVKAFSQDLIAGGTESSAVTVEWAI





SEQ ID NO: 83



Gossypium barbadense



KAB2007859


MATPSWFSYLTPWLATLALILFSLRLCRRRKLNLPPGPKPWPIIGNLNLVGSLPHQSIH


ALSRKYGPIMQLKFGSFPVVVASSVEMAKAVLKTNDVIFTDRPKTAAGKYTTYNYS


DITWSPYGPYWRQARKICLTELFNAKRLESYQYIRREEMNLFLKRLYESSGTQIVLKD


HLSSLSLNVISRMVFGKKYTEGSGENEIVTPNEFKEMLDELFLLNGVLDIGDSIPWLSF


LDLQGYIKRMKALSKRLDRFLEHVLDEHNARREGAEDYVAKDMVDVLLQLSEDPN


LEVKLERHGVKAFTQDMIAGGTESSAVTVEWAISELLKKPEILAKATEELDMVIGRE


RWVEEKDVVSLPYIDSIAKETMRLHPVAPMLVPRVARQDCEIAGYDIPKGTRAFVNV


WTIGRDPSLWDNPNEFWPDRFMGKSIDVKGHDFELLPFGAGRRMCPGYPLGIKVIQA


SLANVLHGFTWKLPNNTTKDDLNMEEIFGLSTPKKYPLEAIAEPRLPLHMYS





SEQ ID NO: 84



Brassica napus cultivar Darmor_v5



BnaC09g47980D


MTNLYLTILLPTFIFLIVLVLSRRRNNRLPPGPNPWPIIGNLPHMGPKPHQTLAAMVTT


YGPILHLRLGFADVVVAASKSVAEQFLKVHDANFASRPPNSGAKHMAYNYQDLVFA


PYGQRWRMLRKISSVHLFSAKALEDFKHVRQEEVGTLMRELARANTKPVNLGQLV


NMCVLNALGREMIGRRLFGADADHKAEEFRSMVTEMMALAGVFNIGDFVPALDCL


DLQGVAGKMKRLHKRFDAFLSSILEEHEAMKNGQDQKHTDMLSTLISLKGTDFDGE


GGTLTDTEIKALLLNMFTAGTDTSASTVDWAIAELIRHPEIMRKAQEELDSVVGRGR


PINESDLSQLPYLQEEVGTLMRELARANTKPVNLGQLVNMCVLNALGREMIGRRLF


GADADHKAEEFRSMVTEMMALAGVFNIGDFVPALDCLDLQGVAGKMKRLHKRFD


AFLSSILEEHETMKNGQDQKHTDMLSTLISLKGTDFDGEGGTLTDTEIKALLLNMFTA


GTDTSASTVDWAIAELIRHPEIMRKAQEELDSVVGRGRPINESDLSQLPYLQAVIKEN


FRLHPPTPLSLPHIASESCEINGYHIPKGSTLLTNIWAIARDPDQWTDPLSFRPERFLPG


GEKAGVDVKGNDFELIPFGAGRRICAGLSLGLRTIQLLTATLVHGFEWELAGGVTPE


KLNMEETYGITLQRAVPLVVHPKPRLDMSAYGLGSA





SEQ ID NO: 85



Brassica napus cultivar Darmor_v5



BnaA10g23330D


MTNLYLTILLPTFIFLIVLVLSRRRNNRLPPGPNPWPIIGNLPHMGPKPHQTLAAMVTT


YGPILHLRLGFADVVVAASKSVAEQFLKVHDANFASRPPNSGAKHMAYNYQDLVFA


PYGQRWRMLRKISSVHLFSAKALEDFKHVRQEEVGTLMRELARANTKPVNLGQLV


NMCVLNALGREMIGRRLFGADADHKAEEFRSMVTEMMALAGVFNIGDFVPALDCL


DLQGVAGKMKRLHKRFDAFLSSILEEHEAMKNGQDQKHTDMLSTLISLKGTDFDGE


GGTLTDTEIKALLLNMFTAGTDTSASTVDWAIAELIRHPEIMRKAQEELDSVVGRGR


PINESDLSQLPYLQAVIKENFRLHPPTPLSLPHIASESCEINGYHIPKGSTLLTNIWAIAR


DPDQWSDPLTFRPERFLPGGEKAGVDVKGNDFELIPFGAGRRICAGLSLGLRTIQLLT


ATLVHGFEWELAGGVTPEKLNMEETYGITLQRAVPLVVHPKLRLDMSAYGLGSA





SEQ ID NO: 86



Brassica napus cultivar ZS11



BnaA10G0256900ZS


MTNLYLTILLPTFIFLIVLVLSRRRNNRLPPGPNPWPIIGNLPHMGPKPHQTLAAMVTT


YGPILHLRLGFADVVVAASKSVAEQFLKVHDANFASRPPNSGAKHMAYNYQDLVFA


PYGQRWRMLRKISSVHLFSAKALEDFKHVRQEEVGTLMRELARANTKPVNLGQLV


NMCVLNALGREMIGRRLFGADADHKAEEFRSMVTEMMALAGVFNIGDFVPALDCL


DLQGVAGKMKRLHKRFDAFLSSILEEHEAMKNGQDQKHTDMLSTLISLKGTDFDGE


GGTLTDTEIKALLLNMFTAGTDTSASTVDWAIAELIRHPEIMRKAQEELDSVVGRGR


PINESDLSQLPYLQAVIKENFRLHPPTPLSLPHIASESCEINGYHIPKGSTLLTNIWAIAR


DPDQWSDPLTFRPERFLPGGEKAGVDVKGNDFELIPFGAGRRICAGLSLGLRTIQLLT


ATLVHGFEWELAGGVTPEKLNMEETYGITLQRAVPLVVHPKLRLDMSAYGLGSA





SEQ ID NO: 87



Brassica napus cultivar ZS11



BnaC09G0570900ZS


MTNLYLTILLPTFIFLIVLVLSRRRNNRLPPGPNPWPIIGNLPHMGPKPHQTLAAMVTT


YGPILHLRLGFADVVVAASKSVAEQFLKVHDANFASRPPNSGAKHMAYNYQDLVFA


PYGQRWRMLRKISSVHLFSAKALEDFKHVRQEEVGTLMRELARANTKPVNLGQLV


NMCVLNALGREMIGRRLFGADADHKAEEFRSMVTEMMALAGVFNIGDFVPALDCL


DLQGVAGKMKRLHKRFDAFLSSILEEHETMKNGQDQKHTDMLSTLISLKGTDFDGE


GGTLTDTEIKALLLNMFTAGTDTSASTVDWAIAELIRHPEIMRKAQEELDSVVGRGR


PINESDLSQLPYLQAVIKENFRLHPPTPLSLPHIASESCEINGYHIPKGSTLLTNIWAIAR


DPDQWTDPLSFRPERFLPGGEKAGVDVKGNDFELIPFGAGRRICAGLSLGLRTIQLLT


ATLVHGFEWELAGGVTPEKLNMEETYGITLQRAVPLVVHPKPRLDMSAYGLGSA





SEQ ID NO: 88



Brassica napus cultivar Gangan



BnaA10G0251000GG


MTNLYLTILLPTFIFLIVLVLSRRRNNRLPPGPNPWPIIGNLPHMGPKPHQTLAAMVTT


YGPILHLRLGFADVVVAASKSVAEQFLKVHDANFASRPPNSGAKHMAYNYQDLVFA


PYGQRWRMLRKISSVHLFSAKALEDFKHVRQEEVGTLMRELARANTKPVNLGQLV


NMCVLNALGREMIGRRLFGADADHKAEEFRSMVTEMMALAGVFNIGDFVPALDCL


DLQGVAGKMKRLHKRFDAFLSSILEEHEAMKNGQDQKHTDMLSTLISLKGTDFDGE


GGTLTDTEIKALLLNMFTAGTDTSASTVDWAIAELIRHPEIMRKAQEELDSVVGRGR


PINESDLSQLPYLQAVIKENFRLHPPTPLSLPHIASESCEINGYHIPKGSTLLTNIWAIAR


DPDQWSDPLTFRPERFLPGGEKAGVDVKGNDFELIPFGAGRRICAGLSLGLRTIQLLT


ATLVHGFEWELAGGVTPEKLNMEETYGITLQRAVPLVVHPKPRLDRSAYGLGSA





SEQ ID NO: 89



Brassica napus cultivar Gangan



BnaC09G0516100GG


MTNLYLTILLPTFIFLIVLVLSRRRNNRLPPGPNPWPIIGNLPHMGPKPHQTLAAMVTT


YGPILHLRLGFADVVVAASKSVAEQFLKVHDANFASRPPNSGAKHMAYNYQDLVFA


PYGQRWRMLRKISSVHLFSAKALEDFKHVRQEEVGTLMRELARANTKPVNLGQLV


NMCVLNALGREMIGRRLFGADADHKAEEFRSMVTEMMALAGVFNIGDFVPALDCL


DLQGVAGKMKRLHKRFDAFLSSILEEHETMKNGQDQKHTDMLSTLISLKGTDFDGE


GGTLTDTEIKALLLNMFTAGTDTSASTVDWAIAELIRHPEIMRKAQEELDSVVGRGR


PINESDLSQLPYLQAVIKENFRLHPPTPLSLPHIASESCEINGYHIPKGSTLLTNIWAIAR


DPDQWTDPLSFRPERFLPGGEKAGVDVKGNDFELIPFGAGRRICAGLSLGLRTIQLLT


ATLVHGFEWELAGGVTPEKLNMEETYGITLQRAVPLVVHPKPRLDMSAYGLGSA





SEQ ID NO: 90



Brassica napus cultivar Quinta



BnaA10G0248800QU


MTNLYLTILLPTFIFLIVLVLSRRRNNRLPPGPNPWPIIGNLPHMGPKPHQTLAAMVTT


YGPILHLRLGFADVVVAASKSVAEQFLKVHDANFASRPPNSGAKHMAYNYQDLVFA


PYGQRWRMLRKISSVHLFSAKALEDFKHVRQEEVGTLMRELARANTKPVNLGQLV


NMCVLNALGREMIGRRLFGADADHKAEEFRSMVTEMMALAGVFNIGDFVPALDCL


DLQGVAGKMKRLHKRFDAFLSSILEEHEAMKNGQDQKHTDMLSTLISLKGTDFDGE


GGTLTDTEIKALLLNMFTAGTDTSASTVDWAIAELIRHPEIMRKAQEELDSVVGRGR


PINESDLSQLPYLQAVIKENFRLHPPTPLSLPHIASESCEINGYHIPKGSTLLTNIWAIAR


DPDQWTDPLSFRPERFLPGGEKAGVDVKGNDFELIPFGAGRRICAGLSLGLRTIQLLT


ATLVHGFEWELAGGVTPEKLNMEETYGITLQRAVPLVVHPKLRLDMSAYGLGSA





SEQ ID NO: 91



Brassica napus cultivar Quinta



BnaC09G0534300QU


MTNLYLTILLPTFIFLIVLVLSRRRNNRLPPGPNPWPIIGNLPHMGPKPHQTLAAMVTT


YGPILHLRLGFADVVVAASKSVAEQFLKVHDANFASRPPNSGAKHMAYNYQDLVFA


PYGQRWRMLRKISSVHLFSAKALEDFKHVRQEEVGTLMRELARANTKPVNLGQLV


NMCVLNALGREMIGRRLFGADADHKAEEFRSMVTEMMALAGVFNIGDFVPALDCL


DLQGVAGKMKRLHKRFDAFLSSILEEHETMKNGQDQKHTDMLSTLISLKGTDFDGE


GGTLTDTEIKALLLNMFTAGTDTSASTVDWAIAELIRHPEIMRKAQEELDSVVGRGR


PINESDLSQLPYLQAVIKENFRLHPPTPLSLPHIASESCEINGYHIPKGSTLLTNIWAIAR


DPDQWTDPLSFRPERFLPGGEKAGVDVKGNDFELIPFGAGRRICAGLSLGLRTIQLLT


ATLVHGFEWELAGGVTPEKLNMEETYGITLQRAVPLVVHPKPRLDMSAYGLGSA





SEQ ID NO: 92



Brassica napus cultivar Shengli



BnaA10G0220400SL


MTNLYLTILLPTFIFLIVLVLSRRRNNRLPPGPNPWPIIGNLPHMGPKPHQTLAAMVTT


YGPILHLRLGFADVVVAASKSVAEQFLKVHDANFASRPPNSGAKHMAYNYQDLVFA


PYGQRWRMLRKISSVHLFSAKALEDFKHVRQEEVGTLMRELARANTKPVNLGQLV


NMCVLNALGREMIGRRLFGADADHKAEEFRSMVTEMMALAGVFNIGDFVPALDCL


DLQGVAGKMKRLHKRFDAFLSSILEEHEAMKNGQDQKHTDMLSTLISLKGTDFDGE


GGTLTDTEIKALLLNMFTAGTDTSASTVDWAIAELIRHPEIMRKAQEELDSVVGRGR


PINESDLSQLPYLQAVIKENFRLHPPTPLSLPHIASESCEINGYHIPKGSTLLTNIWAIAR


DPDQWSDPLTFRPERFLPGGEKAGVDVKGNDFELIPFGAGRRICAGLSLGLRTIQLLT


ATLVHGFEWELAGGVTPEKLNMEETYGITLQRAVPLVVHPKLRLDMSAYGLGSA





SEQ ID NO: 93



Brassica napus cultivar Shengli



BnaC09G0396500SL


MTNLYLTILLPTFIFLIVLVLSRRRNNRLPPGPNPWPIIGNLPHMGPKPHQTLAAMVTT


YGPILHLRLGFADVVVAASKSVAEQFLKVHDANFASRPPNSGAKHMAYNYQDLVFA


PYGQRWRMLRKISSVHLFSAKALEDFKHVRQEEVGTLMRELARANTKPVNLGQLV


NMCVLNALGREMIGRRLFGADADHKAEEFRSMVTEMMALAGVFNIGDFVPALDCL


DLQGVAGKMKRLHKRFDAFLSSILEEHETMKNGQDQKHTDMLSTLISLKGTDFDGE


GGTLTDTEIKALLLNMFTAGTDTSASTVDWAIAELIRHPEIMRKAQEELDSVVGRGR


PINESDLSQLPYLQAVIKENFRLHPPTPLSLPHIASESCEINGYHIPKGSTLLTNIWAIAR


DPDQWTDPLSFRPERFLPGGEKAGVDVKGNDFELIPFGAGRRICAGLSLGLRTIQLLT


ATLVHGFEWELAGGVTPEKLNMEETYGITLQRAVPLVVHPKPRLDMSAYGLGSA





SEQ ID NO: 94



Brassica napus cultivar Tapidor



BnaA10G0249900TA


MTNLYLTILLPTFIFLIVLVLSRRRNNRLPPGPNPWPIIGNLPHMGPKPHQTLAAMVTT


YGPILHLRLGFADVVVAASKSVAEQFLKVHDANFASRPPNSGAKHMAYNYQDLVFA


PYGQRWRMLRKISSVHLFSAKALEDFKHVRQEEVGTLMRELARANTKPVNLGQLV


NMCVLNALGREMIGRRLFGADADHKAEEFRSMVTEMMALAGVFNIGDFVPALDCL


DLQGVAGKMKRLHKRFDAFLSSILEEHEAMKNGQDQKHTDMLSTLISLKGTDFDGE


GGTLTDTEIKALLLNMFTAGTDTSASTVDWAIAELIRHPEIMRKAQEELDSVVGRGR


PINESDLSQLPYLQVTRTGNSDCFG





SEQ ID NO: 95



Brassica napus cultivar Tapidor



BnaC09G0550200TA


MTNLYLTILLPTFIFLIVLVLSRRRNNRLPPGPNPWPIIGNLPHMGPKPHQTLAAMVTT


YGPILHLRLGFADVVVAASKSVAEQFLKVHDANFASRPPNSGAKHMAYNYQDLVFA


PYGQRWRMLRKISSVHLFSAKALEDFKHVRQEEVGTLMRELARANTKPVNLGQLV


NMCVLNALGREMIGRRLFGADADHKAEEFRSMVTEMMALAGVFNIGDFVPALDCL


DLQGVAGKMKRLHKRFDAFLSSILEEHETMKNGQDQKHTDMLSTLISLKGTDFDGE


GGTLTDTEIKALLLNMFTAGTDTSASTVDWAIAELIRHPEIMRKAQEELDSVVGRGR


PINESDLSQLPYLQVTRTENSDCFG





SEQ ID NO: 96



Brassica napus cultivar Westar



BnaA10G0251800WE


MTNLYLTILLPTFIFLIVLVLSRRRNNRLPPGPNPWPIIGNLPHMGPKPHQTLAAMVTT


YGPILHLRLGFADVVVAASKSVAEQFLKVHDANFASRPPNSGAKHMAYNYQDLVFA


PYGQRWRMLRKISSVHLFSAKALEDFKHVRQEEVGTLMRELARANTKPVNLGQLV


NMCVLNALGREMIGRRLFGADADHKAEEFRSMVTEMMALAGVFNIGDFVPALDCL


DLQGVAGKMKRLHKRFDAFLSSILEEHEAMKNGQDQKHTDMLSTLISLKGTDFDGE


GGTLTDTEIKALLLNMFTAGTDTSASTVDWAIAELIRHPEIMRKAQEELDSVVGRGR


PINESDLSQLPYLQAVIKENFRLHPPTPLSLPHIASESCEINGYHIPKGSTLLTNIWAIAR


DPDQWTDPLSFRPERFLPGGEKAGVDVKGNDFELIPFGAGRRICAGLSLGLRTIQLLT


ATLVHGFEWELAGGVTPEKLNMEETYGITLQRAVPLVVHPKLRLDMSAYGLGSA





SEQ ID NO: 97



Brassica napus cultivar Westar



BnaC09G0543700WE


MTNLYLTILLPTFIFLIVLVLSRRRNNRLPPGPNPWPIIGNLPHMGPKPHQTLAAMVTT


YGPILHLRLGFADVVVAASKSVAEQFLKVHDANFASRPPNSGAKHMAYNYQDLVFA


PYGQRWRMLRKISSVHLFSAKALEDFKHVRQEEVGTLMRELARANTKPVNLGQLV


NMCVLNALGREMIGRRLFGADADHKAEEFRSMVTEMMALAGVFNIGDFVPALDCL


DLQGVAGKMKRLHKRFDAFLSSILEEHETMKNGQDQKHTDMLSTLISLKGTDFDGE


GGTLTDTEIKALLLNMFTAGTDTSASTVDWAIAELIRHPEIMRKAQEELDSVVGRGR


PINESDLSQLPYLQAVIKENFRLHPPTPLSLPHIASESCEINGYHIPKGSTLLTNIWAIAR


DPDQWTDPLSFRPERFLPGGEKAGVDVKGNDFELIPFGAGRRICAGLSLGLRTIQLLT


ATLVHGFEWELAGGVTPEKLNMEETYGITLQRAVPLVVHPKPRLDMSAYGLGSA





SEQ ID NO: 98



Brassica napus cultivar Zheyou7



BnaA10G0234400ZY


MTNLYLTILLPTFIFLIVLVLSRRRNNRLPPGPNPWPIIGNLPHMGPKPHQTLAAMVTT


YGPILHLRLGFADVVVAASKSVAEQFLKVHDANFASRPPNSGAKHMAYNYQDLVFA


PYGQRWRMLRKISSVHLFSAKALEDFKHVRQEEVGTLMRELARANTKPVNLGQLV


NMCVLNALGREMIGRRLFGADADHKAEEFRSMVTEMMALAGVFNIGDFVPALDCL


DLQGVAGKMKRLHKRFDAFLSSILEEHEAMKNGQDQKHTDMLSTLISLKGTDFDGE


GGTLTDTEIKALLLNMFTAGTDTSASTVDWAIAELIRHPEIMRKAQEELDSVVGRGR


PINESDLSQLPYLQVTRTGNSDCFG





SEQ ID NO: 99



Brassica napus cultivar Zheyou7



BnaC09G0517700ZY


MTNLYLTILLPTFIFLIVLVLSRRRNNRLPPGPNPWPIIGNLPHMGPKPHQTLAAMVTT


YGPILHLRLGFADVVVAASKSVAEQFLKVHDANFASRPPNSGAKHMAYNYQDLVFA


PYGQRWRMLRKISSVHLFSAKALEDFKHVRQEEVGTLMRELARANTKPVNLGQLV


NMCVLNALGREMIGRRLFGADADHKAEEFRSMVTEMMALAGVFNIGDFVPALDCL


DLQGVAGKMKRLHKRFDAFLSSILEEHETMKNGQDQKHTDMLSTLISLKGTDFDGE


GGTLTDTEIKALLLNMFTAGTDTSASTVDWAIAELIRHPEIMRKAQEELDSVVGRGR


PINESDLSQLPYLQVTRTENSDCFG





SEQ ID NO: 100



Saccharum hybrid cultivar R570



AGT17103


MELPTWASFLGVVLATVMLLKAILGRRRRVYNLPPGPKPWPIIGNLNLMGALPHRSI


HELSRKYGPLMQLRFGSFPVVVGSSVDMAKFFLKTHDVVFTDRPKTAAGKYTTYNY


RDITWSPYGAYWRQARKMCLTELFSAKRLESYEYIRAAEVRALLRDLHSASGSGRA


VMLKDHLSTVSLNVITRMVLGKKYLDKDEVASAGSVTMTTPEEFKWMLDELFLLN


GVLNIGDSIPWLDWMDLQGYIKRMKKLSKMFDRFLEHVVEEHNQRRLREGKDFVA


KDMVDVLLQIADDPTLEVELNRESVKAFTQDLIAGGTESSAVTVEWAISELLKKPEVI


VKATEELDRVIGRGRWVTEKDIPSLPYVDAIVKETMRLHPVAPMLVPRLSREDTTVA


GYDIPAGTRVLVSVWSIGRDPALWDAPEEFMPERFLSSRLDVKGQDYELLPFGSGRR


MCPGYSLGLKVIQVSLANLLHGFSWSLPYGVTKEELSMEEIFGLSTPRKFPLEAVVEP


KLPAHLYAEP





SEQ ID NO: 101



Saccharum hybrid cultivar R570



AGT17101


MELSAWASVFAVVFTTVVYLGAVHARRRRACNSLPGPKPWPIIGNFNLLGALPHRSL


DALSKRHGPLMRVQFGSFPVVIASSVDMAKFFLKTHDSVFIDRPKMAAGKYTTYNY


SNIAWSPYGAYWRQARKICADELFSARRLESFEHVRQEEVHALLRTLHGTAGQVVP


LKECLSTMSLNIITRMVLGRKCVDKEVVASGGGSVTTWKEFRWMLDELFLLNGVLN


IGDWIPWLSWLDLQGYVRRMKRVGRMFNQFMENVVEEHNERRLREGDAFVPQDM


VDRLLQLADDPSLDVKLTRDSVKAFTQSAAVIVEWAISELLKNPDVFAKATEELDGV


IGRDRWVTEKDIPHLPYMDAIVKETMRLHMVVPLLSPRLSREDTSVGGYDIPAGTRV


LINAWTISRDPALWDAPEEFRPERFVGSKIDVKGQDFELLPFGSGRRMCPGYSLGLKV


IQVTLVNLLHGFAWRLPDGMTEEELSMEEVFGLSTPRKFPLQAVVEPKLPARMYTA





SEQ ID NO: 102



Saccharum hybrid cultivar R570



AGT16621


MDATQDSPLFLFPAAATLLSPLLAVLLVVLSLLWLYPGGPAWALIISRSRATPPPGTP


GVVTALAGPAAHRTLASLSQSLPGGGSALLAFSVGLTRLVVASQPDTARELLASAAF


ADRPVKDAARGLLFHRAMGFAPSGDYWRALRRISSAYLFSPRSVSATAPRRVAIGER


MLRDLSAAATGGGGGGEVVMRRVLHAASLDHVMATVFGARYDADSAEGAELEEM


VKEGYDLLGLFNWGDHLPLLRWLDLQGVRRRCRSLVSRVNVFVARIIEEHRQKKKD


DAANGESAAGDFVDVLLGLEGEEKLSDSDMIAVLWEMIFRGTDTVAILLEWVMAR


MVLHPGIQSKAQAELDAVVGRGRAVSDADVARLPYLQRVVKETLRVHPPGPLLSW


ARLAVHDAVVGGHLVPAGTTAMVNMWAIAHDPVVWAEPSAFRPERFEEEDVSVLG


GDLRLAPFGAGRRVCPGKTLALATVHLWLAQLLHRFQWAPADGGVDLAERLGMSL


EMEKPLVCKPTPRW





SEQ ID NO: 103



Saccharum hybrid cultivar R570



AGT16132


MDATQDSPLFLFPAAATLLSPLLAVLLVVLSLLWLYPGGPAWALIISRSRATPPPGTP


GVVTALAGPAAHRTLASLSQSLPGGGSALLAFSVGLTRLVVASQPDTARELLASAAF


ADRPVKDAARGLLFHRAMGFAPSGDYWRALRRISSAYLFSPRSVSATAPRRVAIGER


MLRDLSAAATGGGGGGEVVMRRVLHAASLDHVMATVFGARYDADSAEGAELEEM


VKEGYDLLGLFNWGDHLPLLRWLDLQGVRRRCRSLVSRVNVFVARIIEEHRQKKKD


DAANGESAAGDFVDVLLGLEGEEKLSDSDMIAVLWEMIFRGTDTVAILLEWVMAR


MVLHPGIQSKAQAELDAVVGRGRAVSDADVARLPYLQRVVKETLRVHPPGPLLSW


ARLAVHDAVVGGHLVPAGTTAMVNMWAIAHDPVVWAEPSAFRPERFEEEDVSVLG


GDLRLAPFGAGRRVCPGKTLALATVHLWLAQLLHRFQWAPADGGVDLAERLGMSL


EMEKPLVCKPTPRW





SEQ ID NO: 104



Saccharum hybrid cultivar R570



AGT17102


MELPTWASFLGVVLATVMLLKAILGRRRRVYNLPPGPKPWPIIGNLNLMGALPHRSI


HELSRKYGPLMQLRFGSFPVVVGSSVDMAKFFLKTHDVVFTDRPKTAAGKYTTYNY


RDITWSPYGAYWRQARKMCLTELFSAKRLESYEYIRAAEVRALLRDLHSASGSGRA


VMLKDHLSTVSLNVITRMVLGKKYLDKDEVASAGSVTMTTPEEFKWMLDELFLLN


GVLNIGDSIPWLDWMDLQGYIKRMKKLSKMFDRFLEHVVEEHNQRRLREGKDFVA


KDMVDVLMQIADDPTLEVELDRESVKAFTQDLIAGGTESSAVTVEWAISELLKKPEV


IAKAT





SEQ ID NO: 105



Saccharum hybrid cultivar R570



AGT16178


MSAGYFKNKHSLGARSVPVHAGSCYASSQGPLWFLVVPLMLELLPFICRRLHHRPN


AGDDDRKRSKPLLPSPPGRLPVIGHLHLIGDLPHVSLRDLATKHDHGGGLMLLQLGT


VPILVVSSPHAAQAVLRTHDHVFASRPAPKVLHNFLYGSSTIAFGPYGEHWRKVRKL


VTTRLFTVKKVRQVMAKLKKAMATGMAVEMSETMNTFANEIMCRVLSGKFFKEDS


RNKTFRELIEMNVALYAGFSLENYFPGLVNSLGIFTRMVSRKADETHERWDDVLENII


SDHERRAEQEESADFVDLMLSVQQEYDLFDAGTGTSYLTLELAMAELMRHPHIMTK


LQAEVRNKIPNGQEMVREEDLASMAYLRAVVKETLRLHPPAPLFLPYQSMVDCEID


GYTIPSGTRVIINSWAVCRHVESWEKAEEFMPERFMDGGSAAAVDFKGNDFQFIPFG


AGRRMCPGINFGLAIVEIMLANLIVLF





SEQ ID NO: 106



Saccharum hybrid cultivar R570



AGT16989


MDEFLYQSLLLSVVALVKLAFIKRRPRLPPGPWKLPVIGSMHHLINVLPHRALRDLA


AVHGPLMMLQLGQTALVVASSKETARAVLKTHDTNFATRPKLLAGQIVGYEWVDIL


FAPSGDYWRKLRQLCAAEILSPKRVLSFRHIREDEVMLRVEEIRAAGPSTPVNLSVMF


HSITNSVVSRAATRAATKAVVGLASGFNIPDLFPGWTTVLAKLTGMTCSLQDIHKTV


HTILEEIIQERKAIRDEKISSGAEDIDENLVDVLLGLQEKGGFGFQLNNSIIKAIILDMFA


GGTGTSGSAMEWGMSELMRNPEVMKKLQPAGADQGGSIEECELDGYTIPAKSRVII


NAWAIGRDPRYWEAADEFKPERFEDGARDFTGSSYEFLPFGSGRRMCPGFNYGLAS


MELAFVGLLYHFDWSLPDGVEEVDMGEAPGLGVRRRTPLLLCATPFVPVDA





SEQ ID NO: 107



Saccharum hybrid cultivar R570



AGT16177


MLLQLGTVSNLVVSSPRAARAVLRTHDHVFASRPTTKVLHNFLYGSSTIAFGPYGEH


WRKVRKLVTTHLFTVKKVNSFCHARQEEVRLVMAKLKKAMATGMEVDMSETMNT


FANDIMCCVVSGKLFREDGRNKTFRELIEMNSALYAGFSLENYFPRLVNSLGIFTRFV


SRKADKTHERWDEVLENIISDHERQSFNYRHGDRAEQEEGTDFVDVMLSVQQEYGIS


RDHIKAVLMDMFDAGTVTSSLVLELAMAELMRHPHLMSKLQAEVRNKTPNGEEMV


KQENLASMSYLRAVVKETLRHLESWEKAEKFMPERFMDGGSAATIDLKGNDFQFIP


FGAGRRMCPGINFGLVTVEIMLANLMYCFDWGLPAGMDKKDIDMTEVFGLTVHRK


EKLMLVPKLPGTASYA





SEQ ID NO: 108



Saccharum hybrid cultivar R570



AGT16905


MSMHQPTSAAATQLHHAAMEASLMSLSFLQLAFTAVAAIAALAVAVAVTRYNRRY


MGLRLPPGPPVWPVVGNLFQVAFSGKLFIHYIRDLRKEYGPILTLRMGERTLVIISSAE


LAHEALVEKGREFASRPRENTTRNIFSSNKFTVNSAVYGAEWRSLRRNMVSGMLSTS


RLREFAHARRRAMDRFVSRMRAEALASPDGASVWVLRNARFAVFCILLDMTFGLLD


LHEEHIVHIDAVMKRVLLAVGVRMDDYLPFLRPFFWRHQRRALAVRREQVDTLLPL


ISRRRAILRDMKSSSPPDPNVAAPFSYLDSVLDLHIEGRDGTPTDDELVTLCAELINGG


TDTTATAIEWGMARIVDNPSIQARLHEEIMQQVGDARPVDDKDTDAMPYLQAFVKE


LLRKHPPTYFSLTHAAVQPGSKLAGYDVPVDANLDIFLPTISEDPKLWDRPTEFDPDR


FVSGGEMGDMTGSGGIRMIPFGAGRRICPGLAMGTTHIALMVARMVQAFEWRAHPS


QPPLDFKDKVEFTVVMDRPLLAAVKPRNLSF





SEQ ID NO: 109



Saccharum hybrid cultivar R570



AGT16500


MSMHQPTSAAATQLHHAAMEASLMSLSFLQLAFTAVAAIAALAVAVAVTRYNRRY


MGLRLPPGPPVWPVVGNLFQVAFSGKLFIHYIRDLRKEYGPILTLRMGERTLVIISSAE


LAHEALVEKGQEFASRPRENTTRNIFSSNKFTVNSAVYGAEWRSLRRNMVSGMLSTS


RLREFAHARRRAMDRFVSRMRAEAAASPDGASVWVLRNARFAVFCILLDMTFGLL


DLHEEHIVHIDAVMKRVLLAVGVRMDDYLPFLRPFFWRHQRRALAVRREQVDTLLP


LISRRRAILRDMKSSSPPDPNVAAPFSYLDSVLDLHIEGRDGAPTDDELVTLCAELING


GTDTTATAIEWGLARIVDNPSIQARLHEEIMHQVGDARPVDDKDTDAMPYLQAFVK


ELLRKHPPTYFSLTHAAVQPGSKLAGYDVPVDANLDIFLPTISEDPKLWDRPTEFDPD


RFVSGGEMGDMTGSGGIRMIPFGAGRRICPGLAMGTTHIALMVARMVQAFEWRAHP


SQPPLDFKDKVEFTVVMDRPLLAAVKPRNLS





SEQ ID NO: 110



Saccharum hybrid cultivar R570



AGT16853


MAKLKKAMATGMEVDMSETMNTFANDIMCCVVSGKLFREDGRNKTFRELIEMNSA


LYAGFSLENYFPRLVNSLGIFTRFVSRKADKTHERWDEVLENIISDHERQSFNYRHGD


RAEQEEGTDFVDVMLSVQQEYGISRDHIKAVLMDMFDAGTVTSSLVLELAMAELM


RHPHLMSKLQAEVRNKTPNGEEMVKQENLASMSYLRAVVKETLRFMDGGSAATID


LKGNDFQFIPFGAGRRMCPGINFGLVTVEIMLANLMYCFDWGLPAGMDKKDIDMTE


VFGLTVHRKEKLMLVPKLPGTASYA





SEQ ID NO: 111



Saccharum hybrid cultivar R570



AGT17443


MGKITPQTQNSQTWISLIFDEMSDMSMMTASDRVAPYIHASLSLHWYGPIFKTNLVG


QPMVVSADPEVNRFIFQQEGKLFRSWYPETANIIIGEKTIDEFNGPTQKFVRNIISRLFG


LEYLKQDLIPELEKDIRDTFAEWTTKPSIDVHDSTPDVIFVLVAKKMLGLHPSESRELR


KNYSSFLQGLISFPIYFPGTTFYQCMQGKNNMLNLMSNLLRKRLSMPEKHGDILDLM


VEELQSENPTIDDKFATDTLSAILFTSFVTLSPNLTLAFKFLSDNPAVLDALKEEHDTIL


RNRKDSSSGFTWEEYKSLTFTTMVINELMRMSNPTPGIFRKTLTDVQVNGYTIPAGW


MVMMSPMAVHLNPAFFEDPLDFNPWRWLDESKRNAQKNFVPFGLGTRACPAAEFS


KLFIALFLHVLVTKYRLLLAHDKSIYTFVMLAAL





SEQ ID NO: 112



Saccharum officinarum



AWA44852


METLHAHDELFSCVVLVLVTTITILYLKQLLLAAFERRAGSPSLPCPRGLPLIGNLHQL


GTAPHDSLAALAAKHAAPLMLLRLGSVPTLVVSTADALRAVFQPNDRAMSGRPALY


AATRITYGLQDIVFSPPDGAFWRAARRASLSELLSAPRVRSFRDVREGEAAALVAAIT


DMSGSGSPVNLSEEVMATSNKILRRVAFGDGGGEESIEAGKVLDETQKLLGGFFVAD


YMPWLGWLDALRGLRRRLERNFHELDAFYEKVIDDHLSKRGAGADASKGEDLVDV


LLRLHGDPAYQSTFNSRDQIKGILTDMFIAGTDTAAATVEWTMTELVRHPDILAKAQ


KEVRAAVVGKDIVLESDLPRLKYLKQVIRESMRVHPPVPLLVPRETIEPCTVYGCEIP


ARTRVFVNAKAIGQDPDAWGPDAARFVPERHEEIADLSDHKPWHDSFSLVPFGVGR


RSCPGVHFATSVVELLLANLLFCFDWRAPHGEVDLEQETGLTVHRKNPLVLVAERR


GVL





SEQ ID NO: 113



Saccharum officinarum



AWA44857


MARALVAMALRFLRDYVRASDLAVAAAVLFVCSAVRSRLSSRPGEPMLWPVVGIIP


TLFAHLAIGDVYDWGAVVLSRCRGTFPYRGTWGGGSSGVITSVPANVEHVLKDNFD


NYPKGPYYRERFAELLGDGIFNADGDSWRAQRKAASAEMHSARFLRFSAATIERLV


CGRLVPLLETLSERGHSVDLQDVLLRFAFDNICAAAFGVEAGCLADGLPDVPFARAF


ERATELSLTRFYTPPFIWKPKRLLCVGSERALVEAARAVREFAERTVADRRAELCKIG


DLAGRCDLLSRLMSSSPPPADAGAGLAAGYSDEFLRDFCISFILAGRDTSSVALTWFF


WLLASHPDVEARVLDDIARVGGGDVGAMDYLHAALTESMRLYPPVPVDFKEALED


DVLPDGTLVRARQRVIYFTYAMGRDKATWGPDCLEFRPERWLNKSGAFAGGAESP


YKYVVFNAGPRLCVGKRFAYTQMKTVAAAVLARFRVEVVPGQEVKPKLNTTLYM


KSGLMVRFVAREQRHELGHPVPAAADDAGGCSLH





SEQ ID NO: 114



Saccharum officinarum



AWA44838


MARALVAMALRFLRDYVRASDLAVAAAVLFVCSAVRSRLSSRPGEPMLWPVVGIIP


TLFEHLAIGDVYDWGAAVLSRCRGTFPYRGTWGGGSSGVITSVPANVEHVLKDNFD


NYPKGPYYRERFAELLGDGIFNADGDSWRAQRKAASAEMHSARFLRFSAATIERLV


RGRLVPLLETLSERGHSVDLQDVLLRFAFDNICAAAFGVEAGCLADGLPDVPFARAF


ERATELSLTRFYTPPFIWKPKRLLCVGSERALVEAARAVREFAERTVADRRAELCKIG


DLAGRCDLLSRLMSSSPPPADAGAGLAAGYSDEFLRDFCISFILAGRDTSSVALTWFF


WLLASHPDVEARVLDDIARVGGGDVGAMDCLHAALTESMRLYPPVPVDFKEALED


DVLPDGTLVRARQRVIYFTYAMGRDKATWGPDCLEFRPERWLNKSGAFAGGAESP


YKYVVFNAGPRLCVGKRFAYTQMKTVAAAVLARFRVEVVPGQEVKPKLNTTLYM


KSGLMVRFVAREQRHELGHPVPAAADDAGGCSLH





SEQ ID NO: 115



Saccharum officinarum



AWA44954


MARALVAMALRFLRDYVRASDLAVAAAVLFVCSAARSRLSSRPGEPMLWPVVGIIP


TLFAHLAIGDVYDWGAAVLSRCRGTFPYRGTWGGGSSGVITSVPANVEHVLKANFD


NYPKGPYYRERFAELLGDGIFNADGDSWRVQRKAASSEMHSARFLQFSAATIERLVR


GRLVPLLETLSERGADDAVVDLQDVLLRFAFDNICAAAFGVEAGCLADGLPDVPFA


HAFERATELSLTRFYTPPFIWKPKRLLCVGSERALVEAARAVREFAERTVADRRAEL


RKVGDLAGRCDLLSRLMSSSPPPADAGAGLAAGYSDEFLRDFCISFILAGRDTSSVAL


TWFFWLLAFHPDVEARVLDDIALAGGDVGATDYLHAALTESMRLYPPVPVDFKEAL


EDDVLPDGTLVRARQRVIYFTYAMGRDKATWGPDCLEFCPERWLNKSGAFAGGAE


SPYKYVVFNAGPRLCVGKRFAYTQMKTVAAAVLARFRVEVVPGQEVKPKLNTTLY


MKSGLMVRFVAREQRHELGHPVPAAADDAGGCSLH





SEQ ID NO: 116



Glycine max



Glyma.06G202300


MSPLIVALATIAAAILIYRIIKFITRPSLPLPPGPKPWPIVGNLPHMGPVPHHSLAALARI


HGPLMHLRLGFVDVVVAASASVAEQFLKIHDSNFSSRPPNAGAKYIAYNYQDLVFAP


YGPRWRLLRKLTSVHLFSGKAMNEFRHLRQEEVARLTCNLASSDTKAVNLGQLLNV


CTTNALARAMIGRRVFNDGNGGCDPRADEFKAMVMEVMVLAGVFNIGDFIPSLEW


LDLQGVQAKMKKLHKRFDAFLTSIIEEHNNSSSKNENHKNFLSILLSLKDVRDDHGN


HLTDTEIKALLLNMFTAGTDTSSSTTEWAIAELIKNPQILAKLQQELDTVVGRDRSVK


EEDLAHLPYLQAVIKETFRLHPSTPLSVPRAAAESCEIFGYHIPKGATLLVNIWAIARD


PKEWNDPLEFRPERFLLGGEKADVDVRGNDFEVIPFGAGRRICAGLSLGLQMVQLLT


AALAHSFDWELEDCMNPEKLNMDEAYGLTLQRAVPLSVHPRPRLAPHVYSMSS*





SEQ ID NO: 117



Glycine max



Glyma.05G021800


MSTWVIGFATIIAAVLIYRVLKPISRPSSSLPLPPGPRPWPIVGNLPHMGPAPHQGLAN


LAQTHGPLMHLRLGFVDVVVAASASVAEQFLKIHDANFCSRPLNFRTTYLAYNKQD


LVFAPYGPKWRFLRKLTTVHMFSAKAMDDFSQLRQEEVARLTCKLARSSSKAVNLR


QLLNVCTTNALTRIMIGRRIFNDDSSGCDPKADEFKSMVGELMTLFGVFNIGDFIPAL


DWLDLQGVKAKTKKLHKKVDAFLTTILEEHKSFENDKHQGLLSALLSLTKDPQEGH


TIVEPEIKAILANMLVAGTDTSSSTIEWAIAELIKNSRIMVQVQQELNVVVGQDRLVT


ELDLPHLPYLQAVVKETLRLHPPTPLSLPRFAENSCEIFNYHIPKGATLLVNVWAIGR


DPKEWIDPLEFKPERFLPGNEKVDVDVKGNNFELIPFGAGRRICVGMSLGLKIVQLLI


ATLAHSFDWELENGTDPKRLNMDETYGITLQKAMPLSVHPHPRLSQHVYSSSSL*





SEQ ID NO: 118



Glycine max



Glyma.05G021900


MSAWVIAFATVVAATLIYRLFKLITVPSLPLPPGPRPWPIVGNLPHMGPAPHQGLAAL


AQTHGPLMHLRLGFVDVVVASSASVAEQFLKIHDANFCSRPCNSRTTYLTYNQQDL


VFAPYGPRWRFLRKLSTVHMFSAKAMDDFRELRQEEVERLTCNLARSSSKVVNLRQ


LLNVCTTNILARIMIGRRIFSDNSSNCDPRADEFKSMVVDLMVLAGVFNIGDFIPCLD


WLDLQGVKPKTKKLYERFDKFLTSILEEHKISKNEKHQDLLSVFLSLKETPQGEHQLI


ESEIKAVLGDMFTAGTDTSSSTVEWAITELIKNPRIMIQVQQELNVVVGQDRLVTELD


LPHLPYLQAVVKETLRLHPPTPLSLPRFAENSCEIFNYHIPKGATLLVNVWAIGRDPK


EWIDPLEFKPERFFPGGEKDDVDVKGNNFELIPFGAGRRICVGMSLGLKVVQLLIATL





SEQ ID NO: 119



Glycine max



Glyma.05G022100


MSPWVIAVATIVAAILIYRVLKHIAGPSLPLPPGPRPWPIVGNLPHMGPAPHQGLAAL


AKTHGPLMHLRLGFVHVVVAASAAVAEQFLKVHDANFCNRPYNFRTTYMTYNKK


DIAFYPYGPRWRFLRKICTVHMFSGKAMDNFSQLRQEEVERLACNLTRSNSKAVNL


DWLDLQGLKTKTKKLHKRFDILLSSILEEHKISKNAKHQDLLSVLLSLKETPQEGHEL


VEEEIKSILGDMFTAGTDTSLSTIEWAIAELIKNPKIMIKVQQELTTIVGQNRLVTELDL


PHLPYLNAVVKETLRLHPPTPLSLPRVAEESCEIFNYHIPKGATLLVNVWAIGRDPKE


WLDPLEFKPERFLPGGEKADVDIRGNNFEVIPFGAGRRICVGMSLGIKVVQLLIASLA


HAFDWELENGYDPKKLNMDEAYGLTLQRAVPLSIHTHPRLSQHVYSSLSL*





SEQ ID NO: 120



Glycine max



Glyma.17G077700


MYLRLGFVDVVVAASASVAEQFLKVHDANFSSRPLNSMTTYMTYNQKDLAFAPYG


PRWRFLRKISSVHMFSVKALDDFRQLRQEEVERLTSNLASSGSTAVNLGQLVNVCTT


NTLARVMIGRRLFNDSRSSWDAKADEFKSMVVELMVLNRVFNIGDFIPILDRLDLQG


VKSKTKKLHKRFDTFLTSILEEHKIFKNEKHQDLYLTTLLSLKEAPQEGYKLDESEIK


AILLDMFTAGTDTSSSTIEWAIAELIRNPRVMVRVQQEMDIVVGRDRRVTELDLPQLP


YLQAVVKETFRLHPPTPLSLPRVATESCEIFDYHIPKGTTLLVNIWAIGRDPNEWIDPL


EFKPERFLLGGEKAGVDVMGTNFEVIPFGAGRRICVGMGLGLKVVQLLTATLAHTF





CYP93G1 orthologs


SEQ ID NO: 121



Oryza sativa ssp. japonica



LOC_Os04g01140


MASLMEVQVPLLGMGTTMGALALALVVVVVVHVAVNAFGRRRLPPSPASLPVIGH


LHLLRPPVHRTFHELAARLGPLMHVRLGSTHCVVASSAEVAAELIRSHEAKISERPLT


AVARQFAYESAGFAFAPYSPHWRFMKRLCMSELLGPRTVEQLRPVRRAGLVSLLRH


VLSQPEAEAVDLTRELIRMSNTSIIRMAASTVPSSVTEEAQELVKVVAELVGAFNADD


YIALCRGWDLQGLGRRAADVHKRFDALLEEMIRPERFLAGGGGEGVEPRGQHFQFM


PFGSGRRGCPGMGLALQSVPAVVAALLQCFDWQCMDNKLIDMEEADGLVCARKHR


LLLHAHPRLHPFPPLL*





SEQ ID NO: 122



Oryza sativa ssp. indica



OsR498G0407413200


MASLMEVQVPLLGMGTTMGALALALVVVVVVHVAVNAFGRRRLPPSPASLPVIGH


LHLLRPPVHRTFHELAARLGPLMHVRLGSTHCVVASSAEVAAELIRSHEAKISERPLT


AVARQFAYESAGFAFAPYSPHWRFMKRLCMSELLGPRTVEQLRPVRRAGLVSLLRH


VLSQPEAEAVDLTRELIRMSNTSIIRMAASTVPGSVTEEAQELVKVVAELVGAFNAD


DYIALCRGWDLQGLGRRAADVHKRFDALLEEMIRHKEEARMRKKTDTDVGSKDLL


DILLDKAEDGAAEVKLTRDNIKAFIIDVVTAGSDTSAAMVEWMVAELMNHPEALRK


VREEIEAVVGRDRIAGEGDLPRLPYLQAAYKETLRLRPAAPIAHRQSTEEIQIRGFRVP


AQTAVFINVWAIGRDPAYWEEPLEFRPERFLAGGGGEGVEPRGQHFQFMPFGSGRR


GCPGMGLALQSVPAVVAALLQCFDWQCMDNKLIDMEEADGLVCARKHRLLLHAH


PRLHPFPPLL*





SEQ ID NO: 123



Brachypodium distachyon



Bradi5g02460


MAMAASSMEQLLQVDPAMATYSILAIALVTAVLVLINRIGGNGAGKQRRHGLPPSPR


RLPVIGHLHLLRPPVHRTFQELASGLGAPLMHIRLGSTHCLVASSAAAATELIRSHEG


KISERPLTAVARQFAYGSDSGFAFAPYGPHWRAMKRLCMSELLGPRTVELLRPVRRA


GLVSLLHTVIRKSPEPVDLTAELIRMSNASIIRMMASTVPGSVTEEAQALVKAVAELV


GAFNVEDYIAVCRGWDLQGLGKRAADVHRRFDALLEDMIAHKEEARAAKKAIRGE


DDQEPETKKTMAESKDLIDILLDKMEDENAAEETKLTREKIKAFTIDVVTAGSDTSA


AMVEWMLAELMNHPECLRKVRDEIDAVVGSNRITGEADIANLPYLQAAYKETLRLR


PAAPIAHRQSTEDMELATGGCFTVPVGTAVFINLWAIGRDPEHWGQTALEFRPERFM


LGGESEKLEPRGQHFQYLPFGSGRRGCPGMGLALQSVPAVVAALVQCFHWTVVPKA


GEEKAVIDMEESDGLVRARKHPLLLRASPRLNPFPAVV*





SEQ ID NO: 124



Triticum aestivum



TraesCS2D02G043500


MCSPEVAGGTLAAMATASSMQQPALLLLRQLTQDPVTASLLAVALATAVLMIAALS


RGGGRKPRLPPSPRGFPVIGHLHLVRPPVHRTFHDLAARLGPLMHIRLGSTHCVVASS


AGVAAELIRTHEGKISERPLTAVARQFAYGDDGFAFAPYGPHWRSMKRLCMSELLG


PRTVEQLRPVRRAGLVSLLQSVLHQASGAEAVDLTAALIRLSNTSIIRMMASTVPGSV


TGEAQALVKAVAELVGAFNVEDYIAVCRGWDLQGLGRRAADVHRRFDALLEQMIR


HKEEAREARKMRGGAEGETPEKKTATGTTTESSKDLLDILLDKLEDDAAAEVKLTR


KKIKAFVIDVVTAGSDTSAAMVEWMLAELMNHPECLRKVREEIDAVVGRDRIAGEG


DVASLPYLQAAYKETLRLRPAAPIAHRQSTEEMVVTAAGGVGGFTVPAGTAVFMNL


WSIARDPANWDAPLEFRPERFMAGGRNEALDPRGQHFQYLPFGSGRRGCPGMGLAL


QSVPAVVAALVQCFDWAVDGDAKKIDMEEADGLVCARKHPLLLRPSPRLSPFPAVV


*





SEQ ID NO: 125



Triticum aestivum



TraesCS2A02G044900


MATASSMQQPALLLLRQLMQDPVIASLLAVALATVIMLIGAVSRGGGRKPRLPPSPR


GFPVIGHLHLVRPPVHRTFHDLAARLGPLMHIRLGSTHCVVASSAGVAAELIRTHEG


KISERPLTAVARQFAYGDDGFAFAPYGPHWRSMKRLCMSELLGPRTVEQLRPVRR


AGLVSLLQSVLHQASGAEAVDLTAALIRLSNTSIIRMMASTVPGSVTEEAQALVKAV


AELVGAFNVEDYIAVCRGWDLQGLRRRAADVHRRFDALLEEMIRHKEEAREARKM


RGGGEGETPEKKTATGTTTESSKDLLDILLDKLEDDAAAEVKLTRKKIKAFVIDVVTA


GSDTSAAMVEWMLAELMNHPECLRKVRAEIDAVVGRDRIAGEGDVASLPYLQAAY


KETLRLRPAAPIAHRQSTEEMVISAAGGGVGGFTVPAGTAVFMNLWSIARDPANW


DAPLEFRPERFMAGGRNEALDPRGQHFQYLPFGSGRRGCPGMGLALQSVPAVVA


ALVQCFDWAVDGDGKKIDMEEADGLVCARKHPLLLRPSPRLSPFPAVV*





SEQ ID NO: 126



Triticum aestivum



TraesCS2B02G057100


MAMASSMQQPALLLLRQLTQDPVTASLLAAALATAVLMIAAVRRGGGRKPRLPPSP


RGFPVIGHLHLVRPPVHRTFHDLAARLGPLMHIRLGSTHCVVASSAGVAAELIRTHE


GKISERPLTAVARQFAYGDDGFAFAPYGPHWRSMKRLCMSELLGPRTVEQLRPVRR


AGLVSLLQSVLHQASGAEAVDLTAALIRLSNTSIIRMMASTVPGSVTEEAQELVKAV


AELVGAFNVEDYIAVCRGWDLQGLGRRAADVHRRFDALLEEMIRHKEEAREARRM


RGGGEGETPEKKTATGTTTESSKDLLDILLDKLEDDAAAEVKLTRKKIKAFVIDVVT


AGSDTSAAMVEWMLAELMNHPECLRKVRSEIDAVVGRDRIAGEGDVASLPYLQAA


YKETLRLRPAAPIAHRQSTEEMVVTAAGGFTVPAGTAVFINLWSIARDPANWDAPLE


FRPERFLAGGRNEALDPRGQHFQYLPFGSGRRGCPGMGLALQSVPAVVAALVQCFD


WAVPADIDGKKIDMEEADGLVCARKHPLLLRPSPRLSPFPAVV*





SEQ ID NO: 127



Triticum turgidum



TRITD2Av1G010200


MCDPEVAGATLAAMATASSMQQPALLLRQLTQDPVTASLLAAALATAVLMIAAVS


RGGGRKPRLPPSPRGFPVIGHLHLVRPPVHRTFHDLAARLGPLMHIRLGSTHCVVASS


AGVAAELIRAHEGKISERPLTAVARQFAYGDDGFAFAPYGPHWRSMKRLCMSELLG


PRTVEQLRPVRRAGLVSLLQSVLHRASGAEAVDLTAALIRLSNTSIIRMMASTVPGSV


TEEAQALVKAVAELVGAFNVEDYIAVCRGWDLQGLRRRAADVHRRFDALLEEMIR


HKEEAREARKMRGGAEGETPEKKTATGTTTESSKDLLDILLDKLEDDAAAEVKLTR


KKIKAFVIDVVTAGSDTSAAMVEWMLAELMNHPECLRKVRAEIDAVVGRDRIAGEG


DVASLPYLQAAYKETLRLRPAAPIAHRQSAEEMVISAAGGFTVPAGTAVFINLWSIAR


DPANWDAPLEFRPERFMAGGRNEALDPRGQHFQYLPFGSGRRGCPGMGLALQSVPA


VVAALVQCFDWAVDGDAEKIDMEEADGLVCARKHPLLLRPSPRLSPFPAVV*





SEQ ID NO: 128



Triticum turgidum



TRITD2Bv1G013440


MAMASSMQQPALLLLRQLTQDPVTASLLAAALATAVLMIAAVRRGGGRKPRLPPSP


RGFPVIGHLHLVRPPVHRTFHDLAARLGPLMHIRLGSTHCVVASSAGVAAELIRTHE


GKISERPLTAVARQFAYGDDGFAFAPYGPHWRSMKRLCMSELLGPRTVEQLRPVRR


AGLVSLLQSVLHQASGAEAVDLTAALIRLSNTSIIRMMASTVPGSVTEEAQELVKAV


AELVGAFNVEDYIAVCRGWDLQGLGRRAADVHRRFDALLEEMIRHKEEAREARRM


RGGGEGETPEKKTATGTTTESSKDLLDILLDKLEDDAAAEVKLTRKKIKAFVIDVVT


AGSDTSAAMVEWMLAELMNHPECLRKVRSEIDAVVGRDRIAGEGDVASLPYLQAA


YKETLRLRPAAPIAHRQSTEEMVVTAAGGFTVPAGTAVFINLWSIARDPANWDAPLE


FRPERFLAGGRNEALDPRGQHFQYLPFGSGRRGCPGMGLALQSVPAVVAALVQCFD


WAVPADIDGKKIDMEEADGLVCARKHPLLLRPSPRLSPFPAVV*





SEQ ID NO: 129



Setaria italica



Seita.1G019400


MAMETEQPLPILLSADSVAVLAVGTLLALALNHLVSSWRSARRLPPSPPGLPVIGHLH


LLRPPAHRTFHELAGKLGPLMHIRLGSTHCVVAGSADVARELIHRHDAAISGRPVTA


LARLFSYSSAGFAFTPYSPRWRFLRRLCVSEVLSPRTVEQLRPVRRAALAPLLRAVLA


ASERGEAADVTGELVRFANASIIRMVASDAPGSVADEAQGLVKAVTELIGAFNVEDY


VPLCRGWDLQGLRSTAAGVHRRFDALLEQMIRHKEEARERGRSCGAIYELEHEQED


EKGSAPATRKRNKDLLDILLEKAEDEAAEVKLTRENIKAFITDVVTAGSDSSAATVE


WMLAELVNHPEVMRKVREEIDAVVTGDCRIVGEADLPRLPYLQAAFKETLRLHPGA


PIAHRVSTAEISVRGFMVPPRTAVFINVWAIGRDPAFWEDPTAFRPERFMPGGAAAG


LEPQPRGHHFQFMPFGGGRRGCPGVGLAQQSVPAVLAALVQCFDWAVADGETGLV


DMEESDVGLVCARKHPLLLRPTPRLNPFPSVV*





SEQ ID NO: 130



Cenchrusamericanus



Pgl_GLEAN_10038007


MEMEQPLPMLLSADTVAIMAVVTFLALAVNHLVSSWLSSPRRRLPPSPPGLPVIGHL


HLLRLPAHRTFHELAGKLGPLMHLRLGSTHCVVASSADVARELILRHDAAISGRPVT


ALARLFSYGSVGFAFTPYSPRWRFLRRLCVSELVRFASASIIRMVASDAPGNVSDEAQ


GLVKSVTELIGAFNVEDYVPLCRGWDLQGLRRTADGVHRRFDALLEQMIRHKEEAR


ERARSDMAEHEQHDKKDASASAAPTTRKRNKDLLDILLEKAEDDEAEVKLTRENIK


AFITDVVTAGSDSSAATVEWMLAELVNHPEAMRKVREEIDAAVGEDSRIVSEADLPR


LPYLQAAFKETLRLHPGAPIAHRVSSAEEMAVGGFTVPPRTAXXXXXXXXXXXXXX


XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX


XXXXXXXXXXXXXXXXXXXPGVGLAQQSVPAVLAALVQCFDWAAVVDGEMSPT


GSLVNMEESDVGLVCARKHSLLLRPTARLNPFPAVV*





SEQ ID NO: 131



Cenchrus americanus



Pgl_GLEAN_10012559


MVASTVPGRVADEAQELVKDVAELVGAFNADDYIALCRGWDLQGLRRRAADVHR


RFDALLEEILRHKEDAREARKLLMLDGGDGARKKKEAATATTAHKDLLDILMDKAE


DKTAEANLTRDNIKAFIIDVVTAGSDTSAAMVEWMLAELMNHPEALRKVVAEIDGV


VGGERIAGEADLPQLPYLMAAYKETLRLHPAAPIAHRQSSEEMVLRGFTVPPQTAVFI


NIWAIGRDPAFWEDPLAFRPERFMPGGAAESLEPRGQHFHFMPFGSGRRGCPGMGL


ALQSVPAVLAALVQCFDWATAAGEPIDMDESDGLVCARKHPLLLRPTPRLNPFPAV


V*





SEQ ID NO: 132



Sorghum bicolor



Sobic.004G108200


MAMDQPAMPMLMSTDSAAAVMVLLSVATLLLALNHHLLSSWRRRSSRRLPPSPPRL


PVIGHLHLLRPPVHRTFHELATRLGAPLMHIRLGSTHCVVAGTADVARELIRDHDAAI


SGRPVSVLSRLFSYGSAGFAFTPNSRHWRFLRRLCVSEVLGTRTVEQLRHVRRGSLA


ELLRAVRASSARGDAVDVTRELIRFSNTAIIRMVASDAAVTDEAQELVKAVTELLGA


FNLEDYVPLCRGWDLQGLRRKATVVHRRFDAVLEQMIRHKEAARDMERRRRGGSG


TLEDKRVEGPPATTCKQRNKDLLDILLDKAEDETAEVKLTRENMKAFIIDVVTAGSD


SSAVTVEWMLAELMNHPEALGKVRDEIDAVVGGGDGRIVGEADLARLPYLQATFK


ETLRLHPGAPIAHRQSTTEMVVRGFTVPPETAVYINLWAIGRDPSFWEDPLAFRPERF


MPGGAAEGLEPRGGGGGGQQFQFMPFGSGRRGCPGMGLAQQSVPAVLAALVQCFD


WAAADDGETAAIGMDESDVGLVCARKHPLVLRPTARLNPFPAVV*





SEQ ID NO: 133



Sorghum bicolor



Sobic.006G001000


MAAMEEQPLSSSSTSMAIVLSLLKNNPADAVLLALVAVVALRHYLISSWRQQEQAR


RLPPGPRRLPVIGHLHLLRPPVHRTFQELASRMGPLMHIQLGSTHCVVASSPEVASELI


RGHEGSISERPLTAVARQFAYDSAGFAFAPYNTHWRFMKRLCMSELLGPRTVEQLRP


IRRAGTVSLLGDLLLAAASSETETETVVDLTRHLIRLSNTSIIRMVASTVPGSVTDEAQ


ELVKAVAELVGAFNADDYIAVIRGWDLQGLRRRAADVHRRFDALLEDILKHKEEAR


AARRRLDDDDGHRVSKKQATAPHSKDLLDILMDKAEDPAAEVKLTRENIKAFIIDVV


TAGSDTSAAMVEWMLAELLNHPETLRKVVEEIDAVVGGDRIASEADLPQLPYLMAA


YKETLRLHPAAPIAHRQSTDEMVVRGFTVPPQTAVFINVWAIGRDPAYWEEPLAFRP


ERFMPGGAADSLEPRGQHFQYMPFGSGRRGCPGMGLALQSVPAVLAALVQCFHWA


TVDGDGDGDSKIDMSESDGLVCARKKPLLLRPTPRLSPFPAVV*





SEQ ID NO: 134



Zea mays B104



Zm00007a00042926


MAMDLLAMPVLLSADSAAAVLVLLSVATVVALKHLLSSWRRSPRRRLPPSPTPLPVI


GHLHLLRPPVHRTFHELATRLGAPLMHIRLGSTHCVVVGSADVARELIHDHDATISG


RPVSVLSRLFSYGSAGFAFTPYSPHWRFLRRLCVSEVLGPRTVEQLRHVRRGSLVSLL


RSVLASSARGDNKVDLTRELIRFSTTSIIRMVASDVGVTDEAQELVKGVAELLGAFNL


EDYVPLCRGWDLQGLRRKANGVHRRFDAVLEQMIRHKEEARDRERGRGGAAQED


KKGWPATCKQRNKDLLDILLDMAENETAEVKLTRENMKAFIVDVVTAGSDSSAAT


VEWMLAELMNHPEALRKVRAEIDAVVGADRIVGEEDLPRLPYLQATFKETLRLHPG


APIAHRESTGEMVVRGFTVPPRTAVFFNLWAIGRDPSCWEEPLAFRPERFMPGGASE


GLPPRGQQFQFIPFGSGRRACPGMGLAQQSVPTVLAALVQCFDWAAVDGETAAMG


MDESDGGLVCARKHPLVLRPTARLNPFPAVV*





SEQ ID NO: 135



Zea mays B104



Zm00007a00044196


MEEQQPRPRPSIMFVLSSLAKNNPESVLALIAVLTVVALRHLISSWRQQAPLPPSPTSL


PVIGHLHLLRPPVHRTFQELASRIGPLMHIRLGSTHCVVASSPEVASELIRGHEGSISER


PLTAVARQFAYDSAGFAFAPYNTHWRFMKRLCMSELLGPRTVEQLRPIRRAGTVSLL


ADLLASSARGETVDLTRHLIRLSNTSIIRMVASTVPGSVTDEAQEVVKDVAELVGAF


NVDDYISLVRGWDLQGLRRRAAGVHRRFDALLEDILRHKEEARAARRLDQDDDGR


GSSKQDKKQATHSKDLLDILMDKADDPAAEIKLTRENIKAFIIDVVTAGSDTSAAMV


EWMLAELMNHPETLRKVAEEIDAVVGGDRIASEADLPQLPYLMAAYKETLRLHPAA


PIAHRQSSEEMVVRGFTVPPQTAVFINVWAIGRDPAYWEEPLAFRPERFMPGGAAES


LEPRGQHFQYMPFGSGRRGCPGMGLALQSVPAVLAALVQCFHWATVDGDGGVNKI


DMSESDGLVCARKKPLLLRPTPRLTPFPAVV*





SEQ ID NO: 136



Zea mays B104



Zm00007a00044088


MKEQQPRPRPSIMFVLSSLAKNNPEAVLALIAVVTVVALRHLISSWRQQAPLPPSPTS


LPVIGHLHLLRPPVHRTFQXWTRRRTRRRRSSSPRENIKAFIIDVVTAGSDTSAAMVE


WMLAELMNHPETLRKVVEEIDAVVGGDRIASEADLPRLPYLMAAYKETLRLHPAAP


IAHRQSSAEMVVRGFTVPPQTAVFINVWAIGRDPAYWEEPLAFRPERFMPGGAAENL


EPRGQHFQYMPFGSGRRGCPGMGLALQSVPAVLAALVQCFHWATVDGDGGVNKID


MSESDGLVCARKKPLLLRATPRLTPFPAVV*





SEQ ID NO: 137



Zea mays B104



Zm00007a00049351


MEEQQLRARPNMMVLSSLAKNNPEAVLALIAFVTVVALRQLISSWRQHGRLPPGPTS


LPVIGHLHLLRPPVHRTLQELASRIGPLMHIRLGSTNCVVASSPEVVSELIRGHEGSISA


RPFTAVARQFSYDSAGFVFEPYNTHWRFMKRLCMSELLGPRTVEQLRPVRRAVTVS


LVSDLLASSARGETVDITRHLIRLTNTSIIRMVASTVSGSVTDEAHELAKAVIEVVGAF


NVDDYIAVVRGWDLQGLGRKAADVHRRFDALLEDILRHKEEARAARRLDDGHGKQ


ATHSKDLLDILMDKAEDPAAEVKLTRENIKAFVIDVVTSGSDTSAAMAEWMLAELM


NHPETLRKVVEEIDAVVGGGRIASEADLPQLPYLMAVYKETLRLHPAGPIAHRQSTE


EMVVHGFTVPPQSTVLIHVWAIGRDPAYWEEPLLFRPERFMPGGAAESLEPRGKHFQ


YIPFGSGRRGCPGMGLAMQSVPAVVAALVQCFYWATVDGGVNKIDMSESDGLVCA


RKKPLLLRPTSRLTPFPPVV*





SEQ ID NO: 138



Zea mays PH207



Zm00008a021549


MAMDLLAMPVLLSADSAAAVLVLLSVATVVALKHLLSSWRRSPRRRLPPSPTPLPVI


GHLHLLRPPVHRTFHELATRLGAPLMHIRLGSTHCVVVGSADVARELIHDHDATISG


RPVSVLSRLFSYGSAGFAFTPYSPHWRFLRRLCVSEVLGPRTVEQLRHVRRGSLVSLL


RSVLASSARGDNKVDLTRELIRFSTTSIIRMVASDVGVTDEAQELVKGVAELLGAFNL


EDYVPLCRGWDLQGLRRKANGVHRRFDAVLEQMIRHKEEARDRERGRGGAAQED


KKGWPATCKQRNKDLLDILLDMAENETAEVKLTRENMKAFIVETLRLHPGAPIAHR


ESTGEMVVRGFTVPPRTAVFFNLWAIGRDPSCWEEPLAFRPERFMPGGASEGLPPRG


QQFQFIPFGSGRRACPGMGLAQQSVPTVLAALVQCFDWAAVDGETAAMGMDESDG


GLVCARKHPLVLRPTARLNPFPAVV*





SEQ ID NO: 139


Zea mays PH207


Zm00008a037571


MFVLSSLAKNNPESVLALIAVLTVVALRHLISSWRQQARLPPSPTSLPVIGHLHLLRPP


VHRTFQELASRIGPLMHIRLGSTHCVVASTPEVASELIRGHEGSISERPLTAVARQFAY


ETVDLTRHLIRLSNTSIIRMVASTVPGSVTDEAQEVVKDVAELVGAFNVDDYISLVRG


WDLQGLRRRAAGVHRRFDALLEDILRHKEEARAARRLDQDDDGRGSSKQDKKQAT


HSKDLLDILMDKADDPAAEIKLTRENIKAFIIDVVTAGSDTSAAMVEWMLAELMNHP


ETLRKVAEEIDAVVGGDRIASEADLPQLPYLMAAYKETLRLHPAAPIAHRQSSEEMV


VRGFTVPPQTAVFINVWAIGRDPAYWEEPLAFRPERFMPGGAAESLEPRGQHFQYMP


FGSGRRGCPGMGLALQSVPAVLAALVQCFHWATVDGDGGVNKIDMSESDGLVCAR


KKPLLLRPTPRLTPFPAVV*





SEQ ID NO: 140



Zea mays PH207



Zm00001d004555


MKEQQPRPRPSIMFVLSSLAKNNPEAVLALIAVVTVVALRHLISSWRQQAPLPPSPTS


LPVIGHLHLLRPPVHRTFQELASRIGPLMHIRLGSTHCVVASSPEVASELIRGHEGSISE


RPLTAVARQFAYDSAGFAFAPYNTHWRFMKRLCMSELLGPRTVEQLRPIRRAGTVS


LLGDLLASSARGETVDLTRHLIRLSNTSIIRMVASTVPGSVTDEAQKVVKDVAELVG


AFNVDDYIAVVRGWDLQGLRRRAADVHRRFDALLEDILRHKEEARAARRLDQDDG


QGISSKQDKKQATHSKDLLDILMDKAEDQAAEVKLTRENIKAFIIDVVTAGSDTSAA


MVEWMLAELMNHQETLRKVVEEIDAVVGGDRIASEADLPRLPYLMAAYKETLRLH


PAAPIAHRQSSEEMVVRGFTVPPQTAVFINVWAIGRDPAYWEEPLAFRPERFMPGGA


AESLEPRGQHFQYMPFGSGRRGCPGMGLALQSVPAVLAALVQCFHWATVDGDGGV


NKIDMSESDGLVCARKKPLLLRPTPRLTPFPAVV*





SEQ ID NO: 141



Zea mays PH207



Zm00008a008017


MKEQQPRPRPSIMFVLSSLAKNNPEAVLALIAVVTVVALRHLISSWRQQAPLPPSPTS


LPVIGHLHLLRPPVHRTFQELASRIGPLMHIRLGSTHCVVASSPEKVVKDVAELVGAF


NVDDYIAVVRGWDLQGLRRRAADVHRRFDALLEDILRHKEEARAARRLDQDDGQG


ISSKQDKKQATHSKDLLDILMDKAEDQAAEVKLTRENIKAFIIDVVTAGSDTSAAMV


EWMLAELMNHPETLRKVVEEIDAVVGGDRIASEADLPRLPYLMAAYKETLRLHPAA


PIAHRQSSAEMVVRGFTVPPQTAVFINVWAIGRDPAYWEEPLAFRPERFMPGGAAEN


LEPRGQHFQYMPFGSGRRGCPGMGLALQSVPAVLAALVQCFHWATVDGDGGVNKI


DMSESDGLVCARKKPLLLRATPRLTPFPAVV*





SEQ ID NO: 142



Zea mays PH207



Zm00008a037570


MMVLSSLAKNNPEAVLALIAFVTVVALRHLISSWRQHGRLPPGPTSLPVIGHLHLLRP


PVHRTLQELASRIGPLMHIRLGSTNCVVASSPEVASELIRGHEGSISARPFTAVARKFS


YDSAGFVFEPYNTHWRFMKRLCMSELLGPRTVEQLRPVRRAVTVSLVSDLLASSAR


GETVDITRHLIRLTNTSIIRMVASTVSGSVTDEAHELAKAVIEVVGAFNVDDYIAVVR


GWDFQGLGRKAADVHRRFDALLEDILRHKEEARAARRLDDGHGKQATHSKDLLDI


LMDKAEDPAAEVKLTRENIKAFVIDVVTSGSDTSAAMAEWMLAELMNHPETLRKV


VEEIDAVVGGGRIASEADLPQLPYLMAVYKETLRLHPAGPIAHRQSTEEMVVHGFTV


PPQSTVLIHVWAIGRDPAYWEEPLLFRPERFMPGGAAESLEPRGKHFQYIPFGSGRRG


CPGMGLAMQSVPAVVAALVQCFHWSTVDGGMDKIDMSESDGLVCARKKPLLLRPT


SRLTPFPPVV*





SEQ ID NO: 143



Zea mays B73



Zm00001d016151


MAMDLLAMPVLLSADSAAAVLVLLSVATVVALKHLLSSWRRSPRRRLPPSPTPLPVI


GHLHLLRPPVHRTFHELATRLGAPLMHIRLGSTHCVVVGSADVARELIHDHDATISG


RPVSVLSRLFSYGSAGFAFTPYSPHWRFLRRLCVSEVLGPRTVEQLRHVRRGSLVSLL


RSVLASSARGDNKVDLTRELIRFSTTSIIRMVASDVGVTDEAQELVKGVAELLGAFNL


EDYVPLCRGWDLQGLRRKANGVHRRFDAVLEQMIRHKEEARDRERSRGGAAQEDK


KGWPATCKQRNKDLLDILLDMAENETAEVKLTRENMKAFIVATFKETLRLHPGAPIA


HRESTGEMVVRGFTVPPRTAVFFNLWAIGRDPSCWEEPLAFRPERFMPGGASEGLPP


RGQQFQFIPFGSGRRACPGMGLAQQSVPTVLAALVQCFDWAAVDGETAAMGMDES


DGGLVCARKHPLVLRPTARLNPFPAVV*





SEQ ID NO: 144



Zea mays B73



Zm00001d024946


MEEQQPRPRPSIMFVLSSLAKNNPESVLALIAVLTVVALRHLISSWRQQARLPPSPTSL


PVIGHLHLLRPPVHRTFQELASRIGPLMHIRLGSTHCVVASTPEVASELIRGHEGSISER


PLTAVARQFAYDSAGFAFAPYNTHWRFMKRLCMSELLGPRTVEQLRPVRRAGTVSL


LADLLASSARGETVDLTRHLIRLSNTSIIRMVASTVPGSVTDEAQEVVKDVAELVGAF


NVDDYISLVRGWDLQGLRRRAAGVHRRFDALLEDILRHKEEARAARRLDQDDDGR


GSSKQDKKQATHSKDLLDILMDKADDPAAEIKLTRENIKAFIIDVVTAGSDTSAAMV


EWMLAELMNHPETLRKVAEEIDAVVGGDRIASEADLPQLPYLMAAYKETLRLHPAA


PIAHRQSSEEMVVRGFTVPPQTAVFINVWAIGRDPAYWEEPLAFRPERFMPGGAAES


LEPRGQHFQYMPFGSGRRGCPGMGLALQSVPAVLAALVQCFHWATVDGDGGVNKI


DMSESDGLVCARKKPLLLRPTPRLTPFPAVV*





SEQ ID NO: 145



Zea mays B73



Zm00001d024943


MEEQQLRARPNMMVLSSLAKNNPEAVLALIAFVTVVALRHLISSWRQHGRLPPGPTS


LPVIGHLHLLRPPVHRTLQELASRIGPLMHIRLGSTNCVVASSPEVASELIRGHEGSISA


RPFTAVARKFSYDSAGFVFEPYNTHWRFMKRLCMSELLGPRTVEQLRPVRRAVTVS


LVSDLLASSARGETVDITRHLIRLTNTSIIRMVASTVSGSVTDEAHELAKAVIEVVGAF


NVDDYIAVVRGWDFQGLGRKAADVHRRFDALLEDILRHKEEARAARRLDDGHGKQ


ATHSKDLLDILMDKAEDPAAEVKLTRENIKAFVIDVVTSGSDTSAAMAEWMLAELM


NHPETLRKVVEEIDAVVGGGRIASEADLPQLPYLMAVYKETLRLHPAGPIAHRQSTE


EMVVHGFTVPPQSTVLIHVWAIGRDPAYWEEPLLFRPERFMPGGAAESLEPRGKHFQ


YIPFGSGRRGCPGMGLAMQSVPAVVAALVQCFYWATVDGGVDKIDMSESDGLVCA


RKKPLLLRPTSRLTPFPPVV*








Claims
  • 1. A method of increasing the ability of a crop plant to assimilate atmospheric nitrogen, the method comprising modifying the expression of a gene involved in flavone biosynthesis or degradation in one or more cells of the plant such that the plant produces an increased amount of one or more flavones, wherein the one or more flavones are exuded from the plant's roots.
  • 2. The method of claim 1, wherein the one or more flavones induces biofilm formation in N2-fixing bacteria present in the soil in proximity to the plant's roots.
  • 3. The method of claim 1, wherein the biofilm formation leads to an increase in the ability of the bacteria to fix atmospheric nitrogen, and wherein the fixed atmospheric nitrogen is assimilated by the plant.
  • 4. The method of claim 1, wherein at least one of the one or more flavones is glycosylated.
  • 5. The method of claim 1, wherein the one or more flavones comprise apigenin, apigenin-7-glucoside, or luteolin.
  • 6. The method of claim 1, wherein the expression of the gene in the one or more cells of the plant is modified by editing an endogenous copy of the gene.
  • 7. The method of claim 6, wherein the endogenous copy of the gene is modified by introducing into one or more cells of the plant a guide RNA targeting the gene and an RNA-guided nuclease.
  • 8. The method of claim 7, further comprising introducing into the one or more cells a donor template comprising sequences homologous to the genomic region surrounding the target site of the guide RNA, wherein the RNA-guided nuclease cleaves the DNA at the target site and the DNA is repaired using the donor template.
  • 9. The method of claim 7, wherein the RNA-guided nuclease is Cas9 or Cpf1.
  • 10. The method of claim 6, wherein the endogenous copy of the gene is modified so as to reduce or eliminate its expression.
  • 11. The method of claim 10, wherein the endogenous copy of the gene is deleted.
  • 12. The method of claim 10, wherein the gene is CYP75B3 or CYP75B4, or a homolog or ortholog thereof.
  • 13. The method of claim 12, wherein the gene comprises a nucleotide sequence that is substantially identical (sharing at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more identity) to any one of SEQ ID NOS: 2, 4, 6 or 8, or encodes a polypeptide comprising an amino acid sequence that is substantially identical (sharing at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more identity) to any one of SEQ ID NOS: 1, 3, 5, 7, or 14-120.
  • 14. The method of claim 7, wherein the guide RNA comprises a target sequence that is substantially identical (e.g., comprising 0, 1, 2, or 3 mismatches) to any one of SEQ ID NOS:11-13.
  • 15. The method of claim 7, wherein the guide RNA comprises a target sequence that is substantially identical (e.g., comprising 0, 1, 2, or 3 mismatches) to a sequence within SEQ ID NO: 9 or SEQ ID NO:10.
  • 16. The method of claim 6, wherein the endogenous copy of the gene is modified so as to increase its expression.
  • 17. The method of claim 16, wherein the endogenous copy of the gene is modified by replacing the endogenous promoter with a heterologous promoter.
  • 18. The method of claim 17, wherein the heterologous promoter is an inducible promoter.
  • 19. The method of claim 17, wherein the heterologous promoter is a constitutive promoter.
  • 20. The method of claim 17, wherein the heterologous promoter is a tissue- or organ-specific promoter.
  • 21. The method of claim 20, wherein the organ is the root and/or the tissue is a root tissue.
  • 22. The method of claim 16, wherein the gene is CYP 93G1, or a homolog or ortholog thereof.
  • 23. The method of claim 22, wherein the gene encodes a polypeptide comprising an amino acid sequence that is substantially identical (sharing at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more identity) to any one of SEQ ID NOS: 121-145.
  • 24. The method of claim 1, further comprising generating a stable plant line from the one or more cells of the plant.
  • 25. The method of claim 1, wherein the crop plant is a grain crop.
  • 26. The method of claim 25, wherein the grain crop is rice.
  • 27. The method of claim 1, wherein the plant is selected from the group consisting of corn, wheat, rice, soy, cotton, canola, and sugarcane.
  • 28. A genetically modified crop plant produced using the method of claim 1.
  • 29. A genetically modified crop plant comprising: i) a mutation or deletion in a CYP75B3 or CYP75B4 gene, or homolog or ortholog thereof, that causes a reduced amount of CYP75B3 or CYP75B4 enzyme and/or enzymatic activity compared to a wild-type plant without the mutation or deletion in the CYP75B3 or CYP75B4 gene; orii) an expression cassette comprising a polynucleotide encoding a CYP 93G1 gene, or a homolog or ortholog thereof, operably linked to a promoter, such that the plant comprises an increased amount of CYP93G1 enzyme and/or enzymatic activity compared to a wild-type plant without the expression cassette; whereinthe genetically modified crop plant produces an increased amount of one or more flavones as compared to a wild-type plant that is not genetically modified, wherein the one or more flavones are exuded from the genetically modified crop plant's roots.
  • 30. The genetically modified crop plant of claim 28, wherein the crop plant is selected from the group consisting of corn, wheat, rice, soy, cotton, canola, and sugarcane.
  • 31. A method of increasing the assimilation of atmospheric nitrogen in a grain crop plant grown under reduced inorganic nitrogen conditions, the method comprising: providing a genetically modified crop plant in which the expression of a gene involved in flavone biosynthesis or degradation has been modified in one or more cells such that the roots of the plant exude greater amounts of one or more flavones than a wild-type plant; andgrowing the plant in soil comprising an amount of inorganic nitrogen that is lower than a standard or recommended amount for the crop plant.
  • 32. The method of claim 31, wherein the amount of inorganic nitrogen is less than 50% of the standard or recommended amount for the crop plant.
  • 33. The method of claim 31, wherein the crop plant is rice, and wherein the amount of inorganic nitrogen in the soil is less than 50 ppm.
  • 34. The method of claim 32, wherein the amount of inorganic nitrogen in the soil is about 25 ppm.
  • 35. The method of claim 31, wherein the genetically modified plant is the plant comprises: i) a mutation or deletion in a CYP75B3 or CYP75B4 gene, or homolog or ortholog thereof, that causes a reduced amount of CYP75B3 or CYP75B4 enzyme and/or enzymatic activity compared to a wild-type plant without the mutation or deletion in the CYP75B3 or CYP75B4 gene; orii) an expression cassette comprising a polynucleotide encoding a CYP 93G1 gene, or a homolog or ortholog thereof, operably linked to a promoter, such that the plant comprises an increased amount of CYP93G1 enzyme and/or enzymatic activity compared to a wild-type plant without the expression cassette; whereinthe genetically modified crop plant produces an increased amount of one or more flavones as compared to a wild-type plant that is not genetically modified, wherein the one or more flavones are exuded from the genetically modified crop plant's roots.
  • 36. The method of claim 31, wherein the crop plant is selected from the group consisting of corn, wheat, rice, soy, cotton, canola, and sugarcane.
  • 37. The method of claim 31, wherein N2-fixing bacteria in the soil in which the genetically modified plant is grown show greater biofilm formation than control N2-fixing bacteria in soil in which a wild-type plant is grown.
  • 38. The method of claim 37, wherein N2-fixing bacteria in the soil in which the genetically modified plant is grown show greater adherence to the root surface and/or inside the root tissue of the plant than control N2-fixing bacteria in soil in which a wild-type plant is grown.
  • 39. The method of claim 31, wherein the crop plant is a grain crop, and wherein the number of tillers, tassels, or spikes in the genetically modified plant grown in the soil comprising the reduced amount of inorganic nitrogen is at least 30% greater than in a wild-type plant grown in equivalent soil.
  • 40. The method of claim 31, wherein the number of grain or seed-bearing organs and/or the seed yield in the genetically modified plant grown in the soil comprising the reduced amount of inorganic nitrogen is at least 30% greater than in a wild-type plant grown in equivalent soil.
  • 41. The method of claim 31, wherein the genetically modified plant grown in the soil comprising the reduced amount of inorganic nitrogen assimilates at least twice the amount of atmospheric nitrogen than the amount assimilated by a wild-type plant grown in equivalent soil.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a US National Phase application Under 371 of PCT/US2021/041482 filed Jul. 13, 2021, which claims priority to U.S. Provisional Patent Application No. 63/051,267, filed Jul. 13, 2020, each of which is incorporated herein by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2021/041482 7/13/2021 WO
Provisional Applications (1)
Number Date Country
63051267 Jul 2020 US