PLANTS HAVING ENHANCED ABIOTIC STRESS TOLERANCE AND/OR ENHANCED YIELD-RELATED TRAITS AND A METHOD FOR MAKING THE SAME

Information

  • Patent Application
  • 20150033416
  • Publication Number
    20150033416
  • Date Filed
    September 22, 2014
    10 years ago
  • Date Published
    January 29, 2015
    9 years ago
Abstract
The present invention relates generally to the field of molecular biology and concerns a method for improving various plant growth characteristics by modulating expression in a plant of a nucleic acid encoding an ARP6 (Actin Related Protein 6). The present invention also concerns plants having modulated expression of a nucleic acid encoding an ARP, which plants have improved growth characteristics relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention.
Description
BACKGROUND
1. Alfin-Like Polypeptides

The PHD finger, a Cys4-His-Cys3 zinc finger, is found in many regulatory proteins from plants to animals and which are frequently associated with chromatin-mediated transcriptional regulation. The PHD finger has been shown to activate transcription in yeast, plant and animal cells (Halbach et al, Nucleic Acids Res. 2000 Sep. 15; 28(18): 3542-3550).


Alfin-like-derived zinc-finger domains belong to the PHD-finger domain family (R. Aasland, et al, Trends Biochem Sci (1995) 20:56-9). It was speculated that the Alfin-like PHD domain plays the role of binding DNA in a EDTA-sensitive manner inferring the need for zinc for binding at a core hexamer motif of either GNGGTG or GTGGNG (D. Bastola, et al., Plant Mol Biol. (1998) 38:1123-35). Eight Alfin-like-Like Factor (ALF) genes were identified in Arabidopsis (J. L. Riechmann, et al, Science (2000) 290:2105-10). Expressing an antisense version of alfin-like caused transgenic alfalfa to grow more poorly, whereas constitutive overexpression by a constitutive promoter enhanced root growth both in normal and salt-stressed conditions (I. Winicov Planta (2000) 210:416-22).


2. YRP Polypeptides

The YRP of Hordeum vulgare (SEQ ID NO: 11 and 13) are transcription factors encoding members of the GARP class of transcription factors.


3. Brevis Radix-Like (BRXL) Polypeptides

Brevis Radix (BRX) polypeptide has been identified through a natural loss-of-function allele in the Arabidopsis accession Umkirch-1 (Uk-1), and results in reduced root meristem size, reduced mature cell size, and thus reduced root growth (Mouchel et al. (2004) Genes Dev 18: 700-714), owing to disturbed plant hormone brassinosteroid and auxin signaling pathways.


BRX and paralogs BRX-like (BRXL) belong to a conserved, plant-specific gene family (collectively called BRXL) that encodes proteins that are predicted to regulate transcription directly or indirectly. BRXL genes are found in all higher plants for which data are available, but not in unicellular organisms and animals. In the entirely sequenced plant genomes of Arabidopsis, poplar (Populus trichocarpa) and rice (Oryza sativa), five BRXL genes can be found (Briggs et al. (2006) Plant Physiol 140: 1307-1316).


Four domains of high conservation can be distinguished in BRX family proteins. The homology among BRX family proteins within and between species is especially conserved in these regions:

    • 1. at the N terminus, two short domains of approximately 10 and 25 amino acids respectively, are conserved, containing conserved Cys's, whose spacing is indicative of a potential zinc-binding motif.
    • 2. the middle region of BRX family proteins contains a highly conserved domain of approximately 65 amino acids.
    • 3. a second highly conserved domain of approximately 60 amino acids is present, homologous to the first middle domain, constituting a novel type of tandem repeat, which is the main characteristic of BRX family proteins (therefore named the BRX domain).


Alpha-helical regions, which are characteristic of DNA binding and protein-protein interaction domains, have been identified within the conserved BRX domains. Yeast two-hybrid experiments demonstrated that the BRX domain is a novel protein-protein interaction domain, which likely mediates homodimerization and heterodimerization within and/or between the BRXL and also PRAF-like (PH, RCC1, and FYVE) protein families (Briggs et al. (2006) Plant Physiol 140: 1307-1316; van Leeuwen et al. (2004) Trends Plant Sci 9: 378-384). PRAF-like proteins also contain regulator of chromosome condensation 1 (RCC1) repeats, which often provide guanine nucleotide exchange activity.


In U.S. Pat. No. 7,214,786 “Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement”, are described nucleic acid sequences encoding BRXL polypeptides (SEQ IDs NO: 35674, 30290, 17003), and constructs comprising these. The disclosed recombinant polynucleotides and recombinant polypeptides find use in production of transgenic plants to produce plants having improved properties. In U.S. Pat. No. 7,365,185 “Genomic plant sequences and uses thereof”, are described rice nucleic acid promoter sequences of BRXL polypeptides (SEQ IDs NO: 59178, 70484, 70442, 37078, 78410, 64873), and constructs comprising these. The invention further discloses compositions, transformed host cells, transgenic plants, and seeds containing the rice genomic promoter sequences, and methods for preparing and using the same.


4. Silky-1-Like Polypeptides

Silky-1 is a member of the family of MADS transcription factors and which is involved in flower development.


5. ARP6 Polypeptides

Actin-related proteins (ARPs) constitute a family of eukaryotic proteins whose primary sequences display homology to conventionalactins. Whereas actins play well-characterized cytoskeletal roles, the ARPs are implicated in various cellular functions in both the cytoplasm and in the nucleus. Cytoplasmic ARPs, for example, are known to participate in the assembly of branched actin filamentsand dynein-mediated movement of vesicles in manyeukaryotes. Nuclear ARPs are components of various chromatin-modifying complexes involved in transcriptional regulation. In plants, for example it has been recently described the existence of a SWR1/SRCAP-like complex. These complexes appear to destabilize protein-protein and protein-DNA interactions within the nucleosome, allowing chromatin to remodel and therefore influencing gene expression. Yeast and mammalian ARP6 proteins function with the SWR1 and SRCAP complexes, respectively, which deposit the histone variantH2A.Z into chromatin. The Arabidopsis thalianan ARP6 interacts with the ARP6, PIE1 and SEF proteins indicating that the ARP6 function is conserved also in the plant kingdom (March-Diaz, R. et al. 2007. Plant Physiol. 143, 893-901). Knockout mutations in AtARP6 results in misregulation of the expression of a number of genes and in early flowering and dwarf phenotypes in Arabidopsis thaliana (Deal 2007, The Plant Cell, Vol. 19: 74-83).


The ARPs and actins possess a common tertiary structure centered on the nucleotide-binding pocket known as the actin fold (Kabach et al. 1995. FASEB J. 9, 167-1745). ARPs are grouped into several classes or subfamilies that are highly conserved in a wide range of eukaryotes. Each class or subfamily is distinguished by its degree of similarity to conventional actin (Kandasamy et al. 2004 Trends Plant Sci 9: 196-202).


6. POP Polypeptides

Proteases catalyse the hydrolysis of peptide bonds, either at the end of a polypeptide chain (exopeptidases) or within the polypeptide chain (endopeptidases). They are classified according to their structural conservation, see for example the MEROPS database (Rawlings et al., Nucleic Acids Research 34, D270-272, 2006). Serine proteases have in their active site a serine that plays a role in the hydrolysis of the substrate, and form within the plants the largest group of proteinases. Within the group of Serine proteases, several subgroups are discriminated, such as the subtilisin family, the chymotrypsin family, D-Ala-D-Ala carboxypeptidase B family or the Prolyl oligopeptidase family.


Prolyl-oligopeptidases are postulated to play a role in the formation, processing and degradation of biologically active peptides, and have been described in bacteria, archaea as well as in eukaryotes. Within the group of Prolyl-oligopeptidases 4 subfamilies can be discriminated: prolyl-oligopeptidase (S9A), dipeptidyl-peptidase IV (S9B), aminoacylpeptidase (S9C) and glutamyl endopeptidase (S9D).


Despite the fact that so many proteases have been identified, little is known about the substrates of these enzymes. Therefore also the function and the regulation of proteases are hardly characterised.


7. Crumpled Leaf (CRL) Polypeptides

Crumpled leaf (crl) is the name give to an Arabidopsis thaliana mutant having abnormal morphogenesis of all plant organs and division of plastids. Histological analysis revealed that planes of cell division were distorted in shoot apical meristems (SAMs), root tips, and embryos in plants that possess the crl mutation. Furthermore, differentiation patterns of cortex and endodermis cells in inflorescence stems and root endodermis cells were disturbed in the crl mutant. These results suggest that morphological abnormalities observed in the crl mutant were because of aberrant cell division and differentiation. In addition, cells of the crl mutant contained a reduced number of enlarged plastids, indicating that the division of plastids was inhibited in the crl. The gene mutated and responsible for the phenotype was named CRL (Crumpled leaf). The CRL gene encodes a protein with a molecular mass of 30 kDa that is localized in the plastid envelope. The CRL protein is conserved in various plant species, including a fern, and in cyanobacteria. CRL protein of Arabidopsis has a putative membrane domain localized between amino acids 19-36 and a conserved domain between amino acid residues 42-236. This domain is highly conserved amongst the CRL proteins present in other plant species.


SUMMARY
1. Alfin-Like Polypeptides

Surprisingly, it has now been found that modulating expression of a nucleic acid encoding an alfin-like polypeptide gives plants having enhanced tolerance to various abiotic stresses relative to control plants.


According one embodiment, there is provided a method for enhancing tolerance in plants to various abiotic stresses, relative to tolerance in control plants, comprising modulating expression of a nucleic acid encoding an alfin-like polypeptide in a plant.


2. YRP Polypeptides

Surprisingly, it has now been found that modulating expression of a nucleic acid encoding a YRP polypeptide gives plants having enhanced tolerance to various abiotic stresses relative to control plants.


According one embodiment, there is provided a method for enhancing tolerance in plants to various abiotic stresses, relative to tolerance in control plants, comprising modulating expression of a nucleic acid encoding a YRP polypeptide in a plant.


3. Brevis Radix-Like (BRXL) Polypeptides

Surprisingly, it has now been found that increasing expression in a plant of a nucleic acid sequence encoding a BRXL polypeptide as defined herein, gives plants having increased yield-related traits relative to control plants.


According to one embodiment, there is provided a method for increasing yield-related traits in plants relative to control plants, comprising increasing expression in a plant of a nucleic acid sequence encoding a BRXL polypeptide as defined herein. The increased yield-related traits comprise one or more of: increased plant height, and increased Thousand Kernel Weight (TKW).


4. Silky-1-Like Polypeptides

Surprisingly, it has now been found that modulating expression of a nucleic acid encoding a silky-1-like polypeptide gives plants having enhanced tolerance to various abiotic stresses relative to control plants.


According one embodiment, there is provided a method for enhancing tolerance in plants to various abiotic stresses, relative to tolerance in control plants, comprising modulating expression of a nucleic acid encoding a silky-1-like polypeptide in a plant.


5. ARP6 Polypeptides

Surprisingly, it has now been found that modulating expression of a nucleic acid encoding an ARP6 polypeptide gives plants having enhanced yield-related traits relative to control plants.


According one embodiment, there is provided a method for enhancing yield-related traits of a plant relative to control plants, comprising modulating expression of a nucleic acid encoding an ARP6 polypeptide in a plant.


6. POP Polypeptides

Surprisingly, it has now been found that modulating expression of a nucleic acid encoding a POP polypeptide gives plants having enhanced yield-related traits relative to control plants.


According one embodiment, there is provided a method for enhanced yield-related traits of a plant relative to control plants, comprising modulating expression of a nucleic acid encoding a POP polypeptide in a plant.


7. Crumpled Leaf (CRL) Polypeptides

Surprisingly, it has now been found that modulating expression of a nucleic acid encoding a CRL polypeptide gives plants having enhanced yield-related traits relative to control plants.


According one embodiment, there is provided a method for enhancing yield related traits of a plant relative to control plants, comprising modulating expression of a nucleic acid encoding a CRL polypeptide in a plant.


DEFINITIONS
Polypeptide(s)/Protein(s)

The terms “polypeptide” and “protein” are used interchangeably herein and refer to amino acids in a polymeric form of any length, linked together by peptide bonds.


Polynucleotide(s)/Nucleic Acid(s)/Nucleic Acid Sequence(s)/Nucleotide Sequence(s)

The terms “polynucleotide(s)”, “nucleic acid sequence(s)”, “nucleotide sequence(s)”, “nucleic acid(s)”, “nucleic acid molecule” are used interchangeably herein and refer to nucleotides, either ribonucleotides or deoxyribonucleotides or a combination of both, in a polymeric unbranched form of any length.


Control Plant(s)

The choice of suitable control plants is a routine part of an experimental setup and may include corresponding wild type plants or corresponding plants without the gene of interest. The control plant is typically of the same plant species or even of the same variety as the plant to be assessed. The control plant may also be a nullizygote of the plant to be assessed. Nullizygotes are individuals missing the transgene by segregation. A “control plant” as used herein refers not only to whole plants, but also to plant parts, including seeds and seed parts.


Homologue(s)

“Homologues” of a protein encompass peptides, oligopeptides, polypeptides, proteins and enzymes having amino acid substitutions, deletions and/or insertions relative to the unmodified protein in question and having similar biological and functional activity as the unmodified protein from which they are derived.


A deletion refers to removal of one or more amino acids from a protein.


An insertion refers to one or more amino acid residues being introduced into a predetermined site in a protein. Insertions may comprise N-terminal and/or C-terminal fusions as well as intra-sequence insertions of single or multiple amino acids. Generally, insertions within the amino acid sequence will be smaller than N- or C-terminal fusions, of the order of about 1 to 10 residues. Examples of N- or C-terminal fusion proteins or peptides include the binding domain or activation domain of a transcriptional activator as used in the yeast two-hybrid system, phage coat proteins, (histidine)-6-tag, glutathione S-transferase-tag, protein A, maltose-binding protein, dihydrofolate reductase, Tag·100 epitope, c-myc epitope, FLAG®-epitope, lacZ, CMP (calmodulin-binding peptide), HA epitope, protein C epitope and VSV epitope.


A substitution refers to replacement of amino acids of the protein with other amino acids having similar properties (such as similar hydrophobicity, hydrophilicity, antigenicity, propensity to form or break α-helical structures or β-sheet structures). Amino acid substitutions are typically of single residues, but may be clustered depending upon functional constraints placed upon the polypeptide; insertions will usually be of the order of about 1 to 10 amino acid residues. The amino acid substitutions are preferably conservative amino acid substitutions. Conservative substitution tables are well known in the art (see for example Creighton (1984) Proteins. W.H. Freeman and Company (Eds) and Table 1 below).









TABLE 1







Examples of conserved amino acid substitutions











Conservative



Residue
Substitutions







Ala
Ser



Arg
Lys



Asn
Gln; His



Asp
Glu



Gln
Asn



Cys
Ser



Glu
Asp



Gly
Pro



His
Asn; Gln



Ile
Leu, Val



Leu
Ile; Val



Lys
Arg; Gln



Met
Leu; Ile



Phe
Met; Leu; Tyr



Ser
Thr; Gly



Thr
Ser; Val



Trp
Tyr



Tyr
Trp; Phe



Val
Ile; Leu










Amino acid substitutions, deletions and/or insertions may readily be made using peptide synthetic techniques well known in the art, such as solid phase peptide synthesis and the like, or by recombinant DNA manipulation. Methods for the manipulation of DNA sequences to produce substitution, insertion or deletion variants of a protein are well known in the art. For example, techniques for making substitution mutations at predetermined sites in DNA are well known to those skilled in the art and include M13 mutagenesis, T7-Gen in vitro mutagenesis (USB, Cleveland, Ohio), QuickChange Site Directed mutagenesis (Stratagene, San Diego, Calif.), PCR-mediated site-directed mutagenesis or other site-directed mutagenesis protocols.


Derivatives

“Derivatives” include peptides, oligopeptides, polypeptides which may, compared to the amino acid sequence of the naturally-occurring form of the protein, such as the protein of interest, comprise substitutions of amino acids with non-naturally occurring amino acid residues, or additions of non-naturally occurring amino acid residues. “Derivatives” of a protein also encompass peptides, oligopeptides, polypeptides which comprise naturally occurring altered (glycosylated, acylated, prenylated, phosphorylated, myristoylated, sulphated etc.) or non-naturally altered amino acid residues compared to the amino acid sequence of a naturally-occurring form of the polypeptide. A derivative may also comprise one or more non-amino acid substituents or additions compared to the amino acid sequence from which it is derived, for example a reporter molecule or other ligand, covalently or non-covalently bound to the amino acid sequence, such as a reporter molecule which is bound to facilitate its detection, and non-naturally occurring amino acid residues relative to the amino acid sequence of a naturally-occurring protein. Furthermore, “derivatives” also include fusions of the naturally-occurring form of the protein with tagging peptides such as FLAG, HIS6 or thioredoxin (for a review of tagging peptides, see Terpe, Appl. Microbiol. Biotechnol. 60, 523-533, 2003).


Orthologue(s)/Paralogue(s)

Orthologues and paralogues encompass evolutionary concepts used to describe the ancestral relationships of genes. Paralogues are genes within the same species that have originated through duplication of an ancestral gene; orthologues are genes from different organisms that have originated through speciation, and are also derived from a common ancestral gene.


Domain

The term “domain” refers to a set of amino acids conserved at specific positions along an alignment of sequences of evolutionarily related proteins. While amino acids at other positions can vary between homologues, amino acids that are highly conserved at specific positions indicate amino acids that are likely essential in the structure, stability or function of a protein. Identified by their high degree of conservation in aligned sequences of a family of protein homologues, they can be used as identifiers to determine if any polypeptide in question belongs to a previously identified polypeptide family.


Motif/Consensus Sequence/Signature

The term “motif” or “consensus sequence” or “signature” refers to a short conserved region in the sequence of evolutionarily related proteins. Motifs are frequently highly conserved parts of domains, but may also include only part of the domain, or be located outside of conserved domain (if all of the amino acids of the motif fall outside of a defined domain).


Hybridisation

The term “hybridisation” as defined herein is a process wherein substantially homologous complementary nucleotide sequences anneal to each other. The hybridisation process can occur entirely in solution, i.e. both complementary nucleic acids are in solution. The hybridisation process can also occur with one of the complementary nucleic acids immobilised to a matrix such as magnetic beads, Sepharose beads or any other resin. The hybridisation process can furthermore occur with one of the complementary nucleic acids immobilised to a solid support such as a nitro-cellulose or nylon membrane or immobilised by e.g. photolithography to, for example, a siliceous glass support (the latter known as nucleic acid arrays or microarrays or as nucleic acid chips). In order to allow hybridisation to occur, the nucleic acid molecules are generally thermally or chemically denatured to melt a double strand into two single strands and/or to remove hairpins or other secondary structures from single stranded nucleic acids.


The term “stringency” refers to the conditions under which a hybridisation takes place. The stringency of hybridisation is influenced by conditions such as temperature, salt concentration, ionic strength and hybridisation buffer composition. Generally, low stringency conditions are selected to be about 30° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. Medium stringency conditions are when the temperature is 20° C. below Tm, and high stringency conditions are when the temperature is 10° C. below Tm. High stringency hybridisation conditions are typically used for isolating hybridising sequences that have high sequence similarity to the target nucleic acid sequence. However, nucleic acids may deviate in sequence and still encode a substantially identical polypeptide, due to the degeneracy of the genetic code. Therefore medium stringency hybridisation conditions may sometimes be needed to identify such nucleic acid molecules.


The Tm is the temperature under defined ionic strength and pH, at which 50% of the target sequence hybridises to a perfectly matched probe. The Tm is dependent upon the solution conditions and the base composition and length of the probe. For example, longer sequences hybridise specifically at higher temperatures. The maximum rate of hybridisation is obtained from about 16° C. up to 32° C. below Tm. The presence of monovalent cations in the hybridisation solution reduce the electrostatic repulsion between the two nucleic acid strands thereby promoting hybrid formation; this effect is visible for sodium concentrations of up to 0.4M (for higher concentrations, this effect may be ignored). Formamide reduces the melting temperature of DNA-DNA and DNA-RNA duplexes with 0.6 to 0.7° C. for each percent formamide, and addition of 50% formamide allows hybridisation to be performed at 30 to 45° C., though the rate of hybridisation will be lowered. Base pair mismatches reduce the hybridisation rate and the thermal stability of the duplexes. On average and for large probes, the Tm decreases about 1° C. per % base mismatch. The Tm may be calculated using the following equations, depending on the types of hybrids:


1) DNA-DNA hybrids (Meinkoth and Wahl, Anal. Biochem., 138: 267-284, 1984):






T
m=81.5° C.+16.6×log10[Na+]a+0.41×%[G/Cb]−500×[Lc]−1−0.61×% formamide


2) DNA-RNA or RNA-RNA hybrids:






Tm=79.8+18.5(log10[Na+]a)+0.58(% G/Cb)+11.8(% G/Cb)2−820/Lc


3) oligo-DNA or oligo-RNAs hybrids:

    • For <20 nucleotides: Tm=2 (In)
    • For 20-35 nucleotides: Tm=22+1.46 (In)

      aor for other monovalent cation, but only accurate in the 0.01-0.4 M range.

      bonly accurate for % GC in the 30% to 75% range.

      cL=length of duplex in base pairs.

      doligo, oligonucleotide; In,=effective length of primer=2×(no. of G/C)+(no. of NT).


Non-specific binding may be controlled using any one of a number of known techniques such as, for example, blocking the membrane with protein containing solutions, additions of heterologous RNA, DNA, and SDS to the hybridisation buffer, and treatment with Rnase. For non-homologous probes, a series of hybridizations may be performed by varying one of (i) progressively lowering the annealing temperature (for example from 68° C. to 42° C.) or (ii) progressively lowering the formamide concentration (for example from 50% to 0%). The skilled artisan is aware of various parameters which may be altered during hybridisation and which will either maintain or change the stringency conditions.


Besides the hybridisation conditions, specificity of hybridisation typically also depends on the function of post-hybridisation washes. To remove background resulting from non-specific hybridisation, samples are washed with dilute salt solutions. Critical factors of such washes include the ionic strength and temperature of the final wash solution: the lower the salt concentration and the higher the wash temperature, the higher the stringency of the wash. Wash conditions are typically performed at or below hybridisation stringency. A positive hybridisation gives a signal that is at least twice of that of the background. Generally, suitable stringent conditions for nucleic acid hybridisation assays or gene amplification detection procedures are as set forth above. More or less stringent conditions may also be selected. The skilled artisan is aware of various parameters which may be altered during washing and which will either maintain or change the stringency conditions.


For example, typical high stringency hybridisation conditions for DNA hybrids longer than 50 nucleotides encompass hybridisation at 65° C. in 1×SSC or at 42° C. in 1×SSC and 50% formamide, followed by washing at 65° C. in 0.3×SSC. Examples of medium stringency hybridisation conditions for DNA hybrids longer than 50 nucleotides encompass hybridisation at 50° C. in 4×SSC or at 40° C. in 6×SSC and 50% formamide, followed by washing at 50° C. in 2×SSC. The length of the hybrid is the anticipated length for the hybridising nucleic acid. When nucleic acids of known sequence are hybridised, the hybrid length may be determined by aligning the sequences and identifying the conserved regions described herein. 1×SSC is 0.15M NaCl and 15 mM sodium citrate; the hybridisation solution and wash solutions may additionally include 5×Denhardt's reagent, 0.5-1.0% SDS, 100 μg/ml denatured, fragmented salmon sperm DNA, 0.5% sodium pyrophosphate.


For the purposes of defining the level of stringency, reference can be made to Sambrook et al. (2001) Molecular Cloning: a laboratory manual, 3rd Edition, Cold Spring Harbor Laboratory Press, CSH, New York or to Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989 and yearly updates).


Splice Variant

The term “splice variant” as used herein encompasses variants of a nucleic acid sequence in which selected introns and/or exons have been excised, replaced, displaced or added, or in which introns have been shortened or lengthened. Such variants will be ones in which the biological activity of the protein is substantially retained; this may be achieved by selectively retaining functional segments of the protein. Such splice variants may be found in nature or may be manmade. Methods for predicting and isolating such splice variants are well known in the art (see for example Foissac and Schiex (2005) BMC Bioinformatics 6: 25).


Allelic Variant

Alleles or allelic variants are alternative forms of a given gene, located at the same chromosomal position. Allelic variants encompass Single Nucleotide Polymorphisms (SNPs), as well as Small Insertion/Deletion Polymorphisms (INDELs). The size of INDELs is usually less than 100 bp. SNPs and INDELs form the largest set of sequence variants in naturally occurring polymorphic strains of most organisms.


Gene Shuffling/Directed Evolution

Gene shuffling or directed evolution consists of iterations of DNA shuffling followed by appropriate screening and/or selection to generate variants of nucleic acids or portions thereof encoding proteins having a modified biological activity (Castle et al., (2004) Science 304(5674): 1151-4; U.S. Pat. Nos. 5,811,238 and 6,395,547).


Regulatory Element/Control Sequence/Promoter

The terms “regulatory element”, “control sequence” and “promoter” are all used interchangeably herein and are to be taken in a broad context to refer to regulatory nucleic acid sequences capable of effecting expression of the sequences to which they are ligated. The term “promoter” typically refers to a nucleic acid control sequence located upstream from the transcriptional start of a gene and which is involved in recognising and binding of RNA polymerase and other proteins, thereby directing transcription of an operably linked nucleic acid. Encompassed by the aforementioned terms are transcriptional regulatory sequences derived from a classical eukaryotic genomic gene (including the TATA box which is required for accurate transcription initiation, with or without a CCAAT box sequence) and additional regulatory elements (i.e. upstream activating sequences, enhancers and silencers) which alter gene expression in response to developmental and/or external stimuli, or in a tissue-specific manner. Also included within the term is a transcriptional regulatory sequence of a classical prokaryotic gene, in which case it may include a −35 box sequence and/or −10 box transcriptional regulatory sequences. The term “regulatory element” also encompasses a synthetic fusion molecule or derivative that confers, activates or enhances expression of a nucleic acid molecule in a cell, tissue or organ.


A “plant promoter” comprises regulatory elements, which mediate the expression of a coding sequence segment in plant cells. Accordingly, a plant promoter need not be of plant origin, but may originate from viruses or micro-organisms, for example from viruses which attack plant cells. The “plant promoter” can also originate from a plant cell, e.g. from the plant which is transformed with the nucleic acid sequence to be expressed in the inventive process and described herein. This also applies to other “plant” regulatory signals, such as “plant” terminators. The promoters upstream of the nucleotide sequences useful in the methods of the present invention can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without interfering with the functionality or activity of either the promoters, the open reading frame (ORF) or the 3′-regulatory region such as terminators or other 3′ regulatory regions which are located away from the ORF. It is furthermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even promoters from heterologous organisms. For expression in plants, the nucleic acid molecule must, as described above, be linked operably to or comprise a suitable promoter which expresses the gene at the right point in time and with the required spatial expression pattern.


For the identification of functionally equivalent promoters, the promoter strength and/or expression pattern of a candidate promoter may be analysed for example by operably linking the promoter to a reporter gene and assaying the expression level and pattern of the reporter gene in various tissues of the plant. Suitable well-known reporter genes include for example beta-glucuronidase or beta-galactosidase. The promoter activity is assayed by measuring the enzymatic activity of the beta-glucuronidase or beta-galactosidase. The promoter strength and/or expression pattern may then be compared to that of a reference promoter (such as the one used in the methods of the present invention). Alternatively, promoter strength may be assayed by quantifying mRNA levels or by comparing mRNA levels of the nucleic acid used in the methods of the present invention, with mRNA levels of housekeeping genes such as 18S rRNA, using methods known in the art, such as Northern blotting with densitometric analysis of autoradiograms, quantitative real-time PCR or RT-PCR (Heid et al., 1996 Genome Methods 6: 986-994). Generally by “weak promoter” is intended a promoter that drives expression of a coding sequence at a low level. By “low level” is intended at levels of about 1/10,000 transcripts to about 1/100,000 transcripts, to about 1/500,0000 transcripts per cell. Conversely, a “strong promoter” drives expression of a coding sequence at high level, or at about 1/10 transcripts to about 1/100 transcripts to about 1/1000 transcripts per cell. Generally, by “medium strength promoter” is intended a promoter that drives expression of a coding sequence at a lower level than a strong promoter, in particular at a level that is in all instances below that obtained when under the control of a 35S CaMV promoter.


Operably Linked

The term “operably linked” as used herein refers to a functional linkage between the promoter sequence and the gene of interest, such that the promoter sequence is able to initiate transcription of the gene of interest.


Constitutive Promoter

A “constitutive promoter” refers to a promoter that is transcriptionally active during most, but not necessarily all, phases of growth and development and under most environmental conditions, in at least one cell, tissue or organ. Table 2a below gives examples of constitutive promoters.









TABLE 2a







Examples of constitutive promoters








Gene Source
Reference





Actin
McElroy et al, Plant Cell, 2: 163-171, 1990


HMGP
WO 2004/070039


CAMV 35S
Odell et al, Nature, 313: 810-812, 1985


CaMV 19S
Nilsson et al., Physiol. Plant. 100: 456-462, 1997


GOS2
de Pater et al, Plant J Nov; 2(6): 837-44, 1992,



WO 2004/065596


Ubiquitin
Christensen et al, Plant Mol. Biol. 18: 675-689,



1992


Rice
Buchholz et al, Plant Mol Biol. 25(5): 837-43, 1994


cyclophilin


Maize H3
Lepetit et al, Mol. Gen. Genet. 231: 276-285, 1992


histone


Alfalfa H3
Wu et al. Plant Mol. Biol. 11: 641-649, 1988


histone


Actin 2
An et al, Plant J. 10(1); 107-121, 1996


34S FMV
Sanger et al., Plant. Mol. Biol., 14, 1990: 433-443


Rubisco
U.S. Pat. No. 4,962,028


small


subunit


OCS
Leisner (1988) Proc Natl Acad Sci USA 85(5): 2553


SAD1
Jain et al., Crop Science, 39 (6), 1999: 1696


SAD2
Jain et al., Crop Science, 39 (6), 1999: 1696


nos
Shaw et al. (1984) Nucleic Acids Res. 12(20):



7831-7846


V-ATPase
WO 01/14572


Super
WO 95/14098


promoter


G-box
WO 94/12015


proteins









Ubiquitous Promoter

A ubiquitous promoter is active in substantially all tissues or cells of an organism.


Developmentally-Regulated Promoter

A developmentally-regulated promoter is active during certain developmental stages or in parts of the plant that undergo developmental changes.


Inducible Promoter

An inducible promoter has induced or increased transcription initiation in response to a chemical (for a review see Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108), environmental or physical stimulus, or may be “stress-inducible”, i.e. activated when a plant is exposed to various stress conditions, or a “pathogen-inducible” i.e. activated when a plant is exposed to exposure to various pathogens.


Organ-Specific/Tissue-Specific Promoter

An organ-specific or tissue-specific promoter is one that is capable of preferentially initiating transcription in certain organs or tissues, such as the leaves, roots, seed tissue etc. For example, a “root-specific promoter” is a promoter that is transcriptionally active predominantly in plant roots, substantially to the exclusion of any other parts of a plant, whilst still allowing for any leaky expression in these other plant parts. Promoters able to initiate transcription in certain cells only are referred to herein as “cell-specific”.


Examples of root-specific promoters are listed in Table 2b below:









TABLE 2b







Examples of root-specific promoters








Gene Source
Reference





RCc3
Plant Mol Biol. 1995 January; 27(2): 237-48



Arabidopsis

Kovama et al., 2005; Mudge et al. (2002,


PHT1
Plant J. 31: 341)



Medicago

Xiao et al., 2006


phosphate


transporter



Arabidopsis

Nitz et al. (2001) Plant Sci 161(2): 337-346


Pyk10


root-expressible
Tingey et al., EMBO J. 6: 1, 1987.


genes


tobacco
Van der Zaal et al., Plant Mol. Biol. 16,


auxin-inducible
983, 1991.


gene


β-tubulin
Oppenheimer, et al., Gene 63: 87, 1988.


tobacco
Conkling, et al., Plant Physiol. 93: 1203,


root-specific
1990.


genes



B. napus G1-3b

U.S. Pat. No. 5,401,836


gene


SbPRP1
Suzuki et al., Plant Mol. Biol. 21: 109-119,



1993.


LRX1
Baumberger et al. 2001, Genes & Dev. 15:



1128


BTG-26
US 20050044585



Brassica napus



LeAMT1 (tomato)
Lauter et al. (1996, PNAS 3: 8139)


The LeNRT1-1
Lauter et al. (1996, PNAS 3: 8139)


(tomato)


class I patatin
Liu et al., Plant Mol. Biol. 153:


gene (potato)
386-395, 1991.


KDC1
Downey et al. (2000, J. Biol. Chem. 275:


(Daucus carota)
39420)


TobRB7 gene
W Song (1997) PhD Thesis, North Carolina



State University, Raleigh, NC USA


OsRAB5a (rice)
Wang et al. 2002, Plant Sci. 163: 273


ALF5
Diener et al. (2001, Plant Cell 13: 1625)


(Arabidopsis)


NRT2; 1Np
Quesada et al. (1997, Plant Mol. Biol. 34:


(N. plumbaginifolia)
265)









A seed-specific promoter is transcriptionally active predominantly in seed tissue, but not necessarily exclusively in seed tissue (in cases of leaky expression). The seed-specific promoter may be active during seed development and/or during germination. The seed specific promoter may be endosperm/aleurone/embryo specific. Examples of seed-specific promoters (endosperm/aleurone/embryo specific) are shown in Table 2c to Table 2f below. Further examples of seed-specific promoters are given in Qing Qu and Takaiwa (Plant Biotechnol. J. 2, 113-125, 2004), which disclosure is incorporated by reference herein as if fully set forth.









TABLE 2c







Examples of seed-specific promoters








Gene source
Reference





seed-specific genes
Simon et al., Plant Mol. Biol. 5: 191, 1985;



Scofield et al., J. Biol. Chem. 262: 12202, 1987.;



Baszczynski et al., Plant Mol. Biol. 14: 633, 1990.


Brazil Nut albumin
Pearson et al., Plant Mol. Biol. 18: 235-245, 1992.


legumin
Ellis et al., Plant Mol. Biol. 10: 203-214, 1988.


glutelin (rice)
Takaiwa et al., Mol. Gen. Genet. 208: 15-22, 1986;



Takaiwa et al., FEBS Letts. 221: 43-47, 1987.


zein
Matzke et al Plant Mol Biol, 14(3): 323-32 1990


napA
Stalberg et al, Planta 199: 515-519, 1996.


wheat LMW and HMW
Mol Gen Genet 216: 81-90, 1989; NAR 17: 461-2, 1989


glutenin-1


wheat SPA
Albani et al, Plant Cell, 9: 171-184, 1997


wheat α, β, γ-gliadins
EMBO J. 3: 1409-15, 1984


barley Itr1 promoter
Diaz et al. (1995) Mol Gen Genet 248(5): 592-8


barley B1, C, D, hordein
Theor Appl Gen 98: 1253-62, 1999; Plant J 4: 343-55,



1993; Mol Gen Genet 250: 750-60, 1996


barley DOF
Mena et al, The Plant Journal, 116(1): 53-62, 1998


blz2
EP99106056.7


synthetic promoter
Vicente-Carbajosa et al., Plant J. 13: 629-640, 1998.


rice prolamin NRP33
Wu et al, Plant Cell Physiology 39(8) 885-889, 1998


rice a-globulin Glb-1
Wu et al, Plant Cell Physiology 39(8) 885-889, 1998


rice OSH1
Sato et al, Proc. Natl. Acad. Sci. USA, 93: 8117-8122,



1996


rice α-globulin
Nakase et al. Plant Mol. Biol. 33: 513-522, 1997


REB/OHP-1


rice ADP-glucose
Trans Res 6: 157-68, 1997


pyrophosphorylase


maize ESR gene family
Plant J 12: 235-46, 1997



sorghum α-kafirin

DeRose et al., Plant Mol. Biol 32: 1029-35, 1996


KNOX
Postma-Haarsma et al, Plant Mol. Biol. 39: 257-71, 1999


rice oleosin
Wu et al, J. Biochem. 123: 386, 1998


sunflower oleosin
Cummins et al., Plant Mol. Biol. 19: 873-876, 1992


PRO0117, putative rice 40S
WO 2004/070039


ribosomal protein


PRO0136, rice alanine
unpublished


aminotransferase


PRO0147, trypsin inhibitor
unpublished


ITR1 (barley)


PRO0151, rice WSI18
WO 2004/070039


PRO0175, rice RAB21
WO 2004/070039


PRO005
WO 2004/070039


PRO0095
WO 2004/070039


α-amylase (Amy32b)
Lanahan et al, Plant Cell 4: 203-211, 1992; Skriver et al,



Proc Natl Acad Sci USA 88: 7266-7270, 1991


cathepsin β-like gene
Cejudo et al, Plant Mol Biol 20: 849-856, 1992


Barley Ltp2
Kalla et al., Plant J. 6: 849-60, 1994


Chi26
Leah et al., Plant J. 4: 579-89, 1994


Maize B-Peru
Selinger et al., Genetics 149; 1125-38, 1998
















TABLE 2d







examples of endosperm-specific promoters








Gene source
Reference





glutelin (rice)
Takaiwa et al. (1986) Mol Gen Genet 208: 15-22;



Takaiwa et al. (1987) FEBS Letts. 221: 43-47


zein
Matzke et al., (1990) Plant Mol Biol 14(3):



323-32


wheat LMW and
Colot et al. (1989) Mol Gen Genet 216: 81-90,


HMW glutenin-1
Anderson et al. (1989) NAR 17: 461-2


wheat SPA
Albani et al. (1997) Plant Cell 9: 171-184


wheat gliadins
Rafalski et al. (1984) EMBO 3: 1409-15


barley Itr1
Diaz et al. (1995) Mol Gen Genet 248(5): 592-8


promoter


barley B1, C, D,
Cho et al. (1999) Theor Appl Genet 98: 1253-62;


hordein
Muller et al. (1993) Plant J 4: 343-55;



Sorenson et al. (1996) Mol Gen Genet 250:



750-60


barley DOF
Mena et al, (1998) Plant J 116(1): 53-62


blz2
Onate et al. (1999) J Biol Chem 274(14):



9175-82


synthetic
Vicente-Carbajosa et al. (1998) Plant J 13:


promoter
629-640


rice prolamin
Wu et al, (1998) Plant Cell Physiol 39(8)


NRP33
885-889


rice globulin
Wu et al. (1998) Plant Cell Physiol 39(8)


Glb-1
885-889


rice globulin
Nakase et al. (1997) Plant Molec Biol 33:


REB/OHP-1
513-522


rice ADP-glucose
Russell et al. (1997) Trans Res 6: 157-68


pyrophosphorylase


maize ESR gene
Opsahl-Ferstad et al. (1997) Plant J 12:


family
235-46



sorghum kafirin

DeRose et al. (1996) Plant Mol Biol 32:



1029-35
















TABLE 2e







Examples of embryo specific promoters:










Gene source
Reference







rice OSH1
Sato et al, Proc. Natl. Acad. Sci. USA, 93:




8117-8122, 1996



KNOX
Postma-Haarsma et al, Plant Mol. Biol. 39:




257-71, 1999



PRO0151
WO 2004/070039



PRO0175
WO 2004/070039



PRO005
WO 2004/070039



PRO0095
WO 2004/070039

















TABLE 2f







Examples of aleurone-specific promoters:










Gene source
Reference







α-amylase
Lanahan et al, Plant Cell 4: 203-211, 1992;



(Amy32b)
Skriver et al, Proc Natl Acad Sci USA 88:




7266-7270, 1991



cathepsin
Cejudo et al, Plant Mol Biol 20: 849-856, 1992



β-like gene



Barley Ltp2
Kalla et al., Plant J. 6: 849-60, 1994



Chi26
Leah et al., Plant J. 4: 579-89, 1994



Maize B-Peru
Selinger et al., Genetics 149; 1125-38, 1998










A green tissue-specific promoter as defined herein is a promoter that is transcriptionally active predominantly in green tissue, substantially to the exclusion of any other parts of a plant, whilst still allowing for any leaky expression in these other plant parts.


Examples of green tissue-specific promoters which may be used to perform the methods of the invention are shown in Table 2g below.









TABLE 2g







Examples of green tissue-specific promoters











Gene
Expression
Reference







Maize Orthophosphate
Leaf
Fukavama et al., 2001



dikinase
specific



Maize
Leaf
Kausch et al., 2001



Phosphoenolpyruvate
specific



carboxylase



Rice
Leaf
Lin et al., 2003



Phosphoenolpyruvate
specific



carboxylase



Rice small subunit
Leaf
Nomura et al., 2000



Rubisco
specific



rice beta expansin
Shoot
WO 2004/070039



EXBP9
specific



Pigeonpea small
Leaf
Panguluri et al., 2005



subunit Rubisco
specific



Pea RBCS3A
Leaf




specific










Another example of a tissue-specific promoter is a meristem-specific promoter, which is transcriptionally active predominantly in meristematic tissue, substantially to the exclusion of any other parts of a plant, whilst still allowing for any leaky expression in these other plant parts. Examples of green meristem-specific promoters which may be used to perform the methods of the invention are shown in Table 2h below.









TABLE 2h







Examples of meristem-specific promoters









Gene source
Expression pattern
Reference





rice OSH1
Shoot apical meristem,
Sato et al. (1996)



from embryo globular
Proc. Natl. Acad. Sci.



stage to seedling stage
USA, 93: 8117-8122


Rice
Meristem specific
BAD87835.1


metallothionein


WAK1 & WAK 2
Shoot and root apical
Wagner & Kohorn (2001)



meristems, and in
Plant Cell 13(2):



expanding leaves and
303-318



sepals









Terminator

The term “terminator” encompasses a control sequence which is a DNA sequence at the end of a transcriptional unit which signals 3′ processing and polyadenylation of a primary transcript and termination of transcription. The terminator can be derived from the natural gene, from a variety of other plant genes, or from T-DNA. The terminator to be added may be derived from, for example, the nopaline synthase or octopine synthase genes, or alternatively from another plant gene, or less preferably from any other eukaryotic gene.


Modulation

The term “modulation” means in relation to expression or gene expression, a process in which the expression level is changed by said gene expression in comparison to the control plant, the expression level may be increased or decreased. The original, unmodulated expression may be of any kind of expression of a structural RNA (rRNA, tRNA) or mRNA with subsequent translation. The term “modulating the activity” shall mean any change of the expression of the inventive nucleic acid sequences or encoded proteins, which leads to increased yield and/or increased growth of the plants.


Expression

The term “expression” or “gene expression” means the transcription of a specific gene or specific genes or specific genetic construct. The term “expression” or “gene expression” in particular means the transcription of a gene or genes or genetic construct into structural RNA (rRNA, tRNA) or mRNA with or without subsequent translation of the latter into a protein. The process includes transcription of DNA and processing of the resulting mRNA product.


Increased Expression/Overexpression

The term “increased expression” or “overexpression” as used herein means any form of expression that is additional to the original wild-type expression level.


Methods for increasing expression of genes or gene products are well documented in the art and include, for example, overexpression driven by appropriate promoters, the use of transcription enhancers or translation enhancers. Isolated nucleic acids which serve as promoter or enhancer elements may be introduced in an appropriate position (typically upstream) of a non-heterologous form of a polynucleotide so as to upregulate expression of a nucleic acid encoding the polypeptide of interest. For example, endogenous promoters may be altered in vivo by mutation, deletion, and/or substitution (see, Kmiec, U.S. Pat. No. 5,565,350; Zarling et al., WO9322443), or isolated promoters may be introduced into a plant cell in the proper orientation and distance from a gene of the present invention so as to control the expression of the gene.


If polypeptide expression is desired, it is generally desirable to include a polyadenylation region at the 3′-end of a polynucleotide coding region. The polyadenylation region can be derived from the natural gene, from a variety of other plant genes, or from T-DNA. The 3′ end sequence to be added may be derived from, for example, the nopaline synthase or octopine synthase genes, or alternatively from another plant gene, or less preferably from any other eukaryotic gene.


An intron sequence may also be added to the 5′ untranslated region (UTR) or the coding sequence of the partial coding sequence to increase the amount of the mature message that accumulates in the cytosol. Inclusion of a spliceable intron in the transcription unit in both plant and animal expression constructs has been shown to increase gene expression at both the mRNA and protein levels up to 1000-fold (Buchman and Berg (1988) Mol. Cell. biol. 8: 4395-4405; Callis et al. (1987) Genes Dev 1:1183-1200). Such intron enhancement of gene expression is typically greatest when placed near the 5′ end of the transcription unit. Use of the maize introns Adh1-S intron 1, 2, and 6, the Bronze-1 intron are known in the art. For general information see: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, N.Y. (1994).


Endogenous Gene

Reference herein to an “endogenous” gene not only refers to the gene in question as found in a plant in its natural form (i.e., without there being any human intervention), but also refers to that same gene (or a substantially homologous nucleic acid/gene) in an isolated form subsequently (re)introduced into a plant (a transgene). For example, a transgenic plant containing such a transgene may encounter a substantial reduction of the transgene expression and/or substantial reduction of expression of the endogenous gene. The isolated gene may be isolated from an organism or may be manmade, for example by chemical synthesis.


Decreased Expression

Reference herein to “decreased expression” or “reduction or substantial elimination” of expression is taken to mean a decrease in endogenous gene expression and/or polypeptide levels and/or polypeptide activity relative to control plants. The reduction or substantial elimination is in increasing order of preference at least 10%, 20%, 30%, 40% or 50%, 60%, 70%, 80%, 85%, 90%, or 95%, 96%, 97%, 98%, 99% or more reduced compared to that of control plants. Methods for decreasing expression are known in the art and the skilled person would readily be able to adapt the known methods for silencing so as to achieve reduction of expression of an endogenous gene in a whole plant or in parts thereof through the use of an appropriate promoter, for example.


For the reduction or substantial elimination of expression an endogenous gene in a plant, a sufficient length of substantially contiguous nucleotides of a nucleic acid sequence is required. In order to perform gene silencing, this may be as little as 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10 or fewer nucleotides, alternatively this may be as much as the entire gene (including the 5′ and/or 3′ UTR, either in part or in whole). The stretch of substantially contiguous nucleotides may be derived from the nucleic acid encoding the protein of interest (target gene), or from any nucleic acid capable of encoding an orthologue, paralogue or homologue of the protein of interest. Preferably, the stretch of substantially contiguous nucleotides is capable of forming hydrogen bonds with the target gene (either sense or antisense strand), more preferably, the stretch of substantially contiguous nucleotides has, in increasing order of preference, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 100% sequence identity to the target gene (either sense or antisense strand). A nucleic acid sequence encoding a (functional) polypeptide is not a requirement for the various methods discussed herein for the reduction or substantial elimination of expression of an endogenous gene.


Examples of various methods for the reduction or substantial elimination of expression in a plant of an endogenous gene, or for lowering levels and/or activity of a protein, are known to the skilled in the art. A skilled person would readily be able to adapt the known methods for silencing, so as to achieve reduction of expression of an endogenous gene in a whole plant or in parts thereof through the use of an appropriate promoter, for example.


This reduction or substantial elimination of expression may be achieved using routine tools and techniques. A preferred method for the reduction or substantial elimination of endogenous gene expression is by introducing and expressing in a plant a genetic construct into which the nucleic acid (in this case a stretch of substantially contiguous nucleotides derived from the gene of interest, or from any nucleic acid capable of encoding an orthologue, paralogue or homologue of any one of the protein of interest) is cloned as an inverted repeat (in part or completely), separated by a spacer (non-coding DNA).


In such a preferred method, expression of the endogenous gene is reduced or substantially eliminated through RNA-mediated silencing using an inverted repeat of a nucleic acid or a part thereof (in this case a stretch of substantially contiguous nucleotides derived from the gene of interest, or from any nucleic acid capable of encoding an orthologue, paralogue or homologue of the protein of interest), preferably capable of forming a hairpin structure. The inverted repeat is cloned in an expression vector comprising control sequences. A non-coding DNA nucleic acid sequence (a spacer, for example a matrix attachment region fragment (MAR), an intron, a polylinker, etc.) is located between the two inverted nucleic acids forming the inverted repeat. After transcription of the inverted repeat, a chimeric RNA with a self-complementary structure is formed (partial or complete). This double-stranded RNA structure is referred to as the hairpin RNA (hpRNA). The hpRNA is processed by the plant into siRNAs that are incorporated into an RNA-induced silencing complex (RISC). The RISC further cleaves the mRNA transcripts, thereby substantially reducing the number of mRNA transcripts to be translated into polypeptides. For further general details see for example, Grierson et al. (1998) WO 98/53083; Waterhouse et al. (1999) WO 99/53050).


Performance of the methods of the invention does not rely on introducing and expressing in a plant a genetic construct into which the nucleic acid is cloned as an inverted repeat, but any one or more of several well-known “gene silencing” methods may be used to achieve the same effects.


One such method for the reduction of endogenous gene expression is RNA-mediated silencing of gene expression (downregulation). Silencing in this case is triggered in a plant by a double stranded RNA sequence (dsRNA) that is substantially similar to the target endogenous gene. This dsRNA is further processed by the plant into about 20 to about 26 nucleotides called short interfering RNAs (siRNAs). The siRNAs are incorporated into an RNA-induced silencing complex (RISC) that cleaves the mRNA transcript of the endogenous target gene, thereby substantially reducing the number of mRNA transcripts to be translated into a polypeptide. Preferably, the double stranded RNA sequence corresponds to a target gene.


Another example of an RNA silencing method involves the introduction of nucleic acid sequences or parts thereof (in this case a stretch of substantially contiguous nucleotides derived from the gene of interest, or from any nucleic acid capable of encoding an orthologue, paralogue or homologue of the protein of interest) in a sense orientation into a plant. “Sense orientation” refers to a DNA sequence that is homologous to an mRNA transcript thereof. Introduced into a plant would therefore be at least one copy of the nucleic acid sequence. The additional nucleic acid sequence will reduce expression of the endogenous gene, giving rise to a phenomenon known as co-suppression. The reduction of gene expression will be more pronounced if several additional copies of a nucleic acid sequence are introduced into the plant, as there is a positive correlation between high transcript levels and the triggering of co-suppression.


Another example of an RNA silencing method involves the use of antisense nucleic acid sequences. An “antisense” nucleic acid sequence comprises a nucleotide sequence that is complementary to a “sense” nucleic acid sequence encoding a protein, i.e. complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA transcript sequence. The antisense nucleic acid sequence is preferably complementary to the endogenous gene to be silenced. The complementarity may be located in the “coding region” and/or in the “non-coding region” of a gene. The term “coding region” refers to a region of the nucleotide sequence comprising codons that are translated into amino acid residues. The term “non-coding region” refers to 5′ and 3′ sequences that flank the coding region that are transcribed but not translated into amino acids (also referred to as 5′ and 3′ untranslated regions).


Antisense nucleic acid sequences can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid sequence may be complementary to the entire nucleic acid sequence (in this case a stretch of substantially contiguous nucleotides derived from the gene of interest, or from any nucleic acid capable of encoding an orthologue, paralogue or homologue of the protein of interest), but may also be an oligonucleotide that is antisense to only a part of the nucleic acid sequence (including the mRNA 5′ and 3′ UTR). For example, the antisense oligonucleotide sequence may be complementary to the region surrounding the translation start site of an mRNA transcript encoding a polypeptide. The length of a suitable antisense oligonucleotide sequence is known in the art and may start from about 50, 45, 40, 35, 30, 25, 20, 15 or 10 nucleotides in length or less. An antisense nucleic acid sequence according to the invention may be constructed using chemical synthesis and enzymatic ligation reactions using methods known in the art. For example, an antisense nucleic acid sequence (e.g., an antisense oligonucleotide sequence) may be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acid sequences, e.g., phosphorothioate derivatives and acridine substituted nucleotides may be used. Examples of modified nucleotides that may be used to generate the antisense nucleic acid sequences are well known in the art. Known nucleotide modifications include methylation, cyclization and ‘caps’ and substitution of one or more of the naturally occurring nucleotides with an analogue such as inosine. Other modifications of nucleotides are well known in the art.


The antisense nucleic acid sequence can be produced biologically using an expression vector into which a nucleic acid sequence has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest). Preferably, production of antisense nucleic acid sequences in plants occurs by means of a stably integrated nucleic acid construct comprising a promoter, an operably linked antisense oligonucleotide, and a terminator.


The nucleic acid molecules used for silencing in the methods of the invention (whether introduced into a plant or generated in situ) hybridize with or bind to mRNA transcripts and/or genomic DNA encoding a polypeptide to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid sequence which binds to DNA duplexes, through specific interactions in the major groove of the double helix. Antisense nucleic acid sequences may be introduced into a plant by transformation or direct injection at a specific tissue site. Alternatively, antisense nucleic acid sequences can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense nucleic acid sequences can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid sequence to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid sequences can also be delivered to cells using the vectors described herein.


According to a further aspect, the antisense nucleic acid sequence is an a-anomeric nucleic acid sequence. An a-anomeric nucleic acid sequence forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual b-units, the strands run parallel to each other (Gaultier et al. (1987) Nucl Ac Res 15: 6625-6641). The antisense nucleic acid sequence may also comprise a 2′-o-methylribonucleotide (Inoue et al. (1987) Nucl Ac Res 15, 6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215, 327-330).


The reduction or substantial elimination of endogenous gene expression may also be performed using ribozymes. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid sequence, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334, 585-591) can be used to catalytically cleave mRNA transcripts encoding a polypeptide, thereby substantially reducing the number of mRNA transcripts to be translated into a polypeptide. A ribozyme having specificity for a nucleic acid sequence can be designed (see for example: Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742). Alternatively, mRNA transcripts corresponding to a nucleic acid sequence can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules (Bartel and Szostak (1993) Science 261, 1411-1418). The use of ribozymes for gene silencing in plants is known in the art (e.g., Atkins et al. (1994) WO 94/00012; Lenne et al. (1995) WO 95/03404; Lutziger et al. (2000) WO 00/00619; Prinsen et al. (1997) WO 97/13865 and Scott et al. (1997) WO 97/38116).


Gene silencing may also be achieved by insertion mutagenesis (for example, T-DNA insertion or transposon insertion) or by strategies as described by, among others, Angell and Baulcombe ((1999) Plant J 20(3): 357-62), (Amplicon VIGS WO 98/36083), or Baulcombe (WO 99/15682).


Gene silencing may also occur if there is a mutation on an endogenous gene and/or a mutation on an isolated gene/nucleic acid subsequently introduced into a plant. The reduction or substantial elimination may be caused by a non-functional polypeptide. For example, the polypeptide may bind to various interacting proteins; one or more mutation(s) and/or truncation(s) may therefore provide for a polypeptide that is still able to bind interacting proteins (such as receptor proteins) but that cannot exhibit its normal function (such as signalling ligand).


A further approach to gene silencing is by targeting nucleic acid sequences complementary to the regulatory region of the gene (e.g., the promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells. See Helene, C., Anticancer Drug Res. 6, 569-84, 1991; Helene et al., Ann. N.Y. Acad. Sci. 660, 27-36 1992; and Maher, L. J. Bioassays 14, 807-15, 1992.


Other methods, such as the use of antibodies directed to an endogenous polypeptide for inhibiting its function in planta, or interference in the signalling pathway in which a polypeptide is involved, will be well known to the skilled man. In particular, it can be envisaged that manmade molecules may be useful for inhibiting the biological function of a target polypeptide, or for interfering with the signalling pathway in which the target polypeptide is involved.


Alternatively, a screening program may be set up to identify in a plant population natural variants of a gene, which variants encode polypeptides with reduced activity. Such natural variants may also be used for example, to perform homologous recombination.


Artificial and/or natural microRNAs (miRNAs) may be used to knock out gene expression and/or mRNA translation. Endogenous miRNAs are single stranded small RNAs of typically 19-24 nucleotides long. They function primarily to regulate gene expression and/or mRNA translation. Most plant microRNAs (miRNAs) have perfect or near-perfect complementarity with their target sequences. However, there are natural targets with up to five mismatches. They are processed from longer non-coding RNAs with characteristic fold-back structures by double-strand specific RNases of the Dicer family. Upon processing, they are incorporated in the RNA-induced silencing complex (RISC) by binding to its main component, an Argonaute protein. MiRNAs serve as the specificity components of RISC, since they base-pair to target nucleic acids, mostly mRNAs, in the cytoplasm. Subsequent regulatory events include target mRNA cleavage and destruction and/or translational inhibition. Effects of miRNA overexpression are thus often reflected in decreased mRNA levels of target genes.


Artificial microRNAs (amiRNAs), which are typically 21 nucleotides in length, can be genetically engineered specifically to negatively regulate gene expression of single or multiple genes of interest. Determinants of plant microRNA target selection are well known in the art. Empirical parameters for target recognition have been defined and can be used to aid in the design of specific amiRNAs, (Schwab et al., Dev. Cell 8, 517-527, 2005). Convenient tools for design and generation of amiRNAs and their precursors are also available to the public (Schwab et al., Plant Cell 18, 1121-1133, 2006).


For optimal performance, the gene silencing techniques used for reducing expression in a plant of an endogenous gene requires the use of nucleic acid sequences from monocotyledonous plants for transformation of monocotyledonous plants, and from dicotyledonous plants for transformation of dicotyledonous plants. Preferably, a nucleic acid sequence from any given plant species is introduced into that same species. For example, a nucleic acid sequence from rice is transformed into a rice plant. However, it is not an absolute requirement that the nucleic acid sequence to be introduced originates from the same plant species as the plant in which it will be introduced. It is sufficient that there is substantial homology between the endogenous target gene and the nucleic acid to be introduced.


Described above are examples of various methods for the reduction or substantial elimination of expression in a plant of an endogenous gene. A person skilled in the art would readily be able to adapt the aforementioned methods for silencing so as to achieve reduction of expression of an endogenous gene in a whole plant or in parts thereof through the use of an appropriate promoter, for example.


Selectable Marker (Gene)/Reporter Gene

“Selectable marker”, “selectable marker gene” or “reporter gene” includes any gene that confers a phenotype on a cell in which it is expressed to facilitate the identification and/or selection of cells that are transfected or transformed with a nucleic acid construct of the invention. These marker genes enable the identification of a successful transfer of the nucleic acid molecules via a series of different principles. Suitable markers may be selected from markers that confer antibiotic or herbicide resistance, that introduce a new metabolic trait or that allow visual selection. Examples of selectable marker genes include genes conferring resistance to antibiotics (such as nptII that phosphorylates neomycin and kanamycin, or hpt, phosphorylating hygromycin, or genes conferring resistance to, for example, bleomycin, streptomycin, tetracyclin, chloramphenicol, ampicillin, gentamycin, geneticin (G418), spectinomycin or blasticidin), to herbicides (for example bar which provides resistance to Basta®; aroA or gox providing resistance against glyphosate, or the genes conferring resistance to, for example, imidazolinone, phosphinothricin or sulfonylurea), or genes that provide a metabolic trait (such as manA that allows plants to use mannose as sole carbon source or xylose isomerase for the utilisation of xylose, or antinutritive markers such as the resistance to 2-deoxyglucose). Expression of visual marker genes results in the formation of colour (for example β-glucuronidase, GUS or β-galactosidase with its coloured substrates, for example X-Gal), luminescence (such as the luciferin/luceferase system) or fluorescence (Green Fluorescent Protein, GFP, and derivatives thereof). This list represents only a small number of possible markers. The skilled worker is familiar with such markers. Different markers are preferred, depending on the organism and the selection method.


It is known that upon stable or transient integration of nucleic acids into plant cells, only a minority of the cells takes up the foreign DNA and, if desired, integrates it into its genome, depending on the expression vector used and the transfection technique used. To identify and select these integrants, a gene coding for a selectable marker (such as the ones described above) is usually introduced into the host cells together with the gene of interest. These markers can for example be used in mutants in which these genes are not functional by, for example, deletion by conventional methods. Furthermore, nucleic acid molecules encoding a selectable marker can be introduced into a host cell on the same vector that comprises the sequence encoding the polypeptides of the invention or used in the methods of the invention, or else in a separate vector. Cells which have been stably transfected with the introduced nucleic acid can be identified for example by selection (for example, cells which have integrated the selectable marker survive whereas the other cells die). The marker genes may be removed or excised from the transgenic cell once they are no longer needed. Techniques for marker gene removal are known in the art, useful techniques are described above in the definitions section.


Since the marker genes, particularly genes for resistance to antibiotics and herbicides, are no longer required or are undesired in the transgenic host cell once the nucleic acids have been introduced successfully, the process according to the invention for introducing the nucleic acids advantageously employs techniques which enable the removal or excision of these marker genes. One such a method is what is known as co-transformation. The co-transformation method employs two vectors simultaneously for the transformation, one vector bearing the nucleic acid according to the invention and a second bearing the marker gene(s). A large proportion of transformants receives or, in the case of plants, comprises (up to 40% or more of the transformants), both vectors. In case of transformation with Agrobacteria, the transformants usually receive only a part of the vector, i.e. the sequence flanked by the T-DNA, which usually represents the expression cassette. The marker genes can subsequently be removed from the transformed plant by performing crosses. In another method, marker genes integrated into a transposon are used for the transformation together with desired nucleic acid (known as the Ac/Ds technology). The transformants can be crossed with a transposase source or the transformants are transformed with a nucleic acid construct conferring expression of a transposase, transiently or stable. In some cases (approx. 10%), the transposon jumps out of the genome of the host cell once transformation has taken place successfully and is lost. In a further number of cases, the transposon jumps to a different location. In these cases the marker gene must be eliminated by performing crosses. In microbiology, techniques were developed which make possible, or facilitate, the detection of such events. A further advantageous method relies on what is known as recombination systems; whose advantage is that elimination by crossing can be dispensed with. The best-known system of this type is what is known as the Cre/lox system. Cre1 is a recombinase that removes the sequences located between the loxP sequences. If the marker gene is integrated between the loxP sequences, it is removed once transformation has taken place successfully, by expression of the recombinase. Further recombination systems are the HIN/HIX, FLP/FRT and REP/STB system (Tribble et al., J. Biol. Chem., 275, 2000: 22255-22267; Velmurugan et al., J. Cell Biol., 149, 2000: 553-566). A site-specific integration into the plant genome of the nucleic acid sequences according to the invention is possible. Naturally, these methods can also be applied to microorganisms such as yeast, fungi or bacteria.


Transgenic/Transgene/Recombinant

For the purposes of the invention, “transgenic”, “transgene” or “recombinant” means with regard to, for example, a nucleic acid sequence, an expression cassette, gene construct or a vector comprising the nucleic acid sequence or an organism transformed with the nucleic acid sequences, expression cassettes or vectors according to the invention, all those constructions brought about by recombinant methods in which either

    • (a) the nucleic acid sequences encoding proteins useful in the methods of the invention, or
    • (b) genetic control sequence(s) which is operably linked with the nucleic acid sequence according to the invention, for example a promoter, or
    • (c) a) and b)


      are not located in their natural genetic environment or have been modified by recombinant methods, it being possible for the modification to take the form of, for example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide residues. The natural genetic environment is understood as meaning the natural genomic or chromosomal locus in the original plant or the presence in a genomic library. In the case of a genomic library, the natural genetic environment of the nucleic acid sequence is preferably retained, at least in part. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, especially preferably at least 1000 bp, most preferably at least 5000 bp. A naturally occurring expression cassette—for example the naturally occurring combination of the natural promoter of the nucleic acid sequences with the corresponding nucleic acid sequence encoding a polypeptide useful in the methods of the present invention, as defined above—becomes a transgenic expression cassette when this expression cassette is modified by non-natural, synthetic (“artificial”) methods such as, for example, mutagenic treatment. Suitable methods are described, for example, in U.S. Pat. No. 5,565,350 or WO 00/15815.


A transgenic plant for the purposes of the invention is thus understood as meaning, as above, that the nucleic acids used in the method of the invention are not at their natural locus in the genome of said plant, it being possible for the nucleic acids to be expressed homologously or heterologously. However, as mentioned, transgenic also means that, while the nucleic acids according to the invention or used in the inventive method are at their natural position in the genome of a plant, the sequence has been modified with regard to the natural sequence, and/or that the regulatory sequences of the natural sequences have been modified. Transgenic is preferably understood as meaning the expression of the nucleic acids according to the invention at an unnatural locus in the genome, i.e. homologous or, preferably, heterologous expression of the nucleic acids takes place. Preferred transgenic plants are mentioned herein.


Transformation

The term “introduction” or “transformation” as referred to herein encompasses the transfer of an exogenous polynucleotide into a host cell, irrespective of the method used for transfer. Plant tissue capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, may be transformed with a genetic construct of the present invention and a whole plant regenerated there from. The particular tissue chosen will vary depending on the clonal propagation systems available for, and best suited to, the particular species being transformed. Exemplary tissue targets include leaf disks, pollen, embryos, cotyledons, hypocotyls, megagametophytes, callus tissue, existing meristematic tissue (e.g., apical meristem, axillary buds, and root meristems), and induced meristem tissue (e.g., cotyledon meristem and hypocotyl meristem). The polynucleotide may be transiently or stably introduced into a host cell and may be maintained non-integrated, for example, as a plasmid. Alternatively, it may be integrated into the host genome. The resulting transformed plant cell may then be used to regenerate a transformed plant in a manner known to persons skilled in the art.


The transfer of foreign genes into the genome of a plant is called transformation. Transformation of plant species is now a fairly routine technique. Advantageously, any of several transformation methods may be used to introduce the gene of interest into a suitable ancestor cell. The methods described for the transformation and regeneration of plants from plant tissues or plant cells may be utilized for transient or for stable transformation. Transformation methods include the use of liposomes, electroporation, chemicals that increase free DNA uptake, injection of the DNA directly into the plant, particle gun bombardment, transformation using viruses or pollen and microprojection. Methods may be selected from the calcium/polyethylene glycol method for protoplasts (Krens, F. A. et al., (1982) Nature 296, 72-74; Negrutiu I et al. (1987) Plant Mol Biol 8: 363-373); electroporation of protoplasts (Shillito R. D. et al. (1985) Bio/Technol 3, 1099-1102); microinjection into plant material (Crossway A et al., (1986) Mol. Gen Genet 202: 179-185); DNA or RNA-coated particle bombardment (Klein T M et al., (1987) Nature 327: 70) infection with (non-integrative) viruses and the like. Transgenic plants, including transgenic crop plants, are preferably produced via Agrobacterium-mediated transformation. An advantageous transformation method is the transformation in planta. To this end, it is possible, for example, to allow the agrobacteria to act on plant seeds or to inoculate the plant meristem with agrobacteria. It has proved particularly expedient in accordance with the invention to allow a suspension of transformed agrobacteria to act on the intact plant or at least on the flower primordia. The plant is subsequently grown on until the seeds of the treated plant are obtained (Clough and Bent, Plant J. (1998) 16, 735-743). Methods for Agrobacterium-mediated transformation of rice include well known methods for rice transformation, such as those described in any of the following: European patent application EP 1198985 A1, Aldemita and Hodges (Planta 199: 612-617, 1996); Chan et al. (Plant Mol Biol 22 (3): 491-506, 1993), Hiei et al. (Plant J 6 (2): 271-282, 1994), which disclosures are incorporated by reference herein as if fully set forth. In the case of corn transformation, the preferred method is as described in either Ishida et al. (Nat. Biotechnol 14(6): 745-50, 1996) or Frame et al. (Plant Physiol 129(1): 13-22, 2002), which disclosures are incorporated by reference herein as if fully set forth. Said methods are further described by way of example in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds. S. D. Kung and R. Wu, Academic Press (1993) 128-143 and in Potrykus Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991) 205-225). The nucleic acids or the construct to be expressed is preferably cloned into a vector, which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984) 8711). Agrobacteria transformed by such a vector can then be used in known manner for the transformation of plants, such as plants used as a model, like Arabidopsis (Arabidopsis thaliana is within the scope of the present invention not considered as a crop plant), or crop plants such as, by way of example, tobacco plants, for example by immersing bruised leaves or chopped leaves in an agrobacterial solution and then culturing them in suitable media. The transformation of plants by means of Agrobacterium tumefaciens is described, for example, by Höfgen and Willmitzer in Nucl. Acid Res. (1988) 16, 9877 or is known inter alia from F. F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, eds. S. D. Kung and R. Wu, Academic Press, 1993, pp. 15-38.


In addition to the transformation of somatic cells, which then have to be regenerated into intact plants, it is also possible to transform the cells of plant meristems and in particular those cells which develop into gametes. In this case, the transformed gametes follow the natural plant development, giving rise to transgenic plants. Thus, for example, seeds of Arabidopsis are treated with agrobacteria and seeds are obtained from the developing plants of which a certain proportion is transformed and thus transgenic [Feldman, K A and Marks M D (1987). Mol Gen Genet 208:274-289; Feldmann K (1992). In: C Koncz, N-H Chua and J Shell, eds, Methods in Arabidopsis Research. Word Scientific, Singapore, pp. 274-289]. Alternative methods are based on the repeated removal of the inflorescences and incubation of the excision site in the center of the rosette with transformed agrobacteria, whereby transformed seeds can likewise be obtained at a later point in time (Chang (1994). Plant J. 5: 551-558; Katavic (1994). Mol Gen Genet, 245: 363-370). However, an especially effective method is the vacuum infiltration method with its modifications such as the “floral dip” method. In the case of vacuum infiltration of Arabidopsis, intact plants under reduced pressure are treated with an agrobacterial suspension [Bechthold, N (1993). C R Acad Sci Paris Life Sci, 316: 1194-1199], while in the case of the “floral dip” method the developing floral tissue is incubated briefly with a surfactant-treated agrobacterial suspension [Clough, S J and Bent A F (1998) The Plant J. 16, 735-743]. A certain proportion of transgenic seeds are harvested in both cases, and these seeds can be distinguished from non-transgenic seeds by growing under the above-described selective conditions. In addition the stable transformation of plastids is of advantages because plastids are inherited maternally is most crops reducing or eliminating the risk of transgene flow through pollen. The transformation of the chloroplast genome is generally achieved by a process which has been schematically displayed in Klaus et al., 2004 [Nature Biotechnology 22 (2), 225-229]. Briefly the sequences to be transformed are cloned together with a selectable marker gene between flanking sequences homologous to the chloroplast genome. These homologous flanking sequences direct site specific integration into the plastome. Plastidal transformation has been described for many different plant species and an overview is given in Bock (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol. 2001 Sep. 21; 312 (3):425-38 or Maliga, P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol. 21, 20-28. Further biotechnological progress has recently been reported in form of marker free plastid transformants, which can be produced by a transient co-integrated maker gene (Klaus et al., 2004, Nature Biotechnology 22(2), 225-229).


T-DNA Activation Tagging

T-DNA activation tagging (Hayashi et al. Science (1992) 1350-1353), involves insertion of T-DNA, usually containing a promoter (may also be a translation enhancer or an intron), in the genomic region of the gene of interest or 10 kb up- or downstream of the coding region of a gene in a configuration such that the promoter directs expression of the targeted gene. Typically, regulation of expression of the targeted gene by its natural promoter is disrupted and the gene falls under the control of the newly introduced promoter. The promoter is typically embedded in a T-DNA. This T-DNA is randomly inserted into the plant genome, for example, through Agrobacterium infection and leads to modified expression of genes near the inserted T-DNA. The resulting transgenic plants show dominant phenotypes due to modified expression of genes close to the introduced promoter.


TILLING

The term “TILLING” is an abbreviation of “Targeted Induced Local Lesions In Genomes” and refers to a mutagenesis technology useful to generate and/or identify nucleic acids encoding proteins with modified expression and/or activity. TILLING also allows selection of plants carrying such mutant variants. These mutant variants may exhibit modified expression, either in strength or in location or in timing (if the mutations affect the promoter for example). These mutant variants may exhibit higher activity than that exhibited by the gene in its natural form. TILLING combines high-density mutagenesis with high-throughput screening methods. The steps typically followed in TILLING are: (a) EMS mutagenesis (Redei G P and Koncz C (1992) In Methods in Arabidopsis Research, Koncz C, Chua N H, Schell J, eds. Singapore, World Scientific Publishing Co, pp. 16-82; Feldmann et al., (1994) In Meyerowitz E M, Somerville C R, eds, Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp 137-172; Lightner J and Caspar T (1998) In J Martinez-Zapater, J Salinas, eds, Methods on Molecular Biology, Vol. 82. Humana Press, Totowa, N.J., pp 91-104); (b) DNA preparation and pooling of individuals; (c) PCR amplification of a region of interest; (d) denaturation and annealing to allow formation of heteroduplexes; (e) DHPLC, where the presence of a heteroduplex in a pool is detected as an extra peak in the chromatogram; (f) identification of the mutant individual; and (g) sequencing of the mutant PCR product. Methods for TILLING are well known in the art (McCallum et al., (2000) Nat Biotechnol 18: 455-457; reviewed by Stemple (2004) Nat Rev Genet 5(2): 145-50).


Homologous Recombination

Homologous recombination allows introduction in a genome of a selected nucleic acid at a defined selected position. Homologous recombination is a standard technology used routinely in biological sciences for lower organisms such as yeast or the moss Physcomilrella. Methods for performing homologous recombination in plants have been described not only for model plants (Offring a et al. (1990) EMBO J. 9(10): 3077-84) but also for crop plants, for example rice (Terada et al. (2002) Nat Biotech 20(10): 1030-4; lida and Terada (2004) Curr Opin Biotech 15(2): 132-8), and approaches exist that are generally applicable regardless of the target organism (Miller et al, Nature Biotechnol. 25, 778-785, 2007).


Yield

The term “yield” in general means a measurable produce of economic value, typically related to a specified crop, to an area, and to a period of time. Individual plant parts directly contribute to yield based on their number, size and/or weight, or the actual yield is the yield per square meter for a crop and year, which is determined by dividing total production (includes both harvested and appraised production) by planted square meters. The term “yield” of a plant may relate to vegetative biomass (root and/or shoot biomass), to reproductive organs, and/or to propagules (such as seeds) of that plant.


Early Vigour

“Early vigour” refers to active healthy well-balanced growth especially during early stages of plant growth, and may result from increased plant fitness due to, for example, the plants being better adapted to their environment (i.e. optimizing the use of energy resources and partitioning between shoot and root). Plants having early vigour also show increased seedling survival and a better establishment of the crop, which often results in highly uniform fields (with the crop growing in uniform manner, i.e. with the majority of plants reaching the various stages of development at substantially the same time), and often better and higher yield. Therefore, early vigour may be determined by measuring various factors, such as thousand kernel weight, percentage germination, percentage emergence, seedling growth, seedling height, root length, root and shoot biomass and many more.


Increase/Improve/Enhance

The terms “increase”, “improve” or “enhance” are interchangeable and shall mean in the sense of the application at least a 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%, preferably at least 15% or 20%, more preferably 25%, 30%, 35% or 40% more yield and/or growth in comparison to control plants as defined herein.


Seed Yield

Increased seed yield may manifest itself as one or more of the following: a) an increase in seed biomass (total seed weight) which may be on an individual seed basis and/or per plant and/or per square meter; b) increased number of flowers per plant; c) increased number of (filled) seeds; d) increased seed filling rate (which is expressed as the ratio between the number of filled seeds divided by the total number of seeds); e) increased harvest index, which is expressed as a ratio of the yield of harvestable parts, such as seeds, divided by the total biomass; and f) increased thousand kernel weight (TKW), and g) increased number of primary panicles, which is extrapolated from the number of filled seeds counted and their total weight. An increased TKW may result from an increased seed size and/or seed weight, and may also result from an increase in embryo and/or endosperm size.


An increase in seed yield may also be manifested as an increase in seed size and/or seed volume. Furthermore, an increase in seed yield may also manifest itself as an increase in seed area and/or seed length and/or seed width and/or seed perimeter. Increased seed yield may also result in modified architecture, or may occur because of modified architecture.


Greenness Index

The “greenness index” as used herein is calculated from digital images of plants. For each pixel belonging to the plant object on the image, the ratio of the green value versus the red value (in the RGB model for encoding color) is calculated. The greenness index is expressed as the percentage of pixels for which the green-to-red ratio exceeds a given threshold. Under normal growth conditions, under salt stress growth conditions, and under reduced nutrient availability growth conditions, the greenness index of plants is measured in the last imaging before flowering. In contrast, under drought stress growth conditions, the greenness index of plants is measured in the first imaging after drought.


Plant

The term “plant” as used herein encompasses whole plants, ancestors and progeny of the plants and plant parts, including seeds, shoots, stems, leaves, roots (including tubers), flowers, and tissues and organs, wherein each of the aforementioned comprise the gene/nucleic acid of interest. The term “plant” also encompasses plant cells, suspension cultures, callus tissue, embryos, meristematic regions, gametophytes, sporophytes, pollen and microspores, again wherein each of the aforementioned comprises the gene/nucleic acid of interest.


Plants that are particularly useful in the methods of the invention include all plants which belong to the superfamily Viridiplantae, in particular monocotyledonous and dicotyledonous plants including fodder or forage legumes, ornamental plants, food crops, trees or shrubs selected from the list comprising Acer spp., Actinidia spp., Abelmoschus spp., Agave sisalana, Agropyron spp., Agrostis stolonifera, Allium spp., Amaranthus spp., Ammophila arenaria, Ananas comosus, Annona spp., Apium graveolens, Arachis spp, Artocarpus spp., Asparagus officinalis, Avena spp. (e.g. Avena sativa, Avena fatua, Avena byzantina, Avena fatua var. sativa, Avena hybrida), Averrhoa carambola, Bambusa sp., Benincasa hispida, Bertholletia excelsea, Beta vulgaris, Brassica spp. (e.g. Brassica napus, Brassica raga ssp. [canola, oilseed rape, turnip rape]), Cadaba farinosa, Camellia sinensis, Canna indica, Cannabis sativa, Capsicum spp., Carex elata, Carica papaya, Carissa macrocarpa, Carya spp., Carthamus tinctorius, Castanea spp., Ceiba pentandra, Cichorium endivia, Cinnamomum spp., Citrullus lanatus, Citrus spp., Cocos spp., Coffea spp., Colocasia esculenta, Cola spp., Corchorus sp., Coriandrum sativum, Corylus spp., Crataegus spp., Crocus sativus, Cucurbila spp., Cucumis spp., Cynara spp., Daucus carota, Desmodium spp., Dimocarpus longan, Dioscorea spp., Diospyros spp., Echinochloa spp., Elaeis (e.g. Elaeis guineensis, Elaeis oleifera), Eleusine coracana, Eragrosgs tef, Erianthus sp., Eriobotrya japonica, Eucalyptus sp., Eugenia uniflora, Fagopyrum spp., Fagus spp., Festuca arundinacea, Ficus carica, Fortunella spp., Fragaria spp., Ginkgo biloba, Glycine spp. (e.g. Glycine max, Soja hispida or Soja max), Gossypium hirsutum, Helianthus spp. (e.g. Helianthus annuus), Hemerocallis fulva, Hibiscus spp., Hordeum spp. (e.g. Hordeum vulgare), Ipomoea batatas, Juglans spp., Lactuca sativa, Lathyrus spp., Lens culinaris, Linum usitatissimum, Litchi chinensis, Lotus spp., Luffa acutangula, Lupinus spp., Luzula sylvatica, Lycopersicon spp. (e.g. Lycopersicon esculentum, Lycopersicon lycopersicum, Lycopersicon pyriforme), Macrotyloma spp., Malus spp., Malpighia emarginata, Mammea americana, Mangifera indica, Manihot spp., Manilkara zapota, Medicago sativa, Melilotus spp., Mentha spp., Miscanthus sinensis, Momordica spp., Morus nigra, Musa spp., Nicotiana spp., Olea spp., Opuntia spp., Ornithopus spp., Oryza spp. (e.g. Oryza sativa, Oryza latifolia), Panicum mlliaceum, Panicum virgatum, Passiflora edulis, Pastinaca sativa, Pennisetum sp., Persea spp., Petroselinum crispum, Phalaris arundinacea, Phaseolus spp., Phleum pratense, Phoenix spp., Phragmites australis, Physalis spp., Pinus spp., Pistacia vera, Pisum spp., Poa spp., Populus spp., Prosopis spp., Prunus spp., Psidium spp., Punica granatum, Pyrus communis, Quercus spp., Raphanus sativus, Rheum rhabarbarum, Ribes spp., Ricinus communis, Rubus spp., Saccharum spp., Salix sp., Sambucus spp., Secale cereale, Sesamum spp., Sinapis sp., Solanum spp. (e.g. Solanum tuberosum, Solanum integrifolium or Solanum lycopersicum), Sorghum bicolor, Spinacia spp., Syzygium spp., Tagetes spp., Tamarindus indica, Theobroma cacao, Trifolium spp., Tripsacum dactyloides, Triticale sp., Triticosecale rimpaui, Triticum spp. (e.g. Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triticum sativum, Triticum monococcum or Triticum vulgare), Tropaeolum minus, Tropaeolum majus, Vaccinium spp., Vicia spp., Vigna spp., Viola odorata, Ms spp., Zea mays, Zizania palustris, Ziziphus spp., amongst others.


DETAILED DESCRIPTION OF THE INVENTION

Surprisingly, it has now been found that modulating expression in a plant of a nucleic acid encoding an alfin-like polypeptide gives plants having enhanced abiotic stress tolerance relative to control plants. According to a first embodiment, the present invention provides a method for enhancing tolerance to various abiotic stresses in plants relative to control plants, comprising modulating expression in a plant of a nucleic acid encoding an alfin-like polypeptide and optionally selecting for plants having enhanced tolerance to abiotic stress.


Furthermore, it has now surprisingly been found that modulating expression in a plant of a nucleic acid encoding a YRP polypeptide gives plants having enhanced abiotic stress tolerance relative to control plants. According to a first embodiment, the present invention provides a method for enhancing tolerance to various abiotic stresses in plants relative to control plants, comprising modulating expression in a plant of a nucleic acid encoding a YRP polypeptide and optionally selecting for plants having enhanced tolerance to abiotic stress.


Furthermore, it has now surprisingly been found that increasing expression in a plant of a nucleic acid sequence encoding a BRXL polypeptide as defined herein, gives plants having increased yield-related traits relative to control plants. According to a first embodiment, the present invention provides a method for increasing yield-related traits in plants relative to control plants, comprising increasing expression in a plant of a nucleic acid sequence encoding a BRXL polypeptide.


The invention also provides hitherto unknown nucleic acid sequences encoding BRXL polypeptides, and BRXL polypeptides.


According to one embodiment of the present invention, there is therefore provided an isolated nucleic acid molecule selected from:

    • (i) a nucleic acid sequence as represented by any one of SEQ ID NO: 75, SEQ ID NO: 77, or SEQ ID NO: 79;
    • (ii) the complement of a nucleic acid sequence as represented by any one of SEQ ID NO: 75, SEQ ID NO: 77, or SEQ ID NO: 79;
    • (iii) a nucleic acid sequence encoding a BRXL polypeptide having, in increasing order of preference, at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more amino acid sequence identity to the polypeptide sequence represented by any one of SEQ ID NO: 76, SEQ ID NO: 78, or SEQ ID NO: 80.


According to a further embodiment of the present invention, there is also provided an isolated polypeptide selected from:

    • (i) a polypeptide sequence as represented by any one of SEQ ID NO: 76, SEQ ID NO: 78, or SEQ ID NO: 80;
    • (ii) a polypeptide sequence having, in increasing order of preference, at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more amino acid sequence identity to a polypeptide sequence as represented by any one of SEQ ID NO: 76, SEQ ID NO: 78, or SEQ ID NO: 80;
    • (iii) derivatives of any of the polypeptide sequences given in (i) or (ii) above.


Furthermore, it has now surprisingly been found that modulating expression in a plant of a nucleic acid encoding a silky-1-like polypeptide gives plants having enhanced abiotic stress tolerance relative to control plants. According to a first embodiment, the present invention provides a method for enhancing tolerance to various abiotic stresses in plants relative to control plants, comprising modulating expression in a plant of a nucleic acid encoding a silky-1-like polypeptide and optionally selecting for plants having enhanced tolerance to abiotic stress.


Furthermore, it has now surprisingly been found that modulating expression in a plant of a nucleic acid encoding an ARP6 polypeptide gives plants having enhanced yield-related traits relative to control plants. According to a first embodiment, the present invention provides a method for enhancing yield-related traits in plants relative to control plants, comprising modulating expression in a plant of a nucleic acid encoding an ARP6 polypeptide and optionally selecting for plants having enhanced yield-related traits.


Furthermore, it has now surprisingly been found that modulating expression in a plant of a nucleic acid encoding a Prolyl-oligopeptidase, hereafter named “POP polypeptide” gives plants having enhanced yield-related traits relative to control plants. According to a first embodiment, the present invention provides a method for enhancing yield-related traits in plants relative to control plants, comprising modulating expression in a plant of a nucleic acid encoding a POP polypeptide and optionally selecting for plants having enhanced yield-related traits.


Furthermore, it has now surprisingly found that modulating expression in a plant of a nucleic acid encoding a CRL polypeptide gives plants having enhanced yield-related traits relative to control plants. According to a first embodiment, the present invention provides a method for enhancing yield-related traits in plants relative to control plants, comprising modulating expression in a plant of a nucleic acid encoding a CRL polypeptide and optionally selecting for plants having enhanced yield-related traits, preferably any one of total seed yield (Totalwgseeds), number of filled seeds (nrfilledseed), fill rate (fillrate), and harvest index (harvestindex), and/or identifying the transgenic plant by selecting the transgenic plant that overexpresses CRL gene (introduced or endogeneous) and/or the CRL protein.


A preferred method for modulating (preferably, increasing) expression of a nucleic acid encoding an alfin-like polypeptide, or a YRP polypeptide, or a BRXL polypeptide, or a silky-1-like polypeptide, or an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide, is by introducing and expressing in a plant a nucleic acid encoding an alfin-like polypeptide, a YRP polypeptide, or a BRXL polypeptide, or a silky-1-like polypeptide, or an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide.


Concerning alfin-like polypeptides, any reference hereinafter to a “protein useful in the methods of the invention” is taken to mean an alfin-like polypeptide as defined herein. Any reference hereinafter to a “nucleic acid useful in the methods of the invention” is taken to mean a nucleic acid capable of encoding such an alfin-like polypeptide. The nucleic acid to be introduced into a plant (and therefore useful in performing the methods of the invention) is any nucleic acid encoding the type of protein which will now be described, hereafter also named “a/fin-like nucleic acid” or “alfin-like gene”.


Concerning YRP polypeptides, any reference hereinafter to a “protein useful in the methods of the invention” is taken to mean a YRP polypeptide as defined herein. Any reference hereinafter to a “nucleic acid useful in the methods of the invention” is taken to mean a nucleic acid capable of encoding such a YRP polypeptide. The nucleic acid to be introduced into a plant (and therefore useful in performing the methods of the invention) is any nucleic acid encoding the type of protein which will now be described, hereafter also named “YRP nucleic acid” or “YRP gene”.


The YRP of Hordeum vulgare (SEQ ID NO: 11 and 13) are transcription factors encoding members of the GARP class of transcription factors.


Concerning BRXL polypeptides, any reference hereinafter to a “protein useful in the methods of the invention” is taken to mean a BRXL polypeptide as defined herein. Any reference hereinafter to a “nucleic acid sequence useful in the methods of the invention” is taken to mean a nucleic acid sequence capable of encoding such a BRXL polypeptide. The nucleic acid sequence to be introduced into a plant (and therefore useful in performing the methods of the invention) is any nucleic acid sequence encoding the type of polypeptide, which will now be described, hereafter also named “BRXL nucleic acid sequence” or “BRXL gene”.


Concerning silky-1-like polypeptides, any reference hereinafter to a “protein useful in the methods of the invention” is taken to mean a silky-1-like polypeptide as defined herein. Any reference hereinafter to a “nucleic acid useful in the methods of the invention” is taken to mean a nucleic acid capable of encoding such a silky-1-like polypeptide. The nucleic acid to be introduced into a plant (and therefore useful in performing the methods of the invention) is any nucleic acid encoding the type of protein which will now be described, hereafter also named “silky-1-like nucleic acid” or “silky-1-like gene”.


Concerning ARP6 polypeptides, any reference hereinafter to a “protein useful in the methods of the invention” is taken to mean an ARP6 polypeptide as defined herein. Any reference hereinafter to a “nucleic acid useful in the methods of the invention” is taken to mean a nucleic acid capable of encoding such an ARP6 polypeptide. The nucleic acid to be introduced into a plant (and therefore useful in performing the methods of the invention) is any nucleic acid encoding the type of protein which will now be described, hereafter also named “ARP6 nucleic acid” or “ARP6 gene”.


Concerning POP polypeptides, any reference hereinafter to a “protein useful in the methods of the invention” is taken to mean a POP polypeptide as defined herein. Any reference hereinafter to a “nucleic acid useful in the methods of the invention” is taken to mean a nucleic acid capable of encoding such a POP polypeptide. The nucleic acid to be introduced into a plant (and therefore useful in performing the methods of the invention) is any nucleic acid encoding the type of protein which will now be described, hereafter also named “POP nucleic acid” or “POP gene”.


Concerning CRL polypeptides, any reference hereinafter to a “protein useful in the methods of the invention” is taken to mean a CRL polypeptide as defined herein. Any reference hereinafter to a “nucleic acid useful in the methods of the invention” is taken to mean a nucleic acid capable of encoding such a CRL polypeptide. The nucleic acid to be introduced into a plant (and therefore useful in performing the methods of the invention) is any nucleic acid encoding the type of protein which will now be described, hereafter also named “CRL nucleic acid” or “CRL gene”.


An “alfin-like polypeptide” as defined herein refers to any polypeptide comprising a core hexamer motif of either GNGGTG or GTGGNG.


Examples of such alfin-like polypeptides include orthologues and paralogues of the sequences represented by any of SEQ ID NO: 2 and SEQ ID NO: 4.


Alfin-like polypeptides and orthologues and paralogues thereof typically have in increasing order of preference at least 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 8M 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 9M 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity to the amino acid represented by any of SEQ ID NO: 2 and SEQ ID NO: 4.


The overall sequence identity is determined using a global alignment algorithm, such as the Needleman Wunsch algorithm in the program GAP (GCG Wisconsin Package, Accelrys), preferably with default parameters and preferably with sequences of mature proteins (i.e. without taking into account secretion signals or transit peptides). Compared to overall sequence identity, the sequence identity will generally be higher when only conserved domains or motifs are considered.


Preferably, the polypeptide sequence which when used in the construction of a phylogenetic tree, clusters with the group of alfin-like polypeptides comprising the amino acid sequences represented by SEQ ID NO: 2 and SEQ ID NO: 4. rather than with any other group. Tools and techniques for the construction and analysis of phylogenetic trees are well known in the art.


A “YRP polypeptide” as defined herein refers to any polypeptide according to SEQ ID NO: 11 and SEQ ID NO: 13 and orthologues and paralogues of the sequences represented by any of SEQ ID NO: 11 and SEQ ID NO: 13.


YRP polypeptides and orthologues and paralogues thereof typically have in increasing order of preference at least 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 8M 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity to the amino acid represented by any of SEQ ID NO: 11 and SEQ ID NO: 13.


The overall sequence identity is determined using a global alignment algorithm, such as the Needleman Wunsch algorithm in the program GAP (GCG Wisconsin Package, Accelrys), preferably with default parameters and preferably with sequences of mature proteins (i.e. without taking into account secretion signals or transit peptides). Compared to overall sequence identity, the sequence identity will generally be higher when only conserved domains or motifs are considered.


Preferably, the polypeptide sequence which when used in the construction of a phylogenetic tree, clusters with the group of YRP polypeptides comprising the amino acid sequences represented by SEQ ID NO: 11 and SEQ ID NO: 13 rather than with any other group. Tools and techniques for the construction and analysis of phylogenetic trees are well known in the art.


A “BRXL polypeptide” as defined herein refers to any polypeptide comprising at least two BRX domains with an InterPro entry IPRO13591 DZC domain (PFAM entry PF08381 DZC).


Alternatively or additionally, “BRXL polypeptide” as defined herein refers to any polypeptide comprising (i) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a BRX domain as represented by SEQ ID NO: 81; and (ii) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a BRX domain as represented by SEQ ID NO: 82.


Alternatively or additionally, “BRXL polypeptide” as defined herein refers to any polypeptide comprising (i) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved Domain 1 (comprising a BRX domain) as represented by SEQ ID NO: 83; and (ii) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved Domain 2 (comprising a BRX domain) as represented by SEQ ID NO: 84.


Additionally, a “BRXL polypeptide” as defined herein further comprises (1) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved domain 3 as represented by SEQ ID NO: 85; and (1) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved domain 4 as represented by SEQ ID NO: 86.


Alternatively or additionally, a “BRXL polypeptide” as defined herein refers to any polypeptide sequence having in increasing order of preference at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a polypeptide as represented by SEQ ID NO: 18.


Alternatively or additionally, a “BRXL polypeptide” as defined herein refers to any polypeptide having in increasing order of preference at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to any of the polypeptide sequences given in Table A3 herein.


Alternatively or additionally, a “BRXL polypeptide” as defined herein refers to any polypeptide, which in a yeast two hybrid assay, interacts with itself or with another BRLX polypeptide.


An “silky-1-like polypeptide” as defined herein refers to any polypeptide represented by any of SEQ ID NO: 91, SEQ ID NO: 93 and SEQ ID NO: 95 and orthologues and paralogues thereof.


Silky-1-like polypeptides and orthologues and paralogues thereof typically have in increasing order of preference at least 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity to the amino acid represented by any of SEQ ID NO: 91, SEQ ID NO: 93 and SEQ ID NO: 95.


The overall sequence identity is determined using a global alignment algorithm, such as the Needleman Wunsch algorithm in the program GAP (GCG Wisconsin Package, Accelrys), preferably with default parameters and preferably with sequences of mature proteins (i.e. without taking into account secretion signals or transit peptides). Compared to overall sequence identity, the sequence identity will generally be higher when only conserved domains or motifs are considered.


Preferably, the polypeptide sequence which when used in the construction of a phylogenetic tree, clusters with the group of silky-1-like polypeptides comprising the amino acid sequences represented by SEQ ID NO: 91, SEQ ID NO: 93 and SEQ ID NO: 95 rather than with any other group. Tools and techniques for the construction and analysis of phylogenetic trees are well known in the art.


An “ARP6 polypeptide” as defined herein refers to any polypeptide comprising an Actin domain and having in increasing order of preference at least 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity to the amino acid represented by SEQ ID NO: 102 or by any polypeptide of Table A5.


ARP6 polypeptides typically comprise an Actin domain. Actin domains are well known in the art. For example, the Pfam database of protein domains (Bateman et al., Nucleic Acids Research 30(1): 276-280 (2002)) refers to the Actin domain as having the reference number: PF00022.


The Pfam PF00022 domain is based around hidden Markov model (HMM) searches as provided by the HMMER2 package. In HMMER2, like BLAST, E-values (expectation values) are calculated. The E-value is the number of hits that would be expected to have a score equal or better than this by chance alone. A good E-value is much less than 1. Around 1 is what we expect just by chance. In principle, all you need to decide on the significance of a match is the E-value. Bellow are the domain scores that define the Actin domain as provided in the Pfam database.















HMM model










ls model
fs model













Domain

Domain


Parameter
Sequence
Score
Sequence
Score





Gathering cut-off
−144.0
−144.0
12.4
12.4


Trusted cut-off
−144.0
−144.0
12.6
12.6


Noise cut-off
−145.0
−145.0
12.3
12.3









The HMM model used to build the Actin domain is indicated. The order that the ls (global) and fs (fragment) matches are aligned to the model to give the full alignment. The build method can be global first, where ls matches are aligned first followed by fs matches that do not overlap, by score, where matches are aligned in order of evalue score, or localfirst, where fs matches are aligned first followed by ls matches that do not overlap. The score of a single domain aligned to a HMM is indicated. If there is more than one domain, the sequence score is the sum of all the domain scores for that Pfam entry. If there is only a single domain, the sequence and the domains score for the protein will be identical.


The gathering cut-off used of the Actin domain is indicated. This value is the search threshold used to build the full alignment. The gathering cut-off is the minimum score a sequence must attain in order to belong the full alignment of a Pfam entry. For each Pfam HMM there are two cutoff values, a sequence cutoff and a domain cutoff.


The trusted cutoff refers to the bit scores of the lowest scoring match in the full alignment.


The noise cutoff (NC) refers to the bit scores of the highest scoring match not in the full alignment.


Alternatively, the homologue of an ARP6 protein has in increasing order of preference at least 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity to the amino acid represented by SEQ ID NO: 102, provided that the homologous protein comprises the conserved motifs as outlined above. The overall sequence identity is determined using a global alignment algorithm, such as the Needleman Wunsch algorithm in the program GAP (GCG Wisconsin Package, Accelrys), preferably with default parameters and preferably with sequences of mature proteins (i.e. without taking into account secretion signals or transit peptides). Compared to overall sequence identity, the sequence identity will generally be higher when only conserved domains or motifs are considered.


Preferably, the polypeptide sequence which when used in the construction of a phylogenetic tree, such as the one depicted in FIG. 1 of Kandasamy et al. 2004. Trends Plant Sci 9: 196-202, clusters with the ARP6 group of polypeptides comprising the amino acid sequence of AtARP6 as represented by SEQ ID NO: 102 rather than with any other group.


A “Prolyl-oligopeptidase” or “POP polypeptide” as defined herein refers to any serine protease that classifies as an S9 family peptidase in the MEROPS database. Within the serine proteases, the POP proteins belong to the α/β hydrolase fold within the SC clan (Tripathi & Sowdhamini, BMC Genomics, 7, 200, 2006). Preferably, the POP polypeptide belongs to the S9B subfamily of the Prolyl-oligopeptidases. The POP polypeptide useful in the methods of the invention comprises a Peptidase_S9 domain (Pfam entry PF00326) and preferably also a DPPIV_N domain (Pfam entry PF00930).


Preferably, the POP polypeptide also comprises one or more of the following motifs:











Motif 1 (SEQ ID NO: 118):



(V/S/L)(Y/H)GGP







Motif 2 (SEQ ID NO: 119):



(Q/A)(Y/F)(L/W)(R/T/S)(S/N)(R/Q/K/I)G(I/W/Y)







(L/A/S)(V/F/Q)(W/V/A/L)(K/D/I)(L/M/V/I)(D/N)







(N/Y)(R/G)G(S/T)(A/S/T/L)(R/G)(R/Y)G(L/R/E)







Motif 3 (SEQ ID NO: 120):



(R/H)(I/L)(G/C/T)(I/L/V)(Y/C/S/T/L)G(W/G/R)S







(Y/A/H)GG(Y/F)(M/L/T)(A/S/T)







Motif 4 (SEQ ID NO: 121):



(Y/F)(D/E)(T/S/A)(Y/H/F/R)(Y/G)(T/I/D)(E/D/Q)







(K/N/S)(Y/L/H)(M/V/Y)(G/T)







Motif 5 (SEQ ID NO: 122):



S(V/I/P)(M/I)(H/N/S)(H/F)(V/I)







Motif 6 (SEQ ID NO: 123):



(H/Q/L)G(M/L/T)(I/E/K)D(E/K/L)(N/V/R)V(H/T/P)







(F/P/I)







Motif 7 (SEQ ID NO: 124):



(F/Y)(P/E)(D/G/N)(E/D)(R/Q/N)H(M/G/P)(P/F/L)







(R/D)(G/R/K).






Further preferably, the POP polypeptide also comprises one or more of the following motifs:









Motif 8 (SEQ ID NO: 125):


KLRRERLR(Q/E)RGLGVT(C/R)YEW





Motif 9 (SEQ ID NO: 126):


HG(L/I)AEYIAQEEM(D/E)R(K/R)(N/T/M)G(Y/F)WWS(L/P)DS





Motif 10 (SEQ ID NO: 127):


GFIWASE(K/R)(S/T)GFRHL





Motif 11 (SEQ ID NO: 128):


LR(S/N)(Q/K/R)GILVWK(L/M)D





Motif 12 (SEQ ID NO: 129):


IG(L/V/I)(C/Y)GWSYGG(Y/F)





Motif 13 (SEQ ID NO: 130):


CAV(S/A)GAPVT(S/A)WDGYD





Motif 14 (SEQ ID NO: 131):


HGMIDENVHFRHTARL






More preferably, the POP polypeptide comprises in increasing order of preference, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, or all 12 motifs.


Alternatively, the homologue of a POP protein has in increasing order of preference at least 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity to the amino acid represented by SEQ ID NO: 117, provided that the homologous protein comprises at least one of the conserved motifs as outlined above. The overall sequence identity is determined using a global alignment algorithm, such as the Needleman Wunsch algorithm in the program GAP (GCG Wisconsin Package, Accelrys), preferably with default parameters and preferably with sequences of mature proteins (i.e. without taking into account secretion signals or transit peptides). Compared to overall sequence identity, the sequence identity will generally be higher when only conserved domains or motifs are considered. Preferably the motifs in a POP polypeptide have, in increasing order of preference, at least 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to the motifs represented by SEQ ID NO: 118 to SEQ ID NO: 129 (Motifs 1 to 12).


Preferably, the polypeptide sequence which when used in the construction of a phylogenetic tree, such as the one depicted in FIG. 13 (Tripathi & Sowdhamini 2006), clusters with the group of POP polypeptides indicated by the arrow comprising the amino acid sequence represented by SEQ ID NO: 117 rather than with any other group.


A “CRL polypeptide” as defined herein refers to any polypeptide comprising a protein domain having in increasing order of preference at least 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity to the amino acid domain represented by the sequence of amino acids 42-236 of SEQ ID NO: 156 and optionally having a transmembrane domain, preferably as represented by the sequence of amino acids 19-36 of SEQ ID NO: SEQ ID NO: 156.


Methods to determine the presence of a transmembrane domain are in a protein are well know in the art (Further details are provided in the Example section). A protein having a transmembrane domain is expected to be localized to a membranous structure. Preferably the protein of the invention, when present in a cell localizes to a membrane.


A preferred protein of the invention refers to a CRL polypeptide having in increasing order of preference at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to any one or more of the following motifs:











(i) Motif 1: 



(SEQ ID NO: 207)



EQAFWRxPXKPFRQR;







(ii) Motif 2: 



(SEQ ID NO: 208)



NFCDR;







(iii) Motif 3: 



(SEQ ID NO: 209)



RGKRCLYEGS;







(iv) Motif 4: 



(SEQ ID NO: 210)



QVWGxKXGPYEFK;








    • wherein X represents any amino acid.





Alternatively, the homologue of a CRL protein has in increasing order of preference at least 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity to any of the amino acid set forth in Table A7, preferably to the sequence represented by SEQ ID NO: 156. The overall sequence identity is determined using a global alignment algorithm, such as the Needleman Wunsch algorithm in the program GAP (GCG Wisconsin Package, Accelrys), preferably with default parameters and preferably with sequences of mature proteins (i.e. without taking into account secretion signals or transit peptides). Compared to overall sequence identity, the sequence identity will generally be higher when only conserved domains or motifs are considered. For local alignments, the Smith-Waterman algorithm is particularly useful (Smith T F, Waterman M S (1981) J. Mol. Biol 147(1); 195-7). An alternative method to determine sequence identity is provided by the method known as MATGAT (Examples section).


Preferably, the polypeptide sequence which when used in the construction of a phylogenetic tree, such as the one depicted in FIG. 16, clusters with the group of CRL polypeptides comprising the amino acid sequence encoded by a monocotyledonous plant, more preferably by a sequence encoded by a dicotyledonous plant, most preferably by the sequence represented by SEQ ID NO: 156 rather than with any other group.


The terms “domain”, “signature” and “motif” are defined in the “definitions” section herein. Specialist databases exist for the identification of domains, for example, SMART (Schultz et al. (1998) Proc. Natl. Acad. Sci. USA 95, 5857-5864; Letunic et al. (2002) Nucleic Acids Res 30, 242-244), InterPro (Mulder et al., (2003) Nucl. Acids. Res. 31, 315-318), Prosite (Bucher and Bairoch (1994), A generalized profile syntax for biomolecular sequences motifs and its function in automatic sequence interpretation. (In) ISMB-94; Proceedings 2nd International Conference on Intelligent Systems for Molecular Biology. Altman R., Brutlag D., Karp P., Lathrop R., Searls D., Eds., pp 53-61, AAAI Press, Menlo Park; Hulo et al., Nucl. Acids. Res. 32:D134-D137, (2004)), or Pfam (Bateman et al., Nucleic Acids Research 30(1): 276-280 (2002)). A set of tools for in silico analysis of protein sequences is available on the ExPASy proteomics server (Swiss Institute of Bioinformatics (Gasteiger et al., ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Res. 31:3784-3788 (2003)). Domains or motifs may also be identified using routine techniques, such as by sequence alignment.


Concerning BRXL polypeptides, an alignment of the polypeptides of Table A3 herein, is shown in FIG. 5. Such alignments are useful for identifying the most conserved domains or motifs between the BRXL polypeptides as defined herein. Four such domains are (i) a Conserved Domain 1 representing a BRX domain, which comprises IPRO13591 DZC domain (PFAM entry PF08381 DZC; marked by X's in FIG. 5); (2) a Conserved Domain 2 representing a BRX domain, which comprises a C-terminal IPRO13591 DZC domain (PFAM entry PF08381 DZC; marked by X's in FIG. 5); (3) a Conserved Domain 3 and (4) a Conserved Domain 4, both containing conserved Cys's, whose spacing is indicative of a potential zinc-binding motif. All four Conserved Domains are boxed in FIG. 5.


Methods for the alignment of sequences for comparison are well known in the art, such methods include GAP, BESTFIT, BLAST, FASTA and TFASTA. GAP uses the algorithm of Needleman and Wunsch ((1970) J Mol Biol 48: 443-453) to find the global (i.e. spanning the complete sequences) alignment of two sequences that maximizes the number of matches and minimizes the number of gaps. The BLAST algorithm (Altschul et al. (1990) Mol Biol 215: 403-10) calculates percent sequence identity and performs a statistical analysis of the similarity between the two sequences. The software for performing BLAST analysis is publicly available through the National Centre for Biotechnology Information (NCBI). Homologues may readily be identified using, for example, the ClustalW multiple sequence alignment algorithm (version 1.83), with the default pairwise alignment parameters, and a scoring method in percentage. Global percentages of similarity and identity may also be determined using one of the methods available in the MatGAT software package (Campanella et al., BMC Bioinformatics. 2003 Jul. 10; 4:29. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences.). Minor manual editing may be performed to optimise alignment between conserved motifs, as would be apparent to a person skilled in the art. Furthermore, instead of using full-length sequences for the identification of homologues, specific domains may also be used. The sequence identity values may be determined over the entire nucleic acid or amino acid sequence or over selected domains or conserved motif(s), using the programs mentioned above using the default parameters. For local alignments, the Smith-Waterman algorithm is particularly useful (Smith T F, Waterman M S (1981) J. Mol. Biol 147(1); 195-7).


Concerning BRXL polypeptides, the Examples Section herein describes in Table B1 the percentage identity between the BRXL polypeptide as represented by SEQ ID NO: 18 and the BRXL polypeptides listed in Table A3, which can be as low as 43% amino acid sequence identity. In some instances, the default parameters may be adjusted to modify the stringency of the search. For example using BLAST, the statistical significance threshold (called “expect” value) for reporting matches against database sequences may be increased to show less stringent matches. This way, short nearly exact matches may be identified.


The task of protein subcellular localisation prediction is important and well studied. Knowing a protein's localisation helps elucidate its function. Experimental methods for protein localization range from immunolocalization to tagging of proteins using green fluorescent protein (GFP) or beta-glucuronidase (GUS). Such methods are accurate although labor-intensive compared with computational methods. Recently much progress has been made in computational prediction of protein localisation from sequence data. Among algorithms well known to a person skilled in the art are available at the ExPASy Proteomics tools hosted by the Swiss Institute for Bioinformatics, for example, PSort, TargetP, ChloroP, LocTree, Predotar, LipoP, MITOPROT, PATS, PTS1, SignalP, TMHMM, and others.


Concerning BRXL polypeptides, according to TargetP, the predicted subcellular localisation of a BRXL polypeptide as represented by SEQ ID NO: 18 is the nucleus (see the Example Section).


Alfin-like polypeptides, when expressed in plants, in particular in rice plants, confer enhanced tolerance to abiotic stresses to those plants.


Furthermore, YRP polypeptides, when expressed in plants, in particular in rice plants, confer enhanced tolerance to abiotic stresses to those plants.


Furthermore, silky-1-like polypeptides, when expressed in plants, in particular in rice plants, confer enhanced tolerance to abiotic stresses to those plants.


Furthermore, tools and techniques for measuring activity of ARP6 polypeptides are well known in the art as for example described in the literature references included herein. In addition, ARP6 polypeptides, when expressed in rice according to the methods of the present invention as outlined in the Examples section give plants having increased yield related traits, in particular in any one more of seed weight, harvest index, seed fill rate and the number of filled seeds per plant.


Furthermore, POP polypeptides (at least in their native form) typically have endopeptidase activity, cleaving after Proline residues, and to a lesser extent after Ala residues. Tools and techniques for measuring Prolyl endopeptidase activity are well known in the art, see for example Nomura (FEBS Letters 209, 235-237, 1986). Further details are provided in the Example Section. In addition, POP polypeptides, when expressed in rice according to the methods of the present invention as outlined in the Examples Section, give plants having increased yield related traits, in particular increased biomass and/or increased seed yield.


Furthermore, CRL polypeptides typically have the activity of modulating photosynthesis when present in a plant. Tools and techniques for measuring modulation of photosynthesis are well known in the art, for example by determination of the chlorophyll content or of the chlorophyll fluorescence (Asano et al 2004, The Plant Journal, Volume 38, pp. 448-459(12). In addition, CRL polypeptides, when expressed in rice according to the methods of the present invention as outlined in the Examples Section, give plants having increased yield related traits, in particular in any or more selected from the total seed yield (Totalwgseeds), number of filled seeds (nrfilledseed), fill rate (fillrate), and harvest index (harvestindex).


Concerning alfin-like polypeptides, the present invention may be performed, for example, by transforming plants with the nucleic acid sequence represented by any of SEQ ID NO: 1 encoding the polypeptide sequence of SEQ ID NO: 2, or SEQ ID NO: 3 encoding the polypeptide sequence of SEQ ID NO: 4. However, performance of the invention is not restricted to these sequences; the methods of the invention may advantageously be performed using any alfin-like-encoding nucleic acid or alfin-like polypeptide as defined herein.


Examples of nucleic acids encoding alfin-like polypeptides are given in Table A1 of the Examples section herein. Such nucleic acids are useful in performing the methods of the invention. Orthologues and paralogues of the amino acid sequences given in Table A1 may be readily obtained using routine tools and techniques, such as a reciprocal blast search. Typically, this involves a first BLAST involving BLASTing a query sequence (for example using any of the sequences listed in Table A1 of the Examples section) against any sequence database, such as the publicly available NCBI database. BLASTN or TBLASTX (using standard default values) are generally used when starting from a nucleotide sequence, and BLASTP or TBLASTN (using standard default values) when starting from a protein sequence. The BLAST results may optionally be filtered. The full-length sequences of either the filtered results or non-filtered results are then BLASTed back (second BLAST) against sequences from the organism from which the query sequence is derived (where the query sequence is SEQ ID NO: 1 or SEQ ID NO: 2, the second BLAST would therefore be against Solanum lycopersicum sequences; where the query sequence is SEQ ID NO: 3 or SEQ ID NO: 4, the second BLAST would therefore be against Populus trichocarpa sequences). The results of the first and second BLASTs are then compared. A paralogue is identified if a high-ranking hit from the first blast is from the same species as from which the query sequence is derived, a BLAST back then ideally results in the query sequence amongst the highest hits; an orthologue is identified if a high-ranking hit in the first BLAST is not from the same species as from which the query sequence is derived, and preferably results upon BLAST back in the query sequence being among the highest hits.


Concerning YRP polypeptides, the present invention may be performed, for example, by transforming plants with the nucleic acid sequence represented by any of SEQ ID NO: 10 encoding the polypeptide sequence of SEQ ID NO: 11, or SEQ ID NO: 12 encoding the polypeptide sequence of SEQ ID NO: 13. However, performance of the invention is not restricted to these sequences; the methods of the invention may advantageously be performed using any YRP-encoding nucleic acid or YRP polypeptide as defined herein.


Examples of nucleic acids encoding YRP polypeptides are given in Table A2 of the Examples section herein. Such nucleic acids are useful in performing the methods of the invention. Orthologues and paralogues of the amino acid sequences given in Table A2 may be readily obtained using routine tools and techniques, such as a reciprocal blast search. Typically, this involves a first BLAST involving BLASTing a query sequence (for example using any of the sequences listed in Table A2 of the Examples section) against any sequence database, such as the publicly available NCBI database. BLASTN or TBLASTX (using standard default values) are generally used when starting from a nucleotide sequence, and BLASTP or TBLASTN (using standard default values) when starting from a protein sequence. The BLAST results may optionally be filtered. The full-length sequences of either the filtered results or non-filtered results are then BLASTed back (second BLAST) against sequences from the organism from which the query sequence is derived (where the query sequence is SEQ ID NO: 10 or SEQ ID NO: 11, the second BLAST would therefore be against Hordeum vulgare sequences; where the query sequence is SEQ ID NO: 12 or SEQ ID NO: 13, the second BLAST would therefore be against Hordeum vulgare sequences). The results of the first and second BLASTs are then compared. A paralogue is identified if a high-ranking hit from the first blast is from the same species as from which the query sequence is derived, a BLAST back then ideally results in the query sequence amongst the highest hits; an orthologue is identified if a high-ranking hit in the first BLAST is not from the same species as from which the query sequence is derived, and preferably results upon BLAST back in the query sequence being among the highest hits.


Concerning BRXL polypeptides, the present invention is illustrated by transforming plants with the nucleic acid sequence represented by SEQ ID NO: 17, encoding the BRXL polypeptide sequence of SEQ ID NO: 18. However, performance of the invention is not restricted to these sequences; the methods of the invention may advantageously be performed using any nucleic acid sequence encoding a BRXL polypeptide as defined herein.


Examples of nucleic acid sequences encoding BRXL polypeptides are given in Table A3 of Example 1 herein. Such nucleic acid sequences are useful in performing the methods of the invention. The polypeptide sequences given in Table A3 of Example 1 are example sequences of orthologues and paralogues of the BRXL polypeptide represented by SEQ ID NO: 18, the terms “orthologues” and “paralogues” being as defined herein. Further orthologues and paralogues may readily be identified by performing a so-called reciprocal blast search. Typically, this involves a first BLAST involving BLASTing a query sequence (for example using any of the sequences listed in Table A3 of Example 1) against any sequence database, such as the publicly available NCBI database. BLASTN or TBLASTX (using standard default values) are generally used when starting from a nucleotide sequence, and BLASTP or TBLASTN (using standard default values) when starting from a protein sequence. The BLAST results may optionally be filtered. The full-length sequences of either the filtered results or non-filtered results are then BLASTed back (second BLAST) against sequences from the organism from which the query sequence is derived (where the query sequence is SEQ ID NO: 17 or SEQ ID NO: 18, the second BLAST would therefore be against poplar sequences). The results of the first and second BLASTs are then compared. A paralogue is identified if a high-ranking hit from the first blast is from the same species as from which the query sequence is derived, a BLAST back then ideally results in the query sequence amongst the highest hits; an orthologue is identified if a high-ranking hit in the first BLAST is not from the same species as from which the query sequence is derived, and preferably results upon BLAST back in the query sequence being among the highest hits.


Concerning silky-1-like polypeptides, the present invention may be performed, for example, by transforming plants with the nucleic acid sequence represented by any of SEQ ID NO: 90 encoding the polypeptide sequence of SEQ ID NO: 91, SEQ ID NO: 92 encoding the polypeptide sequence of SEQ ID NO: 93, or SEQ ID NO: 94 encoding the polypeptide sequence of SEQ ID NO: 95. However, performance of the invention is not restricted to these sequences; the methods of the invention may advantageously be performed using any silky-1-like-encoding nucleic acid or silky-1-like polypeptide as defined herein.


Examples of nucleic acids encoding silky-1-like polypeptides are given in Table A4 of the Examples section herein. Such nucleic acids are useful in performing the methods of the invention. Orthologues and paralogues of the amino acid sequences given in Table A4 may be readily obtained using routine tools and techniques, such as a reciprocal blast search. Typically, this involves a first BLAST involving BLASTing a query sequence (for example using any of the sequences listed in Table A4 of the Examples section) against any sequence database, such as the publicly available NCBI database. BLASTN or TBLASTX (using standard default values) are generally used when starting from a nucleotide sequence, and BLASTP or TBLASTN (using standard default values) when starting from a protein sequence. The BLAST results may optionally be filtered. The full-length sequences of either the filtered results or non-filtered results are then BLASTed back (second BLAST) against sequences from the organism from which the query sequence is derived (where the query sequence is SEQ ID NO: 90 or SEQ ID NO: 91, the second BLAST would therefore be against Populus trichocarpa sequences; where the query sequence is SEQ ID NO: 92 or SEQ ID NO: 93, the second BLAST would therefore be against Solanum lycopersicum sequences; where the query sequence is SEQ ID NO: 94 or SEQ ID NO: 95, the second BLAST would therefore be against Triticum aestivum sequences). The results of the first and second BLASTs are then compared. A paralogue is identified if a high-ranking hit from the first blast is from the same species as from which the query sequence is derived, a BLAST back then ideally results in the query sequence amongst the highest hits; an orthologue is identified if a high-ranking hit in the first BLAST is not from the same species as from which the query sequence is derived, and preferably results upon BLAST back in the query sequence being among the highest hits.


Concerning ARP6 polypeptides, the present invention is illustrated by transforming plants with the nucleic acid sequence represented by SEQ ID NO: 101, encoding the polypeptide sequence of SEQ ID NO: 102. However, performance of the invention is not restricted to these sequences; the methods of the invention may advantageously be performed using any ARTP6-encoding nucleic acid or ARP6 polypeptide as defined herein.


Examples of nucleic acids encoding ARP6 polypeptides are given in Table A5 of the Examples section herein. Such nucleic acids are useful in performing the methods of the invention. The amino acid sequences given in Table A5 of the Examples section are example sequences of orthologues and paralogues of the ARP6 polypeptide represented by SEQ ID NO: 102, the terms “orthologues” and “paralogues” being as defined herein. Further orthologues and paralogues may readily be identified by performing a so-called reciprocal blast search. Typically, this involves a first BLAST involving BLASTing a query sequence (for example using any of the sequences listed in Table A5 of the Examples section) against any sequence database, such as the publicly available NCBI database. BLASTN or TBLASTX (using standard default values) are generally used when starting from a nucleotide sequence, and BLASTP or TBLASTN (using standard default values) when starting from a protein sequence. The BLAST results may optionally be filtered. The full-length sequences of either the filtered results or non-filtered results are then BLASTed back (second BLAST) against sequences from the organism from which the query sequence is derived (where the query sequence is SEQ ID NO: 101 or SEQ ID NO: 102, the second BLAST would therefore be against Arabidopsis thaliana sequences). The results of the first and second BLASTs are then compared. A paralogue is identified if a high-ranking hit from the first blast is from the same species as from which the query sequence is derived, a BLAST back then ideally results in the query sequence amongst the highest hits; an orthologue is identified if a high-ranking hit in the first BLAST is not from the same species as from which the query sequence is derived, and preferably results upon BLAST back in the query sequence being among the highest hits.


Concerning POP polypeptides, the present invention is illustrated by transforming plants with the nucleic acid sequence represented by SEQ ID NO: 116, encoding the polypeptide sequence of SEQ ID NO: 117. However, performance of the invention is not restricted to these sequences; the methods of the invention may advantageously be performed using any POP-encoding nucleic acid or POP polypeptide as defined herein.


Examples of nucleic acids encoding POP polypeptides are given in Table A6 of the Examples section herein. Such nucleic acids are useful in performing the methods of the invention. The amino acid sequences given in Table A6 of the Examples section are example sequences of orthologues and paralogues of the POP polypeptide represented by SEQ ID NO: 2, the terms “orthologues” and “paralogues” being as defined herein. Further orthologues and paralogues may readily be identified by performing a so-called reciprocal blast search. Typically, this involves a first BLAST involving BLASTing a query sequence (for example using any of the sequences listed in Table A6 of the Examples section) against any sequence database, such as the publicly available NCBI database. BLASTN or TBLASTX (using standard default values) are generally used when starting from a nucleotide sequence, and BLASTP or TBLASTN (using standard default values) when starting from a protein sequence. The BLAST results may optionally be filtered. The full-length sequences of either the filtered results or non-filtered results are then BLASTed back (second BLAST) against sequences from the organism from which the query sequence is derived (where the query sequence is SEQ ID NO: 116 or SEQ ID NO: 117, the second BLAST would therefore be against Arabidopsis sequences). The results of the first and second BLASTs are then compared. A paralogue is identified if a high-ranking hit from the first blast is from the same species as from which the query sequence is derived, a BLAST back then ideally results in the query sequence amongst the highest hits; an orthologue is identified if a high-ranking hit in the first BLAST is not from the same species as from which the query sequence is derived, and preferably results upon BLAST back in the query sequence being among the highest hits.


Concerning CRL polypeptides, the present invention is illustrated by transforming plants with the nucleic acid sequence represented by SEQ ID NO: 155, encoding the polypeptide sequence of SEQ ID NO: 156. However, performance of the invention is not restricted to these sequences; the methods of the invention may advantageously be performed using any CRL-encoding nucleic acid or CRL polypeptide as defined herein.


Examples of nucleic acids encoding CRL polypeptides are given in Table A7 of the Examples section herein. Such nucleic acids are useful in performing the methods of the invention. The amino acid sequences given in Table A7 of the Examples section are example sequences of orthologues and paralogues of the CRL polypeptide represented by SEQ ID NO: 2, the terms “orthologues” and “paralogues” being as defined herein. Further orthologues and paralogues may readily be identified by performing a so-called reciprocal blast search. Typically, this involves a first BLAST involving BLASTing a query sequence (for example using any of the sequences listed in Table A7 of the Examples section) against any sequence database, such as the publicly available NCBI database. BLASTN or TBLASTX (using standard default values) are generally used when starting from a nucleotide sequence, and BLASTP or TBLASTN (using standard default values) when starting from a protein sequence. The BLAST results may optionally be filtered. The full-length sequences of either the filtered results or non-filtered results are then BLASTed back (second BLAST) against sequences from the organism from which the query sequence is derived (where the query sequence is SEQ ID NO: 155 or SEQ ID NO: 156, the second BLAST would therefore be against Arabidopsis thaliana sequences). The results of the first and second BLASTs are then compared. A paralogue is identified if a high-ranking hit from the first blast is from the same species as from which the query sequence is derived, a BLAST back then ideally results in the query sequence amongst the highest hits; an orthologue is identified if a high-ranking hit in the first BLAST is not from the same species as from which the query sequence is derived, and preferably results upon BLAST back in the query sequence being among the highest hits.


High-ranking hits are those having a low E-value. The lower the E-value, the more significant the score (or in other words the lower the chance that the hit was found by chance). Computation of the E-value is well known in the art. In addition to E-values, comparisons are also scored by percentage identity. Percentage identity refers to the number of identical nucleotides (or amino acids) between the two compared nucleic acid (or polypeptide) sequences over a particular length. In the case of large families, ClustalW may be used, followed by a neighbour joining tree, to help visualize clustering of related genes and to identify orthologues and paralogues.


Nucleic acid variants may also be useful in practising the methods of the invention. Examples of such variants include nucleic acids encoding homologues and derivatives of any one of the amino acid sequences given in Table A1 to A7 of the Examples section, the terms “homologue” and “derivative” being as defined herein. Also useful in the methods of the invention are nucleic acids encoding homologues and derivatives of orthologues or paralogues of any one of the amino acid sequences given in Table A1 to A7 of the Examples section. Homologues and derivatives useful in the methods of the present invention have substantially the same biological and functional activity as the unmodified protein from which they are derived. Further variants useful in practising the methods of the invention are variants in which codon usage is optimised or in which miRNA target sites are removed.


Further nucleic acid variants useful in practising the methods of the invention include portions of nucleic acids encoding alfin-like polypeptides, or YRP polypeptides, or BRXL polypeptides, or silky-1-like polypeptides, or ARP6 polypeptides, or POP polypeptides, or CRL polypeptides, nucleic acids hybridising to nucleic acids encoding alfin-like polypeptides, or YRP polypeptides, or BRXL polypeptides, or silky-1-like polypeptides, or ARP6 polypeptides, or POP polypeptides, or CRL polypeptides, splice variants of nucleic acids encoding alfin-like polypeptides, or YRP polypeptides, or BRXL polypeptides, or silky-1-like polypeptides, or ARP6 polypeptides, or POP polypeptides, or CRL polypeptides, allelic variants of nucleic acids encoding alfin-like polypeptides, or YRP polypeptides, or BRXL polypeptides, or silky-1-like polypeptides, or ARP6 polypeptides, or POP polypeptides, or CRL polypeptides, and variants of nucleic acids encoding alfin-like polypeptides, or YRP polypeptides, or BRXL polypeptides, or silky-1-like polypeptides, or ARP6 polypeptides, or POP polypeptides, or CRL polypeptides, obtained by gene shuffling. The terms hybridising sequence, splice variant, allelic variant and gene shuffling are as described herein.


Nucleic acids encoding alfin-like polypeptides, or YRP polypeptides, or BRXL polypeptides, or silky-1-like polypeptides, or ARP6 polypeptides, or POP polypeptides, or CRL polypeptides, need not be full-length nucleic acids, since performance of the methods of the invention does not rely on the use of full-length nucleic acid sequences. According to the present invention, there is provided a method for enhancing abiotic stress tolerance in plants, comprising introducing and expressing in a plant a portion of any one of the nucleic acid sequences given in Table A1 to A7 of the Examples section, or a portion of a nucleic acid encoding an orthologue, paralogue or homologue of any of the amino acid sequences given in Table A1 to A7 of the Examples section.


A portion of a nucleic acid may be prepared, for example, by making one or more deletions to the nucleic acid. The portions may be used in isolated form or they may be fused to other coding (or non-coding) sequences in order to, for example, produce a protein that combines several activities. When fused to other coding sequences, the resultant polypeptide produced upon translation may be bigger than that predicted for the protein portion.


Concerning alfin-like polypeptides, portions useful in the methods of the invention, encode an alfin-like polypeptide as defined herein, and have substantially the same biological activity as the amino acid sequences given in Table A1 of the Examples section. Preferably, the portion is a portion of any one of the nucleic acids given in Table A1 of the Examples section, or is a portion of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A1 of the Examples section. Preferably the portion is at least 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250 or more consecutive nucleotides in length, the consecutive nucleotides being of any one of the nucleic acid sequences given in Table A1 of the Examples section, or of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A1 of the Examples section. Most preferably the portion is a portion of the nucleic acid of SEQ ID NO: 1 or SEQ ID NO: 3. Preferably, the portion encodes a fragment of an amino acid sequence which, when used in the construction of a phylogenetic tree, clusters with the group of alfin-like polypeptides comprising the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4, rather than with any other group.


Concerning YRP polypeptides, portions useful in the methods of the invention, encode a YRP polypeptide as defined herein, and have substantially the same biological activity as the amino acid sequences given in Table A2 of the Examples section. Preferably, the portion is a portion of any one of the nucleic acids given in Table A2 of the Examples section, or is a portion of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A2 of the Examples section. Preferably the portion is at least 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1350, 1400, or more consecutive nucleotides in length, the consecutive nucleotides being of any one of the nucleic acid sequences given in Table A2 of the Examples Section, or of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A2 of the Examples section. Most preferably the portion is a portion of the nucleic acid of SEQ ID NO: 10 or SEQ ID NO: 12. Preferably, the portion encodes a fragment of an amino acid sequence which, when used in the construction of a phylogenetic tree, clusters with the group of YRP polypeptides comprising the amino acid sequence represented by SEQ ID NO: 11 or SEQ ID NO: 13, rather than with any other group.


Concerning BRXL polypeptides, portions useful in the methods of the invention, encode a BRXL polypeptide as defined herein, and have substantially the same biological activity as the polypeptide sequences given in Table A3 of Example 1. Preferably, the portion is a portion of any one of the nucleic acid sequences given in Table A3 of Example 1, or is a portion of a nucleic acid sequence encoding an orthologue or paralogue of any one of the polypeptide sequences given in Table A3 of Example 1. Preferably the portion is, in increasing order of preference at least 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1060, 1070, 1080 or more consecutive nucleotides in length, the consecutive nucleotides being of any one of the nucleic acid sequences given in Table A3 of Example 1, or of a nucleic acid sequence encoding an orthologue or paralogue of any one of the polypeptide sequences given in Table A3 of Example 1. Preferably, the portion is a portion of a nucleic sequence encoding a polypeptide sequence comprising (i) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved Domain 1 (comprising a BRX domain) as represented by SEQ ID NO: 83; and (ii) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved Domain 2 (comprising a BRX domain) as represented by SEQ ID NO: 84. More preferably, the portion is a portion of a nucleic sequence encoding a polypeptide sequence having in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to the BRXL polypeptide as represented by SEQ ID NO: 18 or to any of the polypeptide sequences given in Table A3 herein. Most preferably, the portion is a portion of the nucleic acid sequence of SEQ ID NO: 17.


Concerning silky-1-like polypeptides, portions useful in the methods of the invention, encode a silky-1-like polypeptide as defined herein, and have substantially the same biological activity as the amino acid sequences given in Table A4 of the Examples section. Preferably, the portion is a portion of any one of the nucleic acids given in Table A4 of the Examples section, or is a portion of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A4 of the Examples section. Preferably the portion is at least 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100 or more consecutive nucleotides in length, the consecutive nucleotides being of any one of the nucleic acid sequences given in Table A4 of the Examples section, or of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A4 of the Examples section. Most preferably the portion is a portion of the nucleic acid of SEQ ID NO: 90, SEQ ID NO: 92 or SEQ ID NO: 94. Preferably, the portion encodes a fragment of an amino acid sequence which, when used in the construction of a phylogenetic tree, clusters with the group of silky-1-like polypeptides comprising the amino acid sequence represented by SEQ ID NO: 91, SEQ ID NO: 93 or SEQ ID NO: 95, rather than with any other group.


Concerning ARP6 polypeptides, portions useful in the methods of the invention, encode an ARP6 polypeptide as defined herein, and have substantially the same biological activity as the amino acid sequences given in Table A5 of the Examples section. Preferably, the portion is a portion of any one of the nucleic acids given in Table A5 of the Examples section, or is a portion of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A5 of the Examples section. Preferably the portion is at least 100, 200, 300, 400, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 consecutive nucleotides in length, the consecutive nucleotides being of any one of the nucleic acid sequences given in Table A5 of the Examples section, or of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A5 of the Examples section. Most preferably the portion is a portion of the nucleic acid of SEQ ID NO: 101. Preferably, the portion encodes a fragment of an amino acid sequence which, when used in the construction of a phylogenetic tree, such as the one depicted in FIG. 1 of Kandasamy et al. 2004. Trends Plant Sci 9: 196-202, clusters with the ARP6 group of polypeptides comprising the amino acid sequence of AtARP6 as represented by SEQ ID NO: 102 rather than with any other group.


Concerning POP polypeptides, portions useful in the methods of the invention, encode a POP polypeptide as defined herein, and have substantially the same biological activity as the amino acid sequences given in Table A6 of the Examples section. Preferably, the portion is a portion of any one of the nucleic acids given in Table A6 of the Examples section, or is a portion of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A6 of the Examples section. Preferably the portion is at least 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300 consecutive nucleotides in length, the consecutive nucleotides being of any one of the nucleic acid sequences given in Table A6 of the Examples section, or of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A6 of the Examples section. Most preferably the portion is a portion of the nucleic acid of SEQ ID NO: 1. Preferably, the portion encodes a fragment of an amino acid sequence which, when used in the construction of a phylogenetic tree, such as the one depicted in FIG. 13 (Tripathi & Sowdhamini 2006), clusters with the group of POP polypeptides indicated by the arrow comprising the amino acid sequence represented by SEQ ID NO: 117 rather than with any other group.


Concerning CRL polypeptides, portions useful in the methods of the invention, encode a CRL polypeptide as defined herein, and have substantially the same biological activity as the amino acid sequences given in Table A7 of the Examples section. Preferably, the portion is a portion of any one of the nucleic acids given in Table A7 of the Examples section, or is a portion of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A7 of the Examples section. Preferably the portion is at least 100, 200, 300, 400, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 consecutive nucleotides in length, the consecutive nucleotides being of any one of the nucleic acid sequences given in Table A7 of the Examples section, or of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A7 of the Examples section. Most preferably the portion is a portion of the nucleic acid of SEQ ID NO: 155. Preferably, the portion encodes a fragment of an amino acid sequence which, when used in the construction of a phylogenetic tree, such as the one depicted in FIG. 16, clusters with the group of CRL polypeptides comprising the amino acid sequence encoded by a monocotyledonous plant, more preferably by a sequence encoded by a dicotyledonous plant, most preferably by the sequence represented by SEQ ID NO: 156 rather than with any other group.


Another nucleic acid variant useful in the methods of the invention is a nucleic acid capable of hybridising, under reduced stringency conditions, preferably under stringent conditions, with a nucleic acid encoding an alfin-like polypeptide, or a YRP polypeptide, or a BRXL polypeptide, or a silky-1-like polypeptide, or an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide, as defined herein, or with a portion as defined herein.


According to the present invention, there is provided a method for enhancing abiotic stress tolerance in plants, comprising introducing and expressing in a plant a nucleic acid capable of hybridizing to any one of the nucleic acids given in Table A1 to A7 of the Examples Section, or comprising introducing and expressing in a plant a nucleic acid capable of hybridising to a nucleic acid encoding an orthologue, paralogue or homologue of any of the nucleic acid sequences given in Table A1 to A7 of the Examples Section.


Concerning alfin-like polypeptides, hybridising sequences useful in the methods of the invention encode an alfin-like polypeptide as defined herein, having substantially the same biological activity as the amino acid sequences given in Table A1 of the Examples section. Preferably, the hybridising sequence is capable of hybridising to the complement of any one of the nucleic acids given in Table A1, or to a portion of any of these sequences, a portion being as defined above, or the hybridising sequence is capable of hybridising to the complement of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A1. Most preferably, the hybridising sequence is capable of hybridising to the complement of a nucleic acid as represented by SEQ ID NO: 1 or SEQ ID NO: 3 or to a portion thereof.


Preferably, the hybridising sequence encodes a polypeptide with an amino acid sequence which, when full-length and used in the construction of a phylogenetic tree, clusters with the group of alfin-like polypeptides comprising the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4 rather than with any other group.


Concerning YRP polypeptides, hybridising sequences useful in the methods of the invention encode a YRP polypeptide as defined herein, having substantially the same biological activity as the amino acid sequences given in Table A2 of the Examples section. Preferably, the hybridising sequence is capable of hybridising to the complement of any one of the nucleic acids given in Table A2, or to a portion of any of these sequences, a portion being as defined above, or the hybridising sequence is capable of hybridising to the complement of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A2. Most preferably, the hybridising sequence is capable of hybridising to the complement of a nucleic acid as represented by SEQ ID NO: 10 or SEQ ID NO: 12 or to a portion thereof.


Preferably, the hybridising sequence encodes a polypeptide with an amino acid sequence which, when full-length and used in the construction of a phylogenetic tree, clusters with the group of YRP polypeptides comprising the amino acid sequence represented by SEQ ID NO: 11 or SEQ ID NO: 13 rather than with any other group.


Concerning BRXL polypeptides, hybridising sequences useful in the methods of the invention encode a BRXL polypeptide as defined herein, and have substantially the same biological activity as the polypeptide sequences given in Table A3 of Example 1. Preferably, the hybridising sequence is capable of hybridising to any one of the nucleic acid sequences given in Table A3 of Example 1, or to a complement thereof, or to a portion of any of these sequences, a portion being as defined above, or wherein the hybridising sequence is capable of hybridising to a nucleic acid sequence encoding an orthologue or paralogue of any one of the polypeptide sequences given in Table A3 of Example 1, or to a complement thereof. Preferably, the hybridising sequence is capable of hybridising to a nucleic acid sequence encoding a polypeptide sequence comprising (i) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved Domain 1 (comprising a BRX domain) as represented by SEQ ID NO: 83; and (ii) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved Domain 2 (comprising a BRX domain) as represented by SEQ ID NO: 84. More preferably, the hybridising sequence is capable of hybridising to a nucleic acid sequence encoding a polypeptide sequence having in increasing order of preference at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to the BRXL polypeptide as represented by SEQ ID NO: 18 or to any of the polypeptide sequences given in Table A3 herein. Most preferably, the hybridising sequence is capable of hybridising to a nucleic acid sequence as represented by SEQ ID NO: 17 or to a portion thereof.


Concerning silky-1-like polypeptides, hybridising sequences useful in the methods of the invention encode a silky-1-like polypeptide as defined herein, having substantially the same biological activity as the amino acid sequences given in Table A4 of the Examples section. Preferably, the hybridising sequence is capable of hybridising to the complement of any one of the nucleic acids given in Table A4, or to a portion of any of these sequences, a portion being as defined above, or the hybridising sequence is capable of hybridising to the complement of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A4. Most preferably, the hybridising sequence is capable of hybridising to the complement of a nucleic acid as represented by SEQ ID NO: 90, SEQ ID NO: 92 or SEQ ID NO: 94 or to a portion thereof.


Preferably, the hybridising sequence encodes a polypeptide with an amino acid sequence which, when full-length and used in the construction of a phylogenetic tree, clusters with the group of silky-1-like polypeptides comprising the amino acid sequence represented by SEQ ID NO: 91, SEQ ID NO: 93 or SEQ ID NO: 95 rather than with any other group.


Concerning ARP6 polypeptides, hybridising sequences useful in the methods of the invention encode an ARP6 polypeptide as defined herein, having substantially the same biological activity as the amino acid sequences given in Table A5 of the Examples section. Preferably, the hybridising sequence is capable of hybridising to the complement of any one of the nucleic acids given in Table A5 of the Examples section, or to a portion of any of these sequences, a portion being as defined above, or the hybridising sequence is capable of hybridising to the complement of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A5 of the Examples section. Most preferably, the hybridising sequence is capable of hybridising to the complement of a nucleic acid as represented by SEQ ID NO: 101 or to a portion thereof.


Preferably, the hybridising sequence encodes a polypeptide with an amino acid sequence which, when full-length and used in the construction of a phylogenetic tree, such as the one depicted in FIG. 1 of Kandasamy et al. 2004. Trends Plant Sci 9: 196-202, clusters with the ARP6 group of polypeptides comprising the amino acid sequence of AtARP6 as represented by SEQ ID NO: 102 rather than with any other group.


Concerning POP polypeptides, hybridising sequences useful in the methods of the invention encode a POP polypeptide as defined herein, having substantially the same biological activity as the amino acid sequences given in Table A6 of the Examples section. Preferably, the hybridising sequence is capable of hybridising to the complement of any one of the nucleic acids given in Table A6 of the Examples section, or to a portion of any of these sequences, a portion being as defined above, or the hybridising sequence is capable of hybridising to the complement of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A6 of the Examples section. Most preferably, the hybridising sequence is capable of hybridising to the complement of a nucleic acid as represented by SEQ ID NO: 116 or to a portion thereof.


Preferably, the hybridising sequence encodes a polypeptide with an amino acid sequence which, when full-length and used in the construction of a phylogenetic tree, such as the one depicted in FIG. 13 (Tripathi & Sowdhamini 2006), clusters with the group of POP polypeptides indicated by the arrow comprising the amino acid sequence represented by SEQ ID NO: 117 rather than with any other group.


Concerning CRL polypeptides, hybridising sequences useful in the methods of the invention encode a CRL polypeptide as defined herein, having substantially the same biological activity as the amino acid sequences given in Table A7 of the Examples section. Preferably, the hybridising sequence is capable of hybridising to the complement of any one of the nucleic acids given in Table A7 of the Examples section, or to a portion of any of these sequences, a portion being as defined above, or the hybridising sequence is capable of hybridising to the complement of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A7 of the Examples section. Most preferably, the hybridising sequence is capable of hybridising to the complement of a nucleic acid as represented by SEQ ID NO: 155 or to a portion thereof.


Preferably, the hybridising sequence encodes a polypeptide with an amino acid sequence which, when full-length and used in the construction of a phylogenetic tree, such as the one depicted in FIG. 16, clusters with the group of CRL polypeptides comprising the amino acid sequence encoded by a monocotyledonous plant, more preferably by a sequence encoded by a dicotyledonous plant, most preferably by the sequence represented by SEQ ID NO: 156 rather than with any other group.


Another nucleic acid variant useful in the methods of the invention is a splice variant encoding an alfin-like polypeptide, or a YRP polypeptide, or a BRXL polypeptide, or a silky-1-like polypeptide, or an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide, as defined hereinabove, a splice variant being as defined herein.


According to the present invention, there is provided a method for enhancing abiotic stress tolerance and/or enhancing yield-related traits in plants, comprising introducing and expressing in a plant a splice variant of any one of the nucleic acid sequences given in Table A1 to A7 of the Examples Section, or a splice variant of a nucleic acid encoding an orthologue, paralogue or homologue of any of the amino acid sequences given in Table A1 to A7 of the Examples Section.


Concerning alfin-like polypeptides, preferred splice variants are splice variants of a nucleic acid represented by any of SEQ ID NO: 1 or SEQ ID NO: 3, or a splice variant of a nucleic acid encoding an orthologue or paralogue of any of SEQ ID NO: 2 or SEQ ID NO: 4. Preferably, the amino acid sequence encoded by the splice variant, when used in the construction of a phylogenetic tree, clusters with the group of alfin-like polypeptides comprising the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4 rather than with any other group.


Concerning YRP polypeptides, preferred splice variants are splice variants of a nucleic acid represented by any of SEQ ID NO: 10 or SEQ ID NO: 12, or a splice variant of a nucleic acid encoding an orthologue or paralogue of any of SEQ ID NO: 11 or SEQ ID NO: 13. Preferably, the amino acid sequence encoded by the splice variant, when used in the construction of a phylogenetic tree, clusters with the group of YRP polypeptides comprising the amino acid sequence represented by SEQ ID NO: 11 or SEQ ID NO: 13 rather than with any other group.


Concerning BRXL polypeptides, preferred splice variants are splice variants of a nucleic acid sequence represented by SEQ ID NO: 17, or a splice variant of a nucleic acid sequence encoding an orthologue or paralogue of SEQ ID NO: 18. Preferably, the splice variant is a splice variant of a nucleic acid sequence encoding a polypeptide sequence comprising (i) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved Domain 1 (comprising a BRX domain) as represented by SEQ ID NO: 83; and (ii) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved Domain 2 (comprising a BRX domain) as represented by SEQ ID NO: 84. More preferably, the splice variant is a splice variant of a nucleic acid sequence encoding a polypeptide sequence having in increasing order of preference at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to the BRXL polypeptide as represented by SEQ ID NO: 18 or to any of the polypeptide sequences given in Table A3 herein. Most preferably, the splice variant is a splice variant of a nucleic acid sequence as represented by SEQ ID NO: 17, or of a nucleic acid sequence encoding a polypeptide sequence as represented by SEQ ID NO: 18.


Concerning silky-1-like polypeptides, preferred splice variants are splice variants of a nucleic acid represented by any of SEQ ID NO: 90, SEQ ID NO: 92 or SEQ ID NO: 94, or a splice variant of a nucleic acid encoding an orthologue or paralogue of any of SEQ ID NO: 91, SEQ ID NO: 93 or SEQ ID NO: 95. Preferably, the amino acid sequence encoded by the splice variant, when used in the construction of a phylogenetic tree, clusters with the group of silky-1-like polypeptides comprising the amino acid sequence represented by SEQ ID NO: 91, SEQ ID NO: 93 or SEQ ID NO: 95 rather than with any other group.


Concerning ARP6 polypeptides, preferred splice variants are splice variants of a nucleic acid represented by SEQ ID NO: 101, or a splice variant of a nucleic acid encoding an orthologue or paralogue of SEQ ID NO: 102. Preferably, the amino acid sequence encoded by the splice variant, when used in the construction of a phylogenetic tree, such as the one depicted in FIG. 1 of Kandasamy et al. 2004. Trends Plant Sci 9: 196-202, clusters with the ARP6 group of polypeptides comprising the amino acid sequence of AtARP6 as represented by SEQ ID NO: 102 rather than with any other group.


Concerning POP polypeptides, preferred splice variants are splice variants of a nucleic acid represented by SEQ ID NO: 116, or a splice variant of a nucleic acid encoding an orthologue or paralogue of SEQ ID NO: 117. Preferably, the amino acid sequence encoded by the splice variant, when used in the construction of a phylogenetic tree, such as the one depicted in FIG. 13 (Tripathi & Sowdhamini 2006), clusters with the group of POP polypeptides indicated by the arrow comprising the amino acid sequence represented by SEQ ID NO: 117 rather than with any other group.


Concerning CRL polypeptides, preferred splice variants are splice variants of a nucleic acid represented by SEQ ID NO: 155, or a splice variant of a nucleic acid encoding an orthologue or paralogue of SEQ ID NO: 156. Preferably, the amino acid sequence encoded by the splice variant, when used in the construction of a phylogenetic tree, such as the one depicted in FIG. 16, clusters with the group of CRL polypeptides comprising the amino acid sequence encoded by a monocotyledonous plant, more preferably by a sequence encoded by a dicotyledonous plant, most preferably by the sequence represented by SEQ ID NO: 156 rather than with any other group.


Another nucleic acid variant useful in performing the methods of the invention is an allelic variant of a nucleic acid encoding an alfin-like polypeptide, or a YRP polypeptide, or a BRXL polypeptide, or a silky-1-like polypeptide, or an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide, as defined hereinabove, an allelic variant being as defined herein.


According to the present invention, there is provided a method for enhancing abiotic stress tolerance and/or enhancing yield-related traits in plants, comprising introducing and expressing in a plant an allelic variant of any one of the nucleic acids given in Table A1 to A7, or comprising introducing and expressing in a plant an allelic variant of a nucleic acid encoding an orthologue, paralogue or homologue of any of the amino acid sequences given in Table A1 to A7.


Concerning alfin-like polypeptides, the polypeptides encoded by allelic variants useful in the methods of the present invention have substantially the same biological activity as the alfin-like polypeptide of any of SEQ ID NO: 2 or any of the amino acids depicted in Table A1 of the Examples section. Allelic variants exist in nature, and encompassed within the methods of the present invention is the use of these natural alleles. Preferably, the allelic variant is an allelic variant of any of SEQ ID NO: 1 or SEQ ID NO: 3 or an allelic variant of a nucleic acid encoding an orthologue or paralogue of SEQ ID NO: 2 or SEQ ID NO: 4. Preferably, the amino acid sequence encoded by the allelic variant, clusters with the alfin-like polypeptides comprising the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4 rather than with any other group.


Concerning YRP polypeptides, the polypeptides encoded by allelic variants useful in the methods of the present invention have substantially the same biological activity as the YRP polypeptide of any of SEQ ID NO: 11 or any of the amino acids depicted in Table A2 of the Examples section. Allelic variants exist in nature, and encompassed within the methods of the present invention is the use of these natural alleles. Preferably, the allelic variant is an allelic variant of any of SEQ ID NO: 10 or SEQ ID NO: 12 or an allelic variant of a nucleic acid encoding an orthologue or paralogue of SEQ ID NO: 11 or SEQ ID NO: 13. Preferably, the amino acid sequence encoded by the allelic variant, clusters with the YRP polypeptides comprising the amino acid sequence represented by SEQ ID NO: 11 or SEQ ID NO: 13 rather than with any other group.


Concerning BRXL polypeptides, the allelic variants useful in the methods of the present invention have substantially the same biological activity as the BRXL polypeptide of SEQ ID NO: 18 and any of the polypeptide sequences depicted in Table A3 of Example 1. Allelic variants exist in nature, and encompassed within the methods of the present invention is the use of these natural alleles. Preferably, the allelic variant is an allelic variant of a polypeptide sequence comprising (i) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved Domain 1 (comprising a BRX domain) as represented by SEQ ID NO: 83; and (ii) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved Domain 2 (comprising a BRX domain) as represented by SEQ ID NO: 84. More preferably the allelic variant is an allelic variant encoding a polypeptide sequence having in increasing order of preference at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to the BRXL polypeptide as represented by SEQ ID NO: 18 or to any of the polypeptide sequences given in Table A herein. Most preferably, the allelic variant is an allelic variant of SEQ ID NO: 17 or an allelic variant of a nucleic acid sequence encoding an orthologue or paralogue of SEQ ID NO: 18.


Concerning silky-1-like polypeptides, the polypeptides encoded by allelic variants useful in the methods of the present invention have substantially the same biological activity as the silky-1-like polypeptide of any of SEQ ID NO: 91 or any of the amino acids depicted in Table A4 of the Examples section. Allelic variants exist in nature, and encompassed within the methods of the present invention is the use of these natural alleles. Preferably, the allelic variant is an allelic variant of any of SEQ ID NO: 90, SEQ ID NO: 92 or SEQ ID NO: 94 or an allelic variant of a nucleic acid encoding an orthologue or paralogue of SEQ ID NO: 91, SEQ ID NO: 93 or SEQ ID NO: 95. Preferably, the amino acid sequence encoded by the allelic variant, clusters with the silky-1-like polypeptides comprising the amino acid sequence represented by SEQ ID NO: 91, SEQ ID NO: 93 or SEQ ID NO: 95 rather than with any other group.


Concerning ARP6 polypeptides, the polypeptides encoded by allelic variants useful in the methods of the present invention have substantially the same biological activity as the ARP6 polypeptide of SEQ ID NO: 102 and any of the amino acids depicted in Table A5 of the Examples section. Allelic variants exist in nature, and encompassed within the methods of the present invention is the use of these natural alleles. Preferably, the allelic variant is an allelic variant of SEQ ID NO: 101 or an allelic variant of a nucleic acid encoding an orthologue or paralogue of SEQ ID NO: 102. Preferably, the amino acid sequence encoded by the allelic variant, when used in the construction of a phylogenetic tree, such as the one depicted in FIG. 1 of Kandasamy et al. 2004. Trends Plant Sci 9: 196-202, clusters with the ARP6 group of polypeptides comprising the amino acid sequence of AtARP6 as represented by SEQ ID NO: 102 rather than with any other group.


Concerning POP polypeptides, the polypeptides encoded by allelic variants useful in the methods of the present invention have substantially the same biological activity as the POP polypeptide of SEQ ID NO: 117 and any of the amino acids depicted in Table A6 of the Examples section. Allelic variants exist in nature, and encompassed within the methods of the present invention is the use of these natural alleles. Preferably, the allelic variant is an allelic variant of SEQ ID NO: 116 or an allelic variant of a nucleic acid encoding an orthologue or paralogue of SEQ ID NO: 117. Preferably, the amino acid sequence encoded by the allelic variant, when used in the construction of a phylogenetic tree, such as the one depicted in FIG. 13 (Tripathi & Sowdhamini 2006), clusters with the group of POP polypeptides indicated by the arrow comprising the amino acid sequence represented by SEQ ID NO: 117 rather than with any other group.


Concerning CRL polypeptides, the polypeptides encoded by allelic variants useful in the methods of the present invention have substantially the same biological activity as the CRL polypeptide of SEQ ID NO: 156 and any of the amino acids depicted in Table A7 of the Examples section. Allelic variants exist in nature, and encompassed within the methods of the present invention is the use of these natural alleles. Preferably, the allelic variant is an allelic variant of SEQ ID NO: 155 or an allelic variant of a nucleic acid encoding an orthologue or paralogue of SEQ ID NO: 156. Preferably, the amino acid sequence encoded by the allelic variant, when used in the construction of a phylogenetic tree, such as the one depicted in FIG. 16, clusters with the group of CRL polypeptides comprising the amino acid sequence encoded by a monocotyledonous plant, more preferably by a sequence encoded by a dicotyledonous plant, most preferably by the sequence represented by SEQ ID NO: 156 rather than with any other group.


Gene shuffling or directed evolution may also be used to generate variants of nucleic acids encoding alfin-like polypeptides, or YRP polypeptides, or BRXL polypeptides, or silky-1-like polypeptides, or ARP6 polypeptides, or POP polypeptides, or CRL polypeptides, as defined above; the term “gene shuffling” being as defined herein.


According to the present invention, there is provided a method for enhancing abiotic stress tolerance and/or yield-related traits in plants, comprising introducing and expressing in a plant a variant of any one of the nucleic acid sequences given in Table A1 to A7 of the Examples section, or comprising introducing and expressing in a plant a variant of a nucleic acid encoding an orthologue, paralogue or homologue of any of the amino acid sequences given in Table A1 to A7 of the Examples section, which variant nucleic acid is obtained by gene shuffling.


Concerning alfin-like polypeptides, preferably, the amino acid sequence encoded by the variant nucleic acid obtained by gene shuffling, when used in the construction of a phylogenetic tree, clusters with the group of alfin-like polypeptides comprising the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4 rather than with any other group.


Concerning YRP polypeptides, preferably, the amino acid sequence encoded by the variant nucleic acid obtained by gene shuffling, when used in the construction of a phylogenetic tree, clusters with the group of YRP polypeptides comprising the amino acid sequence represented by SEQ ID NO: 11 or SEQ ID NO: 13 rather than with any other group.


Concerning BRXL polypeptides, preferably, the variant nucleic acid sequence obtained by gene shuffling encodes a polypeptide sequence comprising (i) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved Domain 1 (comprising a BRX domain) as represented by SEQ ID NO: 83; and (ii) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved Domain 2 (comprising a BRX domain) as represented by SEQ ID NO: 84. More preferably, the variant nucleic acid sequence obtained by gene shuffling encodes a polypeptide sequence having in increasing order of preference at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to the BRXL polypeptide as represented by SEQ ID NO: 18 or to any of the polypeptide sequences given in Table A3 herein. Most preferably, the nucleic acid sequence obtained by gene shuffling encodes a polypeptide sequence as represented by SEQ ID NO: 18.


Concerning silky-1-like polypeptides, preferably, the amino acid sequence encoded by the variant nucleic acid obtained by gene shuffling, when used in the construction of a phylogenetic tree, clusters with the group of silky-1-like polypeptides comprising the amino acid sequence represented by SEQ ID NO: 91, SEQ ID NO: 93 or SEQ ID NO: 95 rather than with any other group.


Concerning ARP6 polypeptides, preferably, the amino acid sequence encoded by the variant nucleic acid obtained by gene shuffling, when used in the construction of a phylogenetic tree such as the one depicted in FIG. 1 of Kandasamy et al. 2004. Trends Plant Sci 9: 196-202, clusters with the ARP6 group of polypeptides comprising the amino acid sequence of AtARP6 as represented by SEQ ID NO: 102 rather than with any other group.


Concerning POP polypeptides, preferably, the amino acid sequence encoded by the variant nucleic acid obtained by gene shuffling, when used in the construction of a phylogenetic tree such as the one depicted in FIG. 13 (Tripathi & Sowdhamini 2006), clusters with the group of POP polypeptides indicated by the arrow comprising the amino acid sequence represented by SEQ ID NO: 117 rather than with any other group.


Concerning CRL polypeptides, preferably, the amino acid sequence encoded by the variant nucleic acid obtained by gene shuffling, when used in the construction of a phylogenetic tree such as the one depicted in FIG. 16, clusters with the group of CRL polypeptides comprising the amino acid sequence encoded by a monocotyledonous plant, more preferably by a sequence encoded by a dicotyledonous plant, most preferably by the sequence represented by SEQ ID NO: 156 rather than with any other group.


Furthermore, nucleic acid variants may also be obtained by site-directed mutagenesis. Several methods are available to achieve site-directed mutagenesis, the most common being PCR based methods (Current Protocols in Molecular Biology. Wiley Eds.).


Nucleic acids encoding alfin-like polypeptides may be derived from any natural or artificial source. The nucleic acid may be modified from its native form in composition and/or genomic environment through deliberate human manipulation. Preferably the alfin-like polypeptide-encoding nucleic acid is from a plant, further preferably from a monocotyledonous or dicotyledonous plant, more preferably from the family Allium or Hordeum.


Nucleic acids encoding YRP polypeptides may be derived from any natural or artificial source. The nucleic acid may be modified from its native form in composition and/or genomic environment through deliberate human manipulation. Preferably the YRP polypeptide-encoding nucleic acid is from a plant, further preferably from a monocotyledonous or dicotyledonous plant, more preferably from the family Populus or Solanum.


Nucleic acid sequences encoding BRXL polypeptides may be derived from any natural or artificial source. The nucleic acid sequence may be modified from its native form in composition and/or genomic environment through deliberate human manipulation. The nucleic acid sequence encoding a BRXL polypeptide is from a plant, further preferably from a dicotyledonous plant, more preferably from the family Salicaceae, most preferably the nucleic acid sequence is from Populus trichocarpa.


Nucleic acids encoding silky-1-like polypeptides may be derived from any natural or artificial source. The nucleic acid may be modified from its native form in composition and/or genomic environment through deliberate human manipulation. Preferably the silky-1-like polypeptide-encoding nucleic acid is from a plant, further preferably from a monocotyledonous or dicotyledonous plant, more preferably from the family Allium or Hordeum.


Nucleic acids encoding ARP6 polypeptides may be derived from any natural or artificial source. The nucleic acid may be modified from its native form in composition and/or genomic environment through deliberate human manipulation. Preferably the ARP6 polypeptide-encoding nucleic acid is from a plant, further preferably from a dicocotyledonous plant, more preferably from the family Brassicaceae, most preferably the nucleic acid is from Arabidopsis thaliana.


Nucleic acids encoding POP polypeptides may be derived from any natural or artificial source. The nucleic acid may be modified from its native form in composition and/or genomic environment through deliberate human manipulation. Preferably the POP polypeptide-encoding nucleic acid is from a plant, further preferably from a dicotyledonous plant, more preferably from the family Brassicaceae, most preferably the nucleic acid is from Arabidopsis thaliana.


Nucleic acids encoding CRL polypeptides may be derived from any natural or artificial source. The nucleic acid may be modified from its native form in composition and/or genomic environment through deliberate human manipulation. Preferably the CRL polypeptide-encoding nucleic acid is from a plant, further preferably from a dicotyledonous plant, more preferably from the family Brassicaceae, most preferably the nucleic acid is from Arabidopsis thaliana.


Advantageously, the invention also provides hitherto unknown CRL-encoding nucleic acids and CRL polypeptides.


According to a further embodiment of the present invention, there is therefore provided an isolated nucleic acid molecule selected from:

    • (i) a nucleic acid represented by SEQ ID NO: 41;
    • (ii) the complement of a nucleic acid represented by SEQ ID NO: 41:
    • (iii) a nucleic acid encoding the polypeptide as represented by SEQ ID NO: 42, preferably as a result of the degeneracy of the genetic code, said isolated nucleic acid can be derived from a polypeptide sequence as represented by SEQ ID NO: 42 and further preferably confers enhanced yield-related traits relative to control plants;
    • (iv) a nucleic acid having, in increasing order of preference at least 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity with any of the nucleic acid sequences of Table A and further preferably conferring enhanced yield-related traits relative to control plants;
    • (v) a nucleic acid molecule which hybridizes with a nucleic acid molecule of (i) to (iv) under stringent hybridization conditions and preferably confers enhanced yield-related traits relative to control plants;
    • (vi) a nucleic acid encoding an ASPAT polypeptide having, in increasing order of preference, at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to the amino acid sequence represented by SEQ ID NO: 42 and any of the other amino acid sequences in Table A and preferably conferring enhanced yield-related traits relative to control plants.


According to a further embodiment of the present invention, there is also provided an isolated polypeptide selected from:

    • (i) an amino acid sequence represented by SEQ ID NO: 42;
    • (ii) an amino acid sequence having, in increasing order of preference, at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to the amino acid sequence represented by SEQ ID NO: 42, and any of the other amino acid sequences in Table A and preferably conferring enhanced yield-related traits relative to control plants.
    • (iii) derivatives of any of the amino acid sequences given in (i) or (ii) above.


Concerning alfin-like polypeptides, or YRP polypeptides, or silky-1-like polypeptides, performance of the methods of the invention gives plants having enhanced tolerance to abiotic stress.


Concerning BRXL polypeptides, performance of the methods of the invention gives plants having increased yield-related traits relative to control plants. The terms “yield” and “seed yield” are described in more detail in the “definitions” section herein.


Concerning ARP6 polypeptides, or CRL polypeptides, performance of the methods of the invention gives plants having enhanced yield-related traits. In particular performance of the methods of the invention gives plants having increased yield, especially increased seed yield relative to control plants. The terms “yield” and “seed yield” are described in more detail in the “definitions” section herein.


Concerning POP polypeptides, performance of the methods of the invention gives plants having enhanced yield-related traits. In particular performance of the methods of the invention gives plants having increased yield, especially increased (root and/or shoot) biomass and seed yield relative to control plants. The terms “yield” and “seed yield” are described in more detail in the “definitions” section herein. Performance of the methods of the invention gives plants having modified flowering time (preferably earlier flowering time).


Reference herein to enhanced yield-related traits is taken to mean an increase in biomass (weight) of one or more parts of a plant, which may include aboveground (harvestable) parts and/or (harvestable) parts below ground. In particular, such harvestable parts are seeds, and performance of the methods of the invention results in plants having increased seed yield relative to the seed yield of control plants.


Taking corn as an example, a yield increase may be manifested as one or more of the following: increase in the number of plants established per square meter, an increase in the number of ears per plant, an increase in the number of rows, number of kernels per row, kernel weight, thousand kernel weight, ear length/diameter, increase in the seed filling rate (which is the number of filled seeds divided by the total number of seeds and multiplied by 100), among others. Taking rice as an example, a yield increase may manifest itself as an increase in one or more of the following: number of plants per square meter, number of panicles per plant, number of spikelets per panicle, number of flowers (florets) per panicle (which is expressed as a ratio of the number of filled seeds over the number of primary panicles), increase in the seed filling rate (which is the number of filled seeds divided by the total number of seeds and multiplied by 100), increase in thousand kernel weight, among others.


Concerning abiotic stress, the present invention provides a method for enhancing stress tolerance in plants, relative to control plants, which method comprises modulating expression in a plant of a nucleic acid encoding an alfin-like polypeptide, or a YRP polypeptide, or a silky-1-like polypeptide, as defined herein.


Plants typically respond to exposure to stress by growing more slowly. In conditions of severe stress, the plant may even stop growing altogether. Mild stress on the other hand is defined herein as being any stress to which a plant is exposed which does not result in the plant ceasing to grow altogether without the capacity to resume growth. Mild stress in the sense of the invention leads to a reduction in the growth of the stressed plants of less than 40%, 35%, 30% or 25%, more preferably less than 20% or 15% in comparison to the control plant under non-stress conditions. Due to advances in agricultural practices (irrigation, fertilization, pesticide treatments) severe stresses are not often encountered in cultivated crop plants. As a consequence, the compromised growth induced by mild stress is often an undesirable feature for agriculture. Mild stresses are the everyday biotic and/or abiotic (environmental) stresses to which a plant is exposed. Abiotic stresses may be due to drought or excess water, anaerobic stress, salt stress, chemical toxicity, oxidative stress and hot, cold or freezing temperatures. The abiotic stress may be an osmotic stress caused by a water stress (particularly due to drought), salt stress, oxidative stress or an ionic stress. Biotic stresses are typically those stresses caused by pathogens, such as bacteria, viruses, fungi, nematodes and insects.


In particular, the methods of the present invention may be performed under conditions of (mild) drought to give plants having enhanced drought tolerance relative to control plants, which might manifest itself as an increased yield relative to control plants. As reported in Wang et al. (Planta (2003) 218: 1-14), abiotic stress leads to a series of morphological, physiological, biochemical and molecular changes that adversely affect plant growth and productivity. Drought, salinity, extreme temperatures and oxidative stress are known to be interconnected and may induce growth and cellular damage through similar mechanisms. Rabbani et al. (Plant Physiol (2003) 133: 1755-1767) describes a particularly high degree of “cross talk” between drought stress and high-salinity stress. For example, drought and/or salinisation are manifested primarily as osmotic stress, resulting in the disruption of homeostasis and ion distribution in the cell. Oxidative stress, which frequently accompanies high or low temperature, salinity or drought stress, may cause denaturing of functional and structural proteins. As a consequence, these diverse environmental stresses often activate similar cell signalling pathways and cellular responses, such as the production of stress proteins, up-regulation of anti-oxidants, accumulation of compatible solutes and growth arrest. The term “non-stress” conditions as used herein are those environmental conditions that allow optimal growth of plants. Persons skilled in the art are aware of normal soil conditions and climatic conditions for a given location. Plants with optimal growth conditions, (grown under non-stress conditions) typically yield in increasing order of preference at least 97%, 95%, 92%, 90%, 87%, 85%, 83%, 80%, 77% or 75% of the average production of such plant in a given environment. Average production may be calculated on harvest and/or season basis. Persons skilled in the art are aware of average yield productions of a crop.


Performance of the methods of the invention gives plants grown under (mild) drought conditions enhanced drought tolerance relative to control plants grown under comparable conditions. Therefore, according to the present invention, there is provided a method for enhancing drought tolerance in plants grown under (mild) drought conditions, which method comprises modulating expression in a plant of a nucleic acid encoding an alfin-like polypeptide, or a YRP polypeptide, or a silky-1-like polypeptide.


Performance of the methods of the invention gives plants grown under conditions of nutrient deficiency, particularly under conditions of nitrogen deficiency, enhanced tolerance to stresses caused by nutrient deficiency relative to control plants. Therefore, according to the present invention, there is provided a method for enhancing tolerance to stresses caused by nutrient deficiency, which method comprises modulating expression in a plant of a nucleic acid encoding an alfin-like polypeptide, or a YRP polypeptide, or a silky-1-like polypeptide. Nutrient deficiency may result from a lack of nutrients such as nitrogen, phosphates and other phosphorous-containing compounds, potassium, calcium, magnesium, manganese, iron and boron, amongst others.


Performance of the methods of the invention gives plants grown under conditions of salt stress, enhanced tolerance to salt relative to control plants grown under comparable conditions. Therefore, according to the present invention, there is provided a method for enhancing salt tolerance in plants grown under conditions of salt stress, which method comprises modulating expression in a plant of a nucleic acid encoding an alfin-like polypeptide, or a YRP polypeptide, or a silky-1-like polypeptide. The term salt stress is not restricted to common salt (NaCl), but may be any one or more of: NaCl, KCl, LiCl, MgCl2, CaCl2, amongst others.


Concerning yield-related traits, the present invention provides a method for increasing yield-related traits of plants relative to control plants, which method comprises increasing expression in a plant of a nucleic acid sequence encoding a BRXL polypeptide as defined herein.


The present invention provides a method for increasing yield, especially seed yield of plants, relative to control plants, which method comprises modulating expression in a plant of a nucleic acid encoding or an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide, as defined herein.


Since the transgenic plants according to the present invention have increased yield-related traits and/or yield, it is likely that these plants exhibit an increased growth rate (during at least part of their life cycle), relative to the growth rate of control plants at a corresponding stage in their life cycle.


The increased growth rate may be specific to one or more parts of a plant (including seeds), or may be throughout substantially the whole plant. Plants having an increased growth rate may have a shorter life cycle. The life cycle of a plant may be taken to mean the time needed to grow from a dry mature seed up to the stage where the plant has produced dry mature seeds, similar to the starting material. This life cycle may be influenced by factors such as speed of germination, early vigour, growth rate, greenness index, flowering time and speed of seed maturation. The increase in growth rate may take place at one or more stages in the life cycle of a plant or during substantially the whole plant life cycle. Increased growth rate during the early stages in the life cycle of a plant may reflect enhanced vigour. The increase in growth rate may alter the harvest cycle of a plant allowing plants to be sown later and/or harvested sooner than would otherwise be possible (a similar effect may be obtained with earlier flowering time). If the growth rate is sufficiently increased, it may allow for the further sowing of seeds of the same plant species (for example sowing and harvesting of rice plants followed by sowing and harvesting of further rice plants all within one conventional growing period). Similarly, if the growth rate is sufficiently increased, it may allow for the further sowing of seeds of different plants species (for example the sowing and harvesting of corn plants followed by, for example, the sowing and optional harvesting of soybean, potato or any other suitable plant). Harvesting additional times from the same rootstock in the case of some crop plants may also be possible. Altering the harvest cycle of a plant may lead to an increase in annual biomass production per square meter (due to an increase in the number of times (say in a year) that any particular plant may be grown and harvested). An increase in growth rate may also allow for the cultivation of transgenic plants in a wider geographical area than their wild-type counterparts, since the territorial limitations for growing a crop are often determined by adverse environmental conditions either at the time of planting (early season) or at the time of harvesting (late season). Such adverse conditions may be avoided if the harvest cycle is shortened. The growth rate may be determined by deriving various parameters from growth curves, such parameters may be: T-Mid (the time taken for plants to reach 50% of their maximal size) and T-90 (time taken for plants to reach 90% of their maximal size), amongst others.


According to a preferred feature of the present invention, performance of the methods of the invention gives plants having an increased growth rate relative to control plants. Therefore, according to the present invention, there is provided a method for increasing the growth rate of plants, which method comprises increasing expression in a plant of a nucleic acid encoding a BRXL polypeptide, or an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide, as defined herein.


Performance of the methods of the invention gives plants grown under non-stress conditions or under mild stress conditions having increased yield-related traits, relative to control plants grown under comparable conditions. Therefore, according to the present invention, there is provided a method for increasing yield-related traits in plants grown under non-stress conditions or under mild stress conditions, which method comprises increasing expression in a plant of a nucleic acid sequence encoding a BRXL polypeptide, or an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide.


Performance of the methods of the invention gives plants grown under conditions of reduced nutrient availability, particularly under conditions of reduced nitrogen availablity, having increased yield-related traits and/or yield relative to control plants grown under comparable conditions. Therefore, according to the present invention, there is provided a method for increasing yield-related traits in plants grown under conditions of reduced nutrient availablity, preferably reduced nitrogen availability, which method comprises increasing expression in a plant of a nucleic acid sequence encoding a BRXL polypeptide, or an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide. Reduced nutrient availability may result from a deficiency or excess of nutrients such as nitrogen, phosphates and other phosphorous-containing compounds, potassium, calcium, cadmium, magnesium, manganese, iron and boron, amongst others. Preferably, reduced nutrient availablity is reduced nitrogen availability.


Performance of the methods of the invention gives plants grown under conditions of salt stress, increased yield relative to control plants grown under comparable conditions. Therefore, according to the present invention, there is provided a method for increasing yield in plants grown under conditions of salt stress, which method comprises modulating expression in a plant of a nucleic acid encoding an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide. The term salt stress is not restricted to common salt (NaCl), but may be any one or more of: NaCl, KCl, LiCl, MgCl2, CaCl2, amongst others.


The present invention encompasses plants or parts thereof (including seeds) obtainable by the methods according to the present invention. The plants or parts thereof comprise a nucleic acid transgene encoding an alfin-like polypeptide, or a YRP polypeptide, or a BRXL polypeptide, or a silky-1-like polypeptide, or an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide, as defined above, operably linked to a promoter functioning in plants.


The invention also provides genetic constructs and vectors to facilitate introduction and/or expression in plants of nucleic acids encoding alfin-like polypeptides, or YRP polypeptides, or BRXL polypeptides, or silky-1-like polypeptides, or ARP6 polypeptides, or POP polypeptides, or CRL polypeptides. The gene constructs may be inserted into vectors, which may be commercially available, suitable for transforming into plants and suitable for expression of the gene of interest in the transformed cells. The invention also provides use of a gene construct as defined herein in the methods of the invention.


More specifically, the present invention provides a construct comprising:

    • (a) a nucleic acid encoding an alfin-like polypeptide, or a YRP polypeptide, or a BRXL polypeptide, or a silky-1-like polypeptide, or an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide, as defined above;
    • (b) one or more control sequences capable of driving expression of the nucleic acid sequence of (a); and optionally
    • (c) a transcription termination sequence.


Preferably, the nucleic acid encoding an alfin-like polypeptide, or a YRP polypeptide, or a BRXL polypeptide, or a silky-1-like polypeptide, or an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide, is as defined above. The term “control sequence” and “termination sequence” are as defined herein.


Concerning BRXL polypeptides, preferably, one of the control sequences of a construct is a constitutive promoter isolated from a plant genome. An example of a constitutive promoter is a GOS2 promoter, preferably a GOS2 promoter from rice, most preferably a GOS2 sequence as represented by SEQ ID NO: 87.


Plants are transformed with a vector comprising any of the nucleic acids described above. The skilled artisan is well aware of the genetic elements that must be present on the vector in order to successfully transform, select and propagate host cells containing the sequence of interest. The sequence of interest is operably linked to one or more control sequences (at least to a promoter).


Advantageously, any type of promoter, whether natural or synthetic, may be used to drive expression of the nucleic acid sequence, but preferably the promoter is of plant origin. A constitutive promoter is particularly useful in the methods. Preferably the constitutive promoter is also a ubiquitous promoter of medium strength. See the “Definitions” section herein for definitions of the various promoter types.


Concerning BRXL polypeptides, advantageously, any type of promoter, whether natural or synthetic, may be used to increase expression of the nucleic acid sequence. A constitutive promoter is particularly useful in the methods, preferably a constitutive promoter isolated from a plant genome. The plant constitutive promoter drives expression of a coding sequence at a level that is in all instances below that obtained under the control of a 35S CaMV viral promoter. An example of such a promoter is a GOS2 promoter as represented by SEQ ID NO: 87.


In the case of BRXL genes, organ-specific promoters, for example for preferred expression in leaves, stems, tubers, meristems, seeds, are useful in performing the methods of the invention. Developmentally-regulated and inducible promoters are also useful in performing the methods of the invention. See the “Definitions” section herein for definitions of the various promoter types.


Concerning alfin-like polypeptides, it should be clear that the applicability of the present invention is not restricted to the alfin-like polypeptide-encoding nucleic acid represented by SEQ ID NO: 1 or SEQ ID NO: 3, nor is the applicability of the invention restricted to expression of an alfin-like polypeptide-encoding nucleic acid when driven by a constitutive promoter.


The constitutive promoter is preferably a medium strength promoter, more preferably selected from a plant derived promoter, such as a GOS2 promoter, more preferably is the promoter GOS2 promoter from rice. Further preferably the constitutive promoter is represented by a nucleic acid sequence substantially similar to SEQ ID NO: 7, most preferably the constitutive promoter is as represented by SEQ ID NO: 7. See the “Definitions” section herein for further examples of constitutive promoters.


Optionally, one or more terminator sequences may be used in the construct introduced into a plant. Preferably, the construct comprises an expression cassette comprising a (GOS2) promoter, substantially similar to SEQ ID NO: 7, and the nucleic acid encoding the alfin-like polypeptide.


Concerning YRP polypeptides, it should be clear that the applicability of the present invention is not restricted to the YRP polypeptide-encoding nucleic acid represented by SEQ ID NO: 10 or SEQ ID NO: 12, nor is the applicability of the invention restricted to expression of a YRP polypeptide-encoding nucleic acid when driven by a constitutive promoter.


The constitutive promoter is preferably a medium strength promoter, more preferably selected from a plant derived promoter, such as a GOS2 promoter, more preferably is the promoter GOS2 promoter from rice. Further preferably the constitutive promoter is represented by a nucleic acid sequence substantially similar to SEQ ID NO: 16, most preferably the constitutive promoter is as represented by SEQ ID NO: 16. See the “Definitions” section herein for further examples of constitutive promoters.


Optionally, one or more terminator sequences may be used in the construct introduced into a plant. Preferably, the construct comprises an expression cassette comprising a (GOS2) promoter, substantially similar to SEQ ID NO: 16, and the nucleic acid encoding the YRP polypeptide.


Concerning BRXL polypeptides, it should be clear that the applicability of the present invention is not restricted to a nucleic acid sequence encoding the BRXL polypeptide, as represented by SEQ ID NO: 17, nor is the applicability of the invention restricted to expression of a BRXL polypeptide-encoding nucleic acid sequence when driven by a constitutive promoter.


Optionally, one or more terminator sequences may be used in the construct introduced into a plant.


Concerning silky-1-like polypeptides, it should be clear that the applicability of the present invention is not restricted to the silky-1-like polypeptide-encoding nucleic acid represented by SEQ ID NO: 90, SEQ ID NO: 92 or SEQ ID NO: 94, nor is the applicability of the invention restricted to expression of a silky-1-like polypeptide-encoding nucleic acid when driven by a constitutive promoter.


The constitutive promoter is preferably a medium strength promoter, more preferably selected from a plant derived promoter, such as a GOS2 promoter, more preferably is the promoter GOS2 promoter from rice. Further preferably the constitutive promoter is represented by a nucleic acid sequence substantially similar to SEQ ID NO: 96, most preferably the constitutive promoter is as represented by SEQ ID NO: 96. See the “Definitions” section herein for further examples of constitutive promoters.


Optionally, one or more terminator sequences may be used in the construct introduced into a plant. Preferably, the construct comprises an expression cassette comprising a (GOS2) promoter, substantially similar to SEQ ID NO: 96, and the nucleic acid encoding the silky-1-like polypeptide.


Concerning ARP6 polypeptides, it should be clear that the applicability of the present invention is not restricted to the ARP6 polypeptide-encoding nucleic acid represented by SEQ ID NO: 101, nor is the applicability of the invention restricted to expression of an ARP6 polypeptide-encoding nucleic acid when driven by a constitutive promoter.


The constitutive promoter is preferably a medium strength promoter, more preferably selected from a plant derived promoter, such as a GOS2 promoter, more preferably is the promoter GOS2 promoter from rice. Further preferably the constitutive promoter is represented by a nucleic acid sequence substantially similar to SEQ ID NO: 115, most preferably the constitutive promoter is as represented by SEQ ID NO: 115. See the “Definitions” section herein for further examples of constitutive promoters.


Optionally, one or more terminator sequences may be used in the construct introduced into a plant. Preferably, the construct comprises an expression cassette comprising a GOS2 promoter, substantially similar to SEQ ID NO: 115, and the nucleic acid encoding the ARP6 polypeptide.


Concerning POP polypeptides, it should be clear that the applicability of the present invention is not restricted to the POP polypeptide-encoding nucleic acid represented by SEQ ID NO: 116, nor is the applicability of the invention restricted to expression of a POP polypeptide-encoding nucleic acid when driven by a constitutive promoter.


The constitutive promoter is preferably a medium strength promoter, more preferably selected from a plant derived promoter, such as a GOS2 promoter, more preferably is the promoter GOS2 promoter from rice. Further preferably the constitutive promoter is represented by a nucleic acid sequence substantially similar to SEQ ID NO: 134, most preferably the constitutive promoter is as represented by SEQ ID NO: 134. See the “Definitions” section herein for further examples of constitutive promoters.


Optionally, one or more terminator sequences may be used in the construct introduced into a plant. Preferably, the construct comprises an expression cassette comprising a GOS2 promoter, substantially similar to SEQ ID NO: 134, and the nucleic acid encoding the POP polypeptide.


Concerning CRL polypeptides, it should be clear that the applicability of the present invention is not restricted to the CRL polypeptide-encoding nucleic acid represented by SEQ ID NO: 155, nor is the applicability of the invention restricted to expression of a CRL polypeptide-encoding nucleic acid when driven by a constitutive promoter, or when driven by a root-specific promoter.


The constitutive promoter is preferably a medium strength promoter, more preferably selected from a plant derived promoter, such as a GOS2 promoter, more preferably is the promoter GOS2 promoter from rice. Further preferably the constitutive promoter is represented by a nucleic acid sequence substantially similar to SEQ ID NO: 213, most preferably the constitutive promoter is as represented by SEQ ID NO: 213. See the “Definitions” section herein for further examples of constitutive promoters.


Optionally, one or more terminator sequences may be used in the construct introduced into a plant. Preferably, the construct comprises an expression cassette comprising a (GOS2) promoter, substantially similar to SEQ ID NO: 213, and the nucleic acid encoding the CRL polypeptide.


Additional regulatory elements may include transcriptional as well as translational enhancers. Those skilled in the art will be aware of terminator and enhancer sequences that may be suitable for use in performing the invention. An intron sequence may also be added to the 5′ untranslated region (UTR) or in the coding sequence to increase the amount of the mature message that accumulates in the cytosol, as described in the definitions section. Other control sequences (besides promoter, enhancer, silencer, intron sequences, 3′UTR and/or 5′UTR regions) may be protein and/or RNA stabilizing elements. Such sequences would be known or may readily be obtained by a person skilled in the art.


The genetic constructs of the invention may further include an origin of replication sequence that is required for maintenance and/or replication in a specific cell type. One example is when a genetic construct is required to be maintained in a bacterial cell as an episomal genetic element (e.g. plasmid or cosmid molecule). Preferred origins of replication include, but are not limited to, the f1-ori and colE1.


For the detection of the successful transfer of the nucleic acid sequences as used in the methods of the invention and/or selection of transgenic plants comprising these nucleic acids, it is advantageous to use marker genes (or reporter genes). Therefore, the genetic construct may optionally comprise a selectable marker gene. Selectable markers are described in more detail in the “definitions” section herein. The marker genes may be removed or excised from the transgenic cell once they are no longer needed. Techniques for marker removal are known in the art, useful techniques are described above in the definitions section.


It is known that upon stable or transient integration of nucleic acid sequences into plant cells, only a minority of the cells takes up the foreign DNA and, if desired, integrates it into its genome, depending on the expression vector used and the transfection technique used. To identify and select these integrants, a gene coding for a selectable marker (such as the ones described above) is usually introduced into the host cells together with the gene of interest. These markers can for example be used in mutants in which these genes are not functional by, for example, deletion by conventional methods. Furthermore, nucleic acid sequence molecules encoding a selectable marker can be introduced into a host cell on the same vector that comprises the sequence encoding the polypeptides of the invention or used in the methods of the invention, or else in a separate vector. Cells which have been stably transfected with the introduced nucleic acid sequence can be identified for example by selection (for example, cells which have integrated the selectable marker survive whereas the other cells die). The marker genes may be removed or excised from the transgenic cell once they are no longer needed. Techniques for marker gene removal are known in the art, useful techniques are described above in the definitions section.


The invention also provides a method for the production of transgenic plants having enhanced abiotic stress tolerance and/or yield-related traits relative to control plants, comprising introduction and expression in a plant of any nucleic acid encoding an alfin-like polypeptide, or a YRP polypeptide, or a BRXL polypeptide, or a silky-1-like polypeptide, or an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide, as defined hereinabove.


More specifically, the present invention provides a method for the production of transgenic plants having enhanced abiotic stress tolerance, particularly increased (mild) drought tolerance, which method comprises:

    • (i) introducing and expressing in a plant or plant cell a nucleic acid encoding an alfin-like polypeptide, or a YRP polypeptide, or a silky-1-like polypeptide; and
    • (ii) cultivating the plant cell under abiotic stress conditions.


The nucleic acid of (i) may be any of the nucleic acids capable of encoding an alfin-like polypeptide, or a YRP polypeptide, or a silky-1-like polypeptide, as defined herein.


More specifically, the present invention also provides a method for the production of transgenic plants having increased yield-related traits relative to control plants, which method comprises:

    • (i) introducing and expressing in a plant, plant part, or plant cell a nucleic acid sequence encoding a BRXL polypeptide; and
    • (ii) cultivating the plant cell, plant part or plant under conditions promoting plant growth and development.


The nucleic acid sequence of (i) may be any of the nucleic acid sequences capable of encoding a BRXL polypeptide as defined herein.


More specifically, the present invention also provides a method for the production of transgenic plants having enhanced yield-related traits, particularly increased seed yield, which method comprises:

    • (i) introducing and expressing in a plant or plant cell an ARP6 polypeptide-encoding nucleic acid; and
    • (ii) cultivating the plant cell under conditions promoting plant growth and development.


The nucleic acid of (i) may be any of the nucleic acids capable of encoding an ARP6 polypeptide as defined herein.


More specifically, the present invention also provides a method for the production of transgenic plants having enhanced yield-related traits, in particular increased yield which method comprises:

    • (i) introducing and expressing in a plant or plant cell a POP polypeptide-encoding nucleic acid; and
    • (ii) cultivating the plant cell under conditions promoting plant growth and development.


The nucleic acid of (i) may be any of the nucleic acids capable of encoding a POP polypeptide as defined herein.


More specifically, the present invention also provides a method for the production of transgenic plants having enhanced yield-related traits, particularly increased (seed) yield and/or harvest index, which method comprises:

    • (i) introducing and expressing in a plant or plant cell a CRL polypeptide-encoding nucleic acid; and
    • (ii) cultivating the plant cell under conditions promoting plant growth and development.


The nucleic acid of (i) may be any of the nucleic acids capable of encoding a CRL polypeptide as defined herein.


The nucleic acid may be introduced directly into a plant cell or into the plant itself (including introduction into a tissue, organ or any other part of a plant). According to a preferred feature of the present invention, the nucleic acid is preferably introduced into a plant by transformation. The term “transformation” is described in more detail in the “definitions” section herein.


The genetically modified plant cells can be regenerated via all methods with which the skilled worker is familiar. Suitable methods can be found in the above-mentioned publications by S. D. Kung and R. Wu, Potrykus or Hofgen and Willmitzer.


Generally after transformation, plant cells or cell groupings are selected for the presence of one or more markers which are encoded by plant-expressible genes co-transferred with the gene of interest, following which the transformed material is regenerated into a whole plant. To select transformed plants, the plant material obtained in the transformation is, as a rule, subjected to selective conditions so that transformed plants can be distinguished from untransformed plants. For example, the seeds obtained in the above-described manner can be planted and, after an initial growing period, subjected to a suitable selection by spraying. A further possibility consists in growing the seeds, if appropriate after sterilization, on agar plates using a suitable selection agent so that only the transformed seeds can grow into plants. Alternatively, the transformed plants are screened for the presence of a selectable marker such as the ones described above.


Following DNA transfer and regeneration, putatively transformed plants may also be evaluated, for instance using Southern analysis, for the presence of the gene of interest, copy number and/or genomic organisation. Alternatively or additionally, expression levels of the newly introduced DNA may be monitored using Northern and/or Western analysis, both techniques being well known to persons having ordinary skill in the art.


The generated transformed plants may be propagated by a variety of means, such as by clonal propagation or classical breeding techniques. For example, a first generation (or T1) transformed plant may be selfed and homozygous second-generation (or T2) transformants selected, and the T2 plants may then further be propagated through classical breeding techniques. The generated transformed organisms may take a variety of forms. For example, they may be chimeras of transformed cells and non-transformed cells; clonal transformants (e.g., all cells transformed to contain the expression cassette); grafts of transformed and untransformed tissues (e.g., in plants, a transformed rootstock grafted to an untransformed scion).


The present invention clearly extends to any plant cell or plant produced by any of the methods described herein, and to all plant parts and propagules thereof. The present invention extends further to encompass the progeny of a primary transformed or transfected cell, tissue, organ or whole plant that has been produced by any of the aforementioned methods, the only requirement being that progeny exhibit the same genotypic and/or phenotypic characteristic(s) as those produced by the parent in the methods according to the invention.


The invention also includes host cells containing an isolated nucleic acid encoding an alfin-like polypeptide, or a YRP polypeptide, or a BRXL polypeptide, or a silky-1-like polypeptide, or an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide, as defined hereinabove. Preferred host cells according to the invention are plant cells. Host plants for the nucleic acids or the vector used in the method according to the invention, the expression cassette or construct or vector are, in principle, advantageously all plants, which are capable of synthesizing the polypeptides used in the inventive method.


The methods of the invention are advantageously applicable to any plant. Plants that are particularly useful in the methods of the invention include all plants which belong to the superfamily Viridiplantae, in particular monocotyledonous and dicotyledonous plants including fodder or forage legumes, ornamental plants, food crops, trees or shrubs. According to a preferred embodiment of the present invention, the plant is a crop plant. Examples of crop plants include soybean, sunflower, canola, alfalfa, rapeseed, linseed, cotton, tomato, potato and tobacco. Further preferably, the plant is a monocotyledonous plant. Examples of monocotyledonous plants include sugarcane. More preferably the plant is a cereal. Examples of cereals include rice, maize, wheat, barley, millet, rye, triticale, sorghum, emmer, spelt, secale, einkorn, teff, milo and oats.


The invention also extends to harvestable parts of a plant such as, but not limited to seeds, leaves, fruits, flowers, stems, roots, rhizomes, tubers and bulbs, which harvestable parts comprise a recombinant nucleic acid encoding an alfin-like polypeptide, or a YRP polypeptide, or a BRXL polypeptide, or a silky-1-like polypeptide, or an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide. The invention furthermore relates to products derived, preferably directly derived, from a harvestable part of such a plant, such as dry pellets or powders, oil, fat and fatty acids, starch or proteins.


According to a preferred feature of the invention, the modulated expression is increased expression. Methods for increasing expression of nucleic acids or genes, or gene products, are well documented in the art and examples are provided in the definitions section.


As mentioned above, a preferred method for modulating expression of a nucleic acid encoding an alfin-like polypeptide, or a YRP polypeptide, or a BRXL polypeptide, or a silky-1-like polypeptide, or an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide, is by introducing and expressing in a plant a nucleic acid encoding an elfin-like polypeptide, or a YRP polypeptide, or a BRXL polypeptide, or a silky-1-like polypeptide, or an ARP6 polypeptide, or a POP polypeptide, or a CRL polypeptide; however the effects of performing the method, i.e. enhancing abiotic stress tolerance may also be achieved using other well known techniques, including but not limited to T-DNA activation tagging, TILLING, homologous recombination. A description of these techniques is provided in the definitions section.


The present invention also encompasses use of nucleic acids encoding alfin-like polypeptides, or YRP polypeptides, or silky-1-like polypeptides, as described herein and use of these alfin-like polypeptides in enhancing any of the aforementioned abiotic stresses in plants.


The present invention also encompasses use of nucleic acid sequences encoding BRXL polypeptides as described herein and use of these BRXL polypeptides in increasing any of the aforementioned yield-related traits in plants, under normal growth conditions, under abiotic stress growth (preferably osmotic stress growth conditions) conditions, and under growth conditions of reduced nutrient availability, preferably under conditions of reduced nitrogen availability.


The present invention also encompasses use of nucleic acids encoding ARP6 polypeptides as described herein and use of these ARP6 polypeptides, or POP polypeptides, or CRL polypeptides, in enhancing any of the aforementioned yield-related traits in plants.


Nucleic acids encoding alfin-like polypeptide, or YRP polypeptide, or BRXL polypeptide, or silky-1-like polypeptide, or ARP6 polypeptide, or POP polypeptide, or CRL polypeptide, described herein, or the alfin-like polypeptides, or YRP polypeptides, or BRXL polypeptides, or silky-1-like polypeptides, or ARP6 polypeptides, or POP polypeptides, or CRL polypeptides, themselves, may find use in breeding programmes in which a DNA marker is identified which may be genetically linked to agene encoding alfin-like polypeptides, or YRP polypeptides, or BRXL polypeptides, or silky-1-like polypeptides, or ARP6 polypeptides, or POP polypeptides, or CRL polypeptides. The nucleic acids/genes, or the alfin-like polypeptides, or YRP polypeptides, or BRXL polypeptides, or silky-1-like polypeptides, or ARP6 polypeptides, or POP polypeptides, or CRL polypeptides, themselves may be used to define a molecular marker. This DNA or protein marker may then be used in breeding programmes to select plants having enhanced abiotic stress tolerance as defined hereinabove in the methods of the invention.


Allelic variants of a nucleic acid/gene encoding alfin-like polypeptides, or YRP polypeptides, or BRXL polypeptides, or silky-1-like polypeptides, or ARP6 polypeptides, or POP polypeptides, or CRL polypeptides, may also find use in marker-assisted breeding programmes. Such breeding programmes sometimes require introduction of allelic variation by mutagenic treatment of the plants, using for example EMS mutagenesis; alternatively, the programme may start with a collection of allelic variants of so called “natural” origin caused unintentionally. Identification of allelic variants then takes place, for example, by PCR. This is followed by a step for selection of superior allelic variants of the sequence in question and which give enhanced stress tolerance which may be manifested as increased yield. Selection is typically carried out by monitoring growth performance of plants containing different allelic variants of the sequence in question. Growth performance may be monitored in a greenhouse or in the field. Further optional steps include crossing plants in which the superior allelic variant was identified with another plant. This could be used, for example, to make a combination of interesting phenotypic features.


Nucleic acids encoding alfin-like polypeptides, or YRP polypeptides, or BRXL polypeptides, or silky-1-like polypeptides, or ARP6 polypeptides, or POP polypeptides, or CRL polypeptides, may also be used as probes for genetically and physically mapping the genes that they are a part of, and as markers for traits linked to those genes. Such information may be useful in plant breeding in order to develop lines with desired phenotypes. Such use of nucleic acids encoding alfin-like polypeptides, or YRP polypeptides, or BRXL polypeptides, or silky-1-like polypeptides, or ARP6 polypeptides, or POP polypeptides, or CRL polypeptides, requires only a nucleic acid sequence of at least 15 nucleotides in length. The nucleic acids encoding alfin-like polypeptides, or YRP polypeptides, or BRXL polypeptides, or silky-1-like polypeptides, or ARP6 polypeptides, or POP polypeptides, or CRL polypeptides, may be used as restriction fragment length polymorphism (RFLP) markers. Southern blots (Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning, A Laboratory Manual) of restriction-digested plant genomic DNA may be probed with the nucleic acids encoding alfin-like polypeptides, or YRP polypeptides, or BRXL polypeptides, or silky-1-like polypeptides, or ARP6 polypeptides, or POP polypeptides, or CRL polypeptides. The resulting banding patterns may then be subjected to genetic analyses using computer programs such as MapMaker (Lander et al. (1987) Genomics 1: 174-181) in order to construct a genetic map. In addition, the nucleic acids may be used to probe Southern blots containing restriction endonuclease-treated genomic DNAs of a set of individuals representing parent and progeny of a defined genetic cross. Segregation of the DNA polymorphisms is noted and used to calculate the position of the nucleic acid encoding alfin-like polypeptides, or YRP polypeptides, or BRXL polypeptides, or silky-1-like polypeptides, or ARP6 polypeptides, or POP polypeptides, or CRL polypeptides, in the genetic map previously obtained using this population (Botstein et al. (1980) Am. J. Hum. Genet. 32:314-331).


The production and use of plant gene-derived probes for use in genetic mapping is described in Bernatzky and Tanksley (1986) Plant Mol. Biol. Reporter 4: 37-41. Numerous publications describe genetic mapping of specific cDNA clones using the methodology outlined above or variations thereof. For example, F2 intercross populations, backcross populations, randomly mated populations, near isogenic lines, and other sets of individuals may be used for mapping. Such methodologies are well known to those skilled in the art.


The nucleic acid probes may also be used for physical mapping (i.e., placement of sequences on physical maps; see Hoheisel et al. In: Non-mammalian Genomic Analysis: A Practical Guide, Academic press 1996, pp. 319-346, and references cited therein).


In another embodiment, the nucleic acid probes may be used in direct fluorescence in situ hybridisation (FISH) mapping (Trask (1991) Trends Genet. 7:149-154). Although current methods of FISH mapping favour use of large clones (several kb to several hundred kb; see Laan et al. (1995) Genome Res. 5:13-20), improvements in sensitivity may allow performance of FISH mapping using shorter probes.


A variety of nucleic acid amplification-based methods for genetic and physical mapping may be carried out using the nucleic acids. Examples include allele-specific amplification (Kazazian (1989) J. Lab. Clin. Med. 11:95-96), polymorphism of PCR-amplified fragments (CAPS; Sheffield et al. (1993) Genomics 16:325-332), allele-specific ligation (Landegren et al. (1988) Science 241:1077-1080), nucleotide extension reactions (Sokolov (1990) Nucleic Acid Res. 18:3671), Radiation Hybrid Mapping (Walter et al. (1997) Nat. Genet. 7:22-28) and Happy Mapping (Dear and Cook (1989) Nucleic Acid Res. 17:6795-6807). For these methods, the sequence of a nucleic acid is used to design and produce primer pairs for use in the amplification reaction or in primer extension reactions. The design of such primers is well known to those skilled in the art. In methods employing PCR-based genetic mapping, it may be necessary to identify DNA sequence differences between the parents of the mapping cross in the region corresponding to the instant nucleic acid sequence. This, however, is generally not necessary for mapping methods.


The methods according to the present invention result in plants having enhanced enhanced abiotic stress tolerance and/or enhanced yield-related traits, as described hereinbefore. These traits may also be combined with other economically advantageous traits, such as further abiotic or biotic stress tolerance-enhancing traits, enhanced yield-related traits, enhanced yield-related traits, tolerance to herbicides, insectides, traits modifying various architectural features and/or biochemical and/or physiological features.


Items
1. Alfin-Like Polypeptides



  • 1. Method for enhancing abiotic stress tolerance in plants by modulating expression in a plant of a nucleic acid encoding an alfin-like polypeptide or an orthologue or paralogue thereof.

  • 2. Method according to item 1, wherein said modulated expression is effected by introducing and expressing in a plant a nucleic acid encoding alfin-like polypeptide.

  • 3. Method according to items 2 or 3, wherein said nucleic acid encoding an alfin-like polypeptide encodes any one of the proteins listed in Table A1 or is a portion of such a nucleic acid, or a nucleic acid capable of hybridising with such a nucleic acid.

  • 4. Method according to any one of items 1 to 4, wherein said nucleic acid sequence encodes an orthologue or paralogue of any of the proteins given in Table A1.

  • 5. Method according to items 3 or 4, wherein said nucleic acid is operably linked to a constitutive promoter, preferably to a GOS2 promoter, most preferably to a GOS2 promoter from rice.

  • 6. Method according to any one of items 1 to 5, wherein said nucleic acid encoding an alfin-like polypeptide is of Allium cepa.

  • 7. Plant or part thereof, including seeds, obtainable by a method according to any one of items 1 to 6, wherein said plant or part thereof comprises a recombinant nucleic acid encoding an alfin-like polypeptide.

  • 8. Construct comprising:
    • (i) nucleic acid encoding an alfin-like polypeptide as defined in items 1 or 2;
    • (ii) one or more control sequences capable of driving expression of the nucleic acid sequence of (a); and optionally
    • (iii) a transcription termination sequence.

  • 9. Construct according to item 9, wherein one of said control sequences is a constitutive promoter, preferably a GOS2 promoter, most preferably a GOS2 promoter from rice.

  • 10. Use of a construct according to item 8 or 9 in a method for making plants having increased abiotic stress tolerance relative to control plants.

  • 11. Plant, plant part or plant cell transformed with a construct according to item 8 or 9.

  • 12. Method for the production of a transgenic plant having increased abiotic stress tolerance relative to control plants, comprising:
    • (i) introducing and expressing in a plant a nucleic acid encoding an alfin-like polypeptide; and
    • (ii) cultivating the plant cell under conditions promoting abiotic stress.

  • 13. Transgenic plant having abiotic stress tolerance, relative to control plants, resulting from modulated expression of a nucleic acid encoding an alfin-like polypeptide, or a transgenic plant cell derived from said transgenic plant.

  • 14. Transgenic plant according to item 7, 11 or 13, or a transgenic plant cell derived thereof, wherein said plant is a crop plant or a monocot or a cereal, such as rice, maize, wheat, barley, millet, rye, triticale, sorghum, sugarcane, emmer, spelt, secale, einkorn, teff, milo and oats.

  • 15. Harvestable parts of a plant according to item 14, wherein said harvestable parts are preferably shoot biomass and/or seeds.

  • 16. Products derived from a plant according to item 14 and/or from harvestable parts of a plant according to item 15.

  • 17. Use of a nucleic acid encoding an alfin-like polypeptide in increasing yield, particularly in increasing abiotic stress tolerance, relative to control plants.



2. YRP Polypeptides



  • 1. Method for enhancing abiotic stress tolerance in plants by modulating expression in a plant of a nucleic acid encoding a YRP polypeptide or an orthologue or paralogue thereof.

  • 2. Method according to item 1, wherein said modulated expression is effected by introducing and expressing in a plant a nucleic acid encoding YRP polypeptide.

  • 3. Method according to items 2 or 3, wherein said nucleic acid encoding a YRP polypeptide encodes any one of the proteins listed in Table A2 or is a portion of such a nucleic acid, or a nucleic acid capable of hybridising with such a nucleic acid.

  • 4. Method according to any one of items 1 to 4, wherein said nucleic acid sequence encodes an orthologue or paralogue of any of the proteins given in Table A2.

  • 5. Method according to items 3 or 4, wherein said nucleic acid is operably linked to a constitutive promoter, preferably to a GOS2 promoter, most preferably to a GOS2 promoter from rice.

  • 6. Method according to any one of items 1 to 5, wherein said nucleic acid encoding a YRP polypeptide is of Hordeum Vulgare.

  • 7. Plant or part thereof, including seeds, obtainable by a method according to any one of items 1 to 6, wherein said plant or part thereof comprises a recombinant nucleic acid encoding a YRP polypeptide.

  • 8. Construct comprising:
    • (i) nucleic acid encoding a YRP polypeptide as defined in items 1 or 2;
    • (ii) one or more control sequences capable of driving expression of the nucleic acid sequence of (a); and optionally
    • (iii) a transcription termination sequence.

  • 9. Construct according to item 9, wherein one of said control sequences is a constitutive promoter, preferably a GOS2 promoter, most preferably a GOS2 promoter from rice.

  • 10. Use of a construct according to item 8 or 9 in a method for making plants having increased abiotic stress tolerance relative to control plants.

  • 11. Plant, plant part or plant cell transformed with a construct according to item 8 or 9.

  • 12. Method for the production of a transgenic plant having increased abiotic stress tolerance relative to control plants, comprising:
    • (i) introducing and expressing in a plant a nucleic acid encoding a YRP polypeptide; and
    • (ii) cultivating the plant cell under conditions promoting abiotic stress.

  • 13. Transgenic plant having abiotic stress tolerance, relative to control plants, resulting from modulated expression of a nucleic acid encoding a YRP polypeptide, or a transgenic plant cell derived from said transgenic plant.

  • 14. Transgenic plant according to item 7, 11 or 13, or a transgenic plant cell derived thereof, wherein said plant is a crop plant or a monocot or a cereal, such as rice, maize, wheat, barley, millet, rye, triticale, sorghum, sugarcane, emmer, spelt, secale, einkorn, teff, milo and oats.

  • 15. Harvestable parts of a plant according to item 14, wherein said harvestable parts are preferably shoot biomass and/or seeds.

  • 16. Products derived from a plant according to item 14 and/or from harvestable parts of a plant according to item 15.

  • 17. Use of a nucleic acid encoding a YRP polypeptide in increasing yield, particularly in increasing abiotic stress tolerance, relative to control plants.



3. Brevis Radix-Like (BRXL) Polypeptides



  • 1) A method for increasing yield-related traits in plants relative to control plants, comprising increasing expression in a plant of a nucleic acid sequence encoding a Brevis Radix-like (BRXL) polypeptide, which BRXL polypeptide comprises at least two BRX domains with an InterPro entry IPRO13591 DZC domain (PFAM entry PF08381 DZC), and optionally selecting for plants having increased yield-related traits.

  • 2) Method according to item 1, wherein said BRXL polypeptide comprises (i) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a BRX domain as represented by SEQ ID NO: 65; and (ii) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a BRX domain as represented by SEQ ID NO: 82.

  • 3) Method according to item 1 or 2, wherein said BRXL polypeptide comprises (i) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved Domain 1 (comprising a BRX domain) as represented by SEQ ID NO: 83; and (ii) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved Domain 2 (comprising a BRX domain) as represented by SEQ ID NO: 84.

  • 4) Method according to item 3, wherein said BRXL polypeptide comprises (1) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved domain 3 as represented by SEQ ID NO: 85; and (1) in increasing order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a Conserved domain 4 as represented by SEQ ID NO: 86.

  • 5) Method according to any preceding item, wherein said BRXL polypeptide has in increasing order of preference at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity to a polypeptide as represented by SEQ ID NO: 18, or to any of the polypeptide sequences given in Table A herein.

  • 6) Method according to any preceding item, wherein said BRXL polypeptide interacts with itself or with another BRLX polypeptide in a yeast two hybrid assay.

  • 7) Method according to any preceding item, wherein said nucleic acid sequence encoding a BRXL polypeptide is represented by any one of the nucleic acid sequence SEQ ID NOs given in Table A3 or a portion thereof, or a sequence capable of hybridising with any one of the nucleic acid sequences SEQ ID NOs given in Table A3, or to a complement thereof.

  • 8) Method according to any preceding item, wherein said nucleic acid sequence encodes an orthologue or paralogue of any of the polypeptide sequence SEQ ID NOs given in Table A3.

  • 9) Method according to any preceding item, wherein said increased expression is effected by any one or more of: T-DNA activation tagging, TILLING, or homologous recombination.

  • 10) Method according to any preceding item, wherein said increased expression is effected by introducing and expressing in a plant a nucleic acid sequence encoding a BRXL polypeptide.

  • 11) Method according to any preceding item, wherein said increased yield-related trait is one or more of: increased plant height, and increased Thousand Kernel Weight (TKW).

  • 12) Method according to any preceding item, wherein said nucleic acid sequence is operably linked to a constitutive promoter.

  • 13) Method according to item 12, wherein said constitutive promoter is a GOS2 promoter, preferably a GOS2 promoter from rice, most preferably a GOS2 sequence as represented by SEQ ID NO: 87.

  • 14) Method according to any preceding item, wherein said nucleic acid sequence encoding a BRXL polypeptide is from a plant, further preferably from a dicotyledonous plant, more preferably from the family Salicaceae, most preferably the nucleic acid sequence is from Populus trichocarpa.

  • 15) Plants, parts thereof (including seeds), or plant cells obtainable by a method according to any preceding item, wherein said plant, part or cell thereof comprises an isolated nucleic acid transgene encoding a BRXL polypeptide.

  • 16) An isolated nucleic acid molecule selected from:
    • (i) a nucleic acid sequence as represented by any one of SEQ ID NO: 75, SEQ ID NO: 77, or SEQ ID NO: 79;
    • (ii) the complement of a nucleic acid sequence as represented by any one of SEQ ID NO: 75, SEQ ID NO: 77, or SEQ ID NO: 79;
    • (iii) a nucleic acid sequence encoding a BRXL polypeptide having, in increasing order of preference, at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more amino acid sequence identity to the polypeptide sequence represented by any one of SEQ ID NO: 76, SEQ ID NO: 78, or SEQ ID NO: 80.

  • 17) An isolated polypeptide selected from:
    • (i) a polypeptide sequence as represented by any one of SEQ ID NO: 76, SEQ ID NO: 78, or SEQ ID NO: 80;
    • (ii) a polypeptide sequence having, in increasing order of preference, at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more amino acid sequence identity to a polypeptide sequence as represented by any one of SEQ ID NO: 76, SEQ ID NO: 78, or SEQ ID NO: 80;
    • (iii) derivatives of any of the polypeptide sequences given in (i) or (ii) above.

  • 18) Construct comprising:
    • (a) a nucleic acid sequence encoding a BRXL polypeptide as defined in any one of items 1 to 8, or 16;
    • (b) one or more control sequences capable of driving expression of the nucleic acid sequence of (a); and optionally
    • (c) a transcription termination sequence.

  • 19) Construct according to item 18 wherein said control sequence is a consitituve promoter.

  • 20) Construct according to item 19 wherein said consitituve promoter is a GOS2 promoter, preferably a GOS2 promoter from rice, most preferably a GOS2 sequence as represented by SEQ ID NO: 87.

  • 21) Use of a construct according to any one of items 18 to 20 in a method for making plants having increased yield-related traits relative to control plants, which increased yield-related traits are one or more of: increased plant height, increased seed yield per plant, increased number of filled seeds, and increased Thousand Kernel Weight (TKW).

  • 22) Plant, plant part or plant cell transformed with a construct according to any one of items 18 to 20.

  • 23) Method for the production of transgenic plants having increased yield-related traits relative to control plants, comprising:
    • (i) introducing and expressing in a plant, plant part, or plant cell, a nucleic acid sequence encoding a BRXL polypeptide as defined in any one of items 1 to 8, or 16; and
    • (ii) cultivating the plant cell, plant part, or plant under conditions promoting plant growth and development.

  • 24) Transgenic plant having increased yield-related traits relative to control plants, resulting from increased expression of an isolated nucleic acid sequence encoding a BRXL polypeptide as defined in any one of items 1 to 8, or 16, or a transgenic plant cell or transgenic plant part derived from said transgenic plant.

  • 25) Transgenic plant according to item 14, 22, or 24, wherein said plant is a crop plant or a monocot or a cereal, such as rice, maize, wheat, barley, millet, rye, triticale, sorghum and oats, or a transgenic plant cell derived from said transgenic plant.

  • 26) Harvestable parts comprising an isolated nucleic acid sequence encoding a BRXL polypeptide, of a plant according to item 25, wherein said harvestable parts are preferably seeds.

  • 27) Products derived from a plant according to item 25 and/or from harvestable parts of a plant according to item 26.

  • 28) Use of a nucleic acid sequence encoding a BRXL polypeptide as defined in any one of items 1 to 8, or 16, in increasing yield-related traits, comprising one or more of: increased plant height, and increased Thousand Kernel Weight (TKW).



4. Silkyl-Like Polypeptides



  • a) Method for enhancing abiotic stress tolerance in plants by modulating expression in a plant of a nucleic acid encoding a silky-1-like polypeptide or an orthologue or paralogue thereof.

  • b) Method according to item 1, wherein said modulated expression is effected by introducing and expressing in a plant a nucleic acid encoding silky-1-like polypeptide.

  • c) Method according to items 2 or 3, wherein said nucleic acid encoding a silky-1-like polypeptide encodes any one of the proteins listed in Table A4 or is a portion of such a nucleic acid, or a nucleic acid capable of hybridising with such a nucleic acid.

  • d) Method according to any one of items 1 to 4, wherein said nucleic acid sequence encodes an orthologue or paralogue of any of the proteins given in Table A4.

  • e) Method according to items 3 or 4, wherein said nucleic acid is operably linked to a constitutive promoter, preferably to a GOS2 promoter, most preferably to a GOS2 promoter from rice.

  • f) Method according to any one of items 1 to 5, wherein said nucleic acid encoding a silky-1-like polypeptide is of Populus trichocarpa.

  • g) Plant or part thereof, including seeds, obtainable by a method according to any one of items 1 to 6, wherein said plant or part thereof comprises a recombinant nucleic acid encoding a silky-1-like polypeptide.

  • h) Construct comprising:
    • (i) nucleic acid encoding a silky-1-like polypeptide as defined in items 1 or 2;
    • (ii) one or more control sequences capable of driving expression of the nucleic acid sequence of (a); and optionally
    • (iii) a transcription termination sequence.

  • i) Construct according to item 9, wherein one of said control sequences is a constitutive promoter, preferably a GOS2 promoter, most preferably a GOS2 promoter from rice.

  • j) Use of a construct according to item 8 or 9 in a method for making plants having increased abiotic stress tolerance relative to control plants.

  • k) Plant, plant part or plant cell transformed with a construct according to item 8 or 9.

  • l) Method for the production of a transgenic plant having increased abiotic stress tolerance relative to control plants, comprising:
    • (i) introducing and expressing in a plant a nucleic acid encoding a silky-1-like polypeptide; and
    • (ii) cultivating the plant cell under conditions promoting abiotic stress.

  • m) Transgenic plant having abiotic stress tolerance, relative to control plants, resulting from modulated expression of a nucleic acid encoding a silky-1-like polypeptide, or a transgenic plant cell derived from said transgenic plant.

  • n) Transgenic plant according to item 7, 11 or 13, or a transgenic plant cell derived thereof, wherein said plant is a crop plant or a monocot or a cereal, such as rice, maize, wheat, barley, millet, rye, triticale, sorghum, sugarcane, emmer, spelt, secale, einkorn, teff, milo and oats.

  • o) Harvestable parts of a plant according to item 14, wherein said harvestable parts are preferably shoot biomass and/or seeds.

  • p) Products derived from a plant according to item 14 and/or from harvestable parts of a plant according to item 15.

  • q) Use of a nucleic acid encoding a silky-1-like polypeptide in increasing yield, particularly in increasing abiotic stress tolerance, relative to control plants.



5. ARP6 Polypeptides



  • 1. A method for enhancing yield-related traits in plants relative to control plants, comprising modulating expression in a plant of a nucleic acid encoding an ARP6 polypeptide.

  • 2. Method according to item 1, wherein said ARP6 polypeptide has in increasing order of preference at least 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity to the amino acid represented by any one of SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, and SEQ ID NO: 112.

  • 3. Method according to item 1 or 2, wherein said modulated expression is effected by introducing and expressing in a plant a nucleic acid encoding an ARP6 polypeptide.

  • 4. Method according to any one of items 1 to 3, wherein said nucleic acid encoding an ARP6 polypeptide encodes any one of the proteins listed in Table A5 or is a portion of such a nucleic acid, or a nucleic acid capable of hybridising with such a nucleic acid.

  • 5. Method according to any one of items 1 to 4, wherein said nucleic acid sequence encodes an orthologue or paralogue of any of the proteins given in Table A5.

  • 6. Method according to any preceding item, wherein said enhanced yield-related traits comprise increased yield, preferably increased biomass and/or increased seed yield relative to control plants.

  • 7. Method according to any one of items 1 to 6, wherein said enhanced yield-related traits are obtained under non-stress conditions.

  • 8. Method according to any one of items 1 to 6, wherein said enhanced yield-related traits are obtained under conditions of drought stress, salt stress or nitrogen deficiency.

  • 9. Method according to any one of items 3 to 8, wherein said nucleic acid is operably linked to a constitutive promoter, preferably to a GOS2 promoter, most preferably to a GOS2 promoter from rice.

  • 10. Method according to any one of items 1 to 9, wherein said nucleic acid encoding an ARP6 polypeptide is of plant origin, preferably from a dicotyledonous plant, further preferably from the family Brassicaceae, more preferably from the genus Arabidopsis, most preferably from Arabidopsis thaliana.

  • 11. Plant or part thereof, including seeds, obtainable by a method according to any one of items 1 to 10, wherein said plant or part thereof comprises a recombinant nucleic acid encoding an ARP6 polypeptide.

  • 12. Construct comprising:
    • (ii) nucleic acid encoding an ARP6 polypeptide as defined in items 1 or 2;
    • (iii) one or more control sequences capable of driving expression of the nucleic acid sequence of (a); and optionally
    • (iv) a transcription termination sequence.

  • 13. Construct according to item 12, wherein one of said control sequences is a constitutive promoter, preferably a GOS2 promoter, most preferably a GOS2 promoter from rice.

  • 14. Use of a construct according to item 12 or 13 in a method for making plants having increased yield, particularly increased biomass and/or increased seed yield relative to control plants.

  • 15. Plant, plant part or plant cell transformed with a construct according to item 12 or 13.

  • 16. Method for the production of a transgenic plant having increased yield, particularly increased biomass and/or increased seed yield relative to control plants, comprising:
    • (i) introducing and expressing in a plant a nucleic acid encoding an ARP6 polypeptide as defined in item 1 or 2; and
    • (ii) cultivating the plant cell under conditions promoting plant growth and development.

  • 17. Transgenic plant having increased yield, particularly increased biomass and/or increased seed yield, relative to control plants, resulting from modulated expression of a nucleic acid encoding an ARP6 polypeptide as defined in item 1 or 2, or a transgenic plant cell derived from said transgenic plant.

  • 18. Transgenic plant according to item 11, 15 or 17, or a transgenic plant cell derived thereof, wherein said plant is a crop plant or a monocot or a cereal, such as rice, maize, wheat, barley, millet, rye, triticale, sorghum emmer, spelt, secale, einkorn, teff, milo and oats.

  • 19. Harvestable parts of a plant according to item 18, wherein said harvestable parts are preferably shoot biomass and/or seeds.

  • 20. Products derived from a plant according to item 18 and/or from harvestable parts of a plant according to item 19.

  • 21. Use of a nucleic acid encoding an ARP6 polypeptide in increasing yield, particularly in increasing seed yield and/or shoot biomass in plants, relative to control plants.



6. POP Polypeptides



  • 1. A method for enhancing yield-related traits in plants relative to control plants, comprising modulating expression in a plant of a nucleic acid encoding a prolyl oligopeptidase (POP) polypeptide, wherein said POP polypeptide comprises a Peptidase_S9 domain (Pfam entry PF00326) and preferably also a DPPIV_N domain (Pfam entry PF00930).

  • 2. Method according to item 1, wherein said POP polypeptide comprises one or more of the motifs 1 to 14 (SEQ ID NO: 118 to SEQ ID NO: 131).

  • 3. Method according to item 1 or 2, wherein said modulated expression is effected by introducing and expressing in a plant a nucleic acid encoding a POP polypeptide.

  • 4. Method according to any one of items 1 to 3, wherein said nucleic acid encoding a POP polypeptide encodes any one of the proteins listed in Table A6 or is a portion of such a nucleic acid, or a nucleic acid capable of hybridising with such a nucleic acid.

  • 5. Method according to any one of items 1 to 4, wherein said nucleic acid sequence encodes an orthologue or paralogue of any of the proteins given in Table A6.

  • 6. Method according to any preceding item, wherein said enhanced yield-related traits comprise increased yield, preferably increased biomass and/or increased seed yield, and or modified flowering time relative to control plants.

  • 7. Method according to any one of items 1 to 6, wherein said enhanced yield-related traits are obtained under non-stress conditions.

  • 8. Method according to any one of items 3 to 7, wherein said nucleic acid is operably linked to a constitutive promoter, preferably to a GOS2 promoter, most preferably to a GOS2 promoter from rice.

  • 9. Method according to any one of items 1 to 8, wherein said nucleic acid encoding a POP polypeptide is of plant origin, preferably from a dicotyledonous plant, further preferably from the family Brassicaceae, more preferably from the genus Arabidopsis, most preferably from Arabidopsis thaliana.

  • 10. Plant or part thereof, including seeds, obtainable by a method according to any one of items 1 to 9, wherein said plant or part thereof comprises a recombinant nucleic acid encoding a POP polypeptide.

  • 11. Construct comprising:
    • (i) nucleic acid encoding a POP polypeptide as defined in items 1 or 2;
    • (ii) one or more control sequences capable of driving expression of the nucleic acid sequence of (a); and optionally
    • (iii) a transcription termination sequence.

  • 12. Construct according to item 11, wherein one of said control sequences is a constitutive promoter, preferably a GOS2 promoter, most preferably a GOS2 promoter from rice.

  • 13. Use of a construct according to item 11 or 12 in a method for making plants having increased yield, particularly increased biomass and/or increased seed yield relative to control plants.

  • 14. Use of a construct according to item 11 or 12 in a method for making plants having modified flowering time relative to control plants.

  • 15. Plant, plant part or plant cell transformed with a construct according to item 11 or 12.

  • 16. Method for the production of a transgenic plant having increased yield and/or modified flowering time, particularly increased biomass and/or increased seed yield relative to control plants, comprising:
    • (i) introducing and expressing in a plant a nucleic acid encoding a POP polypeptide as defined in item 1 or 2; and
    • (ii) cultivating the plant cell under conditions promoting plant growth and development.

  • 17. Transgenic plant having increased yield, particularly increased biomass and/or increased seed yield, relative to control plants, resulting from modulated expression of a nucleic acid encoding a POP polypeptide as defined in item 1 or 2, or a transgenic plant cell derived from said transgenic plant.

  • 18. Transgenic plant according to item 10, 15 or 17, or a transgenic plant cell derived thereof, wherein said plant is a crop plant or a monocot or a cereal, such as rice, maize, wheat, barley, millet, rye, triticale, sorghum emmer, spelt, secale, einkorn, teff, milo and oats.

  • 19. Harvestable parts of a plant according to item 18, wherein said harvestable parts are preferably shoot biomass and/or seeds.

  • 20. Products derived from a plant according to item 18 and/or from harvestable parts of a plant according to item 18.

  • 21. Use of a nucleic acid encoding a POP polypeptide in increasing yield, particularly in increasing seed yield and/or shoot biomass in plants, relative to control plants.

  • 22. Use of a nucleic acid encoding a POP polypeptide for modifying flowering time of plants, relative to control plants.

  • 7. CRL polypeptides

  • 1. A method for enhancing yield-related traits in plants relative to control plants, comprising modulating expression in a plant of a nucleic acid encoding a CRL polypeptide, wherein said CRL polypeptide comprises a DUF206 domain.

  • 2. Method according to item 1, wherein said CRL polypeptide comprises a motif having in increasing order of preference at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to any one or more of the following motifs:












(i) Motif 15: 



(SEQ ID NO: 207)



EQAFWRxPXKPFRQR;







(ii) Motif 16: 



(SEQ ID NO: 208)



NFCDR;







(iii) Motif 17: 



(SEQ ID NO: 209)



RGKRCLYEGS;







(iv) Motif 18: 



(SEQ ID NO: 210)



QVWGxKXGPYEFK;








    • wherein X represents any amino acid.



  • 3. Method according to item 1 or 2, wherein said modulated expression is effected by introducing and expressing in a plant a nucleic acid encoding a CRL polypeptide.

  • 4. Method according to any one of items 1 to 3, wherein said nucleic acid encoding a CRL polypeptide encodes any one of the proteins listed in Table A7 or is a portion of such a nucleic acid, or a nucleic acid capable of hybridising with such a nucleic acid.

  • 5. Method according to any one of items 1 to 4, wherein said nucleic acid sequence encodes an orthologue or paralogue of any of the proteins given in Table A7.

  • 6. Method according to any preceding item, wherein said enhanced yield-related traits comprise increased yield, preferably increased biomass and/or increased seed yield relative to control plants.

  • 7. Method according to any one of items 1 to 6, wherein said enhanced yield-related traits are obtained under non-stress conditions.

  • 8. Method according to any one of items 1 to 6, wherein said enhanced yield-related traits are obtained under conditions of drought stress, salt stress or nitrogen deficiency.

  • 9. Method according to any one of items 3 to 8, wherein said nucleic acid is operably linked to a constitutive promoter, preferably to a GOS2 promoter, most preferably to a GOS2 promoter from rice.

  • 10. Method according to any one of items 1 to 9, wherein said nucleic acid encoding a CRL polypeptide is of plant origin, preferably from a dicotyledonous plant, further preferably from the family Brassicaceae, more preferably from the genus Arabidopsis, most preferably from Arabidopsis thaliana.

  • 11. Plant or part thereof, including seeds, obtainable by a method according to any one of items 1 to 10, wherein said plant or part thereof comprises a recombinant nucleic acid encoding a CRL polypeptide.

  • 12. Construct comprising:
    • (i) nucleic acid encoding a CRL polypeptide as defined in items 1 or 2;
    • (ii) one or more control sequences capable of driving expression of the nucleic acid sequence of (a); and optionally
    • (iii) a transcription termination sequence.

  • 13. Construct according to item 12, wherein one of said control sequences is a constitutive promoter, preferably a GOS2 promoter, most preferably a GOS2 promoter from rice.

  • 14. Use of a construct according to item 12 or 13 in a method for making plants having increased yield, particularly increased biomass and/or increased seed yield relative to control plants.

  • 15. Plant, plant part or plant cell transformed with a construct according to item 12 or 13.

  • 16. Method for the production of a transgenic plant having increased yield, particularly increased biomass and/or increased seed yield relative to control plants, comprising:
    • (i) introducing and expressing in a plant a nucleic acid encoding a CRL polypeptide as defined in item 1 or 2; and
    • (ii) cultivating the plant cell under conditions promoting plant growth and development.

  • 17. Transgenic plant having increased yield, particularly increased biomass and/or increased seed yield, relative to control plants, resulting from modulated expression of a nucleic acid encoding a CRL polypeptide as defined in item 1 or 2, or a transgenic plant cell derived from said transgenic plant.

  • 18. Transgenic plant according to item 11, 15 or 17, or a transgenic plant cell derived thereof, wherein said plant is a crop plant or a monocot or a cereal, such as rice, maize, wheat, barley, millet, rye, triticale, sorghum emmer, spelt, secale, einkorn, teff, milo and oats.

  • 19. Harvestable parts of a plant according to item 18, wherein said harvestable parts are preferably shoot biomass and/or seeds.

  • 20. Products derived from a plant according to item 18 and/or from harvestable parts of a plant according to item 19.

  • 21. Use of a nucleic acid encoding a CRL polypeptide in increasing yield, particularly in increasing seed yield and/or shoot biomass in plants, relative to control plants.

  • 22. An isolated nucleic acid molecule selected from:
    • (i) a nucleic acid represented by SEQ ID NO: 195;
    • (ii) the complement of a nucleic acid represented by SEQ ID NO: 195;
    • (iii) a nucleic acid encoding the polypeptide as represented by SEQ ID NO: 196, preferably as a result of the degeneracy of the genetic code, said isolated nucleic acid can be derived from a polypeptide sequence as represented by SEQ ID NO: 196 and further preferably confers enhanced yield-related traits relative to control plants;
    • (iv) a nucleic acid having, in increasing order of preference at least 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity with any of the nucleic acid sequences of Table A7 and further preferably conferring enhanced yield-related traits relative to control plants;
    • (v) a nucleic acid molecule which hybridizes with a nucleic acid molecule of (i) to (iv) under stringent hybridization conditions and preferably confers yield-related traits relative to control plants;
    • (vi) a nucleic acid encoding an ASPAT polypeptide having, in increasing order of preference, at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, %, 76%, 77%, 78%, 79%, 80%, 8M 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to the amino acid sequence represented by SEQ ID NO: 196 and any of the other amino acid sequences in Table A7 and preferably conferring enhanced yield-related traits relative to control plants.

  • 23. An isolated polypeptide selected from:
    • (i) an amino acid sequence represented by SEQ ID NO: 196;
    • (ii) an amino acid sequence having, in increasing order of preference, at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to the amino acid sequence represented by SEQ ID NO: 196, and any of the other amino acid sequences in Table A7 and preferably conferring enhanced yield-related traits relative to control plants.
    • (iii) derivatives of any of the amino acid sequences given in (i) or (ii) above.






DESCRIPTION OF FIGURES

The present invention will now be described with reference to the following figures in which:



FIG. 1 represents the binary vector used for increased expression in Oryza sativa of an—like-encoding nucleic acid under the control of a rice GOS2 promoter (pGOS2).



FIG. 2 represents the binary vector used for increased expression in Oryza sativa of a YRP-encoding nucleic acid under the control of a rice GOS2 promoter (pGOS2).



FIG. 3 represents how brassinosteroid biosynthesis and auxin signalling are connected through a feedback loop, which involves BRX, required for optimal root growth, according to Mouchel et al. (2006) Nature 443: 458-461.



FIG. 4 represents a cartoon of a BRXL polypeptide as represented by SEQ ID NO: 18, which comprises the following features: (i) a Conserved Domain 1 representing a BRX domain, which comprises IPRO13591 DZC domain (PFAM entry PF08381 DZC); (2) a Conserved Domain 2 representing a BRX domain, which comprises a C-terminal IPRO13591 DZC domain (PFAM entry PF08381 DZC); (3) a Conserved Domain 3 and (4) a Conserved Domain 4, both containing conserved Cys's, whose spacing is indicative of a potential zinc-binding motif.



FIG. 5 shows a ClustalW 1.81 multiple sequence alignment of the BRXL polypeptides from Table A3. The following features are heavily boxed (i) a Conserved Domain 1 representing a BRX domain, which comprises IPRO13591 DZC domain (PFAM entry PF08381 DZC; marked with X's); (2) a Conserved Domain 2 representing a BRX domain, which comprises a C-terminal IPRO13591 DZC domain (PFAM entry PF08381 DZC; marked with X's); (3) a Conserved Domain 3 and (4) a Conserved Domain 4, both containing conserved Cys's (lightly boxed), whose spacing is indicative of a potential zinc-binding motif. Sequences shown are Poptr_BRX (SEQ ID NO: 18); Glyma_BRXL2 (SEQ ID NO: 32); Vitvi_BRXL1 (SEQ ID NO: 70); Glyma_BRXL5 (SEQ ID NO: 38); Arath_BRX (SEQ ID NO: 20); Arath_BRXL1 (SEQ ID NO: 22); Poptr_BRXL3 (SEQ ID NO: 26); Vitvi_BRXL2 (SEQ ID NO: 72); Medtr_BRXL1 (SEQ ID NO: 42); Arath_BRXL2 (SEQ ID NO: 24); Arath_BRXL3 (SEQ ID NO: 26); Glyma_BRXL1 (SEQ ID NO: 30); Glyma_BRXL3 (SEQ ID NO: 34); Poptr_BRXL1 (SEQ ID NO: 58); Poptr_BRXL2 (SEQ ID NO: 62); Arath_BRXL4 (SEQ ID NO: 28); Glyma_BRXL4 (SEQ ID NO: 36); Glyma_BRXL6 (SEQ ID NO: 40); Nicbe_BRXL1 (SEQ ID NO: 44); Sorbi_BRXL2 (SEQ ID NO: 68); Zeama_BRXL1 (SEQ ID NO: 74); Orysa_BRXL5 (SEQ ID NO: 54); Orysa_BRXL1 (SEQ ID NO: 46); Sorbi_BRXL1 (SEQ ID NO: 66); Zeama_BRXL2 (SEQ ID NO: 76); Picsi_BRXL1 (SEQ ID NO: 58); Orysa_BRXL2 (SEQ ID NO: 48); Zeama_BRXL4 (SEQ ID NO: 80); Orysa_BRXL4 (SEQ ID NO: 52); and Zeama_BRXL3 (SEQ ID NO: 78).



FIG. 6 shows the binary vector for increased expression in Oryza sativa plants of a nucleic acid sequence encoding a BRXL polypeptide under the control of a constitutive promoter functioning in plants.



FIG. 7 represents the binary vector used for increased expression in Oryza sativa of a silky-1-like-encoding nucleic acid under the control of a rice GOS2 promoter (pGOS2).



FIG. 8 represents a multiple alignment of ARP6 polypeptides. Sequences shown are 108); Gm0057×00075 (SEQ ID NO: 112); Gm0195×00030 (SEQ ID NO: 110); A. thaliana_AT3G33520.1 (SEQ ID NO: 102); P. trichocarpa_scaff_XVIII.1149 (SEQ ID NO: 110); P. patens126969 (SEQ ID NO: 106); and O. sativa_LOC_Os01g16414.1 (SEQ ID NO: 104).



FIG. 9 phylogenetic tree of ARP polypeptides as described by Kandasamy et al. 2004. The Group of ARP6 polypeptides is indicated.



FIG. 10 represents the binary vector used for increased expression in Oryza sativa of a ARP6-encoding nucleic acid under the control of a rice GOS2 promoter (pGOS2).



FIG. 11 represents SEQ ID NO: 117 with the conserved DPPIV_N and Peptidase_S9 domains indicated in italics underlined and bold respectively.



FIG. 12 represents a multiple alignment of various POP sequences. Sequences shown are P. patens104540#1 (SEQ ID NO: 147); P. patens105959#1 (SEQ ID NO: 148); P. trichocarpa_scaff_XII.203#1 (SEQ ID NO: 149); P. trichocarpa_scaff_XV.146#1 (SEQ ID NO: 150); M. truncatula_AC13782818.5#1 (SEQ ID NO: 145); A. thaliana_AT5G24260.1#1 (SEQ ID NO: 117); O. sativa_Os02g0290600#1 (SEQ ID NO: 146); gi|145358557|ref|NP198470.31 (SEQ ID NO: 152); gi|116789192|gb|ABK25153.11| (SEQ ID NO: 153); and gi|42566792|ref|NP193193.2| (SEQ ID NO: 151).



FIG. 13 shows a phylogenetic tree of prolyl peptidases (Tripathi & Sowdhamini, 2006). The branch with SEQ ID NO: 117 and its rice orthologue are indicated by the arrow.



FIG. 14 represents the binary vector used for increased expression in Oryza sativa of a POP-encoding nucleic acid under the control of a rice GOS2 promoter (pGOS2).



FIG. 15 represents a multiple alignment of CRL proteins. Sequences shown are P. taeda_TA180563352#1 (SEQ ID NO: 204); S. bicolor5284384#1 (SEQ ID NO: 194); S. officinarum_TA386654547#1 (SEQ ID NO: 190); Z. mays_ZM07MC0143857666838@1433 (SEQ ID NO: 196); O. sativa.indica_BGIOSIBCE034659# (SEQ ID NO: 198); O. sativa_Os11g0524300#1 (SEQ ID NO: 200); T. aestivum_TA922224565#1 (SEQ ID NO: 192); A. thaliana_AT5G51020.1#1 (SEQ ID NO: 156); B. napus_TA267493708#1 (SEQ ID NO: 158); H. paradoxus_TA363973304#1 (SEQ ID NO: 170); T. officinale_TA275650225#1 (SEQ ID NO: 180); C. endivia_TA817114280#1 (SEQ ID NO: 162); L. saligna_TA157375948#1 (SEQ ID NO: 174); I.nil_TA812835883#1 (SEQ ID NO: 172); N. tabacum_TA167944097#1 (SEQ ID NO: 178); S. lycopersicum_TA384444081#1 (SEQ ID NO: 186); S. tuberosum_TA253034113#1 (SEQ ID NO: 188); V. vinifera_GSVIVT00018055001#1 (SEQ ID NO: 182); G. raimondii_TA1312129730#1 (SEQ ID NO: 168); C. clementina_DY292515#1 (SEQ ID NO: 160); C. sinensis_TA151912711#1 (SEQ ID NO: 164); P. trichocarpa834377#1 (SEQ ID NO: 184); G. max_Gm0065×00465#1 (SEQ ID NO: 166); M. truncatula_AC13970831.5#1 (SEQ ID NO: 176); S. moellendorffii170435#1 (SEQ ID NO: 206); and P. patens133413#1 (SEQ ID NO: 202).



FIG. 16 shows a phylogenetic tree of CRL proteins. Clusters for dicots, monocots and other viridiplantae CRL proteins are shown.



FIG. 17 represents the binary vector used for increased expression in Oryza sativa of a CRL-encoding nucleic acid under the control of a rice GOS2 promoter (pGOS2).





EXAMPLES

The present invention will now be described with reference to the following examples, which are by way of illustration alone. The following examples are not intended to completely define or otherwise limit the scope of the invention.


DNA manipulation: unless otherwise stated, recombinant DNA techniques are performed according to standard protocols described in (Sambrook (2001) Molecular Cloning: a laboratory manual, 3rd Edition Cold Spring Harbor Laboratory Press, CSH, New York) or in Volumes 1 and 2 of Ausubel et al. (1994), Current Protocols in Molecular Biology, Current Protocols. Standard materials and methods for plant molecular work are described in Plant Molecular Biology Labfax (1993) by R. D. D. Croy, published by BIOS Scientific Publications Ltd (UK) and Blackwell Scientific Publications (UK).


1.1. Alfin-Like Polypeptides

Sequences (full length cDNA, ESTs or genomic) related to SEQ ID NO: 1 and SEQ ID NO: 3 are identified amongst those maintained in the Entrez Nucleotides database at the National Center for Biotechnology Information (NCBI) using database sequence search tools, such as the Basic Local Alignment Tool (BLAST) (Altschul et al. (1990) J. Mol. Biol. 215:403-410; and Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402). The program is used to find regions of local similarity between sequences by comparing nucleic acid or polypeptide sequences to sequence databases and by calculating the statistical significance of matches. For example, the polypeptide encoded by the nucleic acid of SEQ ID NO: 1 and SEQ ID NO: 3 is used in the TBLASTN algorithm, with default settings and the filter to ignore low complexity sequences set off. The output of the analysis was viewed by pairwise comparison, and ranked according to the probability score (E-value), where the score reflects the probability that a particular alignment occurs by chance (the lower the E-value, the more significant the hit). In addition to E-values, comparisons are also scored by percentage identity. Percentage identity refers to the number of identical nucleotides (or amino acids) between the two compared nucleic acid (or polypeptide) sequences over a particular length. In some instances, the default parameters are adjusted to modify the stringency of the search. For example the E-value is increased to show less stringent matches. This way, short nearly exact matches are identified.


Table A1 provides a list of alfin-like nucleic acid sequences.









TABLE A1







Examples alfin-like polypeptides:












Nucleic acid
Polypeptide


Name
Organism
SEQ ID NO
SEQ ID NO





Ac_ALFIN-LIKE

Allium cepa

1
2


Hv_ALFIN-LIKE

Hordeum vulgare

3
4









In some instances, related sequences are tentatively assembled and publicly disclosed by research institutions, such as The Institute for Genomic Research (TIGR; beginning with TA). The Eukaryotic Gene Orthologs (EGO) database is used to identify such related sequences, either by keyword search or by using the BLAST algorithm with the nucleic acid sequence or polypeptide sequence of interest. In other instances, special nucleic acid sequence databases are created for particular organisms, such as by the Joint Genome Institute.


1.2. YRP Polypeptides

Sequences (full length cDNA, ESTs or genomic) related to SEQ ID NO: 10 and SEQ ID NO: 12 are identified amongst those maintained in the Entrez Nucleotides database at the National Center for Biotechnology Information (NCBI) using database sequence search tools, such as the Basic Local Alignment Tool (BLAST) (Altschul et al. (1990) J. Mol. Biol. 215:403-410; and Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402). The program is used to find regions of local similarity between sequences by comparing nucleic acid or polypeptide sequences to sequence databases and by calculating the statistical significance of matches. For example, the polypeptide encoded by the nucleic acid of SEQ ID NO: 10 and SEQ ID NO: 12 is used in the TBLASTN algorithm, with default settings and the filter to ignore low complexity sequences set off. The output of the analysis was viewed by pairwise comparison, and ranked according to the probability score (E-value), where the score reflects the probability that a particular alignment occurs by chance (the lower the E-value, the more significant the hit). In addition to E-values, comparisons are also scored by percentage identity. Percentage identity refers to the number of identical nucleotides (or amino acids) between the two compared nucleic acid (or polypeptide) sequences over a particular length. In some instances, the default parameters are adjusted to modify the stringency of the search. For example the E-value is increased to show less stringent matches. This way, short nearly exact matches are identified.


Table A2 provides a list of YRP nucleic acid sequences.









TABLE A2







Examples YRP polypeptides:














Nucleic acid
Polypeptide



Name
Organism
SEQ ID NO
SEQ ID NO







Hv_YRP

Hordeum vulgare

10
11



Hv_YRP

Hordeum vulgare

12
13










In some instances, related sequences are tentatively assembled and publicly disclosed by research institutions, such as The Institute for Genomic Research (TIGR; beginning with TA). The Eukaryotic Gene Orthologs (EGO) database is used to identify such related sequences, either by keyword search or by using the BLAST algorithm with the nucleic acid sequence or polypeptide sequence of interest. In other instances, special nucleic acid sequence databases are created for particular organisms, such as by the Joint Genome Institute.


1.3. Brevis Radix-Like (BRXL) Polypeptides

Sequences (full length cDNA, ESTs or genomic) related to the nucleic acid sequence used in the methods of the present invention were identified amongst those maintained in the Entrez Nucleotides database at the National Center for Biotechnology Information (NCBI) using database sequence search tools, such as the Basic Local Alignment Tool (BLAST) (Altschul et al. (1990) J. Mol. Biol. 215:403-410; and Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402). The program is used to find regions of local similarity between sequences by comparing nucleic acid sequence or polypeptide sequences to sequence databases and by calculating the statistical significance of matches. For example, the polypeptide encoded by the nucleic acid sequence of the present invention was used for the TBLASTN algorithm, with default settings and the filter to ignore low complexity sequences set off. The output of the analysis was viewed by pairwise comparison, and ranked according to the probability score (E-value), where the score reflect the probability that a particular alignment occurs by chance (the lower the E-value, the more significant the hit). In addition to E-values, comparisons were also scored by percentage identity. Percentage identity refers to the number of identical nucleotides (or amino acids) between the two compared nucleic acid sequence (or polypeptide) sequences over a particular length. In some instances, the default parameters may be adjusted to modify the stringency of the search. For example the E-value may be increased to show less stringent matches. This way, short nearly exact matches may be identified.


Table A3 provides a list of nucleic acid sequences related to the nucleic acid sequence used in the methods of the present invention.









TABLE A3







Examples of BRXL polypeptide sequences, and encoding nucleic acid sequences












Nucleic acid
Polypeptide


Name
Public database accession number
SEQ ID NO:
SEQ ID NO:





Poptr_BRX
JGI_scaff_III.746#1
17
18


Arath_BRX
NM_102925.2
19
20


Arath_BRXL1
NM_129113.4
21
22


Arath_BRXL2
NM_112254.2
23
24


Arath_BRXL3
NM_104296.2
25
26


Arath_BRXL4
NM_122061.3
27
28


Glyma_BRXL1
JGI_Gm0025x00418#1
29
30


Glyma_BRXL2
JGI_Gm0061x00041#1
31
32


Glyma_BRXL3
JGI_Gm0084x00169#1
33
34


Glyma_BRXL4
JGI_Gm0097x00095#1
35
36


Glyma_BRXL5
JGI_Gm0138x00217#1
37
38


Glyma_BRXL6
TIGR_TA62929_3847
39
40


Medtr_BRXL1
TIGR_TA28312_3880#1
41
42


Nicbe_BRXL1
TIGR_TA8873_4100#1
43
44


Orysa_BRXL1
Os08g36020
45
46


Orysa_BRXL2
Os02g47230
47
48


Orysa_BRXL3
Os04g51170
49
50


Orysa_BRXL4
Os03g63650
51
52


Orysa_BRXL5
CF299403.1, CI189950.1
53
54


Phypa_BRXL1
JGI_P.patens_161871#1
55
56


Picsi_BRXL1
TIGR_TA17584_3332#1
57
58


Poptr_BRXL1
JGI_P.trichocarpa_808986
59
60


Poptr_BRXL2
JGI_scaff_VI.979#1
61
62


Poptr_BRXL3
TIGR_TA12611_3695#1
63
64


Sorbi_BRXL1
Sb07g022540
65
66


Sorbi_BRXL2
Sb02g026020
67
68


Vitvi_BRXL1
GSVIVT00003671001#1
69
70


Vitvi_BRXL2
GGSVIVT00034110001#1
71
72


Zeama_BRXL1
TIGR_TA198521_4577#1
73
74


Zeama_BRXL2
Proprietary_ZM07MC01509_57718871@1504#1
75
76


Zeama_BRXL3
Proprietary_ZM07MC22150_BFb0050E10@22088#1
77
78


Zeama_BRXL4
Proprietary_ZM07MC27026_BFb0199F19@26946#1
79
80









In some instances, related sequences have tentatively been assembled and publicly disclosed by research institutions, such as The Institute for Genomic Research (TIGR; beginning with TA), or Genoscope (beginning with GS). The Eukaryotic Gene Orthologs (EGO) database may be used to identify such related sequences, either by keyword search or by using the BLAST algorithm with the nucleic acid sequence or polypeptide sequence of interest. On other instances, special nucleic acid sequence databases have been created for particular organisms, such as by the Joint Genome Institute. Further, access to proprietary databases, has allowed the identification of novel nucleic acid and polypeptide sequences.


1.4. Silky-1-Like Polypeptides

Sequences (full length cDNA, ESTs or genomic) related to SEQ ID NO: 90, SEQ ID NO: 92 or SEQ ID NO: 94 are identified amongst those maintained in the Entrez Nucleotides database at the National Center for Biotechnology Information (NCBI) using database sequence search tools, such as the Basic Local Alignment Tool (BLAST) (Altschul et al. (1990) J. Mol. Biol. 215:403-410; and Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402). The program is used to find regions of local similarity between sequences by comparing nucleic acid or polypeptide sequences to sequence databases and by calculating the statistical significance of matches. For example, the polypeptide encoded by the nucleic acid of SEQ ID NO: 90, SEQ ID NO: 92 or SEQ ID NO: 94 is used in the TBLASTN algorithm, with default settings and the filter to ignore low complexity sequences set off. The output of the analysis was viewed by pairwise comparison, and ranked according to the probability score (E-value), where the score reflects the probability that a particular alignment occurs by chance (the lower the E-value, the more significant the hit). In addition to E-values, comparisons are also scored by percentage identity. Percentage identity refers to the number of identical nucleotides (or amino acids) between the two compared nucleic acid (or polypeptide) sequences over a particular length. In some instances, the default parameters are adjusted to modify the stringency of the search. For example the E-value is increased to show less stringent matches. This way, short nearly exact matches are identified.


Table A4 provides a list of silky-1-like nucleic acid sequences.









TABLE A4







Examples silky-1-like polypeptides:












Nucleic acid
Polypeptide


Name
Organism
SEQ ID NO
SEQ ID NO





Pt_silky

Populus trichocarpa

90
91


homologue


Le_silky

Solanum lycopersicum

92
93


homologue


Ta_silky

Triticum aestivum

94
95









In some instances, related sequences are tentatively assembled and publicly disclosed by research institutions, such as The Institute for Genomic Research (TIGR; beginning with TA). The Eukaryotic Gene Orthologs (EGO) database is used to identify such related sequences, either by keyword search or by using the BLAST algorithm with the nucleic acid sequence or polypeptide sequence of interest. In other instances, special nucleic acid sequence databases are created for particular organisms, such as by the Joint Genome Institute.


1.5. ARP6 Polypeptides

Sequences (full length cDNA, ESTs or genomic) related to the nucleic acid sequence used in the methods of the present invention were identified amongst those maintained in the Entrez Nucleotides database at the National Center for Biotechnology Information (NCBI) using database sequence search tools, such as the Basic Local Alignment Tool (BLAST) (Altschul et al. (1990) J. Mol. Biol. 215:403-410; and Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402). The program is used to find regions of local similarity between sequences by comparing nucleic acid or polypeptide sequences to sequence databases and by calculating the statistical significance of matches. For example, the polypeptide encoded by the nucleic acid used in the present invention was used for the TBLASTN algorithm, with default settings and the filter to ignore low complexity sequences set off. The output of the analysis was viewed by pairwise comparison, and ranked according to the probability score (E-value), where the score reflect the probability that a particular alignment occurs by chance (the lower the E-value, the more significant the hit). In addition to E-values, comparisons were also scored by percentage identity. Percentage identity refers to the number of identical nucleotides (or amino acids) between the two compared nucleic acid (or polypeptide) sequences over a particular length. In some instances, the default parameters may be adjusted to modify the stringency of the search. For example the E-value may be increased to show less stringent matches. This way, short nearly exact matches may be identified.


Table A5 provides a list of nucleic acid sequences related to the nucleic acid sequence used in the methods of the present invention.









TABLE A5







Examples of ARP6 nucleic acids and encoded polypeptides thereof:












Nucleic acid
Polypeptide


ARP6
Source Organism
SEQ ID NO:
SEQ ID NO:





A.thaliana_AT3G33520.1

Arabidopsis thaliana

101
102


O.sativa_LOC_Os01g16414.1

Oryza sativa

103
104


P.patens_126969

Physcomitrella patens

105
106


P.trichocarpa_scaff_XVIII.1149

Populus trichoparca

107
108


Gm0195x00030

Glycine max

109
110


Gm0057x00075

Glycine max

111
112









In some instances, related sequences have tentatively been assembled and publicly disclosed by research institutions, such as The Institute for Genomic Research (TIGR;


beginning with TA). The Eukaryotic Gene Orthologs (EGO) database may be used to identify such related sequences, either by keyword search or by using the BLAST algorithm with the nucleic acid sequence or polypeptide sequence of interest. On other instances, special nucleic acid sequence databases have been created for particular organisms, such as by the Joint Genome Institute. Further, access to proprietary databases, has allowed the identification of novel nucleic acid and polypeptide sequences.


1.6. POP Polypeptides

Sequences (full length cDNA, ESTs or genomic) related to the nucleic acid sequence used in the methods of the present invention were identified amongst those maintained in the Entrez Nucleotides database at the National Center for Biotechnology Information (NCBI) using database sequence search tools, such as the Basic Local Alignment Tool (BLAST) (Altschul et al. (1990) J. Mol. Biol. 215:403-410; and Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402). The program is used to find regions of local similarity between sequences by comparing nucleic acid or polypeptide sequences to sequence databases and by calculating the statistical significance of matches. For example, the polypeptide encoded by the nucleic acid used in the present invention was used for the TBLASTN algorithm, with default settings and the filter to ignore low complexity sequences set off. The output of the analysis was viewed by pairwise comparison, and ranked according to the probability score (E-value), where the score reflect the probability that a particular alignment occurs by chance (the lower the E-value, the more significant the hit). In addition to E-values, comparisons were also scored by percentage identity. Percentage identity refers to the number of identical nucleotides (or amino acids) between the two compared nucleic acid (or polypeptide) sequences over a particular length. In some instances, the default parameters may be adjusted to modify the stringency of the search. For example the E-value may be increased to show less stringent matches. This way, short nearly exact matches may be identified.


Table A6 provides a list of nucleic acid sequences related to the nucleic acid sequence used in the methods of the present invention.









TABLE A6







Examples of POP polypeptides:












Nucleic acid
Polypeptide


Name
Plant source
SEQ ID NO
SEQ ID NO







Arabidopsis thaliana

116
117


AC13782818.5#1

Medicago truncatula

135
145


Os02g0290600#1

Oryza sativa

136
146


104540#1

Physcomitrella patens

137
147


105959#1

Physcomitrella patens

138
148


scaff_XII.203#1

Populus trichocarpa

139
149


scaff_XV.146#1

Populus trichocarpa

140
150


AT4G14570

Arabidopsis thaliana

141
151


AT5G36210

Arabidopsis thaliana

142
152


EF085857.1

Picea sitchensis

143
153


AY108871

Zea mays

144
154









In some instances, related sequences have tentatively been assembled and publicly disclosed by research institutions, such as The Institute for Genomic Research (TIGR; beginning with TA). The Eukaryotic Gene Orthologs (EGO) database may be used to identify such related sequences, either by keyword search or by using the BLAST algorithm with the nucleic acid sequence or polypeptide sequence of interest. On other instances, special nucleic acid sequence databases have been created for particular organisms, such as by the Joint Genome Institute. Further, access to proprietary databases, has allowed the identification of novel nucleic acid and polypeptide sequences.


1.7. Crumpled Leaf (CRL) Polypeptides

Sequences (full length cDNA, ESTs or genomic) related to the nucleic acid sequence used in the methods of the present invention were identified amongst those maintained in the Entrez Nucleotides database at the National Center for Biotechnology Information (NCBI) using database sequence search tools, such as the Basic Local Alignment Tool (BLAST) (Altschul et al. (1990) J. Mol. Biol. 215:403-410; and Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402). The program is used to find regions of local similarity between sequences by comparing nucleic acid or polypeptide sequences to sequence databases and by calculating the statistical significance of matches. For example, the polypeptide encoded by the nucleic acid used in the present invention was used for the TBLASTN algorithm, with default settings and the filter to ignore low complexity sequences set off. The output of the analysis was viewed by pairwise comparison, and ranked according to the probability score (E-value), where the score reflect the probability that a particular alignment occurs by chance (the lower the E-value, the more significant the hit). In addition to E-values, comparisons were also scored by percentage identity. Percentage identity refers to the number of identical nucleotides (or amino acids) between the two compared nucleic acid (or polypeptide) sequences over a particular length. In some instances, the default parameters may be adjusted to modify the stringency of the search. For example the E-value may be increased to show less stringent matches. This way, short nearly exact matches may be identified.


Table A7 provides a list of nucleic acid sequences related to the nucleic acid sequence used in the methods of the present invention.









TABLE A7







Examples of CRL polypeptides:










Nucleic acid
Protein



SEQ
SEQ


Name
ID NO:
ID NO:





A.thaliana_AT5G51020.1#1
155
156


B.napus_TA26749_3708#1
157
158


C.clementina_DY292515#1
159
160


C.endivia_TA817_114280#1
161
162


C.sinensis_TA15191_2711#1
163
164


G.max_Gm0065x00465#1
165
166


G.raimondii_TA13121_29730#1
167
168


H.paradoxus_TA3639_73304#1
169
170


I.nil_TA8128_35883#1
171
172


L.saligna_TA1573_75948#1
173
174


M.truncatula_AC139708_31.5#1
175
176


N.tabacum_TA16794_4097#1
177
178


T.officinale_TA2756_50225#1
179
180


V.vinifera_GSVIVT00018055001#1
181
182


P.trichocarpa_834377#1
183
184


S.lycopersicum_TA38444_4081#1
185
186


S.tuberosum_TA25303_4113#1
187
188


S.officinarum_TA38665_4547#1
189
190


T.aestivum_TA92222_4565#1
191
192


S.bicolor_5284384#1
193
194


Z.mays_ZM07MC01438_57666838@1433#1
195
196


O.sativa.indica_BGIOSIBCE034659#1
197
198


O.sativa_Os11g0524300#1
199
200


P.patens_133413#1
201
202


P.taeda_TA18056_3352#1
203
204


S.moellendorffii_170435#1
205
206









In some instances, related sequences have tentatively been assembled and publicly disclosed by research institutions, such as The Institute for Genomic Research (TIGR; beginning with TA). The Eukaryotic Gene Orthologs (EGO) database may be used to identify such related sequences, either by keyword search or by using the BLAST algorithm with the nucleic acid sequence or polypeptide sequence of interest. On other instances, special nucleic acid sequence databases have been created for particular organisms, such as by the Joint Genome Institute. Further, access to proprietary databases, has allowed the identification of novel nucleic acid and polypeptide sequences.


Example 2
Alignment of Sequences Related to the Polypeptide Sequences Used in the Methods of the Invention
2.1. Alfin-Like Polypeptides

Alignment of polypeptide sequences is performed using the ClustalW 2.0 algorithm of progressive alignment (Thompson et al. (1997) Nucleic Acids Res 25:4876-4882; Chema et al. (2003). Nucleic Acids Res 31:3497-3500) with standard setting (slow alignment, similarity matrix: Gonnet (or Blosum 62 (if polypeptides are aligned), gap opening penalty 10, gap extension penalty: 0.2). Minor manual editing is done to further optimise the alignment.


A phylogenetic tree of alfin-like polypeptides is constructed using a neighbour-joining clustering algorithm as provided in the AlignX programme from the Vector NTI (Invitrogen).


Alignment of polypeptide sequences is performed using the ClustalW 2.0 algorithm of progressive alignment (Thompson et al. (1997) Nucleic Acids Res 25:4876-4882; Chema et al. (2003). Nucleic Acids Res 31:3497-3500) with standard setting (slow alignment, similarity matrix: Gonnet, gap opening penalty 10, gap extension penalty: 0.2). Minor manual editing is done to further optimise the alignment.


2.2. YRP Polypeptides

Alignment of polypeptide sequences is performed using the ClustalW 2.0 algorithm of progressive alignment (Thompson et al. (1997) Nucleic Acids Res 25:4876-4882; Chema et al. (2003). Nucleic Acids Res 31:3497-3500) with standard setting (slow alignment, similarity matrix: Gonnet (or Blosum 62 (if polypeptides are aligned), gap opening penalty 10, gap extension penalty: 0.2). Minor manual editing is done to further optimise the alignment.


A phylogenetic tree of YRP polypeptides is constructed using a neighbour-joining clustering algorithm as provided in the AlignX programme from the Vector NTI (Invitrogen).


Alignment of polypeptide sequences is performed using the ClustalW 2.0 algorithm of progressive alignment (Thompson et al. (1997) Nucleic Acids Res 25:4876-4882; Chema et al. (2003). Nucleic Acids Res 31:3497-3500) with standard setting (slow alignment, similarity matrix: Gonnet, gap opening penalty 10, gap extension penalty: 0.2). Minor manual editing is done to further optimise the alignment.


2.3. Brevis Radix-Like (BRXL) Polypeptides

Multiple sequence alignment of all the BRXL polypeptide sequences in Table A3 was performed using the ClustalW 1.81 algorithm. Results of the alignment are shown in FIG. 5 of the present application. The following features are heavily boxed (i) a Conserved Domain 1 representing a BRX domain, which comprises IPRO13591 DZC domain (PFAM entry PF08381 DZC; marked with X's); (2) a Conserved Domain 2 representing a BRX domain, which comprises a C-terminal IPRO13591 DZC domain (PFAM entry PF08381 DZC; marked with X's); (3) a Conserved Domain 3 and (4) a Conserved Domain 4, both containing conserved Cys's (lightly boxed), whose spacing is indicative of a potential zinc-binding motif.


2.4. Silky-1-Like Polypeptides

Alignment of polypeptide sequences is performed using the ClustalW 2.0 algorithm of progressive alignment (Thompson et al. (1997) Nucleic Acids Res 25:4876-4882; Chema et al. (2003). Nucleic Acids Res 31:3497-3500) with standard setting (slow alignment, similarity matrix: Gonnet (or Blosum 62 (if polypeptides are aligned), gap opening penalty 10, gap extension penalty: 0.2). Minor manual editing is done to further optimise the alignment.


A phylogenetic tree of silky-1-like polypeptides is constructed using a neighbour-joining clustering algorithm as provided in the AlignX programme from the Vector NTI (Invitrogen).


Alignment of polypeptide sequences is performed using the ClustalW 2.0 algorithm of progressive alignment (Thompson et al. (1997) Nucleic Acids Res 25:4876-4882; Chema et al. (2003). Nucleic Acids Res 31:3497-3500) with standard setting (slow alignment, similarity matrix: Gonnet, gap opening penalty 10, gap extension penalty: 0.2). Minor manual editing is done to further optimise the alignment.


2.5. ARP6 Polypeptides

Alignment of polypeptide sequences was performed using the ClustalW 2.0 algorithm of progressive alignment (Thompson et al. (1997) Nucleic Acids Res 25:4876-4882; Chema et al. (2003). Nucleic Acids Res 31:3497-3500) with standard setting (slow alignment, similarity matrix: Gonnet (or Blosum 62 (if polypeptides are aligned), gap opening penalty 10, gap extension penalty: 0.2). Minor manual editing was done to further optimise the alignment. The ARP6 polypeptides are aligned in FIG. 8.


Alignment of polypeptide sequences was performed using the ClustalW 2.0 algorithm of progressive alignment (Thompson et al. (1997) Nucleic Acids Res 25:4876-4882; Chema et al. (2003). Nucleic Acids Res 31:3497-3500) with standard setting (slow alignment, similarity matrix: Gonnet, gap opening penalty 10, gap extension penalty: 0.2). Minor manual editing was done to further optimise the alignment.


2.6. POP Polypeptides

Alignment of polypeptide sequences was performed using the ClustalW 2.0 algorithm of progressive alignment (Thompson et al. (1997) Nucleic Acids Res 25:4876-4882; Chema et al. (2003). Nucleic Acids Res 31:3497-3500) with standard settings (slow alignment, similarity matrix: Gonnet, gap opening penalty 10, gap extension penalty: 0.2). Minor manual editing was done to further optimise the alignment. The POP polypeptides are aligned in FIG. 12.


The phylogenetic tree of POP polypeptides (FIG. 3, Tripathi & Sowdhamini, 2006) was constructed as follows:


Multiple sequence alignments of serine-protease domains were constructed using the CLUSTALW program. In order to compare equivalent regions, the domain regions were retrieved employing HMMALIGN, a sequence to profile matching method against the PfamA database. Proteins lacking a significant portion of the protease-like domain were not included in alignments. A Blosum 30 matrix, an open gap penalty of 10 and an extension penalty of 0.05 were employed. An overall phylogenetic tree was inferred from the multiple sequence alignment with PHYLIP (Phylogeny Inference Package) 3.65. Bootstrapping was performed 100 times using SEQBOOT to obtain support values for each internal branch. Pairwise distances were determined with PROTDIST. Neighbourjoining phylogenetic trees were calculated with NEIGHBOR using standard parameters. The majority-rule consensus trees of all bootstrapped sequences were obtained with the program CONSENSE. Representations of the calculated trees were constructed using TreeView. Clusters with bootstrap values greater than 50% were defined as confirmed subgroups, and sequences with lower values added to these subgroups according to their sequence similarity in the alignment as judged by visual inspection.


2.7. Crumpled Leaf (CRL) Polypeptides

Alignment of polypeptide sequences was performed using the MUSCLE 3.7 algorithm (MUltiple Sequence Comparison by Log-Expectation) (Edgard 2004 of Nucleic Acids Research, 2004, Vol. 32, No. 5 1792-1797) with standard setting (FIG. 15).


A Neighbour-Joining tree was calculated using QuickTree (Howe et al. (2002), Bioinformatics 18(11): 1546-7). Support of the major branching after 100 bootstrap repetitions is indicated. A circular phylogram was drawn using Dendroscope (Huson et al. (2007), BMC Bioinformatics 8(1):460). See FIG. 16. CRL protein seems is a unique in most organisms.


Example 3
Calculation of Global Percentage Identity Between Polypeptide Sequences Useful in Performing the Methods of the Invention

3.1. Alfin-like polypeptides


Global percentages of similarity and identity between full length polypeptide sequences is determined using one of the methods available in the art, the MatGAT (Matrix Global Alignment Tool) software (BMC Bioinformatics. 2003 4:29. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. Campanella J J, Bitincka L, Smalley J; software hosted by Ledion Bitincka). MatGAT software generates similarity/identity matrices for DNA or protein sequences without needing pre-alignment of the data. The program performs a series of pair-wise alignments using the Myers and Miller global alignment algorithm (with a gap opening penalty of 12, and a gap extension penalty of 2), calculates similarity and identity using for example Blosum 62 (for polypeptides), and then places the results in a distance matrix. Sequence similarity is shown in the bottom half of the dividing line and sequence identity is shown in the top half of the diagonal dividing line.


Parameters used in the comparison are:

    • Scoring matrix: Blosum62
    • First Gap: 12
    • Extending gap: 2


A MATGAT table for local alignment of a specific domain, or data on % identity/similarity between specific domains may also be performed.


3.2. YRP Polypeptides

Global percentages of similarity and identity between full length polypeptide sequences is determined using one of the methods available in the art, the MatGAT (Matrix Global Alignment Tool) software (BMC Bioinformatics. 2003 4:29. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. Campanella J J, Bitincka L, Smalley J; software hosted by Ledion Bitincka). MatGAT software generates similarity/identity matrices for DNA or protein sequences without needing pre-alignment of the data. The program performs a series of pair-wise alignments using the Myers and Miller global alignment algorithm (with a gap opening penalty of 12, and a gap extension penalty of 2), calculates similarity and identity using for example Blosum 62 (for polypeptides), and then places the results in a distance matrix. Sequence similarity is shown in the bottom half of the dividing line and sequence identity is shown in the top half of the diagonal dividing line.


Parameters used in the comparison are:

    • Scoring matrix: Blosum62
    • First Gap: 12
    • Extending gap: 2


A MATGAT table for local alignment of a specific domain, or data on % identity/similarity between specific domains may also be performed.


3.3. Brevis Radix-Like (BRXL) Polypeptides

Global percentages of similarity and identity between full length polypeptide sequences useful in performing the methods of the invention were determined using one of the methods available in the art, the MatGAT (Matrix Global Alignment Tool) software (BMC Bioinformatics. 2003 4:29. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. Campanella J J, Bitincka L, Smalley J; software hosted by Ledion Bitincka). MatGAT software generates similarity/identity matrices for DNA or protein sequences without needing pre-alignment of the data. The program performs a series of pair-wise alignments using the Myers and Miller global alignment algorithm (with a gap opening penalty of 12, and a gap extension penalty of 2), calculates similarity and identity using for example Blosum 62 (for polypeptides), and then places the results in a distance matrix. Sequence similarity is shown in the bottom half of the dividing line and sequence identity is shown in the top half of the diagonal dividing line.


Parameters used in the comparison were:

    • Scoring matrix: Blosum62
    • First Gap: 12
    • Extending gap: 2


Results of the software analysis are shown in Table B1 for the global similarity and identity over the full length of the polypeptide sequences (excluding the partial polypeptide sequences).


The percentage identity between the full length polypeptide sequences useful in performing the methods of the invention can be as low as 43% amino acid identity compared to SEQ ID NO: 18.









TABLE B1





MatGAT results for global similarity and identity over the


full length of the polypeptide sequences of Table A3.
































1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16





 1. Poptr_BRX


67


65


50


50


46


51


78


52


46


69


48


53


50


44


47



 2. Arath_BRX
79

78
46
48
42
44
70
44
43
64
43
48
45
43
44


 3. Arath_BRXL1
76
86

47
50
42
44
67
44
42
61
42
48
45
42
45


 4. Arath_BRXL2
64
61
59

73
55
61
49
61
54
49
55
70
60
56
39


 5. Arath_BRXL3
66
68
64
82

55
58
49
59
53
51
53
67
60
54
39


 6. Arath_BRXL4
60
57
56
72
69

67
47
68
63
44
62
62
64
54
40


 7. Glyma_BRXL1
66
58
58
77
75
78

50
97
72
48
73
69
72
56
41


 8. Glyma_BRXL2
86
83
79
63
66
60
64

50
46
76
46
52
48
44
46


 9. Glyma_BRXL3
66
59
60
77
75
79
98
65

73
48
74
71
73
56
42


10. Glyma_BRXL4
63
59
57
72
72
74
82
62
83

45
91
62
64
52
39


11. Glyma_BRXL5
81
77
74
62
66
60
66
87
66
63

45
50
48
42
43


12. Glyma_BRXL6
64
60
57
72
70
75
83
62
83
94
63

62
65
53
40


13. Medtr_BRXL1
70
63
62
83
81
76
82
66
82
75
66
76

67
59
42


14. Nicbe_BRXL1
66
60
60
75
74
78
83
61
83
78
63
77
78

56
39


15. Orysa_BRXL1
58
56
55
69
65
67
67
57
67
63
55
64
70
68

37


16. Orysa_BRXL2
59
56
55
54
52
54
53
57
53
51
56
51
56
53
52


17. Orysa_BRXL4
61
58
56
59
56
54
56
60
56
52
62
55
61
58
52
57


18. Orysa_BRXL5
57
54
53
65
63
64
66
55
66
62
54
63
69
66
78
54


19. Picsi_BRXL1
58
59
59
60
66
60
61
59
61
59
58
61
65
59
54
48


20. Poptr_BRXL1
64
60
56
75
73
78
86
63
87
79
61
78
78
80
66
51


21. Poptr_BRXL2
63
58
57
74
71
81
86
61
87
78
60
77
80
80
70
53


22. Poptr_BRXL3
65
59
60
82
78
76
78
63
79
74
63
74
83
75
69
54


23. Sorbi_BRXL1
56
55
55
66
62
64
66
56
66
62
56
60
70
66
80
52


24. Sorbi_BRXL2
58
54
54
67
64
65
68
57
69
65
55
64
70
65
79
52


25. Vitvi_BRXL1
87
79
76
66
69
62
66
84
67
63
79
64
71
66
61
57


26. Vitvi_BRXL2
70
63
63
84
81
78
85
66
85
76
69
78
89
83
73
54


27. Zeama_BRXL1
58
55
54
66
63
65
66
57
67
64
56
64
69
67
79
52


28. Zeama_BRXL2
54
53
53
65
63
64
65
53
65
63
56
62
67
67
78
53


29. Zeama_BRXL3
59
59
58
56
55
57
56
60
56
52
59
54
57
55
50
57


30. Zeama_BRXL4
61
57
55
54
54
56
53
60
54
53
58
53
56
53
52
82

























17
18
19
20
21
22
23
24
25
26
27
28
29
30





 1. Poptr_BRX

45


45


43


50


50


51


45


45


79


56


45


43


45


47



 2. Arath_BRX
42
42
41
43
44
44
42
44
69
49
43
41
42
45


 3. Arath_BRXL1
42
42
43
42
44
46
43
42
66
50
41
41
41
43


 4. Arath_BRXL2
43
53
43
59
59
68
53
54
52
69
54
51
38
39


 5. Arath_BRXL3
40
52
44
57
58
67
50
53
53
66
52
51
40
40


 6. Arath_BRXL4
39
53
44
66
67
62
51
53
49
63
53
51
38
41


 7. Glyma_BRXL1
40
55
46
75
78
66
52
55
52
72
55
52
40
39


 8. Glyma_BRXL2
44
44
45
48
48
50
44
44
77
53
44
42
45
46


 9. Glyma_BRXL3
41
55
46
76
80
68
53
56
53
72
56
52
39
38


10. Glyma_BRXL4
41
51
44
66
68
61
50
53
47
63
52
50
39
40


11. Glyma_BRXL5
45
41
42
46
46
47
43
42
71
53
42
41
45
44


12. Glyma_BRXL6
41
53
46
66
67
61
49
54
48
65
54
49
41
40


13. Medtr_BRXL1
44
60
48
65
68
76
57
61
57
80
59
56
38
42


14. Nicbe_BRXL1
42
54
45
67
70
63
53
55
51
70
54
53
39
38


15. Orysa_BRXL1
40
70
40
54
58
58
72
72
48
61
71
69
37
39


16. Orysa_BRXL2
44
41
35
41
41
41
38
39
47
42
39
38
42
72


17. Orysa_BRXL4

39
38
40
40
40
38
41
47
44
38
40
76
45


18. Orysa_BRXL5
52

42
55
57
59
69
85
48
63
82
68
38
41


19. Picsi_BRXL1
55
52

45
47
44
40
41
44
47
42
40
35
36


20. Poptr_BRXL1
54
66
60

86
66
53
56
52
70
55
51
37
39


21. Poptr_BRXL2
53
70
60
88

67
55
58
53
73
58
54
38
40


22. Poptr_BRXL3
55
67
59
79
78

58
60
53
80
59
55
38
40


23. Sorbi_BRXL1
49
79
55
65
69
68

70
46
59
70
84
38
37


24. Sorbi_BRXL2
53
89
54
67
70
69
82

48
64
92
68
38
40


25. Vitvi_BRXL1
63
59
58
65
65
67
58
60

58
47
46
45
47


26. Vitvi_BRXL2
60
72
62
82
82
87
71
73
71

61
58
40
43


27. Zeama_BRXL1
52
88
53
66
68
70
82
95
60
72

68
39
39


28. Zeama_BRXL2
50
78
54
62
67
66
89
79
57
69
79

38
37


29. Zeama_BRXL3
86
52
51
53
55
54
53
52
60
58
54
52

42


30. Zeama_BRXL4
59
51
51
50
56
53
48
50
61
56
52
49
58









The percentage amino acid identity can be significantly increased if the most conserved region of the polypeptides are compared. For example, when comparing the amino acid sequence of a Conserved Domain 1 as represented by SEQ ID NO: 83, or of a Conserved domain 2 as represented by SEQ ID NO: 84 with the respective corresponding domains of the polypeptides of Table A3, the percentage amino acid identity increases significantly (in order of preference at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more amino acid sequence identity).


3.4. Silky-1-Like Polypeptides

Global percentages of similarity and identity between full length polypeptide sequences is determined using one of the methods available in the art, the MatGAT (Matrix Global Alignment Tool) software (BMC Bioinformatics. 2003 4:29. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. Campanella J J, Bitincka L, Smalley J; software hosted by Ledion Bitincka). MatGAT software generates similarity/identity matrices for DNA or protein sequences without needing pre-alignment of the data. The program performs a series of pair-wise alignments using the Myers and Miller global alignment algorithm (with a gap opening penalty of 12, and a gap extension penalty of 2), calculates similarity and identity using for example Blosum 62 (for polypeptides), and then places the results in a distance matrix. Sequence similarity is shown in the bottom half of the dividing line and sequence identity is shown in the top half of the diagonal dividing line.


Parameters used in the comparison are:

    • Scoring matrix: Blosum62
    • First Gap: 12
    • Extending gap: 2


A MATGAT table for local alignment of a specific domain, or data on % identity/similarity between specific domains may also be performed.


3.5. ARP6 Polypeptides

Global percentages of similarity and identity between full length polypeptide sequences useful in performing the methods of the invention were determined using one of the methods available in the art, the MatGAT (Matrix Global Alignment Tool) software (BMC Bioinformatics. 2003 4:29. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. Campanella J J, Bitincka L, Smalley J; software hosted by Ledion Bitincka). MatGAT software generates similarity/identity matrices for DNA or protein sequences without needing pre-alignment of the data. The program performs a series of pair-wise alignments using the Myers and Miller global alignment algorithm (with a gap opening penalty of 12, and a gap extension penalty of 2), calculates similarity and identity using for example Blosum 62 (for polypeptides), and then places the results in a distance matrix. Sequence similarity is shown in the bottom half of the dividing line and sequence identity is shown in the top half of the diagonal dividing line.


Parameters used in the comparison were:

    • Scoring matrix: Blosum62
    • First Gap: 12
    • Extending gap: 2


Results of the software analysis are shown in Table B2 for the global similarity and identity over the full length of the polypeptide sequences. Percentage identity is given above the diagonal in bold and percentage similarity is given below the diagonal (normal face).


The percentage identity between the ARP6 polypeptide sequences useful in performing the methods of the invention can be as low as 50.8% amino acid identity compared to SEQ ID NO: 102 (A. thaliana_AT3G33520.1).









TABLE B2







MatGAT results for global similarity and identity


over the full length of the polypeptide sequences.














1
2
3
4
5
6

















1. Gm0057x00075

65.1
53.6
37.0
44.1
50.8


2. Gm0195x00030
72.7

76.7
50.7
64.5
70.1


3. P.trichocarpa_scaff_XVIII.1149
67.5
88.8

52.8
65.4
74.5


4. P.patens_126969
54.9
71.1
69.9

51.8
50.8


5. O.sativa_LOC_Os01g16414.1
62.0
81.9
83.0
70.4

63.1


6. A.thaliana_AT3G33520.1
63.9
83.5
88.9
68.6
79.3









3.6. POP Polypeptides

Global percentages of similarity and identity between full length polypeptide sequences useful in performing the methods of the invention were determined using one of the methods available in the art, the MatGAT (Matrix Global Alignment Tool) software (BMC Bioinformatics. 2003 4:29. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. Campanella J J, Bitincka L, Smalley J; software hosted by Ledion Bitincka). MatGAT software generates similarity/identity matrices for DNA or protein sequences without needing pre-alignment of the data. The program performs a series of pair-wise alignments using the Myers and Miller global alignment algorithm (with a gap opening penalty of 12, and a gap extension penalty of 2), calculates similarity and identity using for example Blosum 62 (for polypeptides), and then places the results in a distance matrix. Sequence similarity is shown in the bottom half of the dividing line and sequence identity is shown in the top half of the diagonal dividing line.


Parameters used in the comparison were:

    • Scoring matrix: Blosum62
    • First Gap: 12
    • Extending gap: 2


Results of the software analysis are shown in Table B3 for the global similarity and identity over the full length of the polypeptide sequences. Percentage identity is given above the diagonal in bold and percentage similarity is given below the diagonal (normal face).


The percentage identity between the POP polypeptide sequences useful in performing the methods of the invention can be as low as 16.8% amino acid identity compared to SEQ ID NO: 117 (At5g24260).









TABLE B3







MatGAT results for global similarity and identity


over the full length of the polypeptide sequences.


















1
2
3
4
5
6
7
8
9
10





















 1. At5g24260


65.7


51.1


59.3


59.4


65.8


65.5


18.1


16.8


16.9



 2. Mt_AC137828
80.4


51.4


58.6


58.6


72.1


72.6


18.5


18.6


18.5



 3. Os02g0290600
64.3
64.3


47.8


48.1


53.0


54.0


18.3


18.4


20.7



 4. Pp_104540
74.7
74.0
61.6


91.9


58.2


58.5


18.8


17.0


18.2



 5. Pp_105959
74.1
73.9
61.3
96.0


57.9


58.7


18.8


16.6


18.0



 6. Pt_scaff_XII.203
78.9
85.0
63.5
73.0
73.2


91.1


19.3


17.7


18.8



 7. Pt_scaff_XV.146
78.3
85.4
63.9
72.7
73.5
96.0


19.6


17.4


17.6



 8. NP_193193.2At
36.0
37.5
32.6
36.3
36.3
37.8
36.2


19.5


18.9



 9. NP_198470.3At
36.9
36.6
33.6
33.4
33.9
35.2
35.3
37.6


60.5



10. ABK25153.1PS
35.9
35.1
35.2
35.2
34.6
34.3
34.2
38.7
74.7









3.7. Crumpled Leaf (CRL) Polypeptides

Global percentages of similarity and identity between full length polypeptide sequences useful in performing the methods of the invention were determined using one of the methods available in the art, the MatGAT (Matrix Global Alignment Tool) software (BMC Bioinformatics. 2003 4:29. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. Campanella J J, Bitincka L, Smalley J; software hosted by Ledion Bitincka). MatGAT software generates similarity/identity matrices for DNA or protein sequences without needing pre-alignment of the data. The program performs a series of pair-wise alignments using the Myers and Miller global alignment algorithm (with a gap opening penalty of 12, and a gap extension penalty of 2), calculates similarity and identity using for example Blosum 62 (for polypeptides), and then places the results in a distance matrix. Sequence similarity is shown in the bottom half of the dividing line and sequence identity is shown in the top half of the diagonal dividing line.


Parameters used in the comparison were:

    • Scoring matrix: Blosum62
    • First Gap: 12
    • Extending gap: 2


Results of the software analysis are shown in Table B4 for the global similarity and identity over the full length of the polypeptide sequences. Percentage identity is given above the diagonal in bold and percentage similarity is given below the diagonal (normal face).


The percentage identity between the CRL polypeptide sequences useful in performing the methods of the invention can be as low as 48% amino acid identity compared to SEQ ID NO: 156.









TABLE B4





MatGAT results for global similarity and identity over the full length of the polypeptide sequences.






























1
2
3
4
5
6
7
8
9
10
11
12
13
14





 1. AT5G51020.1#1

86.
71.
73.
76.
75.
75.
72.
73.
71.
74
72.
72.
75.


 2. TA26749_3708#1


75.3
73.8
80.3
76.8
76.8
72.4
71.6
72.9
74.9
73.5
74.5
77.5


 3. DY292515#1



70.9
91.5
74.6
73.5
68.8
67.3
69.7
72
72.1
69.8
76


 4. TA817 114280#1




75.2
78.3
78.2
89.9
77
95.9
74.7
78.8
93.6
77.7


 5. TA15191_2711#1





79.8
79.4
73.7
72.5
73.9
76.8
77.7
74.5
80.5


 6. Gm0065x00465#1






81.6
76.5
74.7
77
88.4
78
77.6
82.4


 7. TA13121_29730#1







76.8
73.3
76.9
76.4
79.9
77.2
80.9


 8. TA3639_73304#1








76.6
87.7
72.9
75.8
86.1
75.8


 9. TA8128_35883#1









76.8
72.2
84.6
77.7
73.6


10. TA1573_75948#1










73.5
78.6
93.7
76.7


11. AC139708_31.5#1











75.5
74.3
77.2


12. TA16794_4097#1












78.8
77.3


13. TA2756_50225#1













76.2


14. GSVIVT00018055001#1


15. 834377#1


16. TA38444_4081#1


17. TA25303_4113#1


18. TA38665_4547#1


19. TA92222_4565#1


20. 5284384#1


21. ZM07MC01438


57666838@1433#1


22. BGIOSIBCE034659#1


23. Os11g0524300#1


24. 133413#1


25. TA18056_3352#1


26. 170435#1

























15
16
17
18
19
20
21
22
23
24
25
26







 1. AT5G51020.1#1
78
73.
73.
65.
66.
65.
65.
64
64
51.
48.
55.



 2. TA26749_3708#1
78.5
74.8
74.1
65.8
66.4
65.8
65.8
66.1
66.1
53
49.3
55.1



 3. DY292515#1
75
71.9
71.9
67
67.7
67
67.4
66.5
66.5
53.2
48
55.6



 4. TA817 114280#1
76.7
78.3
77.9
67.3
66.9
67.3
67.3
66.5
66.5
53.8
50.5
55.2



 5. TA15191_2711#1
80.7
77.5
77.5
68.5
70.2
68.5
68.9
69.9
69.9
54.5
49.1
57



 6. Gm0065x00465#1
83.5
77.9
77.5
68.9
68.4
68.9
68.5
68.4
68.4
52.7
51.4
55.8



 7. TA13121_29730#1
80.2
77.9
79
67.7
66.9
67.7
67.7
68.4
68.4
55
53.1
55.1



 8. TA3639_73304#1
74.2
76.2
75.4
66.2
65.5
66.2
66.2
64.8
64.8
53
50.3
55.1



 9. TA8128_35883#1
77.5
82.9
82.5
66.8
66.7
66.8
66.8
67.3
67.3
56.7
52.1
58



10. TA1573_75948#1
75.4
77.7
77.4
66.4
65.7
66.4
66.4
65.7
65.7
52.4
49.5
54.1



11. AC139708_31.5#1
79.1
74.6
74.3
66.4
65.4
66.8
66.4
66.2
66.2
50
49.7
53.4



12. TA16794_4097#1
79.5
92.4
92.7
65
66.3
65
65
67.3
67.3
54.2
53.3
56.7



13. TA2756_50225#1
75.6
78
77.6
67.2
66.8
67.2
67.2
66.8
66.8
54.2
50.2
54.2



14. GSVIVT00018055001#1
80.2
76.4
76.1
72
71.7
71.6
72
72
72
57.3
52.4
58



15. 834377#1

78.6
78.6
68.2
68
68.2
68.2
68.7
68.7
55.3
53.1
58.7



16. TA38444_4081#1


98.9
66.4
66.7
66.1
66.4
69.3
69.3
54.3
53.4
57.4



17. TA25303_4113#1



66.1
66.3
65.7
66.1
69
69
54.3
53.8
57.4



18. TA38665_4547#1




87.8
98.1
98.9
88.4
88.4
55.5
52.2
58.1



19. TA92222_4565#1





87
88.1
89.8
89.8
55.3
53.8
59



20. 5284384#1






97.7
87.3
87.3
55.5
52.2
58.1



21. ZM07MC01438







88.7
88.7
55.1
52.6
57.7



57666838@1433#1



22. BGIOSIBCE034659#1








100
57.5
54.3
59.5



23. Os11g0524300#1









57.5
54.3
59.5



24. 133413#1










63.5
66.9



25. TA18056_3352#1











62.8



26. 170435#1










Example 4
Identification of Domains Comprised in Polypeptide Sequences Useful in Performing the Methods of the Invention
4.1. Alfin-Like Polypeptides

The Integrated Resource of Protein Families, Domains and Sites (InterPro) database is an integrated interface for the commonly used signature databases for text- and sequence-based searches. The InterPro database combines these databases, which use different methodologies and varying degrees of biological information about well-characterized proteins to derive protein signatures. Collaborating databases include SWISS-PROT, PROSITE, TrEMBL, PRINTS, Propom and Pfam, Smart and TIGRFAMs. Pfam is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains and families. Pfam is hosted at the Sanger Institute server in the United Kingdom. Interpro is hosted at the European Bioinformatics Institute in the United Kingdom.


4.2. YRP Polypeptides

The Integrated Resource of Protein Families, Domains and Sites (InterPro) database is an integrated interface for the commonly used signature databases for text- and sequence-based searches. The InterPro database combines these databases, which use different methodologies and varying degrees of biological information about well-characterized proteins to derive protein signatures. Collaborating databases include SWISS-PROT, PROSITE, TrEMBL, PRINTS, Propom and Pfam, Smart and TIGRFAMs. Pfam is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains and families. Pfam is hosted at the Sanger Institute server in the United Kingdom. Interpro is hosted at the European Bioinformatics Institute in the United Kingdom.


4.3. Brevis Radix-Like (BRXL) Polypeptides

The Integrated Resource of Protein Families, Domains and Sites (InterPro) database is an integrated interface for the commonly used signature databases for text- and sequence-based searches. The InterPro database combines these databases, which use different methodologies and varying degrees of biological information about well-characterized proteins to derive protein signatures. Collaborating databases include SWISS-PROT, PROSITE, TrEMBL, PRINTS, Propom and Pfam, Smart and TIGRFAMs. Interpro is hosted at the European Bioinformatics Institute in the United Kingdom.


The results of the InterPro scan of the polypeptide sequence as represented by SEQ ID NO: 18 are presented in Table C1.









TABLE C1







InterPro scan results of the polypeptide


sequence as represented by SEQ ID NO: 18











Integrated
Integrated
Integrated


InterPro accession
database
database
database


number and name
name
accession number
accession name





IPR13591
PFAM
PF08381
DZC


Disease resistance/


zinc finger/


chromosome


condensation-like


region (DZC)


No IPR
Panther
PTHR22870
Regulator of


integrated


chromosome





condensation



Panther
PTHR22870_SF25
Regulator of





chromosome





condensation









4.4. Silky-1-Like Polypeptides

The Integrated Resource of Protein Families, Domains and Sites (InterPro) database is an integrated interface for the commonly used signature databases for text- and sequence-based searches. The InterPro database combines these databases, which use different methodologies and varying degrees of biological information about well-characterized proteins to derive protein signatures. Collaborating databases include SWISS-PROT, PROSITE, TrEMBL, PRINTS, Propom and Pfam, Smart and TIGRFAMs. Pfam is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains and families. Pfam is hosted at the Sanger Institute server in the United Kingdom. Interpro is hosted at the European Bioinformatics Institute in the United Kingdom.


4.5. ARP6 Polypeptides

The Integrated Resource of Protein Families, Domains and Sites (InterPro) database is an integrated interface for the commonly used signature databases for text- and sequence-based searches. The InterPro database combines these databases, which use different methodologies and varying degrees of biological information about well-characterized proteins to derive protein signatures. Collaborating databases include SWISS-PROT, PROSITE, TrEMBL, PRINTS, Propom and Pfam, Smart and TIGRFAMs. Pfam is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains and families. Pfam is hosted at the Sanger Institute server in the United Kingdom. Interpro is hosted at the European Bioinformatics Institute in the United Kingdom.


4.6. POP Polypeptides

The Integrated Resource of Protein Families, Domains and Sites (InterPro) database is an integrated interface for the commonly used signature databases for text- and sequence-based searches. The InterPro database combines these databases, which use different methodologies and varying degrees of biological information about well-characterized proteins to derive protein signatures. Collaborating databases include SWISS-PROT, PROSITE, TrEMBL, PRINTS, Propom and Pfam, Smart and TIGRFAMs. Pfam is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains and families. Pfam is hosted at the Sanger Institute server in the United Kingdom. Interpro is hosted at the European Bioinformatics Institute in the United Kingdom.


The results of the InterPro scan of the polypeptide sequence as represented by SEQ ID NO: 117 are presented in Table C2.









TABLE C2







InterPro scan results (major accession numbers) of the polypeptide sequence as represented by SEQ ID NO: 117.













Amino acid





coordinates


Database
Accession number
Accession name
on SEQ ID NO 117





InterPro
IPR001375
Peptidase S9, prolyl oligopeptidase active site region



HMMPfam
PF00326
Peptidase_S9
T[544-746] 1.3e−57


InterPro
IPR002469
Peptidase S9B, dipeptidylpeptidase IV N-terminal


HMMPfam
PF00930
DPPIV_N
T[103-458] 2.1e−129


Gene3D
G3DSA: 2.140.10.30
no description
T[77-488] 6.3e−90


Gene3D
G3DSA: 3.40.50.1820
no description
T[490-746] 4.7e−73


HMMPanther
PTHR11731
PROTEASE FAMILY S9B, C DIPEPTIDYL-PEPTIDASE
T[116-746] 6.1e−293




IV-RELATED


HMMPanther
PTHR11731SF12
DIPEPTIDYL PEPTIDASE IV
T[116-746] 6.1e−293


Superfamily
SSF53474
alpha/beta-Hydrolases
T[490-746] 3.4e−65


Superfamily
SSF82171
Dipeptidyl peptidase IV/CD26, N-terminal domain
T[4-486] 9e−78









4.7. Crumpled Leaf (CRL) Polypeptides

The Integrated Resource of Protein Families, Domains and Sites (InterPro) database is an integrated interface for the commonly used signature databases for text- and sequence-based searches. The InterPro database combines these databases, which use different methodologies and varying degrees of biological information about well-characterized proteins to derive protein signatures. Collaborating databases include SWISS-PROT, PROSITE, TrEMBL, PRINTS, Propom and Pfam, Smart and TIGRFAMs. Pfam is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains and families. Pfam is hosted at the Sanger Institute server in the United Kingdom. Interpro is hosted at the European Bioinformatics Institute in the United Kingdom.


The results of the InterPro scan of the polypeptide sequence as represented by SEQ ID NO: 156 are presented in Table C3.









TABLE C3







InterPro scan results (major accession numbers) of the


polypeptide sequence as represented by SEQ ID NO: 156.















amino acid



Accession


coordinates


Database
number
Description
evalue
[start-end]





Interpro
IPR010404





PFAM
PF06206
DUF1001
0.043
[42-236]









Example 5
Topology Prediction of the Polypeptide Sequences Useful in Performing the Methods of the Invention
5.1. Alfin-Like Polypeptides

TargetP 1.1 predicts the subcellular location of eukaryotic proteins. The location assignment is based on the predicted presence of any of the N-terminal pre-sequences: chloroplast transit peptide (cTP), mitochondrial targeting peptide (mTP) or secretory pathway signal peptide (SP). Scores on which the final prediction is based are not really probabilities, and they do not necessarily add to one. However, the location with the highest score is the most likely according to TargetP, and the relationship between the scores (the reliability class) may be an indication of how certain the prediction is. The reliability class (RC) ranges from 1 to 5, where 1 indicates the strongest prediction. TargetP is maintained at the server of the Technical University of Denmark. For the sequences predicted to contain an N-terminal presequence a potential cleavage site can also be predicted.


A number of parameters are selected, such as organism group (non-plant or plant), cutoff sets (none, predefined set of cutoffs, or user-specified set of cutoffs), and the calculation of prediction of cleavage sites (yes or no).


Many other algorithms can be used to perform such analyses, including:

    • ChloroP 1.1 hosted on the server of the Technical University of Denmark;
    • Protein Prowler Subcellular Localisation Predictor version 1.2 hosted on the server of the Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia;
    • PENCE Proteome Analyst PA-GOSUB 2.5 hosted on the server of the University of Alberta, Edmonton, Alberta, Canada;
    • TMHMM, hosted on the server of the Technical University of Denmark
    • PSORT (URL: psort.org)
    • PLOC (Park and Kanehisa, Bioinformatics, 19, 1656-1663, 2003).


5.2. YRP Polypeptides

TargetP 1.1 predicts the subcellular location of eukaryotic proteins. The location assignment is based on the predicted presence of any of the N-terminal pre-sequences: chloroplast transit peptide (cTP), mitochondrial targeting peptide (mTP) or secretory pathway signal peptide (SP). Scores on which the final prediction is based are not really probabilities, and they do not necessarily add to one. However, the location with the highest score is the most likely according to TargetP, and the relationship between the scores (the reliability class) may be an indication of how certain the prediction is. The reliability class (RC) ranges from 1 to 5, where 1 indicates the strongest prediction. TargetP is maintained at the server of the Technical University of Denmark. For the sequences predicted to contain an N-terminal presequence a potential cleavage site can also be predicted.


A number of parameters are selected, such as organism group (non-plant or plant), cutoff sets (none, predefined set of cutoffs, or user-specified set of cutoffs), and the calculation of prediction of cleavage sites (yes or no).


Many other algorithms can be used to perform such analyses, including:

    • ChloroP 1.1 hosted on the server of the Technical University of Denmark;
    • Protein Prowler Subcellular Localisation Predictor version 1.2 hosted on the server of the Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia;
    • PENCE Proteome Analyst PA-GOSUB 2.5 hosted on the server of the University of Alberta, Edmonton, Alberta, Canada;
    • TMHMM, hosted on the server of the Technical University of Denmark
    • PSORT (URL: psort.org)
    • PLOC (Park and Kanehisa, Bioinformatics, 19, 1656-1663, 2003).


5.3. Silky-1-Like Polypeptides

TargetP 1.1 predicts the subcellular location of eukaryotic proteins. The location assignment is based on the predicted presence of any of the N-terminal pre-sequences: chloroplast transit peptide (cTP), mitochondrial targeting peptide (mTP) or secretory pathway signal peptide (SP). Scores on which the final prediction is based are not really probabilities, and they do not necessarily add to one. However, the location with the highest score is the most likely according to TargetP, and the relationship between the scores (the reliability class) may be an indication of how certain the prediction is. The reliability class (RC) ranges from 1 to 5, where 1 indicates the strongest prediction. TargetP is maintained at the server of the Technical University of Denmark. For the sequences predicted to contain an N-terminal presequence a potential cleavage site can also be predicted.


A number of parameters are selected, such as organism group (non-plant or plant), cutoff sets (none, predefined set of cutoffs, or user-specified set of cutoffs), and the calculation of prediction of cleavage sites (yes or no).


Many other algorithms can be used to perform such analyses, including:

    • ChloroP 1.1 hosted on the server of the Technical University of Denmark;
    • Protein Prowler Subcellular Localisation Predictor version 1.2 hosted on the server of the Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia;
    • PENCE Proteome Analyst PA-GOSUB 2.5 hosted on the server of the University of Alberta, Edmonton, Alberta, Canada;
    • TMHMM, hosted on the server of the Technical University of Denmark
    • PSORT (URL: psort.org)
    • PLOC (Park and Kanehisa, Bioinformatics, 19, 1656-1663, 2003).


5.4. ARP6 Polypeptides

TargetP 1.1 predicts the subcellular location of eukaryotic proteins. The location assignment is based on the predicted presence of any of the N-terminal pre-sequences: chloroplast transit peptide (cTP), mitochondrial targeting peptide (mTP) or secretory pathway signal peptide (SP). Scores on which the final prediction is based are not really probabilities, and they do not necessarily add to one. However, the location with the highest score is the most likely according to TargetP, and the relationship between the scores (the reliability class) may be an indication of how certain the prediction is. The reliability class (RC) ranges from 1 to 5, where 1 indicates the strongest prediction. TargetP is maintained at the server of the Technical University of Denmark.


For the sequences predicted to contain an N-terminal presequence a potential cleavage site can also be predicted.


A number of parameters are selected, such as organism group (non-plant or plant), cutoff sets (none, predefined set of cutoffs, or user-specified set of cutoffs), and the calculation of prediction of cleavage sites (yes or no).


Many other algorithms can be used to perform such analyses, including:

    • ChloroP 1.1 hosted on the server of the Technical University of Denmark;
    • Protein Prowler Subcellular Localisation Predictor version 1.2 hosted on the server of the Institute for Molecular Bioscience, University of Queensland, Brisbane,


Australia;

    • PENCE Proteome Analyst PA-GOSUB 2.5 hosted on the server of the University of Alberta, Edmonton, Alberta, Canada;
    • TMHMM, hosted on the server of the Technical University of Denmark
    • PSORT (URL: psort.org)
    • PLOC (Park and Kanehisa, Bioinformatics, 19, 1656-1663, 2003).


5.5. POP Polypeptides

TargetP 1.1 predicts the subcellular location of eukaryotic proteins. The location assignment is based on the predicted presence of any of the N-terminal pre-sequences: chloroplast transit peptide (cTP), mitochondrial targeting peptide (mTP) or secretory pathway signal peptide (SP). Scores on which the final prediction is based are not really probabilities, and they do not necessarily add to one. However, the location with the highest score is the most likely according to TargetP, and the relationship between the scores (the reliability class) may be an indication of how certain the prediction is. The reliability class (RC) ranges from 1 to 5, where 1 indicates the strongest prediction. TargetP is maintained at the server of the Technical University of Denmark.


For the sequences predicted to contain an N-terminal presequence a potential cleavage site can also be predicted.


A number of parameters were selected, such as organism group (non-plant or plant), cutoff sets (none, predefined set of cutoffs, or user-specified set of cutoffs), and the calculation of prediction of cleavage sites (yes or no).


The results of TargetP 1.1 analysis of the polypeptide sequence as represented by SEQ ID NO: 117 are presented Table D1. The “plant” organism group has been selected, no cutoffs defined, and the predicted length of the transit peptide requested. The subcellular localization of the polypeptide sequence as represented by SEQ ID NO: 117 may be the cytoplasm or nucleus, no transit peptide is predicted.









TABLE D1







TargetP 1.1 analysis of the polypeptide sequence


as represented by SEQ ID NO: 117.















Name
Len
cTP
mTP
SP
other
Loc
RC
TPlen





POP
746
0.083
0.100
0.079
0.914



1



cutoff

0.000
0.000
0.000
0.000





Abbreviations: Len, Length; cTP, Chloroplastic transit peptide; mTP, Mitochondrial transit peptide, SP, Secretory pathway signal peptide, other, Other subcellular targeting, Loc, Predicted Location; RC, Reliability class; TPlen, Predicted transit peptide length.






Many other algorithms can be used to perform such analyses, including:

    • ChloroP 1.1 hosted on the server of the Technical University of Denmark;
    • Protein Prowler Subcellular Localisation Predictor version 1.2 hosted on the server of the Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia;
    • PENCE Proteome Analyst PA-GOSUB 2.5 hosted on the server of the University of Alberta, Edmonton, Alberta, Canada;
    • TMHMM, hosted on the server of the Technical University of Denmark
    • PSORT (URL: psort.org)
    • PLOC (Park and Kanehisa, Bioinformatics, 19, 1656-1663, 2003).


5.6. Crumpled Leaf (CRL) Polypeptides

TargetP 1.1 predicts the subcellular location of eukaryotic proteins. The location assignment is based on the predicted presence of any of the N-terminal pre-sequences: chloroplast transit peptide (cTP), mitochondrial targeting peptide (mTP) or secretory pathway signal peptide (SP). Scores on which the final prediction is based are not really probabilities, and they do not necessarily add to one. However, the location with the highest score is the most likely according to TargetP, and the relationship between the scores (the reliability class) may be an indication of how certain the prediction is. The reliability class (RC) ranges from 1 to 5, where 1 indicates the strongest prediction. TargetP is maintained at the server of the Technical University of Denmark.


For the sequences predicted to contain an N-terminal presequence a potential cleavage site can also be predicted.


A number of parameters are selected, such as organism group (non-plant or plant), cutoff sets (none, predefined set of cutoffs, or user-specified set of cutoffs), and the calculation of prediction of cleavage sites (yes or no).


Many other algorithms can be used to perform such analyses, including:

    • ChloroP 1.1 hosted on the server of the Technical University of Denmark;
    • Protein Prowler Subcellular Localisation Predictor version 1.2 hosted on the server of the Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia;
    • PENCE Proteome Analyst PA-GOSUB 2.5 hosted on the server of the University of Alberta, Edmonton, Alberta, Canada;
    • TMHMM, hosted on the server of the Technical University of Denmark
    • PSORT (URL: psort.org)
    • PLOC (Park and Kanehisa, Bioinformatics, 19, 1656-1663, 2003).


The result of the protein analysis using some of the above mentioned algorithms is shown below:

    • Psort: endoplasmic reticulum 0.600
    • WOLFPsort: cyto: 4.0, extr: 3.0, E.R.: 2.5, E.R._plas: 2.5, plas: 1.5, nucl: 1.0, mito: 1.0
    • TargetP: chloro:0.775 quality 4
    • ChloroP: not chloroplastic 0.497
    • MitoProtII: not mitochondrial 0.027
    • PTS1 peroxisome: not targeted
    • Phobius: there is a membrane domain [19-36].


Example 6
Subcellular Localisation Prediction of the Polypeptide Sequences Useful in Performing the Methods of the Invention
6.1. Brevis Radix-Like (BRXL) Polypeptides

Experimental methods for protein localization range from immunolocalization to tagging of proteins using green fluorescent protein (GFP) or beta-glucuronidase (GUS). Such methods to identify subcellular compartmentalisation of BRXL polypeptides are well known in the art. Computational prediction of protein localisation from sequence data was performed. Among algorithms well known to a person skilled in the art are available at the ExPASy Proteomics tools hosted by the Swiss Institute for Bioinformatics, for example, PSort, TargetP, ChloroP, LocTree, Predotar, LipoP, MITOPROT, PATS, PTS1, SignalP, TMHMM, TMpred, and others.


TargetP 1.1 predicts the subcellular location of eukaryotic proteins. The location assignment is based on the predicted presence of any of the N-terminal pre-sequences: chloroplast transit peptide (cTP), mitochondrial targeting peptide (mTP) or secretory pathway signal peptide (SP). Scores on which the final prediction is based are not really probabilities, and they do not necessarily add to one. However, the location with the highest score is the most likely according to TargetP, and the relationship between the scores (the reliability class) may be an indication of how certain the prediction is. The reliability class (RC) ranges from 1 to 5, where 1 indicates the strongest prediction. TargetP is maintained at the server of the Technical University of Denmark.


For the sequences predicted to contain an N-terminal presequence a potential cleavage site can also be predicted.


A number of parameters were selected, such as organism group (non-plant or plant), cutoff sets (none, predefined set of cutoffs, or user-specified set of cutoffs), and the calculation of prediction of cleavage sites (yes or no).


The results of TargetP 1.1 analysis of the polypeptide sequence as represented by SEQ ID NO: 117 are presented in the Table below. The “plant” organism group has been selected, and no cutoffs defined. The predicted subcellular localization of the polypeptide sequence as represented by SEQ ID NO: 117 is not chloroplastic, not mitochondrial and not the secretory pathway, but most likely the nucleus.


Table showing TargetP 1.1 analysis of the polypeptide sequence as represented by SEQ ID NO: 117


















Length (AA)
362



Chloroplastic transit peptide
0.132



Mitochondrial transit peptide
0.089



Secretory pathway signal peptide
0.112



Other subcellular targeting
0.909



Predicted Location
Other



Reliability class
2










Example 7
Assay Related to the Polypeptide Sequences Useful in Performing the Methods of the Invention
7.1. Brevis Radix-Like (BRXL) Polypeptides

BRXL polypeptides useful in the methods of the present invention (at least in their native form) typically, but not necessarily, have transcriptional regulatory activity and the capacity to interact with other proteins. DNA-binding activity and protein-protein interactions may readily be determined in vitro or in vivo using techniques well known in the art (for example in Current Protocols in Molecular Biology, Volumes 1 and 2, Ausubel et al. (1994), Current Protocols). BRXL polypeptides comprise the conserved BRX domains, which have been shown to mediate protein-protein interaction in yeast two-hybrid experiments. Homodimerization and heterodimerization within and/or between the BRXL and also PRAF-like protein families is known in th art (Briggs et al. (2006) Plant Physiol 140: 1307-1316; van Leeuwen et al. (2004) Trends Plant Sci 9: 378-384).


7.2. POP Polypeptides

POP activity can be measured as described by Bastos et al. (Biochem J. 388: 29-38, 2005): POP activity is determined by measuring the fluorescence of AMC (7-amido-4-methylcoumarin) released by hydrolysis of the enzyme substrate N-Suc-Gly-Pro-Leu-Gly-Pro-AMC, where Suc stands for succinyl. POP is assayed in reaction buffer [25 mM Hepes and 5 mM DTT (dithiothreitol), pH 7.5] containing 20 μM substrate in 100 μl final volume. The fluorescence of AMC released by the enzymatic reaction is recorded as described in Grellier et al. (J. Biol. Chem. 276, 47078-47086, 2001). The POP activity can also be assayed using different peptides under the same experimental conditions (N-Boc-Val-Leu-Lys-AMC, N-Boc-Leu-Lys-Arg-AMC, N-Cbz-Val-Lys-Met-AMC, N-Boc-Leu-Gly-Arg-AMC, N-Boc-Ile-Gly-Gly-Arg-AMC, N-Suc-Leu-Tyr-AMC, N-Suc-Ala-Ala-Ala-AMC, N-Boc-Val-Pro-Arg-AMC, N-Suc-Gly-Pro-AMC, N-Cbz-Gly-Gly-Arg-AMC, N-Suc-Ala-Ala-Pro-Phe-AMC, N-Cbz-Phe-Arg-AMC, H-Gly-Arg-AMC, H-Gly-Phe-AMC, Ala-Ala-Phe-AMC, L-Arg-AMC and L-Ala-AMC and L-Lys-Ala-AMC, where Boc and Cbz stand for t-butoxycarbonyl and benzyloxycarbonyl respectively). To determine kinetic parameters, recombinant (0.67 ng) or native (0.26 ng) POP is incubated in reaction buffer with variable N-Suc-Gly-Pro-Leu-Gly-Pro-AMC substrate concentrations (3.12-100 μM) and the AMC release is measured as described above. Km and Vmax values are determined by hyperbolic regression using the method of Cornish-Bowden. The kcat is calculated using kcat=Vmax/[E]0, where [E]0 represents the active enzyme concentration. Quantification of active POP is performed by incubation of the protein with serial concentrations of the irreversible chloromethane POP Tc80 inhibitor as described in Grellier et al. (2001).


Example 8
Cloning of the Nucleic Acid Sequence Used in the Methods of the Invention
8.1. Alfin-Like Polypeptides

The nucleic acid sequence is amplified by PCR using as template a cDNA library (in pCMV Sport 6.0; Invitrogen, Paisley, UK). PCR is performed using Hifi Taq DNA polymerase in standard conditions, using 200 ng of template in a 50 μl PCR mix. The primers include the AttB sites for Gateway recombination. The amplified PCR fragment is purified also using standard methods. The first step of the Gateway procedure, the BP reaction, is then performed, during which the PCR fragment recombines in vivo with the pDONR201 plasmid to produce, according to the Gateway terminology, an “entry clone”. Plasmid pDONR201 is purchased from Invitrogen, as part of the Gateway® technology.


The entry clone comprising SEQ ID NO: 1 or SEQ ID NO: 3 is then used in an LR reaction with a destination vector used for Oryza sativa transformation. This vector contains as functional elements within the T-DNA borders: a plant selectable marker; a screenable marker expression cassette; and a Gateway cassette intended for LR in vivo recombination with the nucleic acid sequence of interest already cloned in the entry clone. A rice GOS2 promoter (SEQ ID NO: 7) for constitutive expression is located upstream of this Gateway cassette.


After the LR recombination step, the resulting expression vector pGOS2:: alfin-like (FIG. 1) is transformed into Agrobacterium strain LBA4044 according to methods well known in the art.


8.2. YRP Polypeptides

The nucleic acid sequence is amplified by PCR using as template a cDNA library (in pCMV Sport 6.0; Invitrogen, Paisley, UK). PCR is performed using Hifi Taq DNA polymerase in standard conditions, using 200 ng of template in a 50 μl PCR mix. The primers include the AttB sites for Gateway recombination. The amplified PCR fragment is purified also using standard methods. The first step of the Gateway procedure, the BP reaction, is then performed, during which the PCR fragment recombines in vivo with the pDONR201 plasmid to produce, according to the Gateway terminology, an “entry clone”. Plasmid pDONR201 is purchased from Invitrogen, as part of the Gateway® technology.


The entry clone comprising SEQ ID NO: 10 or SEQ ID NO: 12 is then used in an LR reaction with a destination vector used for Oryza sativa transformation. This vector contains as functional elements within the T-DNA borders: a plant selectable marker; a screenable marker expression cassette; and a Gateway cassette intended for LR in vivo recombination with the nucleic acid sequence of interest already cloned in the entry clone. A rice GOS2 promoter (SEQ ID NO: 16) for constitutive expression is located upstream of this Gateway cassette.


After the LR recombination step, the resulting expression vector pGOS2::YRP (FIG. 2) is transformed into Agrobacterium strain LBA4044 according to methods well known in the art.


8.3. Brevis Radix-Like (BRXL) Polypeptides

Unless otherwise stated, recombinant DNA techniques are performed according to standard protocols described in (Sambrook (2001) Molecular Cloning: a laboratory manual, 3rd Edition Cold Spring Harbor Laboratory Press, CSH, New York) or in Volumes 1 and 2 of Ausubel et al. (1994), Current Protocols in Molecular Biology, Current Protocols. Standard materials and methods for plant molecular work are described in Plant Molecular Biology Labfax (1993) by R. D. D. Croy, published by BIOS Scientific Publications Ltd (UK) and Blackwell Scientific Publications (UK).


The poplar nucleic acid sequence encoding a BRXL polypeptide sequence as represented by SEQ ID NO: 18 was amplified by PCR using as template a cDNA bank constructed using RNA from poplar plants at different developmental stages. The following primers, which include the AttB sites for Gateway recombination, were used for PCR amplification:









1) prm 11475 (SEQ ID NO: 88, sense):


5′-ggggacaagtttgtacaaaaaagcaggcttaaacaatgtttacgtg





catagc-3′





2) prm11476 (SEQ ID NO: 89, reverse,


complementary):


5′-ggggaccactttgtacaagaaagctgggtgcaatttaggtcatggg





aaat-3′






PCR was performed using Hifi Taq DNA polymerase in standard conditions. A PCR fragment of the expected length (including attB sites) was amplified and purified also using standard methods. The first step of the Gateway procedure, the BP reaction, was then performed, during which the PCR fragment recombined in vivo with the pDONR201 plasmid to produce, according to the Gateway terminology, an “entry clone”. Plasmid pDONR201 was purchased from Invitrogen, as part of the Gateway® technology.


The entry clone comprising SEQ ID NO: 17 was subsequently used in an LR reaction with a destination vector used for Oryza sativa transformation. This vector contained as functional elements within the T-DNA borders: a plant selectable marker; a screenable marker expression cassette; and a Gateway cassette intended for LR in vivo recombination with the nucleic acid sequence of interest already cloned in the entry clone. A rice GOS2 promoter (SEQ ID NO: 87) for constitutive expression was located upstream of this Gateway cassette.


After the LR recombination step, the resulting expression vector pGOS2::BRXL (FIG. 6) for constitutive expression was transformed into Agrobacterium strain LBA4044 according to methods well known in the art.


8.4. Silky-1-Like Polypeptides

The nucleic acid sequence is amplified by PCR using as template a cDNA library (in pCMV Sport 6.0; Invitrogen, Paisley, UK). PCR is performed using Hifi Taq DNA polymerase in standard conditions, using 200 ng of template in a 50 μl PCR mix. The primers include the AttB sites for Gateway recombination. The amplified PCR fragment is purified also using standard methods. The first step of the Gateway procedure, the BP reaction, is then performed, during which the PCR fragment recombines in vivo with the pDONR201 plasmid to produce, according to the Gateway terminology, an “entry clone”. Plasmid pDONR201 is purchased from Invitrogen, as part of the Gateway® technology.


The entry clone comprising SEQ ID NO: 90, SEQ ID NO: 92 or SEQ ID NO: 94 is then used in an LR reaction with a destination vector used for Oryza sativa transformation. This vector contains as functional elements within the T-DNA borders: a plant selectable marker; a screenable marker expression cassette; and a Gateway cassette intended for LR in vivo recombination with the nucleic acid sequence of interest already cloned in the entry clone. A rice GOS2 promoter (SEQ ID NO: 96) for constitutive expression is located upstream of this Gateway cassette.


After the LR recombination step, the resulting expression vector pGOS2:: silky-1-like (FIG. 7) is transformed into Agrobacterium strain LBA4044 according to methods well known in the art.


8.5. ARP6 Polypeptides The nucleic acid sequence used in the methods of the invention was amplified by PCR using as template a custom-made Arabidopsis thaliana seedlings cDNA library (in pCMV Sport 6.0; Invitrogen, Paisley, UK). PCR was performed using Hifi Taq DNA polymerase in standard conditions, using 200 ng of template in a 50 μl PCR mix. The primers used were: (SEQ ID NO: 113; sense, start codon in bold): 5′-ggggacaagtttgtacaaaaaagcaggcttaaacaatgtc aaacatcgttgttcta-3′ and (SEQ ID NO: 114; reverse, complementary): 5′-ggggaccact ttgtacaagaaagctgggttcatgtgatattgttttggtt-3′, which include the AttB sites for Gateway recombination. The amplified PCR fragment was purified also using standard methods. The first step of the Gateway procedure, the BP reaction, was then performed, during which the PCR fragment recombined in vivo with the pDONR201 plasmid to produce, according to the Gateway terminology, an “entry clone”, pARP6. Plasmid pDONR201 was purchased from Invitrogen, as part of the Gateway® technology.


The entry clone comprising SEQ ID NO: 101 was then used in an LR reaction with a destination vector used for Oryza sativa transformation. This vector contained as functional elements within the T-DNA borders: a plant selectable marker; a screenable marker expression cassette; and a Gateway cassette intended for LR in vivo recombination with the nucleic acid sequence of interest already cloned in the entry clone. A rice GOS2 promoter (SEQ ID NO: 115) for constitutive specific expression was located upstream of this Gateway cassette.


After the LR recombination step, the resulting expression vector pGOS2::ARP6 (FIG. 10) was transformed into Agrobacterium strain LBA4044 according to methods well known in the art.


8.6. POP Polypeptides

The nucleic acid sequence used in the methods of the invention was amplified by PCR using as template a custom-made Arabidopsis thaliana seedlings cDNA library (in pCMV Sport 6.0; Invitrogen, Paisley, UK). PCR was performed using Hifi Taq DNA polymerase in standard conditions, using 200 ng of template in a 50 μl PCR mix. The primers used were prm05611 (SEQ ID NO: 132; sense, start codon in bold): 5′-ggggacaagtttgtacaaaaaagcaggc ttaaacaatggcggataaggacgtt-3′ and prm05612 (SEQ ID NO: 133; reverse, complementary): 5′-ggggaccactttgtacaagaaagctgggtaagcaacaacaggttctg tga-3′, which include the AttB sites for Gateway recombination. The amplified PCR fragment was purified also using standard methods. The first step of the Gateway procedure, the BP reaction, was then performed, during which the PCR fragment recombined in vivo with the pDONR201 plasmid to produce, according to the Gateway terminology, an “entry clone”, pPOP. Plasmid pDONR201 was purchased from Invitrogen, as part of the Gateway® technology.


The entry clone comprising SEQ ID NO: 116 was then used in an LR reaction with a destination vector used for Oryza sativa transformation. This vector contained as functional elements within the T-DNA borders: a plant selectable marker; a screenable marker expression cassette; and a Gateway cassette intended for LR in vivo recombination with the nucleic acid sequence of interest already cloned in the entry clone. A rice GOS2 promoter (SEQ ID NO: 131) for constitutive specific expression was located upstream of this Gateway cassette.


After the LR recombination step, the resulting expression vector pGOS2::POP (FIG. 13) was transformed into Agrobacterium strain LBA4044 according to methods well known in the art.


8.7. Crumpled Leaf (CRL) Polypeptides

The nucleic acid sequence used in the methods of the invention was amplified by PCR using as template a custom-made Arabidopsis thaliana seedlings cDNA library (in pCMV Sport 6.0; Invitrogen, Paisley, UK). PCR was performed using Hifi Taq DNA polymerase in standard conditions, using 200 ng of template in a 50 μl PCR mix. The primers used were a primer as represented by (SEQ ID NO: 211; sense, start codon in bold): 5′-ggggacaagtttgta caaaaaagcaggcttaaacaatgggtaccgagtcggg-3′ and a primer as represented by SEQ ID NO: 212; reverse, complementary): 5′-ggggaccactttgtacaagaaagctgggt tcagacaatagaaaagggggt-3′, which include the AttB sites for Gateway recombination. The amplified PCR fragment was purified also using standard methods. The first step of the Gateway procedure, the BP reaction, was then performed, during which the PCR fragment recombined in vivo with the pDONR201 plasmid to produce, according to the Gateway terminology, an “entry clone”, pCRL. Plasmid pDONR201 was purchased from Invitrogen, as part of the Gateway® technology.


The entry clone comprising SEQ ID NO: 155 was then used in an LR reaction with a destination vector used for Oryza sativa transformation. This vector contained as functional elements within the T-DNA borders: a plant selectable marker; a screenable marker expression cassette; and a Gateway cassette intended for LR in vivo recombination with the nucleic acid sequence of interest already cloned in the entry clone. A rice GOS2 promoter (SEQ ID NO: 213) for constitutive specific expression was located upstream of this Gateway cassette.


After the LR recombination step, the resulting expression vector pGOS2::CRL (FIG. 3) was transformed into Agrobacterium strain LBA4044 according to methods well known in the art.


Example 9
Plant Transformation
Rice Transformation

The Agrobacterium containing the expression vector is used to transform Oryza sativa plants. Mature dry seeds of the rice japonica cultivar Nipponbare are dehusked. Sterilization is carried out by incubating for one minute in 70% ethanol, followed by 30 minutes in 0.2% HgCl2, followed by a 6 times 15 minutes wash with sterile distilled water. The sterile seeds are then germinated on a medium containing 2,4-D (callus induction medium). After incubation in the dark for four weeks, embryogenic, scutellum-derived calli are excised and propagated on the same medium. After two weeks, the calli are multiplied or propagated by subculture on the same medium for another 2 weeks. Embryogenic callus pieces are sub-cultured on fresh medium 3 days before co-cultivation (to boost cell division activity).



Agrobacterium strain LBA4404 containing the expression vector is used for co-cultivation. Agrobacterium is inoculated on AB medium with the appropriate antibiotics and cultured for 3 days at 28° C. The bacteria are then collected and suspended in liquid co-cultivation medium to a density (OD600) of about 1. The suspension is then transferred to a Petri dish and the calli immersed in the suspension for 15 minutes. Callus tissue is then blotted dry on a filter paper and transferred to solidified, co-cultivation medium and incubated for 3 days in the dark at 25° C. Co-cultivated calli are grown on 2,4-D-containing medium for 4 weeks in the dark at 28° C. in the presence of a selection agent. During this period, rapidly growing resistant callus islands developed. After transfer of this material to a regeneration medium and incubation in the light, the embryogenic potential is released and shoots developed in the next four to five weeks. Shoots are excised from the calli and incubated for 2 to 3 weeks on an auxin-containing medium from which they are transferred to soil. Hardened shoots are grown under high humidity and short days in a greenhouse. Approximately 35 independent TO rice transformants are generated for one construct. The primary transformants are transferred from a tissue culture chamber to a greenhouse. After a quantitative PCR analysis to verify copy number of the T-DNA insert, only single copy transgenic plants that exhibit tolerance to the selection agent are kept for harvest of T1 seed. Seeds are then harvested three to five months after transplanting. See Aldemita and Hodges 1996, Chan et al. 1993, Hiei et al. 1994.


Corn Transformation

Transformation of maize (Zea mays) is performed with a modification of the method described by Ishida et al. (1996) Nature Biotech 14(6): 745-50. Transformation is genotype-dependent in corn and only specific genotypes are amenable to transformation and regeneration. The inbred line A188 (University of Minnesota) or hybrids with A188 as a parent are good sources of donor material for transformation, but other genotypes can be used successfully as well. Ears are harvested from corn plant approximately 11 days after pollination (DAP) when the length of the immature embryo is about 1 to 1.2 mm. Immature embryos are cocultivated with Agrobacterium tumefaciens containing the expression vector, and transgenic plants are recovered through organogenesis. Excised embryos are grown on callus induction medium, then maize regeneration medium, containing the selection agent (for example imidazolinone but various selection markers can be used). The Petri plates are incubated in the light at 25° C. for 2-3 weeks, or until shoots develop. The green shoots are transferred from each embryo to maize rooting medium and incubated at 25° C. for 2-3 weeks, until roots develop. The rooted shoots are transplanted to soil in the greenhouse. T1 seeds are produced from plants that exhibit tolerance to the selection agent and that contain a single copy of the T-DNA insert.


Wheat Transformation

Transformation of wheat is performed with the method described by Ishida et al. (1996) Nature Biotech 14(6): 745-50. The cultivar Bobwhite (available from CIMMYT, Mexico) is commonly used in transformation. Immature embryos are co-cultivated with Agrobacterium tumefaciens containing the expression vector, and transgenic plants are recovered through organogenesis. After incubation with Agrobacterium, the embryos are grown in vitro on callus induction medium, then regeneration medium, containing the selection agent (for example imidazolinone but various selection markers can be used). The Petri plates are incubated in the light at 25° C. for 2-3 weeks, or until shoots develop. The green shoots are transferred from each embryo to rooting medium and incubated at 25° C. for 2-3 weeks, until roots develop. The rooted shoots are transplanted to soil in the greenhouse. T1 seeds are produced from plants that exhibit tolerance to the selection agent and that contain a single copy of the T-DNA insert.


Soybean Transformation

Soybean is transformed according to a modification of the method described in the Texas A&M patent U.S. Pat. No. 5,164,310. Several commercial soybean varieties are amenable to transformation by this method. The cultivar Jack (available from the Illinois Seed foundation) is commonly used for transformation. Soybean seeds are sterilised for in vitro sowing. The hypocotyl, the radicle and one cotyledon are excised from seven-day old young seedlings. The epicotyl and the remaining cotyledon are further grown to develop axillary nodes. These axillary nodes are excised and incubated with Agrobacterium tumefaciens containing the expression vector. After the cocultivation treatment, the explants are washed and transferred to selection media. Regenerated shoots are excised and placed on a shoot elongation medium. Shoots no longer than 1 cm are placed on rooting medium until roots develop. The rooted shoots are transplanted to soil in the greenhouse. T1 seeds are produced from plants that exhibit tolerance to the selection agent and that contain a single copy of the T-DNA insert.


Rapeseed/Canola Transformation

Cotyledonary petioles and hypocotyls of 5-6 day old young seedling are used as explants for tissue culture and transformed according to Babic et al. (1998, Plant Cell Rep 17: 183-188). The commercial cultivar Westar (Agriculture Canada) is the standard variety used for transformation, but other varieties can also be used. Canola seeds are surface-sterilized for in vitro sowing. The cotyledon petiole explants with the cotyledon attached are excised from the in vitro seedlings, and inoculated with Agrobacterium (containing the expression vector) by dipping the cut end of the petiole explant into the bacterial suspension. The explants are then cultured for 2 days on MSBAP-3 medium containing 3 mg/l BAP, 3% sucrose, 0.7% Phytagar at 23° C., 16 hr light. After two days of co-cultivation with Agrobacterium, the petiole explants are transferred to MSBAP-3 medium containing 3 mg/l BAP, cefotaxime, carbenicillin, or timentin (300 mg/l) for 7 days, and then cultured on MSBAP-3 medium with cefotaxime, carbenicillin, or timentin and selection agent until shoot regeneration. When the shoots are 5-10 mm in length, they are cut and transferred to shoot elongation medium (MSBAP-0.5, containing 0.5 mg/l BAP). Shoots of about 2 cm in length are transferred to the rooting medium (MS0) for root induction. The rooted shoots are transplanted to soil in the greenhouse. T1 seeds are produced from plants that exhibit tolerance to the selection agent and that contain a single copy of the T-DNA insert.


Alfalfa Transformation

A regenerating clone of alfalfa (Medicago sativa) is transformed using the method of (McKersie et al., 1999 Plant Physiol 119: 839-847). Regeneration and transformation of alfalfa is genotype dependent and therefore a regenerating plant is required. Methods to obtain regenerating plants have been described. For example, these can be selected from the cultivar Rangelander (Agriculture Canada) or any other commercial alfalfa variety as described by Brown D C W and A Atanassov (1985. Plant Cell Tissue Organ Culture 4: 111-112). Alternatively, the RA3 variety (University of Wisconsin) has been selected for use in tissue culture (Walker et al., 1978 Am J Bot 65:654-659). Petiole explants are cocultivated with an overnight culture of Agrobacterium tumefaciens C58C1 pMP90 (McKersie et al., 1999 Plant Physiol 119: 839-847) or LBA4404 containing the expression vector. The explants are cocultivated for 3 d in the dark on SH induction medium containing 288 mg/L Pro, 53 mg/L thioproline, 4.35 g/L K2SO4, and 100 μm acetosyringinone. The explants are washed in half-strength Murashige-Skoog medium (Murashige and Skoog, 1962) and plated on the same SH induction medium without acetosyringinone but with a suitable selection agent and suitable antibiotic to inhibit Agrobacterium growth. After several weeks, somatic embryos are transferred to BOi2Y development medium containing no growth regulators, no antibiotics, and 50 g/L sucrose. Somatic embryos are subsequently germinated on half-strength Murashige-Skoog medium. Rooted seedlings were transplanted into pots and grown in a greenhouse. T1 seeds are produced from plants that exhibit tolerance to the selection agent and that contain a single copy of the T-DNA insert.


Cotton Transformation

Cotton is transformed using Agrobacterium tumefaciens according to the method described in U.S. Pat. No. 5,159,135. Cotton seeds are surface sterilised in 3% sodium hypochlorite solution during 20 minutes and washed in distilled water with 500 μg/ml cefotaxime. The seeds are then transferred to SH-medium with 50 μg/ml benomyl for germination. Hypocotyls of 4 to 6 days old seedlings are removed, cut into 0.5 cm pieces and are placed on 0.8% agar. An Agrobacterium suspension (approx. 108 cells per ml, diluted from an overnight culture transformed with the gene of interest and suitable selection markers) is used for inoculation of the hypocotyl explants. After 3 days at room temperature and lighting, the tissues are transferred to a solid medium (1.6 g/l Gelrite) with Murashige and Skoog salts with B5 vitamins (Gamborg et al., Exp. Cell Res. 50:151-158 (1968)), 0.1 mg/l 2,4-D, 0.1 mg/l 6-furfurylaminopurine and 750 μg/ml MgCL2, and with 50 to 100 μg/ml cefotaxime and 400-500 μg/ml carbenicillin to kill residual bacteria. Individual cell lines are isolated after two to three months (with subcultures every four to six weeks) and are further cultivated on selective medium for tissue amplification (30° C., 16 hr photoperiod). Transformed tissues are subsequently further cultivated on non-selective medium during 2 to 3 months to give rise to somatic embryos. Healthy looking embryos of at least 4 mm length are transferred to tubes with SH medium in fine vermiculite, supplemented with 0.1 mg/l indole acetic acid, 6 furfurylaminopurine and gibberellic acid. The embryos are cultivated at 30° C. with a photoperiod of 16 hrs, and plantlets at the 2 to 3 leaf stage are transferred to pots with vermiculite and nutrients. The plants are hardened and subsequently moved to the greenhouse for further cultivation.


Example 10
Phenotypic Evaluation Procedure
10.1 Evaluation Setup

Approximately 35 independent T0 rice transformants are generated. The primary transformants are transferred from a tissue culture chamber to a greenhouse for growing and harvest of T1 seed. Six events, of which the T1 progeny segregated 3:1 for presence/absence of the transgene, are retained. For each of these events, approximately 10 T1 seedlings containing the transgene (hetero- and homo-zygotes) and approximately 10 T1 seedlings lacking the transgene (nullizygotes) are selected by monitoring visual marker expression. The transgenic plants and the corresponding nullizygotes are grown side-by-side at random positions. Greenhouse conditions are for shorts days (12 hours light), 28° C. in the light and 22° C. in the dark, and a relative humidity of 70%.


Four T1 events were further evaluated in the T2 generation following the same evaluation procedure as for the T1 generation but with more individuals per event. From the stage of sowing until the stage of maturity the plants are passed several times through a digital imaging cabinet. At each time point digital images (2048×1536 pixels, 16 million colours) are taken of each plant from at least 6 different angles.


Drought Screen

Plants from T2 seeds are grown in potting soil under normal conditions until they approached the heading stage. They are then transferred to a “dry” section where irrigation is withheld. Humidity probes are inserted in randomly chosen pots to monitor the soil water content (SWC). When SWC goes below certain thresholds, the plants are automatically re-watered continuously until a normal level is reached again. The plants are then re-transferred again to normal conditions. The rest of the cultivation (plant maturation, seed harvest) is the same as for plants not grown under abiotic stress conditions. Growth and yield parameters are recorded as detailed for growth under normal conditions.


Nitrogen Use Efficiency Screen

Rice plants from T2 seeds are grown in potting soil under normal conditions except for the nutrient solution. The pots are watered from transplantation to maturation with a specific nutrient solution containing reduced N nitrogen (N) content, usually between 7 to 8 times less. The rest of the cultivation (plant maturation, seed harvest) is the same as for plants not grown under abiotic stress. Growth and yield parameters are recorded as detailed for growth under normal conditions.


Salt Stress Screen

Plants are grown on a substrate made of coco fibers and argex (3 to 1 ratio). A normal nutrient solution is used during the first two weeks after transplanting the plantlets in the greenhouse. After the first two weeks, 25 mM of salt (NaCl) is added to the nutrient solution, until the plants are harvested. Seed-related parameters are then measured.


10.2 Statistical Analysis: F Test

A two factor ANOVA (analysis of variants) was used as a statistical model for the overall evaluation of plant phenotypic characteristics. An F test was carried out on all the parameters measured of all the plants of all the events transformed with the gene of the present invention. The F test was carried out to check for an effect of the gene over all the transformation events and to verify for an overall effect of the gene, also known as a global gene effect. The threshold for significance for a true global gene effect was set at a 5% probability level for the F test. A significant F test value points to a gene effect, meaning that it is not only the mere presence or position of the gene that is causing the differences in phenotype.


Because two experiments with overlapping events were carried out, a combined analysis was performed. This is useful to check consistency of the effects over the two experiments, and if this is the case, to accumulate evidence from both experiments in order to increase confidence in the conclusion. The method used was a mixed-model approach that takes into account the multilevel structure of the data (i.e. experiment—event—segregants). P values were obtained by comparing likelihood ratio test to chi square distributions.


10.3 Parameters Measured
Biomass-Related Parameter Measurement

From the stage of sowing until the stage of maturity the plants were passed several times through a digital imaging cabinet. At each time point digital images (2048×1536 pixels, 16 million colours) were taken of each plant from at least 6 different angles.


The plant aboveground area (or leafy biomass) was determined by counting the total number of pixels on the digital images from aboveground plant parts discriminated from the background. This value was averaged for the pictures taken on the same time point from the different angles and was converted to a physical surface value expressed in square mm by calibration. Experiments show that the aboveground plant area measured this way correlates with the biomass of plant parts above ground. The above ground area is the area measured at the time point at which the plant had reached its maximal leafy biomass. The early vigour is the plant (seedling) aboveground area three weeks post-germination. Increase in root biomass is expressed as an increase in total root biomass (measured as maximum biomass of roots observed during the lifespan of a plant); or as an increase in the root/shoot index (measured as the ratio between root mass and shoot mass in the period of active growth of root and shoot).


Early vigour was determined by counting the total number of pixels from aboveground plant parts discriminated from the background. This value was averaged for the pictures taken on the same time point from different angles and was converted to a physical surface value expressed in square mm by calibration. The results described below are for plants three weeks post-germination.


Determination of the start of flowering was as described in WO 2007/093444


Seed-Related Parameter Measurements

The mature primary panicles were harvested, counted, bagged, barcode-labelled and then dried for three days in an oven at 37° C. The panicles were then threshed and all the seeds were collected and counted. The filled husks were separated from the empty ones using an air-blowing device. The empty husks were discarded and the remaining fraction was counted again. The filled husks were weighed on an analytical balance. The number of filled seeds was determined by counting the number of filled husks that remained after the separation step. The total seed weight per plant was measured by weighing all filled husks harvested from one plant. Total seed number per plant was measured by counting the number of husks harvested from a plant. Thousand Kernel Weight (TKW) is extrapolated from the number of filled seeds counted and their total weight. The Harvest Index (HI) in the present invention is defined as the ratio between the total seed weight per plant and the above ground area (mm2), multiplied by a factor 106. The total number of flowers per panicle as defined in the present invention is the ratio between the total number of seeds and the number of mature primary panicles. The seed fill rate as defined in the present invention is the proportion (expressed as a %) of the number of filled seeds over the total number of seeds (or florets).


Examples 11
Results of the Phenotypic Evaluation of the Transgenic Plants
11.1. Brevis Radix-Like (BRXL) Polypeptides

The results of the evaluation of T1 generation transgenic rice plants expressing the nucleic acid sequence encoding a BRXL polypeptide as represented by SEQ ID NO: 18, under the control of a constitutive promoter, are presented in Table D below.


There was a significant increase in plant height, and Thousand Kernel Weight (TKW), of the transgenic plants relative to the controls.









TABLE D1







Results of the evaluation of T1 generation transgenic rice


plants expressing the nucleic acid sequence encoding a BRXL


polypeptide as represented by SEQ ID NO: 18, under the control


of a promoter for constitutive expression.











0verall average % increase in



Trait
6 events in the T1 generation







Plant height
4%



Thousand kernel weight
7%










11.2. ARP6 Polypeptides

The results of the evaluation of transgenic rice plants in the T2 generation and expressing a nucleic acid comprising the longest Open Reading Frame in SEQ ID NO: 101 under non-stress conditions are presented below. See previous Examples for details on the generations of the transgenic plants.


The results of the evaluation of transgenic rice plants under non-stress conditions are presented below. An increase of at least 5% was observed for total seed yield (totalwgseeds), number of filled seeds (nrfilledseed), fill rate (fillrate), and harvest index (harvestindex).












TABLE D2








% increase in transgenic plant



Yield-related trait
compared to control plant



















totalwgseeds
12.0



fillrate
13.2



harvestindex
13.0



nrfilledseed
9.8










11.3. POP Polypeptides

The results of the evaluation of transgenic rice plants in the T2 generation and expressing a nucleic acid encoding the POP polypeptide of SEQ ID NO: 117 under non-stress conditions are presented below in Table D3. When grown under non-stress conditions, an increase of at least 5% was observed for aboveground biomass (AreaMax), root biomass (RootMax and RootThickMax), and for seed yield (total weight of seeds, number of filled seeds, fill rate, harvest index). In addition, plants expressing a POP nucleic acid showed a faster growth rate (a shorter time (in days) needed between sowing and the day the plant reaches 90% of its final biomass (AreaCycle) and an earlier start of flowering (TimetoFlower: time (in days) between sowing and the emergence of the first panicle).









TABLE D3







Data summary for transgenic rice plants; for each parameter,


the overall percent increase is shown for the confirmation


(T2 generation), for each parameter the p-value is <0.05.










Parameter
Overall increase














AreaMax
11.0



TimetoFlower
7.6



RootMax
7.9



totalwgseeds
35.0



nrfilledseed
30.4



fillrate
31.3



harvestindex
21.0



AreaCycl
5.1



RootThickMax
12.6










11.4. Crumpled Leaf (CRL) Polypeptides

The results of the evaluation of transgenic rice plants in the T2 generation and expressing a nucleic acid comprising the longest Open Reading Frame in SEQ ID NO: 155 evaluated under non-stress conditions are presented below. See previous Examples for details on the generations of the transgenic plants.


The results of the evaluation of transgenic rice plants under non-stress conditions are presented below. An increase of at least 5% was observed for total seed yield (Totalwgseeds), number of filled seeds (nrfilledseed), fill rate (fillrate), and harvest index (harvestindex).












TABLE D4








% increase in transgenic



Parameter
compared to control plants









Totalwgseeds
17.4



nrfilledseed
15.5



fillrate
17.7



harvestindex
15.9









Claims
  • 1. A method for enhancing a yield-related trait in a plant relative to a control plant, comprising modulating expression in a plant of a nucleic acid encoding an Actin Related Protein 6 (ARP6) polypeptide.
  • 2. The method of claim 1, wherein said ARP6 polypeptide has at least 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity to the amino acid sequence of SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, or SEQ ID NO: 112.
  • 3. The method of claim 1, wherein said modulated expression is effected by introducing and expressing in a plant a nucleic acid encoding said ARP6 polypeptide.
  • 4. The method of claim 1, wherein said nucleic acid encodes any one of the proteins listed in Table A5 or is a portion of such a nucleic acid, or a nucleic acid capable of hybridizing with such a nucleic acid.
  • 5. The method of claim 1, wherein said nucleic acid encodes an orthologue or paralogue of any of the proteins given in Table A5.
  • 6. The method of claim 1, wherein said enhanced yield-related trait comprises increased yield, increased biomass, and/or increased seed yield relative to a control plant.
  • 7. The method of claim 1, wherein said enhanced yield-related trait is obtained under non-stress conditions.
  • 8. The method of claim 1, wherein said enhanced yield-related trait is obtained under conditions of drought stress, salt stress or nitrogen deficiency.
  • 9. The method of claim 3, wherein said nucleic acid is operably linked to a constitutive promoter, a GOS2 promoter, or a GOS2 promoter from rice.
  • 10. The method of claim 1, wherein said nucleic acid is of plant origin, from a dicotyledonous plant, from a plant of the family Brassicaceae, from a plant of the genus Arabidopsis, or from an Arabidopsis thaliana plant.
  • 11. A plant obtained by the method of claim 1, or a plant part, seed, or progeny of said plant, wherein said plant, or said plant part, seed, or progeny comprises a recombinant nucleic acid encoding said ARP6 polypeptide.
  • 12. A construct comprising: (a) a nucleic acid sequence encoding an ARP6 polypeptide as defined in claim 2;(b) one or more control sequences capable of driving expression of the nucleic acid sequence of (a); and optionally(c) a transcription termination sequence.
  • 13. The construct of claim 12, wherein one of said control sequences is a constitutive promoter, a GOS2 promoter, or a GOS2 promoter from rice.
  • 14. A method for making a plant having increased yield, increased biomass, and/or increased seed yield relative to a control plant, comprising transforming the construct of claim 12 into a plant, plant part, or plant cell.
  • 15. A plant, plant part or plant cell comprising the construct of claim 12.
  • 16. A method for the production of a transgenic plant having increased yield, increased biomass, and/or increased seed yield relative to a control plant, comprising: (a) introducing and expressing in a plant a nucleic acid encoding an ARP6 polypeptide as defined in claim 2; and(b) cultivating the plant under conditions promoting plant growth and development.
  • 17. A transgenic plant having increased yield, increased biomass, and/or increased seed yield relative to a control plant, resulting from modulated expression of a nucleic acid encoding an ARP6 polypeptide as defined in claim 2, or a transgenic plant cell derived from said transgenic plant.
  • 18. The transgenic plant of claim 17, wherein said plant is a crop plant, a monocot, or a cereal, or wherein said plant is rice, maize, wheat, barley, millet, rye, triticale, sorghum emmer, spelt, secale, einkorn, teff, milo or oats.
  • 19. Harvestable parts of the transgenic plant of claim 18, wherein said harvestable parts are preferably shoot biomass and/or seeds.
  • 20. Products derived from the transgenic plant of claim 18 and/or from harvestable parts of said plant.
Priority Claims (7)
Number Date Country Kind
08170613.7 Dec 2008 EP regional
08170618.6 Dec 2008 EP regional
08171212.7 Dec 2008 EP regional
08171237.4 Dec 2008 EP regional
08172033.6 Dec 2008 EP regional
08172034.4 Dec 2008 EP regional
08172038.5 Dec 2008 EP regional
RELATED APPLICATIONS

This application is a divisional of patent application Ser. No. 13/132,502 filed Jun. 2, 2011, which is a national stage application (under 35 U.S.C. §371) of PCT/EP2009/065906, filed Nov. 26, 2009, which claims benefit of European application 08170613.7, filed Dec. 3, 2008; European Application 08170618.6, filed Dec. 3, 2008; European Application 08171212.7, filed Dec. 10, 2008; European Application 08171237.4, filed Dec. 10, 2008; U.S. Provisional Application 61/121,570 filed Dec. 11, 2008; U.S. Provisional Application 61/121,577, filed Dec. 11, 2008; U.S. Provisional Application 61/121,572, filed Dec. 11, 2008; U.S. Provisional Application 61/121,571, filed Dec. 11, 2008; European Application 08172034.4, filed Dec. 17, 2008; European Application 08172033.6, filed Dec. 17, 2008; European Application 08172038.5, filed Dec. 17, 2008; U.S. Provisional Application 61/138,972, filed Dec. 19, 2008; U.S. Provisional Application 61/138,965, filed Dec. 19, 2008; and U.S. Provisional Application 61/138,970, filed Dec. 19, 2008. The entire content of each aforementioned application is hereby incorporated by reference in its entirety. The Sequence Listing associated with this application is filed in electronic format via EFS-Web and hereby incorporated by reference into the specification in its entirety. The name of the text file containing the Sequence Listing is Sequence_Listing—074053—0013—01. The size of the text file is 456 KB, and the text file was created on Sep. 19, 2014. The present invention relates generally to the field of molecular biology and concerns a method for enhancing abiotic stress tolerance in plants by modulating expression in a plant of a nucleic acid encoding an alfin-like. The present invention also concerns plants having modulated expression of a nucleic acid encoding an alfin-like polypeptide, which plants have enhanced abiotic stress tolerance relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention. Furthermore, he present invention relates generally to the field of molecular biology and concerns a method for enhancing abiotic stress tolerance in plants by modulating expression in a plant of a nucleic acid encoding a YRP. The present invention also concerns plants having modulated expression of a nucleic acid encoding a YRP, which plants have enhanced abiotic stress tolerance relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention. Furthermore, the present invention relates generally to the field of molecular biology and concerns a method for increasing various plant yield-related traits by increasing expression in a plant of a nucleic acid sequence encoding a Brevis Radix-like (BRXL) polypeptide. The present invention also concerns plants having increased expression of a nucleic acid sequence encoding a BRXL polypeptide, which plants have increased yield-related traits relative to control plants. The invention additionally relates to nucleic acid sequences, nucleic acid constructs, vectors and plants containing said nucleic acid sequences. Furthermore, the present invention relates generally to the field of molecular biology and concerns a method for enhancing abiotic stress tolerance in plants by modulating expression in a plant of a nucleic acid encoding a silky-1-like polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding a silky-1-like polypeptide, which plants have enhanced abiotic stress tolerance relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention. Furthermore, the present invention relates generally to the field of molecular biology and concerns a method for improving various plant growth characteristics by modulating expression in a plant of a nucleic acid encoding an ARP6 (Actin Related Protein 6). The present invention also concerns plants having modulated expression of a nucleic acid encoding an ARP, which plants have improved growth characteristics relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention. Furthermore, the present invention relates generally to the field of molecular biology and concerns a method for enhancing yield-relating traits in plants by modulating expression in a plant of a nucleic acid encoding a POP (Prolyl-oligopeptidase) polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding a POP polypeptide, which plants have enhanced yield-relating traits in plants relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention. Furthermore, the present invention relates generally to the field of molecular biology and concerns a method for enhancing yield-related traits by modulating expression in a plant of a nucleic acid encoding a CRL (Crampled Leaf). The present invention also concerns plants having modulated expression of a nucleic acid encoding a CRL, which plants have enhanced yield-related traits relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention. The ever-increasing world population and the dwindling supply of arable land available for agriculture fuels research towards increasing the efficiency of agriculture. Conventional means for crop and horticultural improvements utilise selective breeding techniques to identify plants having desirable characteristics. However, such selective breeding techniques have several drawbacks, namely that these techniques are typically labour intensive and result in plants that often contain heterogeneous genetic components that may not always result in the desirable trait being passed on from parent plants. Advances in molecular biology have allowed mankind to modify the germplasm of animals and plants. Genetic engineering of plants entails the isolation and manipulation of genetic material (typically in the form of DNA or RNA) and the subsequent introduction of that genetic material into a plant. Such technology has the capacity to deliver crops or plants having various improved economic, agronomic or horticultural traits. A trait of particular economic interest is increased yield. Yield is normally defined as the measurable produce of economic value from a crop. This may be defined in terms of quantity and/or quality. Yield is directly dependent on several factors, for example, the number and size of the organs, plant architecture (for example, the number of branches), seed production, leaf senescence and more. Root development, nutrient uptake, stress tolerance and early vigour may also be important factors in determining yield. Optimizing the abovementioned factors may therefore contribute to increasing crop yield. Seed yield is a particularly important trait, since the seeds of many plants are important for human and animal nutrition. Crops such as corn, rice, wheat, canola and soybean account for over half the total human caloric intake, whether through direct consumption of the seeds themselves or through consumption of meat products raised on processed seeds. They are also a source of sugars, oils and many kinds of metabolites used in industrial processes. Seeds contain an embryo (the source of new shoots and roots) and an endosperm (the source of nutrients for embryo growth during germination and during early growth of seedlings). The development of a seed involves many genes, and requires the transfer of metabolites from the roots, leaves and stems into the growing seed. The endosperm, in particular, assimilates the metabolic precursors of carbohydrates, oils and proteins and synthesizes them into storage macromolecules to fill out the grain. Plant biomass is yield for forage crops like alfalfa, silage corn and hay. Many proxies for yield have been used in grain crops. Chief amongst these are estimates of plant size. Plant size can be measured in many ways depending on species and developmental stage, but include total plant dry weight, above-ground dry weight, above-ground fresh weight, leaf area, stem volume, plant height, rosette diameter, leaf length, root length, root mass, tiller number and leaf number. Many species maintain a conservative ratio between the size of different parts of the plant at a given developmental stage. These allometric relationships are used to extrapolate from one of these measures of size to another (e.g. Tittonell et al 2005 Agric Ecosys & Environ 105: 213). Plant size at an early developmental stage will typically correlate with plant size later in development. A larger plant with a greater leaf area can typically absorb more light and carbon dioxide than a smaller plant and therefore will likely gain a greater weight during the same period (Fasoula & Tollenaar 2005 Maydica 50:39). This is in addition to the potential continuation of the micro-environmental or genetic advantage that the plant had to achieve the larger size initially. There is a strong genetic component to plant size and growth rate (e.g. ter Steege et al 2005 Plant Physiology 139:1078), and so for a range of diverse genotypes plant size under one environmental condition is likely to correlate with size under another (Hittalmani et al 2003 Theoretical Applied Genetics 107:679). In this way a standard environment is used as a proxy for the diverse and dynamic environments encountered at different locations and times by crops in the field. Another important trait for many crops is early vigour. Improving early vigour is an important objective of modern rice breeding programs in both temperate and tropical rice cultivars. Long roots are important for proper soil anchorage in water-seeded rice. Where rice is sown directly into flooded fields, and where plants must emerge rapidly through water, longer shoots are associated with vigour. Where drill-seeding is practiced, longer mesocotyls and coleoptiles are important for good seedling emergence. The ability to engineer early vigour into plants would be of great importance in agriculture. For example, poor early vigour has been a limitation to the introduction of maize (Zea mays L.) hybrids based on Corn Belt germplasm in the European Atlantic. Harvest index, the ratio of seed yield to aboveground dry weight, is relatively stable under many environmental conditions and so a robust correlation between plant size and grain yield can often be obtained (e.g. Rebetzke et al 2002 Crop Science 42:739). These processes are intrinsically linked because the majority of grain biomass is dependent on current or stored photosynthetic productivity by the leaves and stem of the plant (Gardener et al. (1985) Physiology of Crop Plants. Iowa State University Press, pp 68-73). Therefore, selecting for plant size, even at early stages of development, has been used as an indicator for future potential yield (e.g. Tittonell et al 2005 Agric Ecosys & Environ 105: 213). When testing for the impact of genetic differences on stress tolerance, the ability to standardize soil properties, temperature, water and nutrient availability and light intensity is an intrinsic advantage of greenhouse or plant growth chamber environments compared to the field. However, artificial limitations on yield due to poor pollination due to the absence of wind or insects, or insufficient space for mature root or canopy growth, can restrict the use of these controlled environments for testing yield differences. Therefore, measurements of plant size in early development, under standardized conditions in a growth chamber or greenhouse, are standard practices to provide indication of potential genetic yield advantages. Another trait of particular importance is that of improved abiotic stress tolerance. Abiotic stress is a primary cause of crop loss worldwide, reducing average yields for most major crop plants by more than 50% (Wang et al. (2003) Planta 218: 1-14). Abiotic stresses may be caused by drought, salinity, extremes of temperature, chemical toxicity, excess or deficiency of nutrients (macroelements and/or microelements), radiation and oxidative stress. The ability to increase plant tolerance to abiotic stress would be of great economic advantage to farmers worldwide and would allow for the cultivation of crops during adverse conditions and in territories where cultivation of crops may not otherwise be possible. Crop yield may therefore be increased by optimising one of the above-mentioned factors. Depending on the end use, the modification of certain yield traits may be favoured over others. For example for applications such as forage or wood production, or bio-fuel resource, an increase in the vegetative parts of a plant may be desirable, and for applications such as flour, starch or oil production, an increase in seed parameters may be particularly desirable. Even amongst the seed parameters, some may be favoured over others, depending on the application. Various mechanisms may contribute to increasing seed yield, whether that is in the form of increased seed size or increased seed number. One approach to increase yield and/or yield-related traits (seed yield and/or biomass) in plants may be through modification of the inherent growth mechanisms of a plant, such as the cell cycle or various signalling pathways involved in plant growth or in defense mechanisms. It has now been found that tolerance to various abiotic stresses may be enhanced in plants by modulating expression in a plant of a nucleic acid encoding an alfin-like polypeptide. It has now been found that tolerance to various abiotic stresses may be enhanced in plants by modulating expression in a plant of a nucleic acid encoding a YRP polypeptide. It has now been found that various yield-related traits may be increased in plants relative to control plants, by increasing expression in a plant of a nucleic acid sequence encoding a Brevis Radix-like (BRXL) polypeptide. The increased yield-related traits comprise one or more of: increased plant height, and increased Thousand Kernel Weight (TKW). It has now been found that tolerance to various abiotic stresses may be enhanced in plants by modulating expression in a plant of a nucleic acid encoding a silky-1-like polypeptide. It has now been found that various growth characteristics may be improved in plants by modulating expression in a plant of a nucleic acid encoding an ARP6 polypeptide in a plant. It has now been found that various growth characteristics may be improved in plants by modulating expression in a plant of a nucleic acid encoding a POP in a plant. It has now been found that various yield-related traits may be improved in plants by modulating expression in a plant of a nucleic acid encoding a CRL (Crumpled Leaf) in a plant.

Provisional Applications (8)
Number Date Country
61121570 Dec 2008 US
61121577 Dec 2008 US
61121572 Dec 2008 US
61121571 Dec 2008 US
61138972 Dec 2008 US
61138970 Dec 2008 US
61138965 Dec 2008 US
61138970 Dec 2008 US
Divisions (1)
Number Date Country
Parent 13132502 Jun 2011 US
Child 14492191 US