Plantable geosynthetic reinforced retaining wall

Information

  • Patent Grant
  • 6808339
  • Patent Number
    6,808,339
  • Date Filed
    Friday, August 23, 2002
    22 years ago
  • Date Issued
    Tuesday, October 26, 2004
    20 years ago
Abstract
A modular retaining watt has tiers of headers which extend into compacted backfill material and tiers of stretchers which extend between headers to form the front face of the wall. Vertical pins, extending between successive headers in each stack of headers, facilitate precise emplacement of headers during construction of the wall. Layers of geosynthetic mesh reinforcement reinforce the load bearing capability of the backfill. Load forces in the backfill are sustained by forward ends of the layers of geosynthetic mesh reinforcement, which extend upward in front of the backfill and then backward into the backfill, instead of being sustained by the stretchers. A sizable space behind the stretchers may be filled with loose topsoil to facilitate growth of landscaping plantings on the face of the wall.
Description




BACKGROUND OF THE INVENTION




This invention relates to retaining walls for stabilizing inclined land surfaces. More particularly the invention relates to modular retaining walls in which tiers of header members extend into structural backfill material and support stretcher members which extend horizontally between the header members and which form the front face of the wall.




The weight of the backfill material behind the face of a retaining wall creates a load force which becomes progressively greater at greater depths within the backfill. The load force is increased by roadways and vehicles or structures which may be situated on top of the backfill. The load force is primarily directed downward against subsoil but also has a horizontal component which must be sustained by the wall.




One known type of retaining wall has a modular construction which includes spaced apart columns of precast concrete header members which extend from the front face of the wall into the backfill material. The front face is formed by precast concrete stretcher members which extend horizontally between the headers and which are supported by the headers. Compacted backfill extends between the headers to the back surfaces of the stretcher members. Thus the stretcher members of the prior wall constructions must be sufficiently massive to sustain the horizontal component of load force in the backfill. The prior stretcher members also partially support the weight of overlying headers and must also be sufficiently massive for this purpose.




Retaining walls can be more attractive if landscaping plants are grown on the face of the wall. The prior wall constructions described above are not particularly conducive to plantings. While a strip of the backfill is exposed at each tier of the wall, it is undesirably narrow for planting purposes because of the shape, bulk and location of the load force resisting stretcher members. Further, the compacted backfill material which is exposed at the face of prior modular retaining walls may not be well suited for the growing of plants.




Header members of some prior modular retaining walls are linked together by thin projecting ribs which extend upward from the top of each header between spaced apart ribs on the bottom of the overlying header. The projecting ribs are relatively fragile portions of the headers which are susceptible to damage during construction of the wall. The ribs also allow forward or backward displacement of the header members relative to each other rather than establishing and maintaining a uniform batter or inclination of the face of the wall.




The present invention is directed to overcoming one or more of the problems discussed above.




BRIEF SUMMARY OF THE INVENTION




In one aspect the present invention provides a retaining wall for stabilizing compacted structural backfill. A plurality of spaced apart columns of header members extend into the compacted backfill from a front surface of the backfill and also extend out from the front surface of the backfill to a front face of the wall. Front ends of the header members have inclined arms which extend outward and upward at the front face of the wall. A plurality of horizontal stretcher members extend between the header members at the front face of the wall and are supported by the inclined arms of the header members. The retaining wall further includes a plurality of vertically spaced layers of geosynthetic mesh reinforcement extending between the columns of header members and extending backward into the compacted backfill from the front surface of the backfill. The layers of geosynthetic mesh reinforcement have forward ends which turn upward at the front surface of the compacted backfill and then extend back into the compacted backfill. A volume of planting soil is disposed between the stretcher members and the upturned forward ends of the layers of geosynthetic mesh reinforcement and forms exposed tiers of planting soil at the front face of the retaining wall.




In another aspect the invention provides a retaining wall for compacted structural backfill wherein the retaining wall includes a plurality of cast concrete header members stacked in spaced apart vertically extending columns of header members which header members extend into the structural backfill from a front face of the wall. The header members have bases which rest upon an underlying header member and have front and rear post portions which extend up to the base of an overlying header member. Front ends of the header members have arms which extend outward and upward at the face of the wall at locations which are in front of the compacted structural backfill. A plurality of horizontal stretcher members extend between the columns of header members at the front face of the wall and are supported by the inclined arms of the header members. The stretcher members are spaced apart from header members other than the particular header members which support the stretcher member. A plurality of vertically spaced horizontal layers of geosynthetic mesh reinforcement extend between the columns of header members and extend backward therefrom within the backfill. The layers of geosynthetic mesh reinforcement have upturned forward ends which extend upward at the front of the compacted backfill and then extend back into the backfill. Planting soil is disposed between the stretcher members and the upturned forward ends of the layers of geosynthetic mesh reinforcement and forms tiers of planting soil at the front face of the wall.




In still another aspect the invention provides a retaining wall having a plurality of spaced apart vertical columns of stacked header members which extend into backfill material and a plurality of stretcher members which extend horizontally between front portions of the header members. The header members have flat top surfaces and flat bottom surfaces. A plurality of pins extend vertically from holes in the top surfaces of the header members into holes in the bottom surfaces of overlying ones of the header members and fix the positions of the header members relative to each other during construction of the wall.




The invention provides a modular retaining wall construction in which the horizontal component of load force in the backfill is resisted by layers of geosynthetic mesh reinforcement within the backfill rather than by the stretcher members which form the face of the wall. Load force on the stretcher members is further minimized as the stretcher members are not contacted by overlying header members and thus need not provide support for overlying structure. Consequently the stretcher members may be thinner than would otherwise be required and may be spaced outward from the front surface of the compacted backfill. This provides a very sizable space between the stretcher members and the front of the backfill which space is filled with relatively loose topsoil or the like. Broad tiers of the topsoil are exposed at the tops of the stretcher member. These conditions greatly facilitate planting and cultivation of plants on the face of the wall. In the preferred form of the invention, the header members are interlinked by vertical pins which fix the positions of the header members relative to each other to maintain the desired inclination of the front face of the wall during construction of the wall.




The invention, together with further objects and advantages thereof, may be further understood by reference to the following detailed description of the invention and by reference to the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an elevation view of a retaining wall embodying the invention.





FIG. 2

is a frontal elevation view of the retaining wall of

FIG. 1

with a portion of the structure being broken out in order to illustrate interior components.





FIG. 3

is a plan section view of a portion of the retaining wall of the preceding figures taken along line


3





3


of FIG.


2


.





FIG. 4

is a cross section view taken along line


4





4


of FIG.


3


.





FIG. 5

is an isometric view of geosynthetic mesh reinforcement which is a component of the retaining wall.





FIG. 6

is a side elevation view of a top header member which members are components of the modular retaining wall.





FIG. 7

is a back end view of the top header member of FIG.


6


.





FIG. 8

is a side elevation view of an intermediate header member which members are also components of the modular retaining wall.





FIG. 9

is a back end view of the intermediate header member of FIG.


8


.





FIG. 10

is a side elevation view of a bottom header member which members are further components of the retaining wall.





FIG. 11

is a back end view of the bottom header member of FIG.


10


.





FIG. 12

is a foreshortened frontal view of a stretcher member which members form the front face of the retaining wall.





FIG. 13

is an end view of the stretcher member of FIG.


12


.





FIG. 14

depicts adjacent ends of two stretcher members and soil retaining components which bridge the adjacent ends.





FIG. 15

is an enlarged section view taken along line


15





15


of FIG.


14


.





FIG. 16

is an elevation section view of a retaining wall having a non-uniform vertical spacing of geosynthetic mesh reinforcement to accommodate to differing load forces at different levels within the wall.











DETAILED DESCRIPTION OF THE INVENTION




Referring initially to

FIGS. 1 and 2

of the drawings, components of a modular retaining wall


11


embodying the invention include horizontally spaced apart columns


12


of header members


13


which support horizontally extending stretcher members


14


that form the front of the wall. Successive rows of aligned stretcher members


14


extend along the front of the wall at progressively greater heights and form a series of vertically spaced tiers


16


at which landscaping plants


15


, shown in

FIG. 2

, may be planted.




Referring again to

FIGS. 1 and 2

in conjunction, the header members


13


of each column


12


are arranged in a stack in which each header member other than the lowest one rests on and is supported by the next lower header member. Each header member


13


other than the lowermost header members has an inclined arm


17


which extends outward and upward at the front of the header member. Each stretcher member


14


rests on and is supported by the inclined arms


17


of two header members


13


which are in separate spaced apart ones of the columns


12


of header members. The stretcher members


14


have a flat rectangular shape and the inclination of header arms


17


causes the stretcher members to be tilted with the forward edges


18


of such members being at a higher elevation than the back edges


19


of the members.




It is usually preferable that the face of a retaining wall


11


be inclined away from a strictly vertical orientation so that it leans towards the material which is being retained. Among other advantages, this increases the breadth of the tiers


16


at which plants


15


may be cultivated. As shown in

FIG. 1

in particular, a desired inclination of the wall


11


is established by placing each header member


13


to extend slightly more rearwardly than the next underlying header member. Precise emplacement of successive header members


13


in this manner is facilitated by front and rear vertically oriented pins


21


which extend upward from each header member into the overlying header member. The pins


21


, which will hereinafter be further discussed, also act to inhibit lateral and longitudinal shifting of the header members


13


relative to each other during construction of the wall.




Referring to

FIG. 2

in particular, the preferred length of the stretcher members


14


corresponds substantially to twice the spacing between successive columns


12


of header members


13


. This allows the abutments


22


between the successive stretcher members


14


of each row of stretcher members to be located midway between a pair of header member columns


12


. Preferably the stretcher member abutments


22


of alternate ones of the rows of stretcher members


14


are located between different pairs of the header member columns


12


. This causes stretcher members


14


of successively higher rows of stretcher members


14


to have an interleaved appearance when viewed from a location in front of the wall


11


. Shorter and longer stretcher members


14


can be used to establish vertically aligned abutments


22


at corners or other angles in the wall


11


and to provide vertical ends or sloped ends of the wall as may be called for by the contours of the site.




Referring again to

FIG. 1

, in some instances an excavation


23


of the original ground at the site may be made in preparation for emplacement of the retaining wall


11


. In other instances existing ground contours and available space may enable emplacement of the wall without major excavation. In this particular example of the invention an excavation


23


is present and has a rear slope


24


and a bottom


26


which is below the level


27


of the ground or pavement which extends outward at the base of the wall


11


. The excavation


23


may be broad enough to situate the columns


12


of header members


13


a distance outward from the rear slope


24


of the excavation if necessary to provide space for a broad roadway on top of the wall


11


or for other reasons.




The front portions of header members


13


extend out of compacted structural backfill


28


which fills the regions between the more rearward portions of the header members and which extends backward from the header members. The front boundary


29


of the compacted backfill


28


is defined by upturned front ends of vertically spaced apart layers


31


of geosynthetic mesh reinforcement which extend within the backfill and which will hereinafter be described in more detail. Front boundary


29


of the compacted backfill is spaced apart from stretcher members


14


and a vertically continuous filling of relatively loose planting soil


32


is situated between the stretcher members


14


and the front backfill boundary


29


. The previously described uptilted orientation of the stretcher members


14


leaves broad strips of planting soil


32


exposed at the successive tiers


16


of the wall


11


.




The term “structural backfill” as used herein and in the appended claims should be understood to refer to filler material having a high load bearing capacity and is typically compacted aggregate of the known type which is composed of gravel intermixed with smaller soil particles. The term “planting soil” as used herein and in the appended claims should be understood to refer to relatively loose material selected for its suitability for growing beds of plants and may variously be high quality topsoil or any of the known planting mixes.




Referring jointly to

FIGS. 3

,


4


and


5


, the layers


31


of geosynthetic mesh reinforcement reinforce the load bearing capacity of the body of backfill


28


and prevent the horizontal component of the load force from being exerted against the planting soil


32


and stretcher members


14


. The geosynthetic mesh reinforcement may be of one of the known forms and is typically a net formed of high strength synthetic polymer. Backfill aggregate penetrates the openings


35


in the geosynthetic mesh reinforcement and interlocks the backfill with the mesh.




Reinforcement of the backfill


28


at the front boundary


29


of the backfill is enhanced by a front portion


33


of each layer


31


which is angled to extend up to the next higher layer. The front portion


33


is further angled to extend backward for a short distance along the underside of the next higher layer


31


and then has an end section


34


which continues back into the backfill at a level which is below the underside of the next higher layer


31


. The small vertical spacing between the end section


34


of each layer


31


and the next higher layer


31


assures that both interlock with the structural backfill at this location.




The vertical spacing of the successive Layers


31


of geosynthetic mesh reinforcement may be varied to accommodate to differences in the inherent load bearing capacity of the particular backfill


28


and to differences in the load force to which the wall


11


will be subjected. The degree of reinforcement which the geosynthetic mesh reinforcement provides is dependent on the vertical spacing of the layers


31


and becomes greater as the spacing is reduced. In this particular example, layers


31


are coplanar with the tops and bottoms of each header member


13


and two additional layers


31


are present between the top and bottom of each header member. As best seen in

FIG. 3

, openings


36


are cut into the layers


31


of geosynthetic mesh reinforcement where portions of the header members


13


extend through the mesh.




Retention of backfill


28


at the front boundary


29


of the backfill is further provided for by barriers


37


formed of porous sheet material. Each barrier


37


has an intermediate portion


38


which extends upward at boundary


29


within the front portion


33


of a layer


31


of geosynthetic mesh reinforcement and has upper and lower portions


39


and


41


respectively which extend rearwardly into the backfill along the layer for a short distance. The barrier


37


material separates the backfill


28


and planting soil


32


and inhibits migration of soil particles from the structural backfill to the planting soil.




The geosynthetic mesh reinforcement of layers


31


is typically brought to the construction site in the form of rolled strips of the mesh which are then unrolled as the layers


31


are emplaced. To assure continuity it is preferable that adjacent ends of the barrier


37


material be overlapped with each other at the front of each layer


31


of geosynthetic mesh reinforcement.




Referring jointly to

FIGS. 8 and 9

, each header member


13


other than the lowermost and uppermost header members preferably has a longitudinally extending base portion


42


and a front post portion


43


and rear post portion


44


which extend upward from the ends of the base portion. The previously described inclined arm


17


of the header member


13


extends outward and upward from the front end of base portion


42


. This header member configuration provides the necessary load bearing capability while avoiding unnecessary bulk and weight.




The bottom surface of the base portion


42


and the top surfaces of the front and rear post portions


43


and


44


are flat and thus have no relatively fragile ribs or other projections. Holes


46


extend down into the tops of the post portions


43


and up into the base portion


42


to receive the previously described pins


21


. The header members


13


are preferably strengthened by internal reinforcing rods


45


of the known type.




Referring to

FIGS. 6 and 7

, the uppermost header members


13




b


preferably have a configuration which differs from that of the intermediate header members


13


in that no upwardly extending rear post portion is needed as the uppermost header members do not support overlying header members. The front post portions


43




b


of the uppermost header members


13




b


may be relatively truncated and may extend upward only far enough to provide a seat for a stretcher member in the previously described manner. Referring jointly to

FIGS. 6

,


7


and


8


, the uppermost head members


13




b


are shaped to interlock with the next underlying intermediate header members


13


. In particular, the base portion


42




b


of the uppermost header member


13




b


is formed with a downward extending key section


50


shaped to fit into the region between the tops of the front and rear post portions


43


and


44


of the underlying intermediate header member


13


.




Referring to

FIGS. 10 and 11

, the lowermost header members


13




a


have a relatively broad base portion


42




a


with a flat undersurface


47


. A rectangular upright portion


48


extends upward from the base portion


42




a


and has a flat top surface


49


, with pin receiving holes


46


, on which the next higher header member rests.




Referring to

FIGS. 12 and 13

, stretcher members


14


are of elongated flat rectangular shape. The stretcher members


14


, like the header members, are preferably strengthened by internal reinforcing rods


51


of the known type.




Referring again to

FIGS. 3 and 4

, thin flat cushions


52


of compressible sheet material are preferably disposed between the tops of the post portions


43


and


44


of the header members


13


and the bases of the next overlying header members. Cushions


53


of similar material are preferably provided between stretcher members


14


and the header members


13


which support the stretcher members.





FIG. 14

depicts the rearward facing surfaces of two adjoining stretcher members


14


in one of the horizontal rows of stretcher members. Referring to

FIGS. 14 and 15

, the stretcher members


14


are proportioned to provide for a small gap


56


between the ends of the two stretcher members. This accommodates the thermal expansion and contraction of the stretcher members


14


and facilitates emplacement of the stretcher members in the wall. Loss of planting soil


32


through the gap


56


is prevented by a sheet


57


of porous material which bridges the gap at the rear facing surfaces of the two stretcher members. The sheet


57


is backed and reinforced by a rectangular section


58


of geosynthetic mesh reinforcement, flaps


59


formed by margins of the sheet material


57


being folded under the vertically extending edge portions of the section


58


.




Referring again to

FIG. 1

, the inclination or slope of the face of the wall


11


is determined by the positioning of the header members


13


relative to each other. Each header member


13


is partially offset in the rearward direction relative to the next underlying header member. The extent of this partial offset is fixed during construction of the wall


11


by the location of the previously described pins


21


which extend between the header members


13


. The extent of the partial offset and thus the batter or inclination of the face of the wall


11


can be selected to be appropriate to a particular site by configuring the header members


13


to situate the pins


21


at more forward or more rearward locations along the header members.




Referring to

FIG. 16

, the degree of reinforcement of the load bearing capability of the backfill


28


that is provided by the layers


31


of geosynthetic mesh reinforcement is dependent on the vertical spacing and tensile strength of the layers and increases as the spacing is reduced. Load force in the backfill


28


increases at progressively greater depths in the backfill. Thus it can be advantageous to decrease the spacing of the layers


31


at greater depths and/or to use geosynthetic mesh reinforcement of greater tensile strength at greater depths.

FIG. 16

depicts an example in which the layers


31




a


of geosynthetic mesh reinforcement within an uppermost region of the backfill


28


are spaced similarly to the spacing of the layers in the previously described embodiments of the invention. The layers


31




b


of geosynthetic mesh reinforcement are more closely spaced at an intermediate depth within the backfill


28


. At the lowermost region of the backfill


28


the layers


31




c


of geosynthetic mesh reinforcement are still more closely spaced.




During construction of the retaining wall


11


, with reference again to

FIG. 1

, emplacement of the header members


13


, backfill


28


and layers


31


of geosynthetic mesh reinforcement proceeds in stages. Following emplacement of the header members


13


at each tier of the wall


11


, the backfill


28


and layers


31


at that tier of the wall are emplaced before emplacement of the next higher header members. This emplacement of backfill


28


and layers


31


at each tier also proceeds in stages with the backfill which underlies each layer


31


being compacted prior to emplacement of that layer. Stretcher members


14


may be emplaced at any time after the particular header members


13


which support the stretcher member are in place. Planting soil


32


may be emplaced at each tier after emplacement of the layers


31


and backfill


28


is completed up to a higher level or may be deferred until, emplacement of all header members


13


and the associated layers and backfill have been completed. Landscaping of the successive tiers with plants may then proceed.




While the invention has been described with reference to certain specific embodiments for purposes of example, many modifications and variations are possible and it is not intended to limit the invention except as defined by the following claims.



Claims
  • 1. A retaining wall for stabilizing compacted structural backfill which retaining wall is comprised of:a plurality of spaced apart columns of header members which extend back into the compacted structural backfill from a front surface thereof and which extend out from the front surface of the compacted structural backfill to a front face of the wall, front ends of the header members having inclined arms which extend outward and upward at the front face of the wall; each of said header members having a substantially flat horizontally extending lower surface, a first vertical post portion extending upwardly from a rear end portion of such header member and a second vertical post portion extending upwardly from a front end portion of said header member rearwardly of said arm, the upper surfaces of said post portions lying substantially in a common plane which is parallel to said horizontally extending lower surface; a plurality of horizontal stretcher members which extend between the header members at the front face of the wall and which are supported by the inclined arms of the header members; a plurality of vertically spaced layers of geosynthetic mesh reinforcement extending backward into said compacted structural backfill from the front surface thereof, and a volume of planting soil disposed between each of said stretcher members and the forward surfaces of said second vertical post portions overlying the respective stretcher member and forming exposed tiers of planting soil at said front face of said retaining wall.
  • 2. The retaining wall of claim 1 wherein said front surface of said compacted backfill and the forward ends of said layers of geosynthetic mesh reinforcement are behind said stretcher members and spaced apart therefrom and said volume of planting soil extends continuously upward and downward behind said plurality of stretcher members.
  • 3. The retaining wall of claim 1 wherein each stretcher member is supported by a particular pair of said header members and is spaced apart from the header members which are immediately above said particular pair of header members.
  • 4. The retaining wall of claim 1 wherein header members in said columns thereof are supported by underlying header members, stretcher members being proportioned and positioned to be free of contact with header members other than the particular header members which support a particular stretcher member.
  • 5. The retaining wall of claim 1 wherein the stretcher members extend upward and outward underneath the overlying inclined arms of the header members which are immediately above the header members that support the stretcher member, the stretcher members being spaced from said overlying inclined arms thereby exposing said tiers of planting soil.
  • 6. The retaining wall of claim 1 in which said upper surfaces and said lower surfaces of said header members are provided with holes, and further including pins extending upward from holes in the header members into holes in the overlying header members.
  • 7. The retaining wall of claim 1 further including sheets of fabric disposed within said forward ends of said layers of geogrid mesh and being configured and positioned to form a soil migration barrier between said compacted backfill and said planting soil at said forward ends of said layers of geogrid mesh.
  • 8. The retaining wall of claim 7 wherein said sheets of porous material have intermediate portions which extend upward at said front surface of said compacted structural backfill and have horizontal upper and lower edge portions which extend back into said compacted structural backfill.
  • 9. The retaining wall of claim 1 wherein said stretcher members extend horizontally along said wall in rows of aligned stretcher members which rows are situated at successively greater heights and wherein the stretcher members have a length which is substantially twice the spacing of said columns of header members from each other and wherein abutments between said stretcher members in each horizontal row thereof are situated substantially midway between columns of header members, the abutments in a particular horizontal row of stretcher members being spaced horizontally from the abutments of the adjacent rows by a distance corresponding substantially to one half of said length of said stretcher members.
  • 10. The retaining wall of claim 1 wherein the vertical spacing of a first group of said layers of geosynthetic mesh reinforcement is smaller than the vertical spacing of a second group of said layers of geosynthetic mesh reinforcement, said first group of layers being at a deeper location in said compacted structural backfill than said first group of layers.
  • 11. A retaining wall for stabilizing compacted structural backfill which retaining wall is comprised of:a plurality of spaced apart columns of header members which extend back into the compacted structural backfill from a front surface thereof and which extend out from the front surface of the compacted structural backfill to a front face of the wall, front ends of the header members having inclined arms which extend outward and upward at the front face of the wall; a plurality of horizontal stretcher members which extend between the header members at the front face of the wall and which are supported by the inclined arms of the header members; a plurality of vertically spaced layers of geosynthetic mesh reinforcement extending between the columns of header members and extending backward into said compacted structural backfill from the front surface thereof, the layers of geosynthetic mesh reinforcement having forward ends which turn upward at the front surface of the compacted backfill and then extend back into the compacted backfill; and a volume of planting soil disposed between said stretcher members and the upturned forward ends of the layers of geosynthetic mesh reinforcement and forming exposed tiers of planting soil at said front face of said retaining wall, wherein said header members extend upward through openings in said layers of geosynthetic mesh reinforcement.
  • 12. The retaining wall of claim 11 wherein individual header members have a base portion which extends horizontally and a front post portion situated behind said inclined arm and which extends upward from the base portion through openings in said geosynthetic mesh reinforcement and a rear post portion which extends upward from said base portion through openings in said geosynthetic mesh reinforcement.
  • 13. The retaining wall of claim 12 wherein the base portion of the individual header member has a substantially flat bottom for resting on an underlying header member and wherein said front and rear post portions have substantially flat top surfaces against which an overlying header member is rested.
  • 14. The retaining wall of claim 13 wherein vertical pins extend upward from holes in said top surafces of said front and rear post portions into holes in the bottom of the overlying header member.
  • 15. The retaining wall of claim 13 wherein pads of cushioning sheet material are disposed between said top surfaces of said post portions of said individual header member and the bottom of the overlying header member and are also disposed between the header member and a stretcher member which is supported by the header member.
  • 16. A retaining wall for compacted structural backfill, the retaining wall being comprised of:a plurality of cast concrete header members stacked in spaced apart vertically extending columns thereof and which extend into the structural backfill from a front face of the wall, the header members of said plurality thereof having bases which rest upon an underlying header member and having front and rear post portions which extend up to the base of an overlying header member, front ends of the header members having arms which extend outward and upward at the face of the wall at locations which are in front of the compacted structural backfill; a plurality of horizontal stretcher members at the front face of the wall and which are supported by the inclined arms of the header member, the stretcher members being spaced apart from header members other than the particular header members which support the stretcher member; a plurality of vertically spaced horizontal layers of geosynthetic mesh reinforcement extending between the columns of header members and extending backward therefrom within said compacted structural backfill, the layers of geosynthetic mesh reinforcement being unconnected to said header members and said stretcher members whereby said mesh reinforcement can move independently of and relative to said header members and said stretcher members; and planting soil disposed between said stretcher members and the front post portion of an overlying header member and which forms tiers of said planting soil at the front face of the wall.
  • 17. A retaining wall having a plurality of spaced apart vertical columns of stacked header members which extend into backfill material and a plurality of stretcher members which extend horizontally between front portions of said header members wherein the improvement comprises:said header members having flat top surfaces and flat bottom surfaces, said surfaces lying in parallel planes, and wherein said wall further includes a plurality of pins each of which extends vertically from a hole in a top surface of a particular one of said header members into a hole in a bottom surface of the next overlying one of said header members to maintain said header members in stacked vertical alignment and wherein each individual one of said plurality of pins extends out of said particular header member only at said top surface thereof and extends out of said next overlying header member only at said bottom surface thereof.
US Referenced Citations (50)
Number Name Date Kind
1773579 Flath Aug 1930 A
1787199 Huntoon Dec 1930 A
1818056 Ferguson Aug 1931 A
1907053 Flath May 1933 A
2034851 Wichmann Mar 1936 A
2092385 Arble Sep 1937 A
2315441 McDaniel Mar 1943 A
2972870 Cooper Feb 1961 A
4244665 Neumann Jan 1981 A
4266890 Hilfiker May 1981 A
4278364 Frehner Jul 1981 A
4324508 Hilfiker Apr 1982 A
4384810 Neumann May 1983 A
4512685 Hegle Apr 1985 A
4557634 Vidal Dec 1985 A
4572711 Benson Feb 1986 A
4655646 Babcock Apr 1987 A
4661023 Hilfiker Apr 1987 A
4664562 Clark May 1987 A
4668129 Babcock May 1987 A
4684287 Wojciechowski Aug 1987 A
4815897 Risi et al. Mar 1989 A
4818150 Jaecklin Apr 1989 A
4825619 Forsberg May 1989 A
4914876 Forsberg Apr 1990 A
4930939 Jaecklin Jun 1990 A
4960349 Willibey et al. Oct 1990 A
4968186 Ogorchock Nov 1990 A
4990032 Smith Feb 1991 A
5030035 Babcock Jul 1991 A
5044834 Janopaul Sep 1991 A
5108232 Strassil Apr 1992 A
5139369 Jaecklin Aug 1992 A
5224801 Quaney Jul 1993 A
5259704 Orgorchock Nov 1993 A
5370480 Quaney Dec 1994 A
5499891 Klenert Mar 1996 A
5507599 Anderson Apr 1996 A
5511910 Scales Apr 1996 A
5586841 Anderson Dec 1996 A
5642968 Anderson Jul 1997 A
5688078 Hammer Nov 1997 A
5788420 Scales Aug 1998 A
5807030 Anderson Sep 1998 A
5913790 Dawson Jun 1999 A
5984589 Ciccarello Nov 1999 A
6036405 Nove et al. Mar 2000 A
6086288 Ruel Jul 2000 A
6336773 Anderson Jan 2002 B1
6338597 Rainey Jan 2002 B1
Foreign Referenced Citations (1)
Number Date Country
277078 Dec 1969 AT
Non-Patent Literature Citations (2)
Entry
Fornit—Biaxial Geogrid Reinforcement, published by Huesker, Charlotte, North Carolina; unknown date.
Huesker—Engineering with Geosynthetics, Published by Huesker Synthetic GmbH & Co.; Germany; unknown.