PLANTS HAVING ENHANCED YIELD-RELATED TRAITS AND A METHOD FOR MAKING THE SAME

Information

  • Patent Application
  • 20110179526
  • Publication Number
    20110179526
  • Date Filed
    October 29, 2008
    16 years ago
  • Date Published
    July 21, 2011
    13 years ago
Abstract
The present invention relates generally to the field of molecular biology and concerns a method for enhancing various economically important yield-related traits in plants. More specifically, the present invention concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding a DOF-C2 (DNA-binding with one finger, subgroup C2) domain transcription factor polypeptide or a MYB7 polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding an a DOF-C2 domain transcription factor polypeptide or a MYB7 polypeptide, which plants have enhanced yield-related traits relative to control plants. The invention also provides constructs comprising the DOF-C2 domain transcription factor polypeptide or the MYB7 polypeptide, useful in performing the methods of the invention.
Description

The present invention relates generally to the field of molecular biology and concerns a method for enhancing yield-related traits or improving various plant growth characteristics by modulating expression in a plant of a nucleic acid encoding a DOF-C2 (DNA-binding with one finger, subgroup C2) domain transcription factor polypeptide or a MYB-domain protein (MYB7). The present invention also concerns plants having modulated expression of a nucleic acid encoding a DOF-C2 domain transcription factor polypeptide or a MYB7 which plants have enhanced yield-related traits or improved growth characteristics relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention.


The ever-increasing world population and the dwindling supply of arable land available for agriculture fuels research towards increasing the efficiency of agriculture. Conventional means for crop and horticultural improvements utilise selective breeding techniques to identify plants having desirable characteristics. However, such selective breeding techniques have several drawbacks, namely that these techniques are typically labour intensive and result in plants that often contain heterogeneous genetic components that may not always result in the desirable trait being passed on from parent plants. Advances in molecular biology have allowed mankind to modify the germplasm of animals and plants. Genetic engineering of plants entails the isolation and manipulation of genetic material (typically in the form of DNA or RNA) and the subsequent introduction of that genetic material into a plant. Such technology has the capacity to deliver crops or plants having various improved economic, agronomic or horticultural traits.


A trait of particular economic interest is increased yield. Yield is normally defined as the measurable produce of economic value from a crop. This may be defined in terms of quantity and/or quality. Yield is directly dependent on several factors, for example, the number and size of the organs, plant architecture (for example, the number of branches), seed production, leaf senescence and more. Root development, nutrient uptake, stress tolerance and early vigour may also be important factors in determining yield. Optimizing the abovementioned factors may therefore contribute to increasing crop yield.


Seed yield is a particularly important trait, since the seeds of many plants are important for human and animal nutrition. Crops such as corn, rice, wheat, canola and soybean account for over half the total human caloric intake, whether through direct consumption of the seeds themselves or through consumption of meat products raised on processed seeds. They are also a source of sugars, oils and many kinds of metabolites used in industrial processes. Seeds contain an embryo (the source of new shoots and roots) and an endosperm (the source of nutrients for embryo growth during germination and during early growth of seedlings). The development of a seed involves many genes, and requires the transfer of metabolites from the roots, leaves and stems into the growing seed. The endosperm, in particular, assimilates the metabolic precursors of carbohydrates, oils and proteins and synthesizes them into storage macromolecules to fill out the grain.


Another important trait for many crops is early vigour. Improving early vigour is an important objective of modern rice breeding programs in both temperate and tropical rice cultivars. Long roots are important for proper soil anchorage in water-seeded rice. Where rice is sown directly into flooded fields, and where plants must emerge rapidly through water, longer shoots are associated with vigour. Where drill-seeding is practiced, longer mesocotyls and coleoptiles are important for good seedling emergence. The ability to engineer early vigour into plants would be of great importance in agriculture. For example, poor early vigour has been a limitation to the introduction of maize (Zea mays L.) hybrids based on Corn Belt germplasm in the European Atlantic.


A further important trait is that of improved abiotic stress tolerance. Abiotic stress is a primary cause of crop loss worldwide, reducing average yields for most major crop plants by more than 50% (Wang et al., Planta (2003) 218: 1-14). Abiotic stresses may be caused by drought, salinity, extremes of temperature, chemical toxicity and oxidative stress. The ability to improve plant tolerance to abiotic stress would be of great economic advantage to farmers worldwide and would allow for the cultivation of crops during adverse conditions and in territories where cultivation of crops may not otherwise be possible.


Crop yield may therefore be increased by optimising one of the above-mentioned factors.


Depending on the end use, the modification of certain yield traits may be favoured over others. For example for applications such as forage or wood production, or bio-fuel resource, an increase in the vegetative parts of a plant may be desirable, and for applications such as flour, starch or oil production, an increase in seed parameters may be particularly desirable. Even amongst the seed parameters, some may be favoured over others, depending on the application. Various mechanisms may contribute to increasing seed yield, whether that is in the form of increased seed size or increased seed number.


One approach to increasing yield (seed yield and/or biomass) in plants may be through modification of the inherent growth mechanisms of a plant, such as the cell cycle or various signalling pathways involved in plant growth or in defense mechanisms.


It has now been found that yield-related traits or various growth characteristics may be improved in plants by modulating expression in a plant of a nucleic acid encoding a DOF-C2 domain transcription factor polypeptide or a MYB7 in a plant.


Dof domain proteins (proteins comprising a Dof domain) are plant-specific transcription factors with a highly conserved DNA-binding domain with a single C2-C2 zinc finger. During the past decade, numerous Dof domain proteins have been identified in both monocots and dicots including maize, barley, wheat, rice, tobacco, Arabidopsis, pumpkin, potato and pea. Dof domain proteins have been shown to function as transcriptional activators or repressors in diverse plant-specific biological processes. Phylogenetic studies suggested that the Dof domain proteins diverged before the diversification of Angiosperms, therefore after a long period of multiplication distinct Dof domain proteins could have evolved to play different roles in plant physiology. However the highly conserved sequence of the Dof domain may endow Dof domain proteins with similar function. On the other hand sequence of the Dof domain proteins are highly diverged outside of the Dof domain. It has been suggested that the diversified regions outside the Dof domain might be linked to different functions of distinct Dof domain proteins (Yanagiswa, Plant Cell Physiol. 45(4): 386-391 (2004).


Dof domain proteins display sequence-specific DNA binding activity. Sequence specificity is determined only by the Dof domain (Yanagisawa, S. (1995) Nucleic Acids Res. 23: 3403-3410; Kisu, Y., Ono, T., Shimofurutani, N., Suzuki, M. and Esaka, M. (1998) Plant Cell Physiol. 39: 1054-1064.). Binding sites in the targeted DNA have been described for numerous Dof proteins (Dof domain proteins) (De Paolis, A., Sabatini, S., de Pascalis, L., Contantino, P. and Capone, I. (1996) Plant J. 10: 215-223; Yanagisawa, S. and lzui, K. (1993) J. Biol. Chem. 268: 16028-16036; Mena, M., Vicente-Carbajosa, J., Schmidt, R. J. and Carbonero, P. (1998) Plant J. 16: 53-62). Most Dof domain proteins bind the sequence AAAG or CTTT in complementary chain. An exception is found in the AOBP Dof domain protein of pumkin that binds to the AGTA sequence (Kisu et al. 1998. Plant cell physiol 39, 1054-1064). The sequence (A/T) AAAG represents a recognized DNA binding core motif for Dof domains.


The Dof domain is composed about 50-60 amino acids comprising the consensus sequence CX2CX21CX2C, which is proposed to form a zinc finger structure similar to the Cys2/Cys2 zinc finger domains wherein the four conserved cystein residues would coordinate the zinc ions (Uemura et al. 2004 Plant J 37, 741-749. The Dof domain is enriched in basic amino acids. All Dof domains have four conserved cysteine residues, although the amino acid sequence of the Dof domain and the arrangement of the cysteine residues differ from those of other zinc fingers (Yanagisawa, S. (1995) Nucleic Acids Res. 23: 3403-3410. Yanagisawa, S. (1996) Trends Plant Sci. 1: 213-214. Yanagisawa, S. (2002) Trends Plant Sci. 7: 555-560).



Arabidopsis and rice Dof domain proteins have been classified in 4 main orthologous clusters, named Aa, Bb, Cc and Dd (Lijavetzky et al. 2003. BMC Evolutionary Biology 3). Based on phylogenetic relations subclusters have been recognized within some of the main clusters. Outside of the Dof domain there is little sequence conservation amongst members in the different clusters. This large sequence diversity is suggestive of differentiated biological roles for the Dof domain proteins in plants. However members within the same cluster or subcluster share a number of conserved sequence motifs, suggesting biological functional conservation for Dof proteins belonging to the same same cluster or subcluster.


WO 2007/064724 discloses Dof domain proteins belonging to clusters Dd and Bb useful in increasing plant yield.


In one embodiment, surprisingly, it has now been found that modulating expression of a nucleic acid encoding a Dof domain protein belonging to cluster Cc, subcluster C2 (DOF-C2 transcription factor polypeptide) gives plants having increased (or enhanced) yield relative to suitable control plants.


According one embodiment, there is provided a method for improving yield-related traits of a plant relative to control plants, comprising modulating expression of a nucleic acid encoding a DOF-C2 domain transcription factor polypeptide in a plant.


MYB domain proteins are transcription factors with a highly conserved DNA-binding domain. The MYB domain was originally described in the oncogene (v-myb) of avian myeloblastosis virus (Klempnauer et al. (1982) Cell 33, 453-63). Many vertebrates contain three genes related to v-Myb c-Myb, A-Myb and B-Myb and other similar genes have been identified in insects, plants, fungi and slime moulds. The encoded proteins are crucial to the control of proliferation and differentiation in a number of cell types. MYB proteins contain one to four imperfect direct repeats of a conserved sequence of 50-53 amino acids which encodes a helix-turn-helix structure involved in DNA binding (Rosinski and Atchley (1998) J Mol Evol 46, 74-83). Three regularly spaced tryptophan residues, which form a tryptophan cluster in the three-dimensional helix-turn-helix structure, are characteristic of a MYB repeat. The three repeats in c-Myb are referred to as R1, R2 and R3; and repeats from other MYB proteins are categorised according to their similarity to R1, R2 or R3. Since there is little sequence conservation outside of the MYB domain, MYB proteins have been clustered into subgroups based on conserved motifs identified outside of the MYB coding region (Jiang et al. (2004) Genome Biology 5, R46).


AtMYB7 belongs to the R2R3-MYB gene family (Li and Parish, Plant J. 8, 963-972, 1995), which is a large gene family (with reportedly 126 genes in Arabidopsis thaliana (Zimmerman et al., Plant J. 40, 22-34, 2004)). Members of this group are involved in various processes, including secondary metabolism, cell morphogenesis, regulation of meristem formation, flower and seed development, cell cycle, defense and stress responses, light and hormone signalling (Chen et al., Cell Res. 16, 797-798, 2006). Although AtMYB7 is reported to have increased expression under stress (Ma and Bohnert, Genome Biology 8:R49, 2007), its precise function in the plant is still unknown. It is furthermore postulated that AtMYB7 expression plays a role in biotic stress tolerance (WO 02/16655 and WO 03/000898). WO 2007099096 discloses a rice MYB protein useful for increasing seed yield in plants.


In another embodiment, surprisingly, it has been found that modulating expression of a nucleic acid encoding a MYB7 polypeptide gives plants having enhanced yield-related traits, in particular increased vegetative biomass and increased emergence vigour relative to control plants.


According to another embodiment, there is provided a method for improving yield related traits of a plant relative to control plants, comprising modulating expression of a nucleic acid encoding a MYB7 polypeptide in a plant. The improved yield related traits comprised increased biomass and increased emergence vigour.


DEFINITIONS

Polypeptide(s)/Protein(s)


The terms “polypeptide” and “protein” are used interchangeably herein and refer to amino acids in a polymeric form of any length, linked together by peptide bonds.


Polynucleotide(s)/Nucleic Acid(s)/Nucleic Acid Sequence(s)/Nucleotide Sequence(s)


The terms “polynucleotide(s)”, “nucleic acid sequence(s)”, “nucleotide sequence(s)”, “nucleic acid(s)”, “nucleic acid molecule” are used interchangeably herein and refer to nucleotides, either ribonucleotides or deoxyribonucleotides or a combination of both, in a polymeric unbranched form of any length.


Control Plant(s)


The choice of suitable control plants is a routine part of an experimental setup and may include corresponding wild type plants or corresponding plants without the gene of interest. The control plant is typically of the same plant species or even of the same variety as the plant to be assessed. The control plant may also be a nullizygote of the plant to be assessed. Nullizygotes are individuals missing the transgene by segregation. A “control plant” as used herein refers not only to whole plants, but also to plant parts, including seeds and seed parts.


Homologue(s)


“Homologues” of a protein encompass peptides, oligopeptides, polypeptides, proteins and enzymes having amino acid substitutions, deletions and/or insertions relative to the unmodified protein in question and having similar biological and functional activity as the unmodified protein from which they are derived.


A deletion refers to removal of one or more amino acids from a protein.


An insertion refers to one or more amino acid residues being introduced into a predetermined site in a protein. Insertions may comprise N-terminal and/or C-terminal fusions as well as intra-sequence insertions of single or multiple amino acids. Generally, insertions within the amino acid sequence will be smaller than N- or C-terminal fusions, of the order of about 1 to 10 residues. Examples of N- or C-terminal fusion proteins or peptides include the binding domain or activation domain of a transcriptional activator as used in the yeast two-hybrid system, phage coat proteins, (histidine)-6-tag, glutathione S-transferase-tag, protein A, maltose-binding protein, dihydrofolate reductase, Tag•100 epitope, c-myc epitope, FLAG®-epitope, lacZ, CMP (calmodulin-binding peptide), HA epitope, protein C epitope and VSV epitope.


A substitution refers to replacement of amino acids of the protein with other amino acids having similar properties (such as similar hydrophobicity, hydrophilicity, antigenicity, propensity to form or break α-helical structures or β-sheet structures). Amino acid substitutions are typically of single residues, but may be clustered depending upon functional constraints placed upon the polypeptide; insertions will usually be of the order of about 1 to 10 amino acid residues. The amino acid substitutions are preferably conservative amino acid substitutions. Conservative substitution tables are well known in the art (see for example Creighton (1984) Proteins. W.H. Freeman and Company (Eds) and Table 1 below).









TABLE 1







Examples of conserved amino acid substitutions











Conservative



Residue
Substitutions






Ala
Ser



Arg
Lys



Asn
Gln; His



Asp
Glu



Gln
Asn



Cys
Ser



Glu
Asp



Gly
Pro



His
Asn; Gln



Ile
Leu, Val



Leu
Ile; Val



Lys
Arg; Gln



Met
Leu; Ile



Phe
Met; Leu; Tyr



Ser
Thr; Gly



Thr
Ser; Val



Trp
Tyr



Tyr
Trp; Phe



Val
Ile; Leu









Amino acid substitutions, deletions and/or insertions may readily be made using peptide synthetic techniques well known in the art, such as solid phase peptide synthesis and the like, or by recombinant DNA manipulation. Methods for the manipulation of DNA sequences to produce substitution, insertion or deletion variants of a protein are well known in the art. For example, techniques for making substitution mutations at predetermined sites in DNA are well known to those skilled in the art and include M13 mutagenesis, T7-Gen in vitro mutagenesis (USB, Cleveland, Ohio), QuickChange Site Directed mutagenesis (Stratagene, San Diego, Calif.), PCR-mediated site-directed mutagenesis or other site-directed mutagenesis protocols.


Derivatives


“Derivatives” include peptides, oligopeptides, polypeptides which may, compared to the amino acid sequence of the naturally-occurring form of the protein, such as the protein of interest, comprise substitutions of amino acids with non-naturally occurring amino acid residues, or additions of non-naturally occurring amino acid residues. “Derivatives” of a protein also encompass peptides, oligopeptides, polypeptides which comprise naturally occurring altered (glycosylated, acylated, prenylated, phosphorylated, myristoylated, sulphated etc.) or non-naturally altered amino acid residues compared to the amino acid sequence of a naturally-occurring form of the polypeptide. A derivative may also comprise one or more non-amino acid substituents or additions compared to the amino acid sequence from which it is derived, for example a reporter molecule or other ligand, covalently or non-covalently bound to the amino acid sequence, such as a reporter molecule which is bound to facilitate its detection, and non-naturally occurring amino acid residues relative to the amino acid sequence of a naturally-occurring protein. Furthermore, “derivatives” also include fusions of the naturally-occurring form of the protein with tagging peptides such as FLAG, HIS6 or thioredoxin (for a review of tagging peptides, see Terpe, Appl. Microbiol. Biotechnol. 60, 523-533, 2003).


Ortholoque(s)/Paraloque(s)


Orthologues and paralogues encompass evolutionary concepts used to describe the ancestral relationships of genes. Paralogues are genes within the same species that have originated through duplication of an ancestral gene; orthologues are genes from different organisms that have originated through speciation, and are also derived from a common ancestral gene.


Domain


The term “domain” refers to a set of amino acids conserved at specific positions along an alignment of sequences of evolutionarily related proteins. While amino acids at other positions can vary between homologues, amino acids that are highly conserved at specific positions indicate amino acids that are likely essential in the structure, stability or function of a protein. Identified by their high degree of conservation in aligned sequences of a family of protein homologues, they can be used as identifiers to determine if any polypeptide in question belongs to a previously identified polypeptide family.


Motif/Consensus Sequence/Signature


The term “motif” or “consensus sequence” or “signature” refers to a short conserved region in the sequence of evolutionarily related proteins. Motifs are frequently highly conserved parts of domains, but may also include only part of the domain, or be located outside of conserved domain (if all of the amino acids of the motif fall outside of a defined domain).


Hybridisation


The term “hybridisation” as defined herein is a process wherein substantially homologous complementary nucleotide sequences anneal to each other. The hybridisation process can occur entirely in solution, i.e. both complementary nucleic acids are in solution. The hybridisation process can also occur with one of the complementary nucleic acids immobilised to a matrix such as magnetic beads, Sepharose beads or any other resin. The hybridisation process can furthermore occur with one of the complementary nucleic acids immobilised to a solid support such as a nitro-cellulose or nylon membrane or immobilised by e.g. photolithography to, for example, a siliceous glass support (the latter known as nucleic acid arrays or microarrays or as nucleic acid chips). In order to allow hybridisation to occur, the nucleic acid molecules are generally thermally or chemically denatured to melt a double strand into two single strands and/or to remove hairpins or other secondary structures from single stranded nucleic acids.


The term “stringency” refers to the conditions under which a hybridisation takes place. The stringency of hybridisation is influenced by conditions such as temperature, salt concentration, ionic strength and hybridisation buffer composition. Generally, low stringency conditions are selected to be about 30° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. Medium stringency conditions are when the temperature is 20° C. below Tm, and high stringency conditions are when the temperature is 10° C. below Tm. High stringency hybridisation conditions are typically used for isolating hybridising sequences that have high sequence similarity to the target nucleic acid sequence. However, nucleic acids may deviate in sequence and still encode a substantially identical polypeptide, due to the degeneracy of the genetic code. Therefore medium stringency hybridisation conditions may sometimes be needed to identify such nucleic acid molecules.


The Tm is the temperature under defined ionic strength and pH, at which 50% of the target sequence hybridises to a perfectly matched probe. The Tm is dependent upon the solution conditions and the base composition and length of the probe. For example, longer sequences hybridise specifically at higher temperatures. The maximum rate of hybridisation is obtained from about 16° C. up to 32° C. below Tm. The presence of monovalent cations in the hybridisation solution reduce the electrostatic repulsion between the two nucleic acid strands thereby promoting hybrid formation; this effect is visible for sodium concentrations of up to 0.4M (for higher concentrations, this effect may be ignored). Formamide reduces the melting temperature of DNA-DNA and DNA-RNA duplexes with 0.6 to 0.7° C. for each percent formamide, and addition of 50% formamide allows hybridisation to be performed at 30 to 45° C., though the rate of hybridisation will be lowered. Base pair mismatches reduce the hybridisation rate and the thermal stability of the duplexes. On average and for large probes, the Tm decreases about 1° C. per % base mismatch. The Tm may be calculated using the following equations, depending on the types of hybrids:


1) DNA-DNA hybrids (Meinkoth and Wahl, Anal. Biochem., 138: 267-284, 1984):






T
m=81.5° C.+16.6×log10 [Na+]a+0.41×% [G/Cb]−500×[Lc]−1−0.61×% formamide


2) DNA-RNA or RNA-RNA hybrids:






Tm=79.8+18.5(log10 [Na+]a)+0.58(% G/Cb)+11.8(% G/Cb)2−820/Lc


3) oligo-DNA or oligo-RNAd hybrids:





For <20 nucleotides: Tm=2(ln)





For 20-35 nucleotides: Tm=22+1.46(ln)



aor for other monovalent cation, but only accurate in the 0.01-0.4 M range.bonly accurate for % GC in the 30% to 75% range.cL=length of duplex in base pairs.doligo, oligonucleotide; ln, =effective length of primer=2×(no. of G/C)+(no. of A/T).


Non-specific binding may be controlled using any one of a number of known techniques such as, for example, blocking the membrane with protein containing solutions, additions of heterologous RNA, DNA, and SDS to the hybridisation buffer, and treatment with Rnase. For non-homologous probes, a series of hybridizations may be performed by varying one of (i) progressively lowering the annealing temperature (for example from 68° C. to 42° C.) or (ii) progressively lowering the formamide concentration (for example from 50% to 0%). The skilled artisan is aware of various parameters which may be altered during hybridisation and which will either maintain or change the stringency conditions.


Besides the hybridisation conditions, specificity of hybridisation typically also depends on the function of post-hybridisation washes. To remove background resulting from non-specific hybridisation, samples are washed with dilute salt solutions. Critical factors of such washes include the ionic strength and temperature of the final wash solution: the lower the salt concentration and the higher the wash temperature, the higher the stringency of the wash. Wash conditions are typically performed at or below hybridisation stringency. A positive hybridisation gives a signal that is at least twice of that of the background. Generally, suitable stringent conditions for nucleic acid hybridisation assays or gene amplification detection procedures are as set forth above. More or less stringent conditions may also be selected. The skilled artisan is aware of various parameters which may be altered during washing and which will either maintain or change the stringency conditions.


For example, typical high stringency hybridisation conditions for DNA hybrids longer than 50 nucleotides encompass hybridisation at 65° C. in 1×SSC or at 42° C. in 1×SSC and 50% formamide, followed by washing at 65° C. in 0.3×SSC. Examples of medium stringency hybridisation conditions for DNA hybrids longer than 50 nucleotides encompass hybridisation at 50° C. in 4×SSC or at 40° C. in 6×SSC and 50% formamide, followed by washing at 50° C. in 2×SSC. The length of the hybrid is the anticipated length for the hybridising nucleic acid. When nucleic acids of known sequence are hybridised, the hybrid length may be determined by aligning the sequences and identifying the conserved regions described herein. 1×SSC is 0.15M NaCl and 15 mM sodium citrate; the hybridisation solution and wash solutions may additionally include 5× Denhardt's reagent, 0.5-1.0% SDS, 100 μg/ml denatured, fragmented salmon sperm DNA, 0.5% sodium pyrophosphate.


For the purposes of defining the level of stringency, reference can be made to Sambrook et al. (2001) Molecular Cloning: a laboratory manual, 3rd Edition, Cold Spring Harbor Laboratory Press, CSH, New York or to Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989 and yearly updates).


Splice Variant


The term “splice variant” as used herein encompasses variants of a nucleic acid sequence in which selected introns and/or exons have been excised, replaced, displaced or added, or in which introns have been shortened or lengthened. Such variants will be ones in which the biological activity of the protein is substantially retained; this may be achieved by selectively retaining functional segments of the protein. Such splice variants may be found in nature or may be manmade. Methods for predicting and isolating such splice variants are well known in the art (see for example Foissac and Schiex (2005) BMC Bioinformatics 6: 25).


Allelic Variant


Alleles or allelic variants are alternative forms of a given gene, located at the same chromosomal position. Allelic variants encompass Single Nucleotide Polymorphisms (SNPs), as well as Small Insertion/Deletion Polymorphisms (INDELs). The size of INDELs is usually less than 100 bp. SNPs and INDELs form the largest set of sequence variants in naturally occurring polymorphic strains of most organisms.


Gene Shuffling/Directed Evolution


Gene shuffling or directed evolution consists of iterations of DNA shuffling followed by appropriate screening and/or selection to generate variants of nucleic acids or portions thereof encoding proteins having a modified biological activity (Castle et al., (2004) Science 304(5674): 1151-4; U.S. Pat. Nos. 5,811,238 and 6,395,547).


Regulatory Element/Control Sequence/Promoter


The terms “regulatory element”, “control sequence” and “promoter” are all used interchangeably herein and are to be taken in a broad context to refer to regulatory nucleic acid sequences capable of effecting expression of the sequences to which they are ligated. The term “promoter” typically refers to a nucleic acid control sequence located upstream from the transcriptional start of a gene and which is involved in recognising and binding of RNA polymerase and other proteins, thereby directing transcription of an operably linked nucleic acid. Encompassed by the aforementioned terms are transcriptional regulatory sequences derived from a classical eukaryotic genomic gene (including the TATA box which is required for accurate transcription initiation, with or without a CCAAT box sequence) and additional regulatory elements (i.e. upstream activating sequences, enhancers and silencers) which alter gene expression in response to developmental and/or external stimuli, or in a tissue-specific manner. Also included within the term is a transcriptional regulatory sequence of a classical prokaryotic gene, in which case it may include a −35 box sequence and/or −10 box transcriptional regulatory sequences. The term “regulatory element” also encompasses a synthetic fusion molecule or derivative that confers, activates or enhances expression of a nucleic acid molecule in a cell, tissue or organ.


A “plant promoter” comprises regulatory elements, which mediate the expression of a coding sequence segment in plant cells. Accordingly, a plant promoter need not be of plant origin, but may originate from viruses or micro-organisms, for example from viruses which attack plant cells. The “plant promoter” can also originate from a plant cell, e.g. from the plant which is transformed with the nucleic acid sequence to be expressed in the inventive process and described herein. This also applies to other “plant” regulatory signals, such as “plant” terminators. The promoters upstream of the nucleotide sequences useful in the methods of the present invention can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without interfering with the functionality or activity of either the promoters, the open reading frame (ORF) or the 3′-regulatory region such as terminators or other 3′ regulatory regions which are located away from the ORF. It is furthermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even promoters from heterologous organisms. For expression in plants, the nucleic acid molecule must, as described above, be linked operably to or comprise a suitable promoter which expresses the gene at the right point in time and with the required spatial expression pattern.


For the identification of functionally equivalent promoters, the promoter strength and/or expression pattern of a candidate promoter may be analysed for example by operably linking the promoter to a reporter gene and assaying the expression level and pattern of the reporter gene in various tissues of the plant. Suitable well-known reporter genes include for example beta-glucuronidase or beta-galactosidase. The promoter activity is assayed by measuring the enzymatic activity of the beta-glucuronidase or beta-galactosidase. The promoter strength and/or expression pattern may then be compared to that of a reference promoter (such as the one used in the methods of the present invention). Alternatively, promoter strength may be assayed by quantifying mRNA levels or by comparing mRNA levels of the nucleic acid used in the methods of the present invention, with mRNA levels of housekeeping genes such as 18S rRNA, using methods known in the art, such as Northern blotting with densitometric analysis of autoradiograms, quantitative real-time PCR or RT-PCR (Heid et al., 1996 Genome Methods 6: 986-994). Generally by “weak promoter” is intended a promoter that drives expression of a coding sequence at a low level. By “low level” is intended at levels of about 1/10,000 transcripts to about 1/100,000 transcripts, to about 1/500,0000 transcripts per cell. Conversely, a “strong promoter” drives expression of a coding sequence at high level, or at about 1/10 transcripts to about 1/100 transcripts to about 1/1000 transcripts per cell.


Operably Linked


The term “operably linked” as used herein refers to a functional linkage between the promoter sequence and the gene of interest, such that the promoter sequence is able to initiate transcription of the gene of interest.


Constitutive Promoter


A “constitutive promoter” refers to a promoter that is transcriptionally active during most, but not necessarily all, phases of growth and development and under most environmental conditions, in at least one cell, tissue or organ. Table 2C below gives examples of constitutive promoters.


Ubiquitous Promoter


A ubiquitous promoter is active in substantially all tissues or cells of an organism.


Developmentally-Requlated Promoter


A developmentally-regulated promoter is active during certain developmental stages or in parts of the plant that undergo developmental changes.


Inducible Promoter


An inducible promoter has induced or increased transcription initiation in response to a chemical (for a review see Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108), environmental or physical stimulus, or may be “stress-inducible”, i.e. activated when a plant is exposed to various stress conditions, or a “pathogen-inducible” i.e. activated when a plant is exposed to exposure to various pathogens.


Organ-Specific/Tissue-Specific Promoter


An organ-specific or tissue-specific promoter is one that is capable of preferentially initiating transcription in certain organs or tissues, such as the leaves, roots, seed tissue etc. For example, a “root-specific promoter” is a promoter that is transcriptionally active predominantly in plant roots, substantially to the exclusion of any other parts of a plant, whilst still allowing for any leaky expression in these other plant parts. Promoters able to initiate transcription in certain cells only are referred to herein as “cell-specific”.


Examples of root-specific promoters are listed in Table 2A below:









TABLE 2A







Examples of root-specific promoters








Gene Source
Reference





RCc3
Plant Mol Biol. 1995 Jan; 27(2): 237-48



Arabidopsis PHT1

Kovama et al., 2005; Mudge et al. (2002, Plant J. 31: 341)



Medicago phosphate

Xiao et al., 2006


transporter




Arabidopsis Pyk10

Nitz et al. (2001) Plant Sci 161(2): 337-346


root-expressible genes
Tingey et al., EMBO J. 6: 1, 1987.


tobacco auxin-inducible
Van der Zaal et al., Plant Mol. Biol. 16, 983, 1991.


gene



β-tubulin
Oppenheimer, et al., Gene 63: 87, 1988.


tobacco root-specific genes
Conkling, et al., Plant Physiol. 93: 1203, 1990.



B.
napus G1-3b gene

U.S. Pat.No. 5,401,836


SbPRP1
Suzuki et al., Plant Mol. Biol. 21: 109-119, 1993.


LRX1
Baumberger et al. 2001, Genes & Dev. 15: 1128


BTG-26 Brassicanapus
US 20050044585


LeAMT1 (tomato)
Lauter et al. (1996, PNAS 3: 8139)


The LeNRT1-1 (tomato)
Lauter et al. (1996, PNAS 3: 8139)


class I patatin gene (potato)
Liu et al., Plant Mol. Biol. 153: 386-395, 1991.


KDC1 (Daucuscarota)
Downey et al. (2000, J. Biol. Chem. 275: 39420)


TobRB7 gene
W Song (1997) PhD Thesis, North Carolina State University,



Raleigh, NC USA


OsRAB5a (rice)
Wang et al. 2002, Plant Sci. 163: 273


ALF5 (Arabidopsis)
Diener et al. (2001, Plant Cell 13: 1625)


NRT2; 1Np (N.plumbaginifolia)
Quesada et al. (1997, Plant Mol. Biol. 34: 265)









A seed-specific promoter is transcriptionally active predominantly in seed tissue, but not necessarily exclusively in seed tissue (in cases of leaky expression). The seed-specific promoter may be active during seed development and/or during germination. Examples of seed-specific promoters are shown in Table 2B below. Further examples of seed-specific promoters are given in Qing Qu and Takaiwa (Plant Biotechnol. J. 2, 113-125, 2004), which disclosure is incorporated by reference herein as if fully set forth.









TABLE 2B







Examples of seed-specific promoters








Gene source
Reference





seed-specific genes
Simon et al., Plant Mol. Biol. 5: 191, 1985;



Scofield et al., J. Biol. Chem. 262: 12202, 1987.;



Baszczynski et al., Plant Mol. Biol. 14: 633, 1990.


Brazil Nut albumin
Pearson et al., Plant Mol. Biol. 18: 235-245, 1992.


legumin
Ellis et al., Plant Mol. Biol. 10: 203-214, 1988.


glutelin (rice)
Takaiwa et al., Mol. Gen. Genet. 208: 15-22, 1986;



Takaiwa et al., FEBS Letts. 221: 43-47, 1987.


zein
Matzke et al Plant Mol Biol, 14(3): 323-32 1990


napA
Stalberg et al, Planta 199: 515-519, 1996.


wheat LMW and HMW glutenin-1
Mol Gen Genet 216: 81-90, 1989; NAR 17: 461-2, 1989


wheat SPA
Albani et al, Plant Cell, 9: 171-184, 1997


wheat α, β, γ-gliadins
EMBO J. 3: 1409-15, 1984


barley Itr1 promoter
Diaz et al. (1995) Mol Gen Genet 248(5): 592-8


barley B1, C, D, hordein
Theor Appl Gen 98: 1253-62, 1999; Plant J 4: 343-55,



1993; Mol Gen Genet 250: 750-60, 1996


barley DOF
Mena et al, The Plant Journal, 116(1): 53-62, 1998


blz2
EP99106056.7


synthetic promoter
Vicente-Carbajosa et al., Plant J. 13: 629-640, 1998.


rice prolamin NRP33
Wu et al, Plant Cell Physiology 39(8) 885-889, 1998


rice a-globulin Glb-1
Wu et al, Plant Cell Physiology 39(8) 885-889, 1998


rice OSH1
Sato et al, Proc. Natl. Acad. Sci. USA, 93: 8117-8122,



1996


rice α-globulin REB/OHP-1
Nakase et al. Plant Mol. Biol. 33: 513-522, 1997


rice ADP-glucose pyrophos-
Trans Res 6: 157-68, 1997


phorylase



maize ESR gene family
Plant J 12: 235-46, 1997



sorghum α-kafirin

DeRose et al., Plant Mol. Biol 32: 1029-35, 1996


KNOX
Postma-Haarsma et al, Plant Mol. Biol. 39: 257-71, 1999


rice oleosin
Wu et al, J. Biochem. 123: 386, 1998


sunflower oleosin
Cummins et al., Plant Mol. Biol. 19: 873-876, 1992


PRO0117, putative rice 40S
WO 2004/070039


ribosomal protein



PRO0136, rice alanine
unpublished


aminotransferase



PRO0147, trypsin inhibitor ITR1
unpublished


(barley)



PRO0151, rice WSI18
WO 2004/070039


PRO0175, rice RAB21
WO 2004/070039


PRO005
WO 2004/070039


PRO0095
WO 2004/070039


α-amylase (Amy32b)
Lanahan et al, Plant Cell 4: 203-211, 1992; Skriver et al,



Proc Natl Acad Sci USA 88: 7266-7270, 1991


cathepsin β-like gene
Cejudo et al, Plant Mol Biol 20: 849-856, 1992


Barley Ltp2
Kalla et al., Plant J. 6: 849-60, 1994


Chi26
Leah et al., Plant J. 4: 579-89, 1994


Maize B-Peru
Selinger et al., Genetics 149; 1125-38, 1998









A green tissue-specific promoter as defined herein is a promoter that is transcriptionally active predominantly in green tissue, substantially to the exclusion of any other parts of a plant, whilst still allowing for any leaky expression in these other plant parts.









TABLE 2C







Examples of constitutive promoters








Gene Source
Reference





Actin
McElroy et al, Plant Cell, 2: 163-171, 1990


HMGP
WO 2004/070039


CAMV 35S
Odell et al, Nature, 313: 810-812, 1985


CaMV 19S
Nilsson et al., Physiol. Plant. 100: 456-462, 1997


GOS2
de Pater et al, Plant J Nov; 2(6): 837-44, 1992,



WO 2004/065596


Ubiquitin
Christensen et al, Plant Mol. Biol. 18: 675-689,



1992


Rice cyclophilin
Buchholz et al, Plant Mol Biol. 25(5): 837-43, 1994


Maize H3 histone
Lepetit et al, Mol. Gen. Genet. 231: 276-285, 1992


Alfalfa H3 histone
Wu et al. Plant Mol. Biol. 11: 641-649, 1988


Actin 2
An et al, Plant J. 10(1); 107-121, 1996


34S FMV
Sanger et al., Plant. Mol. Biol., 14, 1990: 433-443


Rubisco small
U.S. Pat. No. 4,962,028


subunit



OCS
Leisner (1988) Proc Natl Acad Sci USA 85(5): 2553


SAD1
Jain et al., Crop Science, 39 (6), 1999: 1696


SAD2
Jain et al., Crop Science, 39 (6), 1999: 1696


nos
Shaw et al. (1984) Nucleic Acids Res. 12(20):



7831-7846


V-ATPase
WO 01/14572


Super promoter
WO 95/14098


G-box proteins
WO 94/12015









Another example of a tissue-specific promoter is a meristem-specific promoter, which is transcriptionally active predominantly in meristematic tissue, substantially to the exclusion of any other parts of a plant, whilst still allowing for any leaky expression in these other plant parts.


Terminator


The term “terminator” encompasses a control sequence which is a DNA sequence at the end of a transcriptional unit which signals 3′ processing and polyadenylation of a primary transcript and termination of transcription. The terminator can be derived from the natural gene, from a variety of other plant genes, or from T-DNA. The terminator to be added may be derived from, for example, the nopaline synthase or octopine synthase genes, or alternatively from another plant gene, or less preferably from any other eukaryotic gene.


Modulation


The term “modulation” means in relation to expression or gene expression, a process in which the expression level is changed by said gene expression in comparison to the control plant, the expression level may be increased or decreased. The original, unmodulated expression may be of any kind of expression of a structural RNA (rRNA, tRNA) or mRNA with subsequent translation. The term “modulating the activity” shall mean any change of the expression of the inventive nucleic acid sequences or encoded proteins, which leads to increased yield and/or increased growth of the plants.


Expression


The term “expression” or “gene expression” means the transcription of a specific gene or specific genes or specific genetic construct. The term “expression” or “gene expression” in particular means the transcription of a gene or genes or genetic construct into structural RNA (rRNA, tRNA) or mRNA with or without subsequent translation of the latter into a protein. The process includes transcription of DNA and processing of the resulting mRNA product.


Increased Expression/Overexpression


The term “increased expression” or “overexpression” as used herein means any form of expression that is additional to the original wild-type expression level.


Methods for increasing expression of genes or gene products are well documented in the art and include, for example, overexpression driven by appropriate promoters, the use of transcription enhancers or translation enhancers. Isolated nucleic acids which serve as promoter or enhancer elements may be introduced in an appropriate position (typically upstream) of a non-heterologous form of a polynucleotide so as to upregulate expression of a nucleic acid encoding the polypeptide of interest. For example, endogenous promoters may be altered in vivo by mutation, deletion, and/or substitution (see, Kmiec, U.S. Pat. No. 5,565,350; Zarling et al., WO9322443), or isolated promoters may be introduced into a plant cell in the proper orientation and distance from a gene of the present invention so as to control the expression of the gene.


If polypeptide expression is desired, it is generally desirable to include a polyadenylation region at the 3′-end of a polynucleotide coding region. The polyadenylation region can be derived from the natural gene, from a variety of other plant genes, or from T-DNA. The 3′ end sequence to be added may be derived from, for example, the nopaline synthase or octopine synthase genes, or alternatively from another plant gene, or less preferably from any other eukaryotic gene.


An intron sequence may also be added to the 5′ untranslated region (UTR) or the coding sequence of the partial coding sequence to increase the amount of the mature message that accumulates in the cytosol. Inclusion of a spliceable intron in the transcription unit in both plant and animal expression constructs has been shown to increase gene expression at both the mRNA and protein levels up to 1000-fold (Buchman and Berg (1988) Mol. Cell biol. 8: 4395-4405; Callis et al. (1987) Genes Dev 1:1183-1200). Such intron enhancement of gene expression is typically greatest when placed near the 5′ end of the transcription unit. Use of the maize introns Adh1-S intron 1, 2, and 6, the Bronze-1 intron are known in the art. For general information see: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, N.Y. (1994).


Endogenous Gene


Reference herein to an “endogenous” gene not only refers to the gene in question as found in a plant in its natural form (i.e., without there being any human intervention), but also refers to that same gene (or a substantially homologous nucleic acid/gene) in an isolated form subsequently (re)introduced into a plant (a transgene). For example, a transgenic plant containing such a transgene may encounter a substantial reduction of the transgene expression and/or substantial reduction of expression of the endogenous gene. The isolated gene may be isolated from an organism or may be manmade, for example by chemical synthesis.


Decreased Expression


Reference herein to “decreased expression” or “reduction or substantial elimination” of expression is taken to mean a decrease in endogenous gene expression and/or polypeptide levels and/or polypeptide activity relative to control plants. The reduction or substantial elimination is in increasing order of preference at least 10%, 20%, 30%, 40% or 50%, 60%, 70%, 80%, 85%, 90%, or 95%, 96%, 97%, 98%, 99% or more reduced compared to that of control plants.


For the reduction or substantial elimination of expression an endogenous gene in a plant, a sufficient length of substantially contiguous nucleotides of a nucleic acid sequence is required. In order to perform gene silencing, this may be as little as 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10 or fewer nucleotides, alternatively this may be as much as the entire gene (including the 5′ and/or 3′ UTR, either in part or in whole). The stretch of substantially contiguous nucleotides may be derived from the nucleic acid encoding the protein of interest (target gene), or from any nucleic acid capable of encoding an orthologue, paralogue or homologue of the protein of interest. Preferably, the stretch of substantially contiguous nucleotides is capable of forming hydrogen bonds with the target gene (either sense or antisense strand), more preferably, the stretch of substantially contiguous nucleotides has, in increasing order of preference, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 100% sequence identity to the target gene (either sense or antisense strand). A nucleic acid sequence encoding a (functional) polypeptide is not a requirement for the various methods discussed herein for the reduction or substantial elimination of expression of an endogenous gene.


This reduction or substantial elimination of expression may be achieved using routine tools and techniques. A preferred method for the reduction or substantial elimination of endogenous gene expression is by introducing and expressing in a plant a genetic construct into which the nucleic acid (in this case a stretch of substantially contiguous nucleotides derived from the gene of interest, or from any nucleic acid capable of encoding an orthologue, paralogue or homologue of any one of the protein of interest) is cloned as an inverted repeat (in part or completely), separated by a spacer (non-coding DNA).


In such a preferred method, expression of the endogenous gene is reduced or substantially eliminated through RNA-mediated silencing using an inverted repeat of a nucleic acid or a part thereof (in this case a stretch of substantially contiguous nucleotides derived from the gene of interest, or from any nucleic acid capable of encoding an orthologue, paralogue or homologue of the protein of interest), preferably capable of forming a hairpin structure. The inverted repeat is cloned in an expression vector comprising control sequences. A non-coding DNA nucleic acid sequence (a spacer, for example a matrix attachment region fragment (MAR), an intron, a polylinker, etc.) is located between the two inverted nucleic acids forming the inverted repeat. After transcription of the inverted repeat, a chimeric RNA with a self-complementary structure is formed (partial or complete). This double-stranded RNA structure is referred to as the hairpin RNA (hpRNA). The hpRNA is processed by the plant into siRNAs that are incorporated into an RNA-induced silencing complex (RISC). The RISC further cleaves the mRNA transcripts, thereby substantially reducing the number of mRNA transcripts to be translated into polypeptides. For further general details see for example, Grierson et al. (1998) WO 98/53083; Waterhouse et al. (1999) WO 99/53050).


Performance of the methods of the invention does not rely on introducing and expressing in a plant a genetic construct into which the nucleic acid is cloned as an inverted repeat, but any one or more of several well-known “gene silencing” methods may be used to achieve the same effects.


One such method for the reduction of endogenous gene expression is RNA-mediated silencing of gene expression (downregulation). Silencing in this case is triggered in a plant by a double stranded RNA sequence (dsRNA) that is substantially similar to the target endogenous gene. This dsRNA is further processed by the plant into about 20 to about 26 nucleotides called short interfering RNAs (siRNAs). The siRNAs are incorporated into an RNA-induced silencing complex (RISC) that cleaves the mRNA transcript of the endogenous target gene, thereby substantially reducing the number of mRNA transcripts to be translated into a polypeptide. Preferably, the double stranded RNA sequence corresponds to a target gene.


Another example of an RNA silencing method involves the introduction of nucleic acid sequences or parts thereof (in this case a stretch of substantially contiguous nucleotides derived from the gene of interest, or from any nucleic acid capable of encoding an orthologue, paralogue or homologue of the protein of interest) in a sense orientation into a plant. “Sense orientation” refers to a DNA sequence that is homologous to an mRNA transcript thereof. Introduced into a plant would therefore be at least one copy of the nucleic acid sequence. The additional nucleic acid sequence will reduce expression of the endogenous gene, giving rise to a phenomenon known as co-suppression. The reduction of gene expression will be more pronounced if several additional copies of a nucleic acid sequence are introduced into the plant, as there is a positive correlation between high transcript levels and the triggering of co-suppression.


Another example of an RNA silencing method involves the use of antisense nucleic acid sequences. An “antisense” nucleic acid sequence comprises a nucleotide sequence that is complementary to a “sense” nucleic acid sequence encoding a protein, i.e. complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA transcript sequence. The antisense nucleic acid sequence is preferably complementary to the endogenous gene to be silenced. The complementarity may be located in the “coding region” and/or in the “non-coding region” of a gene. The term “coding region” refers to a region of the nucleotide sequence comprising codons that are translated into amino acid residues. The term “non-coding region” refers to 5′ and 3′ sequences that flank the coding region that are transcribed but not translated into amino acids (also referred to as 5′ and 3′ untranslated regions).


Antisense nucleic acid sequences can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid sequence may be complementary to the entire nucleic acid sequence (in this case a stretch of substantially contiguous nucleotides derived from the gene of interest, or from any nucleic acid capable of encoding an orthologue, paralogue or homologue of the protein of interest), but may also be an oligonucleotide that is antisense to only a part of the nucleic acid sequence (including the mRNA 5′ and 3′ UTR). For example, the antisense oligonucleotide sequence may be complementary to the region surrounding the translation start site of an mRNA transcript encoding a polypeptide. The length of a suitable antisense oligonucleotide sequence is known in the art and may start from about 50, 45, 40, 35, 30, 25, 20, 15 or 10 nucleotides in length or less. An antisense nucleic acid sequence according to the invention may be constructed using chemical synthesis and enzymatic ligation reactions using methods known in the art. For example, an antisense nucleic acid sequence (e.g., an antisense oligonucleotide sequence) may be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acid sequences, e.g., phosphorothioate derivatives and acridine substituted nucleotides may be used. Examples of modified nucleotides that may be used to generate the antisense nucleic acid sequences are well known in the art. Known nucleotide modifications include methylation, cyclization and ‘caps’ and substitution of one or more of the naturally occurring nucleotides with an analogue such as inosine. Other modifications of nucleotides are well known in the art.


The antisense nucleic acid sequence can be produced biologically using an expression vector into which a nucleic acid sequence has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest). Preferably, production of antisense nucleic acid sequences in plants occurs by means of a stably integrated nucleic acid construct comprising a promoter, an operably linked antisense oligonucleotide, and a terminator.


The nucleic acid molecules used for silencing in the methods of the invention (whether introduced into a plant or generated in situ) hybridize with or bind to mRNA transcripts and/or genomic DNA encoding a polypeptide to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid sequence which binds to DNA duplexes, through specific interactions in the major groove of the double helix. Antisense nucleic acid sequences may be introduced into a plant by transformation or direct injection at a specific tissue site. Alternatively, antisense nucleic acid sequences can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense nucleic acid sequences can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid sequence to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid sequences can also be delivered to cells using the vectors described herein.


According to a further aspect, the antisense nucleic acid sequence is an a-anomeric nucleic acid sequence. An a-anomeric nucleic acid sequence forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual b-units, the strands run parallel to each other (Gaultier et al. (1987) Nucl Ac Res 15: 6625-6641). The antisense nucleic acid sequence may also comprise a 2′-o-methylribonucleotide (Inoue et al. (1987) Nucl Ac Res 15, 6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215, 327-330).


The reduction or substantial elimination of endogenous gene expression may also be performed using ribozymes. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid sequence, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334, 585-591) can be used to catalytically cleave mRNA transcripts encoding a polypeptide, thereby substantially reducing the number of mRNA transcripts to be translated into a polypeptide. A ribozyme having specificity for a nucleic acid sequence can be designed (see for example: Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742). Alternatively, mRNA transcripts corresponding to a nucleic acid sequence can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules (Bartel and Szostak (1993) Science 261, 1411-1418). The use of ribozymes for gene silencing in plants is known in the art (e.g., Atkins et al. (1994) WO 94/00012; Lenne et al. (1995) WO 95/03404; Lutziger et al. (2000) WO 00/00619; Prinsen et al. (1997) WO 97/13865 and Scott et al. (1997) WO 97/38116).


Gene silencing may also be achieved by insertion mutagenesis (for example, T-DNA insertion or transposon insertion) or by strategies as described by, among others, Angell and Baulcombe ((1999) Plant J 20(3): 357-62), (Amplicon VIGS WO 98/36083), or Baulcombe (WO 99/15682).


Gene silencing may also occur if there is a mutation on an endogenous gene and/or a mutation on an isolated gene/nucleic acid subsequently introduced into a plant. The reduction or substantial elimination may be caused by a non-functional polypeptide. For example, the polypeptide may bind to various interacting proteins; one or more mutation(s) and/or truncation(s) may therefore provide for a polypeptide that is still able to bind interacting proteins (such as receptor proteins) but that cannot exhibit its normal function (such as signalling ligand).


A further approach to gene silencing is by targeting nucleic acid sequences complementary to the regulatory region of the gene (e.g., the promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells. See Helene, C., Anticancer Drug Res. 6, 569-84, 1991; Helene et al., Ann. N.Y. Acad. Sci. 660, 27-36 1992; and Maher, L. J. Bioassays 14, 807-15, 1992.


Other methods, such as the use of antibodies directed to an endogenous polypeptide for inhibiting its function in planta, or interference in the signalling pathway in which a polypeptide is involved, will be well known to the skilled man. In particular, it can be envisaged that manmade molecules may be useful for inhibiting the biological function of a target polypeptide, or for interfering with the signalling pathway in which the target polypeptide is involved.


Alternatively, a screening program may be set up to identify in a plant population natural variants of a gene, which variants encode polypeptides with reduced activity. Such natural variants may also be used for example, to perform homologous recombination.


Artificial and/or natural microRNAs (miRNAs) may be used to knock out gene expression and/or mRNA translation. Endogenous miRNAs are single stranded small RNAs of typically 19-24 nucleotides long. They function primarily to regulate gene expression and/ or mRNA translation. Most plant microRNAs (miRNAs) have perfect or near-perfect complementarity with their target sequences. However, there are natural targets with up to five mismatches. They are processed from longer non-coding RNAs with characteristic fold-back structures by double-strand specific RNases of the Dicer family. Upon processing, they are incorporated in the RNA-induced silencing complex (RISC) by binding to its main component, an Argonaute protein. MiRNAs serve as the specificity components of RISC, since they base-pair to target nucleic acids, mostly mRNAs, in the cytoplasm. Subsequent regulatory events include target mRNA cleavage and destruction and/or translational inhibition. Effects of miRNA overexpression are thus often reflected in decreased mRNA levels of target genes.


Artificial microRNAs (amiRNAs), which are typically 21 nucleotides in length, can be genetically engineered specifically to negatively regulate gene expression of single or multiple genes of interest. Determinants of plant microRNA target selection are well known in the art. Empirical parameters for target recognition have been defined and can be used to aid in the design of specific amiRNAs, (Schwab et al., Dev. Cell 8, 517-527, 2005). Convenient tools for design and generation of amiRNAs and their precursors are also available to the public (Schwab et al., Plant Cell 18, 1121-1133, 2006).


For optimal performance, the gene silencing techniques used for reducing expression in a plant of an endogenous gene requires the use of nucleic acid sequences from monocotyledonous plants for transformation of monocotyledonous plants, and from dicotyledonous plants for transformation of dicotyledonous plants. Preferably, a nucleic acid sequence from any given plant species is introduced into that same species. For example, a nucleic acid sequence from rice is transformed into a rice plant. However, it is not an absolute requirement that the nucleic acid sequence to be introduced originates from the same plant species as the plant in which it will be introduced. It is sufficient that there is substantial homology between the endogenous target gene and the nucleic acid to be introduced.


Described above are examples of various methods for the reduction or substantial elimination of expression in a plant of an endogenous gene. A person skilled in the art would readily be able to adapt the aforementioned methods for silencing so as to achieve reduction of expression of an endogenous gene in a whole plant or in parts thereof through the use of an appropriate promoter, for example.


Selectable Marker (Gene)/Reporter Gene


“Selectable marker”, “selectable marker gene” or “reporter gene” includes any gene that confers a phenotype on a cell in which it is expressed to facilitate the identification and/or selection of cells that are transfected or transformed with a nucleic acid construct of the invention. These marker genes enable the identification of a successful transfer of the nucleic acid molecules via a series of different principles. Suitable markers may be selected from markers that confer antibiotic or herbicide resistance, that introduce a new metabolic trait or that allow visual selection. Examples of selectable marker genes include genes conferring resistance to antibiotics (such as nptll that phosphorylates neomycin and kanamycin, or hpt, phosphorylating hygromycin, or genes conferring resistance to, for example, bleomycin, streptomycin, tetracyclin, chloramphenicol, ampicillin, gentamycin, geneticin (G418), spectinomycin or blasticidin), to herbicides (for example bar which provides resistance to Basta®; aroA or gox providing resistance against glyphosate, or the genes conferring resistance to, for example, imidazolinone, phosphinothricin or sulfonylurea), or genes that provide a metabolic trait (such as manA that allows plants to use mannose as sole carbon source or xylose isomerase for the utilisation of xylose, or antinutritive markers such as the resistance to 2-deoxyglucose). Expression of visual marker genes results in the formation of colour (for example β-glucuronidase, GUS or β-galactosidase with its coloured substrates, for example X-Gal), luminescence (such as the luciferin/luceferase system) or fluorescence (Green Fluorescent Protein, GFP, and derivatives thereof). This list represents only a small number of possible markers. The skilled worker is familiar with such markers. Different markers are preferred, depending on the organism and the selection method.


It is known that upon stable or transient integration of nucleic acids into plant cells, only a minority of the cells takes up the foreign DNA and, if desired, integrates it into its genome, depending on the expression vector used and the transfection technique used. To identify and select these integrants, a gene coding for a selectable marker (such as the ones described above) is usually introduced into the host cells together with the gene of interest. These markers can for example be used in mutants in which these genes are not functional by, for example, deletion by conventional methods. Furthermore, nucleic acid molecules encoding a selectable marker can be introduced into a host cell on the same vector that comprises the sequence encoding the polypeptides of the invention or used in the methods of the invention, or else in a separate vector. Cells which have been stably transfected with the introduced nucleic acid can be identified for example by selection (for example, cells which have integrated the selectable marker survive whereas the other cells die).


Since the marker genes, particularly genes for resistance to antibiotics and herbicides, are no longer required or are undesired in the transgenic host cell once the nucleic acids have been introduced successfully, the process according to the invention for introducing the nucleic acids advantageously employs techniques which enable the removal or excision of these marker genes. One such a method is what is known as co-transformation. The co-transformation method employs two vectors simultaneously for the transformation, one vector bearing the nucleic acid according to the invention and a second bearing the marker gene(s). A large proportion of transformants receives or, in the case of plants, comprises (up to 40% or more of the transformants), both vectors. In case of transformation with Agrobacteria, the transformants usually receive only a part of the vector, i.e. the sequence flanked by the T-DNA, which usually represents the expression cassette. The marker genes can subsequently be removed from the transformed plant by performing crosses. In another method, marker genes integrated into a transposon are used for the transformation together with desired nucleic acid (known as the Ac/Ds technology). The transformants can be crossed with a transposase source or the transformants are transformed with a nucleic acid construct conferring expression of a transposase, transiently or stable. In some cases (approx. 10%), the transposon jumps out of the genome of the host cell once transformation has taken place successfully and is lost. In a further number of cases, the transposon jumps to a different location. In these cases the marker gene must be eliminated by performing crosses. In microbiology, techniques were developed which make possible, or facilitate, the detection of such events. A further advantageous method relies on what is known as recombination systems; whose advantage is that elimination by crossing can be dispensed with. The best-known system of this type is what is known as the Cre/lox system. Cre1 is a recombinase that removes the sequences located between the loxP sequences. If the marker gene is integrated between the loxP sequences, it is removed once transformation has taken place successfully, by expression of the recombinase. Further recombination systems are the HIN/HIX, FLP/FRT and REP/STB system (Tribble et al., J. Biol. Chem., 275, 2000: 22255-22267; Velmurugan et al., J. Cell Biol., 149, 2000: 553-566). A site-specific integration into the plant genome of the nucleic acid sequences according to the invention is possible. Naturally, these methods can also be applied to microorganisms such as yeast, fungi or bacteria.


Transgenic/Transgene/Recombinant


For the purposes of the invention, “transgenic”, “transgene” or “recombinant” means with regard to, for example, a nucleic acid sequence, an expression cassette, gene construct or a vector comprising the nucleic acid sequence or an organism transformed with the nucleic acid sequences, expression cassettes or vectors according to the invention, all those constructions brought about by recombinant methods in which either

    • (a) the nucleic acid sequences encoding proteins useful in the methods of the invention, or
    • (b) genetic control sequence(s) which is operably linked with the nucleic acid sequence according to the invention, for example a promoter, or
    • (c) a) and b)


are not located in their natural genetic environment or have been modified by recombinant methods, it being possible for the modification to take the form of, for example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide residues. The natural genetic environment is understood as meaning the natural genomic or chromosomal locus in the original plant or the presence in a genomic library. In the case of a genomic library, the natural genetic environment of the nucleic acid sequence is preferably retained, at least in part. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, especially preferably at least 1000 bp, most preferably at least 5000 bp. A naturally occurring expression cassette—for example the naturally occurring combination of the natural promoter of the nucleic acid sequences with the corresponding nucleic acid sequence encoding a polypeptide useful in the methods of the present invention, as defined above—becomes a transgenic expression cassette when this expression cassette is modified by non-natural, synthetic (“artificial”) methods such as, for example, mutagenic treatment. Suitable methods are described, for example, in U.S. Pat. No. 5,565,350 or WO 00/15815.


A transgenic plant for the purposes of the invention is thus understood as meaning, as above, that the nucleic acids used in the method of the invention are not at their natural locus in the genome of said plant, it being possible for the nucleic acids to be expressed homologously or heterologously. However, as mentioned, transgenic also means that, while the nucleic acids according to the invention or used in the inventive method are at their natural position in the genome of a plant, the sequence has been modified with regard to the natural sequence, and/or that the regulatory sequences of the natural sequences have been modified. Transgenic is preferably understood as meaning the expression of the nucleic acids according to the invention at an unnatural locus in the genome, i.e. homologous or, preferably, heterologous expression of the nucleic acids takes place. Preferred transgenic plants are mentioned herein.


Transformation


The term “introduction” or “transformation” as referred to herein encompasses the transfer of an exogenous polynucleotide into a host cell, irrespective of the method used for transfer. Plant tissue capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, may be transformed with a genetic construct of the present invention and a whole plant regenerated there from. The particular tissue chosen will vary depending on the clonal propagation systems available for, and best suited to, the particular species being transformed. Exemplary tissue targets include leaf disks, pollen, embryos, cotyledons, hypocotyls, megagametophytes, callus tissue, existing meristematic tissue (e.g., apical meristem, axillary buds, and root meristems), and induced meristem tissue (e.g., cotyledon meristem and hypocotyl meristem). The polynucleotide may be transiently or stably introduced into a host cell and may be maintained non-integrated, for example, as a plasmid. Alternatively, it may be integrated into the host genome. The resulting transformed plant cell may then be used to regenerate a transformed plant in a manner known to persons skilled in the art.


The transfer of foreign genes into the genome of a plant is called transformation. Transformation of plant species is now a fairly routine technique. Advantageously, any of several transformation methods may be used to introduce the gene of interest into a suitable ancestor cell. The methods described for the transformation and regeneration of plants from plant tissues or plant cells may be utilized for transient or for stable transformation. Transformation methods include the use of liposomes, electroporation, chemicals that increase free DNA uptake, injection of the DNA directly into the plant, particle gun bombardment, transformation using viruses or pollen and microprojection. Methods may be selected from the calcium/polyethylene glycol method for protoplasts (Krens, F. A. et al., (1982) Nature 296, 72-74; Negrutiu I et al. (1987) Plant Mol Biol 8: 363-373); electroporation of protoplasts (Shillito R. D. et al. (1985) Bio/Technol 3, 1099-1102); microinjection into plant material (Crossway A et al., (1986) Mol. Gen Genet 202: 179-185); DNA or RNA-coated particle bombardment (Klein T M et al., (1987) Nature 327: 70) infection with (non-integrative) viruses and the like. Transgenic plants, including transgenic crop plants, are preferably produced via Agrobacterium-mediated transformation. An advantageous transformation method is the transformation in planta. To this end, it is possible, for example, to allow the agrobacteria to act on plant seeds or to inoculate the plant meristem with agrobacteria. It has proved particularly expedient in accordance with the invention to allow a suspension of transformed agrobacteria to act on the intact plant or at least on the flower primordia. The plant is subsequently grown on until the seeds of the treated plant are obtained (Clough and Bent, Plant J. (1998) 16, 735-743). Methods for Agrobacterium-mediated transformation of rice include well known methods for rice transformation, such as those described in any of the following: European patent application EP 1198985 A1, Aldemita and Hodges (Planta 199: 612-617, 1996); Chan et al. (Plant Mol Biol 22 (3): 491-506, 1993), Hiei et al. (Plant J 6 (2): 271-282, 1994), which disclosures are incorporated by reference herein as if fully set forth. In the case of corn transformation, the preferred method is as described in either Ishida et al. (Nat. Biotechnol 14(6): 745-50, 1996) or Frame et al. (Plant Physiol 129(1): 13-22, 2002), which disclosures are incorporated by reference herein as if fully set forth. Said methods are further described by way of example in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds. S. D. Kung and R. Wu, Academic Press (1993) 128-143 and in Potrykus Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991) 205-225). The nucleic acids or the construct to be expressed is preferably cloned into a vector, which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984) 8711). Agrobacteria transformed by such a vector can then be used in known manner for the transformation of plants, such as plants used as a model, like Arabidopsis (Arabidopsis thaliana is within the scope of the present invention not considered as a crop plant), or crop plants such as, by way of example, tobacco plants, for example by immersing bruised leaves or chopped leaves in an agrobacterial solution and then culturing them in suitable media. The transformation of plants by means of Agrobacterium tumefaciens is described, for example, by Höfgen and Willmitzer in Nucl. Acid Res. (1988) 16, 9877 or is known inter alia from F. F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, eds. S. D. Kung and R. Wu, Academic Press, 1993, pp. 15-38.


In addition to the transformation of somatic cells, which then have to be regenerated into intact plants, it is also possible to transform the cells of plant meristems and in particular those cells which develop into gametes. In this case, the transformed gametes follow the natural plant development, giving rise to transgenic plants. Thus, for example, seeds of Arabidopsis are treated with agrobacteria and seeds are obtained from the developing plants of which a certain proportion is transformed and thus transgenic [Feldman, K A and Marks M D (1987). Mol Gen Genet 208:274-289; Feldmann K (1992). In: C Koncz, N-H Chua and J Shell, eds, Methods in Arabidopsis Research. Word Scientific, Singapore, pp. 274-289]. Alternative methods are based on the repeated removal of the inflorescences and incubation of the excision site in the center of the rosette with transformed agrobacteria, whereby transformed seeds can likewise be obtained at a later point in time (Chang (1994). Plant J. 5: 551-558; Katavic (1994). Mol Gen Genet, 245: 363-370). However, an especially effective method is the vacuum infiltration method with its modifications such as the “floral dip” method. In the case of vacuum infiltration of Arabidopsis, intact plants under reduced pressure are treated with an agrobacterial suspension [Bechthold, N (1993). C R Acad Sci Paris Life Sci, 316: 1194-1199], while in the case of the “floral dip” method the developing floral tissue is incubated briefly with a surfactant-treated agrobacterial suspension [Clough, S J and Bent A F (1998) The Plant J. 16, 735-743]. A certain proportion of transgenic seeds are harvested in both cases, and these seeds can be distinguished from non-transgenic seeds by growing under the above-described selective conditions. In addition the stable transformation of plastids is of advantages because plastids are inherited maternally is most crops reducing or eliminating the risk of transgene flow through pollen. The transformation of the chloroplast genome is generally achieved by a process which has been schematically displayed in Klaus et al., 2004 [Nature Biotechnology 22 (2), 225-229]. Briefly the sequences to be transformed are cloned together with a selectable marker gene between flanking sequences homologous to the chloroplast genome. These homologous flanking sequences direct site specific integration into the plastome. Plastidal transformation has been described for many different plant species and an overview is given in Bock (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol. 2001 Sep 21; 312 (3):425-38 or Maliga, P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol. 21, 20-28. Further biotechnological progress has recently been reported in form of marker free plastid transformants, which can be produced by a transient co-integrated maker gene (Klaus et al., 2004, Nature Biotechnology 22(2), 225-229).


T-DNA Activation Tagging


T-DNA activation tagging (Hayashi et al. Science (1992) 1350-1353), involves insertion of T-DNA, usually containing a promoter (may also be a translation enhancer or an intron), in the genomic region of the gene of interest or 10 kb up- or downstream of the coding region of a gene in a configuration such that the promoter directs expression of the targeted gene. Typically, regulation of expression of the targeted gene by its natural promoter is disrupted and the gene falls under the control of the newly introduced promoter. The promoter is typically embedded in a T-DNA. This T-DNA is randomly inserted into the plant genome, for example, through Agrobacterium infection and leads to modified expression of genes near the inserted T-DNA. The resulting transgenic plants show dominant phenotypes due to modified expression of genes close to the introduced promoter.


TILLING


The term “TILLING” is an abbreviation of “Targeted Induced Local Lesions In Genomes” and refers to a mutagenesis technology useful to generate and/or identify nucleic acids encoding proteins with modified expression and/or activity. TILLING also allows selection of plants carrying such mutant variants. These mutant variants may exhibit modified expression, either in strength or in location or in timing (if the mutations affect the promoter for example). These mutant variants may exhibit higher activity than that exhibited by the gene in its natural form. TILLING combines high-density mutagenesis with high-throughput screening methods. The steps typically followed in TILLING are: (a) EMS mutagenesis (Redei G P and Koncz C (1992) In Methods in Arabidopsis Research, Koncz C, Chua N H, Schell J, eds. Singapore, World Scientific Publishing Co, pp. 16-82; Feldmann et al., (1994) In Meyerowitz E M, Somerville C R, eds, Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp 137-172; Lightner J and Caspar T (1998) In J Martinez-Zapater, J Salinas, eds, Methods on Molecular Biology, Vol. 82. Humana Press, Totowa, N.J., pp 91-104); (b) DNA preparation and pooling of individuals; (c) PCR amplification of a region of interest; (d) denaturation and annealing to allow formation of heteroduplexes; (e) DHPLC, where the presence of a heteroduplex in a pool is detected as an extra peak in the chromatogram; (f) identification of the mutant individual; and (g) sequencing of the mutant PCR product. Methods for TILLING are well known in the art (McCallum et al., (2000) Nat Biotechnol 18: 455-457; reviewed by Stemple (2004) Nat Rev Genet 5(2): 145-50).


Homologous Recombination


Homologous recombination allows introduction in a genome of a selected nucleic acid at a defined selected position. Homologous recombination is a standard technology used routinely in biological sciences for lower organisms such as yeast or the moss Physcomitrella. Methods for performing homologous recombination in plants have been described not only for model plants (Offringa et al. (1990) EMBO J 9(10): 3077-84) but also for crop plants, for example rice (Terada et al. (2002) Nat Biotech 20(10): 1030-4; lida and Terada (2004) Curr Opin Biotech 15(2): 132-8), and approaches exist that are generally applicable regardless of the target organism (Miller et al, Nature Biotechnol. 25, 778-785, 2007).


Yield


The term “yield” in general means a measurable produce of economic value, typically related to a specified crop, to an area, and to a period of time. Individual plant parts directly contribute to yield based on their number, size and/or weight, or the actual yield is the yield per square meter for a crop and year, which is determined by dividing total production (includes both harvested and appraised production) by planted square meters. The term “yield” of a plant may relate to vegetative biomass (root and/or shoot biomass), to reproductive organs, and/or to propagules (such as seeds) of that plant.


Early Vigour


“Early vigour” refers to active healthy well-balanced growth especially during early stages of plant growth, and may result from increased plant fitness due to, for example, the plants being better adapted to their environment (i.e. optimizing the use of energy resources and partitioning between shoot and root). Plants having early vigour also show increased seedling survival and a better establishment of the crop, which often results in highly uniform fields (with the crop growing in uniform manner, i.e. with the majority of plants reaching the various stages of development at substantially the same time), and often better and higher yield. Therefore, early vigour may be determined by measuring various factors, such as thousand kernel weight, percentage germination, percentage emergence, seedling growth, seedling height, root length, root and shoot biomass and many more.


Increase/Improve/Enhance


The terms “increase”, “improve” or “enhance” are interchangeable and shall mean in the sense of the application at least a 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%, preferably at least 15% or 20%, more preferably 25%, 30%, 35% or 40% more yield and/or growth in comparison to control plants as defined herein.


Seed Yield


Increased seed yield may manifest itself as one or more of the following: a) an increase in seed biomass (total seed weight) which may be on an individual seed basis and/or per plant and/or per square meter; b) increased number of flowers per plant; c) increased number of (filled) seeds; d) increased seed filling rate (which is expressed as the ratio between the number of filled seeds divided by the total number of seeds); e) increased harvest index, which is expressed as a ratio of the yield of harvestable parts, such as seeds, divided by the total biomass; and f) increased thousand kernel weight (TKW), which is extrapolated from the number of filled seeds counted and their total weight. An increased TKW may result from an increased seed size and/or seed weight, and may also result from an increase in embryo and/or endosperm size.


An increase in seed yield may also be manifested as an increase in seed size and/or seed volume. Furthermore, an increase in seed yield may also manifest itself as an increase in seed area and/or seed length and/or seed width and/or seed perimeter. Increased yield may also result in modified architecture, or may occur because of modified architecture.


Greenness Index


The “greenness index” as used herein is calculated from digital images of plants. For each pixel belonging to the plant object on the image, the ratio of the green value versus the red value (in the RGB model for encoding color) is calculated. The greenness index is expressed as the percentage of pixels for which the green-to-red ratio exceeds a given threshold. Under normal growth conditions, under salt stress growth conditions, and under reduced nutrient availability growth conditions, the greenness index of plants is measured in the last imaging before flowering. In contrast, under drought stress growth conditions, the greenness index of plants is measured in the first imaging after drought.


Plant


The term “plant” as used herein encompasses whole plants, ancestors and progeny of the plants and plant parts, including seeds, shoots, stems, leaves, roots (including tubers), flowers, and tissues and organs, wherein each of the aforementioned comprise the gene/nucleic acid of interest. The term “plant” also encompasses plant cells, suspension cultures, callus tissue, embryos, meristematic regions, gametophytes, sporophytes, pollen and microspores, again wherein each of the aforementioned comprises the gene/nucleic acid of interest.


Plants that are particularly useful in the methods of the invention include all plants which belong to the superfamily Viridiplantae, in particular monocotyledonous and dicotyledonous plants including fodder or forage legumes, ornamental plants, food crops, trees or shrubs selected from the list comprising Acer spp., Actinidia spp., Abelmoschus spp., Agave sisalana, Agropyron spp., Agrostis stolonifera, Allium spp., Amaranthus spp., Ammophila arenaria, Ananas comosus, Annona spp., Apium graveolens, Arachis spp, Artocarpus spp., Asparagus officinalis, Avena spp. (e.g. Avena sativa, Avena fatua, Avena byzantina, Avena fatua var. sativa, Avena hybrida), Averrhoa carambola, Bambusa sp., Benincasa hispida, Bertholletia excelsea, Beta vulgaris, Brassica spp. (e.g. Brassica napus, Brassica rapa ssp. [canola, oilseed rape, turnip rape]), Cadaba farinosa, Camellia sinensis, Canna indica, Cannabis sativa, Capsicum spp., Carex elata, Carica papaya, Carissa macrocarpa, Carya spp., Carthamus tinctorius, Castanea spp., Ceiba pentandra, Cichorium endivia, Cinnamomum spp., Citrullus lanatus, Citrus spp., Cocos spp., Coffea spp., Colocasia esculenta, Cola spp., Corchorus sp., Coriandrum sativum, Corylus spp., Crataegus spp., Crocus sativus, Cucurbita spp., Cucumis spp., Cynara spp., Daucus carota, Desmodium spp., Dimocarpus longan, Dioscorea spp., Diospyros spp., Echinochloa spp., Elaeis (e.g. Elaeis guineensis, Elaeis oleifera), Eleusine coracana, Erianthus sp., Eriobotrya japonica, Eucalyptus sp., Eugenia uniflora, Fagopyrum spp., Fagus spp., Festuca arundinacea, Ficus carica, Fortunella spp., Fragaria spp., Ginkgo biloba, Glycine spp. (e.g. Glycine max, Soja hispida or Soja max), Gossypium hirsutum, Helianthus spp. (e.g. Helianthus annuus), Hemerocaffis fulva, Hibiscus spp., Hordeum spp. (e.g. Hordeum vulgare), Ipomoea batatas, Juglans spp., Lactuca sativa, Lathyrus spp., Lens culinaris, Linum usitatissimum, Litchi chinensis, Lotus spp., Luffa acutangula, Lupinus spp., Luzula sylvatica, Lycopersicon spp. (e.g. Lycopersicon esculentum, Lycopersicon lycopersicum, Lycopersicon pyriforme), Macrotyloma spp., Malus spp., Malpighia emarginata, Mammea americana, Mangifera indica, Manihot spp., Manilkara zapota, Medicago sativa, Melilotus spp., Mentha spp., Miscanthus sinensis, Momordica spp., Morus nigra, Musa spp., Nicotiana spp., Olea spp., Opuntia spp., Ornithopus spp., Oryza spp. (e.g. Oryza sativa, Oryza latifolia), Panicum miliaceum, Panicum virgatum, Passiflora edulis, Pastinaca sativa, Pennisetum sp., Persea spp., Petroselinum crispum, Phalaris arundinacea, Phaseolus spp., Phleum pratense, Phoenix spp., Phragmites australis, Physalis spp., Pinus spp., Pistacia vera, Pisum spp., Poa spp., Populus spp., Prosopis spp., Prunus spp., Psidium spp., Punica granatum, Pyrus communis, Quercus spp., Raphanus sativus, Rheum rhabarbarum, Ribes spp., Ricinus communis, Rubus spp., Saccharum spp., Salix sp., Sambucus spp., Secale cereale, Sesamum spp., Sinapis sp., Solanum spp. (e.g. Solanum tuberosum, Solanum integrifolium or Solanum lycopersicum), Sorghum bicolor, Spinacia spp., Syzygium spp., Tagetes spp., Tamarindus indica, Theobroma cacao, Trifolium spp., Triticosecale rimpaui, Triticum spp. (e.g. Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triticum sativum or Triticum vulgare), Tropaeolum minus, Tropaeolum majus, Vaccinium spp., Vicia spp., Vigna spp., Viola odorata, Vitis spp., Zea mays, Zizania palustris, Ziziphus spp., amongst others.


DETAILED DESCRIPTION OF THE INVENTION

Surprisingly, it has now been found that modulating expression in a plant of a nucleic acid encoding a DOF-C2 domain transcription factor or a MYB7 polypeptide gives plants having enhanced yield-related traits relative to control plants. According to a first embodiment, the present invention provides a method for enhancing yield-related traits in plants relative to control plants, comprising modulating expression in a plant of a nucleic acid encoding a DOF-C2 domain transcription factor polypeptide or a MYB7 polypeptide.


The expressions “enhancing/enhance(d) yield-related traits” and “improving/improved yield-related traits” have the equivalent meanings and are used inter-exchangably herein.


The expressions “improving/improve(d) yield-related traits” and “improving/improve(d) plant growth characteristics” have the equivalent meanings and are used inter-exchangably herein.


A preferred method for modulating (preferably, increasing) expression of a nucleic acid encoding a DOF-C2 domain transcription factor or a MYB7 polypeptide is by introducing and expressing in a plant a nucleic acid encoding a DOF-C2 domain transcription factor or a MYB7 polypeptide respectively .


Any reference hereinafter to a “protein useful in the methods of the invention” is taken to mean a DOF-C2 domain transcription factor polypeptide or a MYB7 polypeptide as defined herein. Any reference hereinafter to a “nucleic acid useful in the methods of the invention” is taken to mean a nucleic acid capable of encoding such a DOF-C2 domain transcription factor polypeptide or such a MYB7 polypeptide. The nucleic acid to be introduced into a plant (and therefore useful in performing the methods of the invention) is any nucleic acid encoding the type of protein which will now be described, hereafter also named “DOF-C2 transcription factor nucleic acid” or “DOF-C2 transcription factor gene” or “MYB7 nucleic acid” or “MYB7 gene”.


The term “DOF-C2 transcription factor polypeptide” as defined herein refers to any polypeptide comprising feature (i), and feature (ii) as follow:

    • (i) A DOF domain having in increasing order of preference at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 96%, 97%, 98%, 99% or more sequence identity to either the DOF domain sequences represented by SEQ ID NO: 35 or SEQ ID NO: 36; and
    • (ii) Motif I: ERKARPQKDQ (SEQ ID NO: 37) having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference five, four, three, two or one non-conservative amino acid substitutition(s); and/or
      • Motif II: YWSGMI (SEQ ID NO: 38) having zero, one or more conservative amino acid subtitutions and/or having in increasing order of preference three, two or one non-conservative amino acid substitutition(s).


The terms “DOF-C2 transcription factor polypeptide”, “DOF-C2 transcription factor protein”, “DOF-C2 transcription factor”, “DOF-C2 polypeptide” and “DOF-C2 protein” as used herein have the same meaning and are inter-exchangeable.


Additionally, DOF-C2 polypeptides may comprise one, two, three, four or all of the following motifs:

    • Motif III: RLLFPFEDLKPLVS (SEQ ID NO: 39) having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference five, four, three, two or one non-conservative amino acid substitutition(s); and/or
    • Motif IV: INVKPMEEI (SEQ ID NO: 40) having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference four, three, two or one non-conservative amino acid substitutition(s); and/or;
    • Motif V: KNPKLLHEGAQDLNLAFPHH (SEQ ID NO: 41) having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference nine, eight, seven, six, five, four, three, two or one non-conservative amino acid substitutition(s); and/or
    • Motif VI: MELLRSTGCYM (SEQ ID NO: 42) having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference five, four, three, two or one non-conservative amino acid substitutition(s); and/or
    • Motif VII: MMDSNSVLYSSLGFPTMPDYK (SEQ ID NO: 43 having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference nine, eight, seven, six, five, four, three, two or one non-conservative amino acid substitutition(s).


A preferred polypeptide useful in the methods of the invention comprises a Dof domain as described in feature (i) and comprises both Motif I and II. More preferably, comprises Motif I, Motif II and Motif III. Further preferably the polypeptide comprises also Motif III. Further preferably the polypeptide comprises also Motif IV. Most preferably the polypeptide comprises a Dof domain as described in feature (i) and Motif I, Motif II, Motif III, IV and V.


SEQ ID NO: 2 (encoded by SEQ ID NO: 1) is an example of a DOF-C2 transcription factor polypeptide comprising features (i) and (ii) as defined hereinabove, i.e. having at least 60% sequence identity to either the Dof domain represented by SEQ ID NO: 35 or SEQ ID NO: 36; and Motif I and in this case additionally comprising Motif II. Further examples of DOF-C2 transcription factor polypeptides comprising features (i) and (ii) as defined hereinabove are given in Table A1.


The term “table A” used in this specification is to be taken to specify the content of table A1 and/or A2. The term “table A1” used in this specification is to be taken to specify the content of table A1. The term “table A2” used in this specification is to be taken to specify the content of table A2. In one preferred embodiment, the term “table A” means table A1. In one preferred embodiment, the term “table A” means table A2.


The term “table B” used in this specification is to be taken to specify the content of table B1 and/or B2. The term “table B1” used in this specification is to be taken to specify the content of table B1. The term “table B2” used in this specification is to be taken to specify the content of table B2. In one preferred embodiment, the term “table B” means table B1. In one preferred embodiment, the term “table B” means table B2.


The term “table C” used in this specification is to be taken to specify the content of table C1 and/or C2. The term “table C1” used in this specification is to be taken to specify the content of table C1. The term “table C2” used in this specification is to be taken to specify the content of table C2. In one preferred embodiment, the term “table C” means table C1. In one preferred embodiment, the term “table C” means table C2.


The term “table D” used in this specification is to be taken to specify the content of table D1 and/or D2. The term “table D1” used in this specification is to be taken to specify the content of table D1. The term “table D2” used in this specification is to be taken to specify the content of table D2. In one preferred embodiment, the term “table D” means table D1. In one preferred embodiment, the term “table D” means table D2.


The term “table 2” used in this specification is to be taken to specify the content of table 2A and/or table 2B and/or table 2C. The term “table 2A” used in this specification is to be taken to specify the content of table 2A. The term “table 2B” used in this specification is to be taken to specify the content of table 2B. The term “table 2C” used in this specification is to be taken to specify the content of table 2C. In one preferred embodiment, the term “table 2” means table 2A. In one preferred embodiment, the term “table 2” means table 2B. In one preferred embodiment, the term “table 2” means table 2C.


The polypeptides given in Table A1 are examples of “paralogues and orthologues” of a DOF-C2 transcription factor polypeptide represented by SEQ ID NO: 2 from various plant origins belonging to the major orthologous group Cc, subgroup C2 and C2.1 and C2.2 as defined in FIG. 2 and FIG. 3 of Lijavetzky et al. 2004. Preferred polypeptides useful for practising the invention belong to the orthologous group C2 (which comprises C2 of arabidopsis and C2.1 and C2.2 of rice) as defined by Lijavetzky et al. 2004. A preferred DOF-C2 polypeptide of the invention is a paralog or an ortholog of any of the polypeptides given in Table A1.


Alternatively, the homologue of DOF-C2 transcription factor polypeptide has in increasing order of preference at least 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity to the amino acid represented by SEQ ID NO: 2, and comprises feature (i), and feature (ii) as follows:

    • (i) A DOF domain having in increasing order of preference at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 96%, 97%, 98%, 99% or more sequence identity to either the DOF domains represented by SEQ ID NO: 35 or SEQ ID NO: 36; and
    • (ii) Motif I: ERKARPQKDQ (SEQ ID NO: 37) having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference five, four, three, two or one non-conservative amino acid substitutition(s); and/or
      • Motif II: YWSGMI (SEQ ID NO: 38) having zero, one or more conservative amino acid subtitutions and/or having in increasing order of preference three, two or one non-conservative amino acid substitutition(s).


A “MYB7 polypeptide” as defined herein refers to any R2R3 MYB polypeptide comprising two SANT domains (SMART entry SM00717, Myb_DNA-binding domain (Pfam entry PF00249), Homeodomain_like (Superfamily entry SSF46689)), provided that the R2R3 MYB polypeptide is not OsMYB4 encoded by SEQ ID NO: 141 or having the sequence of SEQ ID NO: 142.


In addition, a “MYB7 polypeptide” furthermore comprises four or more of Motifs 1 to 7, preferably five or more of Motifs 1 to 7, more preferably six or more of Motifs 1 to 7, most preferably all of Motifs 1 to 7.


Motif 1 (SEQ ID NO: 55): (T/S)X(E/Q/D)EDXXLXX(Y/H)IXXXG; wherein X in position 2 can be any amino acid but preferably one of K, Q, A, P, T, I, S, more preferably K or Q; wherein X in position 6 can be any amino acid but preferably one of Q, E, D, A, S, more preferably Q, E, or D; wherein X in position 7 can be any amino acid but preferably one of R, L, K, M, I, more preferably R, L or K; wherein X in position 9 can be any amino acid but preferably one of I, V, T, G, L, A, more preferably I, V, or T; wherein X in position 10 can be any amino acid but preferably one of N, D, A, S, K, G, more preferably N, D, A, or S; wherein X in position 13 can be any amino acid but preferably one of R, K, Q, E, T, N, more preferably R, K, Q or E; wherein X in position 14 can be any amino acid but preferably one of V, K, A, S, T, E, N, more preferably V, K, A or S; and wherein X in position 15 can be any amino acid but preferably one of Y, H, N, D, more preferably H or Y.


Motif 2 (SEQ ID NO: 56): (EN/P/H/L)(G/S)(C/N/S/R/G)W(R/N)(S/T/A/L/N)(L/I)P(K/R/T/A/S)(A/S/K/N/L/R). Preferably motif 2 is EG(C/N)WR(S/T/A)LP(K/R)(A/S).


Motif 3 (SEQ ID NO: 57): RCGKSCRLRWXNYLRP, wherein X can be any amino acid, preferably one of I, M, L, or T.


Motif 4 (SEQ ID NO: 58): RTDNE(IN)KN(Y/H/F)WN. Preferably motif 4 is RTDNEIKNYWN


Motif 5 (SEQ ID NO: 59): (T/S)(H/N/R)(I/V/L)(K/R/S)(R/K)(K/R)(L/I)XXXG(I/L/T)(D/T)(P/L), wherein X in position 8 can be any amino acid, preferably one of I, L, V, T, A, R, more preferably I, L, V or T; wherein X in position 9 can be any amino acid, preferably one of S, N, R, G, A, V, K, Q, preferably one of S, N, R, G or A; wherein X on position 10 can be any amino acid, preferably one of R, K, Q, M, T. Preferably motif 5 is TH(I/V/L)(K/R)(R/K)(K/R)(L/I)XXXG(I/L)DP.


Motif 6 (SEQ ID NO: 60): X(P/L/Q/W)(D/E/V)(L/I)NL(E/D)LX(I/L/V)(S/D/N/G)(L/P/I)(P/S/A/V/T), wherein X in position 1 can be any amino acid, preferably one of F, G, C, L, D or Y and wherein X in position 9 can be any amino acid, preferably one of R, K, G, T, C, D, S.


Motif 7 (SEQ ID NO: 61): (F/Y/C/D)(R/S/T)(S/T/G/R)(L/I)(E/P)(M/T)K


Alternatively, the homologue of a MYB7 protein has in increasing order of preference at least 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity to the amino acid represented by SEQ ID NO: 50, provided that the homologous protein comprises conserved motifs as outlined above and provided that the homologue is not OsMYB4 as given in SEQ ID NO: 142.


The overall sequence identity is determined using a global alignment algorithm, such as the Needleman Wunsch algorithm in the program GAP (GCG Wisconsin Package, Accelrys), preferably with default parameters. Compared to overall sequence identity, the sequence identity will generally be higher when only conserved domains or motifs are considered. Local alignment algorithms, such as BLAST may be used to determine sequence similarity in a conserved region of polypeptide, such as a DOF domain in a DOF-C2 transcription factor polypeptide.


Preferably, the polypeptide sequence which when used in the construction of a phylogenetic tree, such as the one depicted in Figure X, clusters within group C2 which comprises the amino acid sequence represented by SEQ ID NO: 2 rather than with any other group.


The term “domain” and “motif' is defined in the “definitions” section herein. Specialist databases exist for the identification of domains, for example, SMART (Schultz et al. (1998) Proc. Natl. Acad. Sci. USA 95, 5857-5864; Letunic et al. (2002) Nucleic Acids Res 30, 242-244), InterPro (Mulder et al., (2003) Nucl. Acids. Res. 31, 315-318), Prosite (Bucher and Bairoch (1994), A generalized profile syntax for biomolecular sequences motifs and its function in automatic sequence interpretation. (In) ISMB-94; Proceedings 2nd International Conference on Intelligent Systems for Molecular Biology. Altman R., Brutlag D., Karp P., Lathrop R., Searls D., Eds., pp 53-61, AAAI Press, Menlo Park; Hulo et al., Nucl. Acids. Res. 32:D134-D137, (2004)), or Pfam (Bateman et al., Nucleic Acids Research 30(1): 276-280 (2002)). A set of tools for in silico analysis of protein sequences is available on the ExPASy proteomics server (Swiss Institute of Bioinformatics (Gasteiger et al., ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Res. 31:3784-3788(2003)). Domains or motifs may also be identified using routine techniques, such as by sequence alignment.


Methods for the alignment of sequences for comparison are well known in the art, such methods include GAP, BESTFIT, BLAST, FASTA and TFASTA. GAP uses the algorithm of Needleman and Wunsch ((1970) J Mol Biol 48: 443-453) to find the global (i.e. spanning the complete sequences) alignment of two sequences that maximizes the number of matches and minimizes the number of gaps. The BLAST algorithm (Altschul et al. (1990) J Mol Biol 215: 403-10) calculates percent sequence identity and performs a statistical analysis of the similarity between the two sequences. The software for performing BLAST analysis is publicly available through the National Centre for Biotechnology Information (NCBI). Homologues may readily be identified using, for example, the ClustalW multiple sequence alignment algorithm (version 1.83), with the default pairwise alignment parameters, and a scoring method in percentage. Global percentages of similarity and identity may also be determined using one of the methods available in the MatGAT software package (Campanella et al., BMC Bioinformatics. 2003 Jul. 10; 4:29. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences.). Minor manual editing may be performed to optimise alignment between conserved motifs, as would be apparent to a person skilled in the art. Furthermore, instead of using full-length sequences for the identification of homologues, specific domains may also be used. The sequence identity values may be determined over the entire nucleic acid or amino acid sequence or over selected domains or conserved motif(s), using the programs mentioned above using the default parameters. For local alignments, the Smith-Waterman algorithm is particularly useful (Smith T F, Waterman M S (1981) J. Mol. Biol 147(1);195-7).


Alternatively, a DOF-C2 domain transcription factor polypeptide useful in the methods of the invention may be identified by performing a sequence comparison with known DOF-C2 domain transcription factor polypeptide and establishing the sequence similarity. The sequences may be aligned using any of the methods well known in the art such as Blast (for local alignment) or BestFit (for global alignment) algorithms. The probability for the alignment to occur with a given sequence is taken as basis for identifying similar polypeptides. A parameter that is typically used to represent such probability is called e-value. The E-value is a measure of the reliability of the S score. The S score is a measure of the similarity of the query to the sequence shown. The e-value describes how often a given S score is expected to occur at random. The e-value cut-off may be as high as 1.0. The typical threshold for a trusted (true) hit showing significant sequence homology to the query sequence and resulting from a BLAST search is lower than 1.e-5 (e elevated to the 5th potential), in some instance an even lower threshold is taken, for example 1.e-10 (e elevated to the 10th potential) or even lower.


Preferably a DOF-C2 domain transcription factor polypeptide useful in the methods of the invention have in increasing order of preference an e-value lower than 1.e-10, 1.e-15, 1.e-20, 1.e-25, 1.e-50, 1.e-75, 1.e-100, 1.e-150, 1.e-200, 1.e-300, 1.e-400, and 1.e-500 in an alignment with any of the polypeptides of Table A1.


It should be understood that a nucleic acids encoding a DOF-C2 domain transcription factor polypeptide according to the invention it is not restricted to sequences of natural origin. The nucleic acid may encode a “de novo” designed DOF-C2 domain transcription factor polypeptide.


Furthermore, DOF-C2 transcription factor polypeptides typically have DNA-binding activity and have a nuclear localization signal and an activation domain. The presence of an activation domain and DNA-binding activity may easily be determined by a person skilled in the art using routine techniques and procedures. Experimental procedures to measure DNA binding activities of Dof domain polypeptides have been described (Umemura et al. 2004; Yanagisawa, S. and Sheen, J. (1998) Plant Cell 10: 75-89; Plesch, G., Ehrhardt, T. and Mueller-Roeber, B. (2001) Plant J. 28: 455-464).


Preferred DOF-C2 transcription factor polypeptides useful in the methods of the invention are able to bind to DNA framents and/or gene promoter regions comprising the sequence (A/T)AAAG (SEQ ID NO: 44) which represents the recognized DNA binding core motif for Dof domains.


In addition, DOF-C2 domain transcription factor polypeptides, when expressed in rice according to the methods of the present invention as outlined in Examples 5 and 6, give plants having increased (or enhanced) yield-related traits, in particular the total weight of the seeds, the total number of seeds per plant, the number of filled seeds, the number of flowers per panicle and the harvest index.


The present invention is illustrated by transforming plants with the nucleic acid sequence represented by SEQ ID NO: 1, encoding the polypeptide sequence of SEQ ID NO: 2. However, performance of the invention is not restricted to these sequences; the methods of the invention may advantageously be performed using any DOF-C2 domain transcription factor-encoding nucleic acid or DOF-C2 domain transcription factor polypeptide as defined herein.


Furthermore, MYB7 polypeptides (at least in their native form) typically have DNA-binding activity and an activation domain. A person skilled in the art may easily determine the presence of an activation domain and DNA-binding activity using routine techniques and procedures. Proteins interacting with MYB7 polypeptides (for example in transcriptional complexes) may easily be identified using standard techniques for a person skilled in the art, such as two-hybrid interaction. It is postulated that MYB7 proteins interact with BHLH transcription factors (Zimmerman et al., Plant Journal 40, 22-34, 2004).


In addition, MYB7 polypeptides, when expressed in rice according to the methods of the present invention as outlined in Examples 8 and 9, give plants having enhanced yield related traits, in particular increased biomass and/or increased emergence vigour.


The present invention is illustrated by transforming plants with the nucleic acid sequence represented by SEQ ID NO: 49, encoding the polypeptide sequence of SEQ ID NO: 50. However, performance of the invention is not restricted to these sequences; the methods of the invention may advantageously be performed using any MYB7-encoding nucleic acid or MYB7 polypeptide as defined herein.


Examples of nucleic acids encoding DOF-C2 domain transcription factor or MYB7 polypeptides are given in Table A1 of Example 1 herein. Such nucleic acids are useful in performing the methods of the invention. The amino acid sequences given in Table A1 of Example 1 are example sequences of orthologues and paralogues of the DOF-C2 domain transcription factor polypeptide represented by SEQ ID NO: 2 or of the MYB7 polypeptide represented by SEQ ID NO: 50; the terms “orthologues” and “paralogues” being as defined herein. Further orthologues and paralogues may readily be identified by performing a so-called reciprocal blast search. Typically, this involves a first BLAST involving BLASTing a query sequence (for example using any of the sequences listed in Table A of Example 1) against any sequence database, such as the publicly available NCBI database. BLASTN or TBLASTX (using standard default values) are generally used when starting from a nucleotide sequence, and BLASTP or TBLASTN (using standard default values) when starting from a protein sequence.


The BLAST results may optionally be filtered. The full-length sequences of either the filtered results or non-filtered results are then BLASTed back (second BLAST) against sequences from the organism from which the query sequence is derived (where the query sequence is in one embodiment SEQ ID NO: 1 or SEQ ID NO: 2 and in another embodiment SEQ ID NO: 49 or SEQ ID NO: 50, the second BLAST would therefore be against Arabidopsis thaliana sequences). The results of the first and second BLASTs are then compared. A paralogue is identified if a high-ranking hit from the first blast is from the same species as from which the query sequence is derived, a BLAST back then ideally results in the query sequence amongst the highest hits; an orthologue is identified if a high-ranking hit in the first BLAST is not from the same species as from which the query sequence is derived, and preferably results upon BLAST back in the query sequence being among the highest hits.


High-ranking hits are those having a low E-value. The lower the E-value, the more significant the score (or in other words the lower the chance that the hit was found by chance). Computation of the E-value is well known in the art. In addition to E-values, comparisons are also scored by percentage identity. Percentage identity refers to the number of identical nucleotides (or amino acids) between the two compared nucleic acid (or polypeptide) sequences over a particular length. In the case of large families, ClustalW may be used, followed by a neighbour joining tree, to help visualize clustering of related genes and to identify orthologues and paralogues.


Nucleic acid variants may also be useful in practising the methods of the invention. Examples of such variants include nucleic acids encoding homologues and derivatives of any one of the amino acid sequences given in Table A of Example 1, the terms “homologue” and “derivative” being as defined herein. Also useful in the methods of the invention are nucleic acids encoding homologues and derivatives of orthologues or paralogues of any one of the amino acid sequences given in Table A of Example 1. Homologues and derivatives useful in the methods of the present invention have substantially the same biological and functional activity as the unmodified protein from which they are derived.


Further nucleic acid variants useful in practising the methods of the invention include portions of nucleic acids encoding DOF-C2 domain transcription factor or MYB7 polypeptides, nucleic acids hybridising to nucleic acids encoding DOF-C2 domain transcription factor or MYB7 polypeptides, splice variants of nucleic acids encoding DOF-C2 domain transcription factor or MYB7 polypeptides, allelic variants of nucleic acids encoding DOF-C2 domain transcription factor or MYB7 polypeptides and variants of nucleic acids encoding DOF-C2 domain transcription factor or MYB7 polypeptides obtained by gene shuffling. The terms hybridising sequence, splice variant, allelic variant and gene shuffling are as described herein.


The term “portion” as defined herein refers to a piece of DNA encoding a polypeptide comprising feature (i), and feature (ii) as follow:

    • (i) A DOF domain having in increasing order of preference at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 96%, 97%, 98%, 99% or more sequence identity to either the DOF domain represented by SEQ ID NO: 35 or SEQ ID NO: 36; and
    • (ii) Motif I: ERKARPQKDQ (SEQ ID NO: 37) having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference five, four, three, two or one non-conservative amino acid substitutition(s); and/or
      • Motif II: YWSGMI (SEQ ID NO: 38) having zero, one or more conservative amino acid subtitutions and/or having in increasing order of preference three, two or one non-conservative amino acid substitutition(s).


Additionally the polypeptide in the “portion” above may may comprise any one, two, three, four or all of the following motifs:

    • Motif III: RLLFPFEDLKPLVS (SEQ ID NO: 39) having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference five, four, three, two or one non-conservative amino acid substitutition(s); and/or
    • Motif IV: INVKPMEEI (SEQ ID NO: 40) having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference four, three, two or one non-conservative amino acid substitutition(s); and/or;
    • Motif V: KNPKLLHEGAQDLNLAFPHH (SEQ ID NO: 41) having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference nine, eight, seven, six, five, four, three, two or one non-conservative amino acid substitutition(s); and/or
    • Motif VI: MELLRSTGCYM (SEQ ID NO: 42) having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference five, four, three, two or one non-conservative amino acid substitutition(s); and/or
    • Motif VII: MMDSNSVLYSSLGFPTMPDYK (SEQ ID NO: 43 having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference nine, eight, seven, six, five, four, three, two or one non-conservative amino acid substitutition(s).


Nucleic acids encoding DOF-C2 domain transcription factor or MYB7 polypeptides need not be full-length nucleic acids, since performance of the methods of the invention does not rely on the use of full-length nucleic acid sequences. According to the present invention, there is provided a method for enhancing yield-related traits in plants, comprising introducing and expressing in a plant a portion of any one of the nucleic acid sequences given in Table A of Example 1, or a portion of a nucleic acid encoding an orthologue, paralogue or homologue of any of the amino acid sequences given in Table A of Example 1.


A portion of a nucleic acid may be prepared, for example, by making one or more deletions to the nucleic acid. The portions may be used in isolated form or they may be fused to other coding (or non-coding) sequences in order to, for example, produce a protein that combines several activities. When fused to other coding sequences, the resultant polypeptide produced upon translation may be bigger than that predicted for the protein portion.


In one embodiment, portions useful in the methods of the invention, encode a DOF-C2 domain transcription factor polypeptide as defined herein, and have substantially the same biological activity as the amino acid sequences given in Table A1 of Example 1. Preferably, the portion is a portion of any one of the nucleic acids given in Table A1 of Example 1, or is a portion of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A1 of Example 1. Preferably the portion is at least 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 1000 or more consecutive nucleotides in length, the consecutive nucleotides being of any one of the nucleic acid sequences given in Table A1 of Example 1, or of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A1 of Example 1. Most preferably the portion is a portion of the nucleic acid of SEQ ID NO: 1. Preferably, the portion encodes a fragment of an amino acid sequence which, when used in the construction of a phylogenetic tree, such as the one depicted in FIG. 3, clusters within group C2 which comprises the amino acid sequence represented by SEQ ID NO: 2 rather than with any other group.


In another embodiment, portions useful in the methods of the invention, encode a MYB7 polypeptide as defined herein, and have substantially the same biological activity as the amino acid sequences given in Table A2 of Example 1. Preferably, the portion is a portion of any one of the nucleic acids given in Table A2 of Example 1, or is a portion of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A2 of Example 1. Preferably the portion is at least 400, 450, 500, 550, 600, 650, 700, 750, 800 consecutive nucleotides in length, the consecutive nucleotides being of any one of the nucleic acid sequences given in Table A2 of Example 1, or of a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A2 of Example 1. Most preferably the portion is a portion of the nucleic acid of SEQ ID NO: 49.


Another nucleic acid variant useful in the methods of the invention is a nucleic acid capable of hybridising, under reduced stringency conditions, preferably under stringent conditions, with a nucleic acid encoding a DOF-C2 domain transcription factor or a MYB7 polypeptide as defined herein, or with a portion as defined herein.


According to the present invention, there is provided a method for enhancing yield-related traits in plants, comprising introducing and expressing in a plant a nucleic acid capable of hybridizing to any one of the nucleic acids given in Table A of Example 1, or comprising introducing and expressing in a plant a nucleic acid capable of hybridising to a nucleic acid encoding an orthologue, paralogue or homologue of any of the nucleic acid sequences given in Table A of Example 1.


Hybridising sequences useful in the methods of the invention encode a DOF-C2 domain transcription factor or a MYB7 polypeptide as defined herein, having substantially the same biological activity as the amino acid sequences given in Table A of Example 1. Preferably, the hybridising sequence is capable of hybridising to any one of the nucleic acids given in Table A of Example 1, or to a portion of any of these sequences, a portion being as defined above, or the hybridising sequence is capable of hybridising to a nucleic acid encoding an orthologue or paralogue of any one of the amino acid sequences given in Table A of Example 1. Most preferably, the hybridising sequence is capable of hybridising to a nucleic acid as represented by SEQ ID NO: 1, or SEQ ID NO: 49 or to a portion thereof.


Preferably, the hybridising sequence encodes a polypeptide with an amino acid sequence which, when full-length and used in the construction of a phylogenetic tree, such as the one depicted in FIG. 3, clusters within group C2 which comprises the amino acid sequence represented by SEQ ID NO: 2 rather than with any other group.


Another nucleic acid variant useful in the methods of the invention is a splice variant encoding a DOF-C2 domain transcription factor or a MYB7 polypeptide as defined hereinabove, a splice variant being as defined herein.


According to the present invention, there is provided a method for enhancing yield-related traits in plants, comprising introducing and expressing in a plant a splice variant of any one of the nucleic acid sequences given in Table A of Example 1, or a splice variant of a nucleic acid encoding an orthologue, paralogue or homologue of any of the amino acid sequences given in Table A of Example 1.


In one embodiment, preferred splice variants are splice variants of a nucleic acid represented by SEQ ID NO: 1, or a splice variant of a nucleic acid encoding an orthologue or paralogue of SEQ ID NO: 2. Preferably, the amino acid sequence encoded by the splice variant, when used in the construction of a phylogenetic tree, such as the one depicted in FIG. 3, clusters within group C2 which comprises the amino acid sequence represented by SEQ ID NO: 2 rather than with any other group.


In another embodiment, preferred splice variants are splice variants of a nucleic acid represented by SEQ ID NO: 49, or a splice variant of a nucleic acid encoding an orthologue or paralogue of SEQ ID NO: 50.


Another nucleic acid variant useful in performing the methods of the invention is an allelic variant of a nucleic acid encoding a DOF-C2 domain transcription factor or a MYB7 polypeptide as defined hereinabove, an allelic variant being as defined herein.


According to the present invention, there is provided a method for enhancing yield-related traits in plants, comprising introducing and expressing in a plant an allelic variant of any one of the nucleic acids given in Table A of Example 1, or comprising introducing and expressing in a plant an allelic variant of a nucleic acid encoding an orthologue, paralogue or homologue of any of the amino acid sequences given in Table A of Example 1.


The allelic variants useful in the methods of the present invention have substantially the same biological activity as the DOF-C2 domain transcription factor polypeptide of SEQ ID NO: 2 and any of the amino acids depicted in Table A1 of Example 1. Allelic variants exist in nature, and encompassed within the methods of the present invention is the use of these natural alleles. Preferably, the allelic variant is an allelic variant of SEQ ID NO: 1 or an allelic variant of a nucleic acid encoding an orthologue or paralogue of SEQ ID NO: 2. Preferably, the amino acid sequence encoded by the allelic variant, when used in the construction of a phylogenetic tree, such as the one depicted in FIG. 3, clusters within group C2 which comprises the amino acid sequence represented by SEQ ID NO: 2 rather than with any other group.


In another embodiment, the allelic variants useful in the methods of the present invention have substantially the same biological activity as the MYB7 polypeptide of SEQ ID NO: 50 and any of the amino acids depicted in Table A2 of Example 1. Allelic variants exist in nature, and encompassed within the methods of the present invention is the use of these natural alleles. Preferably, the allelic variant is an allelic variant of SEQ ID NO: 49 or an allelic variant of a nucleic acid encoding an orthologue or paralogue of SEQ ID NO: 50.


Gene shuffling or directed evolution may also be used to generate variants of nucleic acids encoding DOF-C2 domain transcription factor or MYB7 polypeptides as defined above; the term “gene shuffling” being as defined herein.


According to the present invention, there is provided a method for enhancing yield-related traits in plants, comprising introducing and expressing in a plant a variant of any one of the nucleic acid sequences given in Table A of Example 1, or comprising introducing and expressing in a plant a variant of a nucleic acid encoding an orthologue, paralogue or homologue of any of the amino acid sequences given in Table A of Example 1, which variant nucleic acid is obtained by gene shuffling.


Preferably, the amino acid sequence encoded by the variant nucleic acid obtained by gene shuffling, when used in the construction of a phylogenetic tree such as the one depicted in FIG. 3, clusters within group C2 which comprises the amino acid sequence represented by SEQ ID NO: 2 rather than with any other group.


Furthermore, nucleic acid variants may also be obtained by site-directed mutagenesis. Several methods are available to achieve site-directed mutagenesis, the most common being PCR based methods (Current Protocols in Molecular Biology. Wiley Eds.).


Nucleic acids encoding DOF-C2 domain transcription factor polypeptides may be derived from any natural or artificial source. The nucleic acid may be modified from its native form in composition and/or genomic environment through deliberate human manipulation. Preferably the DOF-C2 domain transcription factor polypeptide-encoding nucleic acid is from a plant, further preferably from a dicotyledonous plant, more preferably from the family Brasicaceae, most preferably the nucleic acid is from Arabidopsis thaliana.


Performance of the methods of the invention gives plants having enhanced yield-related traits. In particular performance of the methods of the invention gives plants having emergence vigour and/or increased yield, especially increased seed yield and/or biomass relative to control plants. The terms “yield”, “seed yield” and “emergence vigour” are described in more detail in the “definitions” section herein.


Reference herein to enhanced yield-related traits is taken to mean an increase in biomass (weight) of one or more parts of a plant, which may include aboveground (harvestable) parts and/or (harvestable) parts below ground.


In particular, such harvestable parts are in one embodiment seeds, and performance of the methods of the invention results in plants having increased seed yield relative to the seed yield of control plants.


In another embodiment, such harvestable parts are vegetative biomass and/or seeds, and performance of the methods of the invention results in plants having increased biomass and/or seed yield relative to control plants. Preferably, the vegetative biomass is above-ground biomass.


Taking corn as an example, a yield increase may be manifested as one or more of the following: increase in the number of plants established per square meter, an increase in the number of ears per plant, an increase in the number of rows, number of kernels per row, kernel weight, thousand kernel weight, ear length/diameter, increase in the seed filling rate (which is the number of filled seeds divided by the total number of seeds and multiplied by 100), among others. Taking rice as an example, a yield increase may manifest itself as an increase in one or more of the following: number of plants per square meter, number of panicles per plant, number of spikelets per panicle, number of flowers (florets) per panicle (which is expressed as a ratio of the number of filled seeds over the number of primary panicles), increase in the seed filling rate (which is the number of filled seeds divided by the total number of seeds and multiplied by 100), increase in thousand kernel weight, among others.


In one embodiment, the present invention provides a method for increasing yield, especially seed yield of plants, relative to control plants, which method comprises modulating expression in a plant of a nucleic acid encoding a DOF-C2 domain transcription factor polypeptide as defined herein.


In another embodiment, the present invention provides a method for increasing yield, especially biomass of plants, relative to control plants, which method comprises modulating expression in a plant of a nucleic acid encoding a MYB7 polypeptide as defined herein.


Since the transgenic plants according to the present invention have increased yield, it is likely that these plants exhibit an increased growth rate (during at least part of their life cycle), relative to the growth rate of control plants at a corresponding stage in their life cycle.


The increased growth rate may be specific to one or more parts of a plant (including seeds), or may be throughout substantially the whole plant. Plants having an increased growth rate may have a shorter life cycle. The life cycle of a plant may be taken to mean the time needed to grow from a dry mature seed up to the stage where the plant has produced dry mature seeds, similar to the starting material. This life cycle may be influenced by factors such as early vigour, growth rate, greenness index, flowering time and speed of seed maturation. The increase in growth rate may take place at one or more stages in the life cycle of a plant or during substantially the whole plant life cycle. Increased growth rate during the early stages in the life cycle of a plant may reflect enhanced vigour. The increase in growth rate may alter the harvest cycle of a plant allowing plants to be sown later and/or harvested sooner than would otherwise be possible (a similar effect may be obtained with earlier flowering time). If the growth rate is sufficiently increased, it may allow for the further sowing of seeds of the same plant species (for example sowing and harvesting of rice plants followed by sowing and harvesting of further rice plants all within one conventional growing period). Similarly, if the growth rate is sufficiently increased, it may allow for the further sowing of seeds of different plants species (for example the sowing and harvesting of corn plants followed by, for example, the sowing and optional harvesting of soybean, potato or any other suitable plant). Harvesting additional times from the same rootstock in the case of some crop plants may also be possible. Altering the harvest cycle of a plant may lead to an increase in annual biomass production per square meter (due to an increase in the number of times (say in a year) that any particular plant may be grown and harvested). An increase in growth rate may also allow for the cultivation of transgenic plants in a wider geographical area than their wild-type counterparts, since the territorial limitations for growing a crop are often determined by adverse environmental conditions either at the time of planting (early season) or at the time of harvesting (late season). Such adverse conditions may be avoided if the harvest cycle is shortened. The growth rate may be determined by deriving various parameters from growth curves, such parameters may be: T-Mid (the time taken for plants to reach 50% of their maximal size) and T-90 (time taken for plants to reach 90% of their maximal size), amongst others.


According to a preferred feature of the present invention, performance of the methods of the invention gives plants having an increased growth rate relative to control plants. Therefore, according to the present invention, there is provided a method for increasing the growth rate of plants, which method comprises modulating expression in a plant of a nucleic acid encoding a DOF-C2 domain transcription factor or a MYB7 polypeptide as defined herein.


An increase in yield and/or growth rate occurs whether the plant is under non-stress conditions or whether the plant is exposed to various stresses compared to control plants. Plants typically respond to exposure to stress by growing more slowly. In conditions of severe stress, the plant may even stop growing altogether. Mild stress on the other hand is defined herein as being any stress to which a plant is exposed which does not result in the plant ceasing to grow altogether without the capacity to resume growth. Mild stress in the sense of the invention leads to a reduction in the growth of the stressed plants of less than 40%, 35% or 30%, preferably less than 25%, 20% or 15%, more preferably less than 14%, 13%, 12%, 11% or 10% or less in comparison to the control plant under non-stress conditions. Due to advances in agricultural practices (irrigation, fertilization, pesticide treatments) severe stresses are not often encountered in cultivated crop plants. As a consequence, the compromised growth induced by mild stress is often an undesirable feature for agriculture. Mild stresses are the everyday biotic and/or abiotic (environmental) stresses to which a plant is exposed. Abiotic stresses may be due to drought or excess water, anaerobic stress, salt stress, chemical toxicity, oxidative stress and hot, cold or freezing temperatures. The abiotic stress may be an osmotic stress caused by a water stress (particularly due to drought), salt stress, oxidative stress or an ionic stress. Biotic stresses are typically those stresses caused by pathogens, such as bacteria, viruses, fungi and insects.


In particular, the methods of the present invention may be performed under non-stress conditions or under conditions of mild drought to give plants having increased yield relative to control plants. As reported in Wang et al. (Planta (2003) 218: 1-14), abiotic stress leads to a series of morphological, physiological, biochemical and molecular changes that adversely affect plant growth and productivity. Drought, salinity, extreme temperatures and oxidative stress are known to be interconnected and may induce growth and cellular damage through similar mechanisms. Rabbani et al. (Plant Physiol (2003) 133: 1755-1767) describes a particularly high degree of “cross talk” between drought stress and high-salinity stress. For example, drought and/or salinisation are manifested primarily as osmotic stress, resulting in the disruption of homeostasis and ion distribution in the cell. Oxidative stress, which frequently accompanies high or low temperature, salinity or drought stress, may cause denaturing of functional and structural proteins. As a consequence, these diverse environmental stresses often activate similar cell signalling pathways and cellular responses, such as the production of stress proteins, up-regulation of anti-oxidants, accumulation of compatible solutes and growth arrest. The term “non-stress” conditions as used herein are those environmental conditions that allow optimal growth of plants. Persons skilled in the art are aware of normal soil conditions and climatic conditions for a given location.


Performance of the methods of the invention gives plants grown under non-stress conditions or under mild drought conditions increased yield-related traits relative to control plants grown under comparable conditions. Therefore, according to the present invention, there is provided a method for increasing yield-related traits in plants grown under non-stress conditions or under mild drought conditions, which method comprises modulating expression in a plant of a nucleic acid encoding a DOF-C2 domain transcription factor or MYB7 polypeptide.


Performance of the methods of the invention gives plants grown under conditions of nutrient deficiency, particularly under conditions of nitrogen deficiency, increased yield relative to control plants grown under comparable conditions. Therefore, according to the present invention, there is provided a method for increasing yield in plants grown under conditions of nutrient deficiency, which method comprises modulating expression in a plant of a nucleic acid encoding a DOF-C2 domain transcription factor or MYB7 polypeptide. Nutrient deficiency may result from a lack of nutrients such as nitrogen, phosphates and other phosphorous-containing compounds, potassium, calcium, cadmium, magnesium, manganese, iron and boron, amongst others.


The present invention encompasses plants or parts thereof (including seeds) obtainable by the methods according to the present invention. The plants or parts thereof comprise a nucleic acid transgene encoding a DOF-C2 domain transcription factor or a MYB7 polypeptide as defined above.


The invention also provides genetic constructs and vectors to facilitate introduction and/or expression in plants of nucleic acids encoding DOF-C2 domain transcription factor or MYB7 polypeptides. The gene constructs may be inserted into vectors, which may be commercially available, suitable for transforming into plants and suitable for expression of the gene of interest in the transformed cells. The invention also provides use of a gene construct as defined herein in the methods of the invention.


More specifically, the present invention provides a construct comprising:

    • (a) a nucleic acid encoding a DOF-C2 domain transcription factor or a MYB7 polypeptide as defined above;
    • (b) one or more control sequences capable of driving expression of the nucleic acid sequence of (a); and optionally
    • (c) a transcription termination sequence.


Preferably, the nucleic acid encoding a DOF-C2 domain transcription factor or a MYB7 polypeptide is as defined above. The term “control sequence” and “termination sequence” are as defined herein.


Plants are transformed with a vector comprising any of the nucleic acids described above. The skilled artisan is well aware of the genetic elements that must be present on the vector in order to successfully transform, select and propagate host cells containing the sequence of interest. The sequence of interest is operably linked to one or more control sequences (at least to a promoter).


Advantageously, any type of promoter, whether natural or synthetic, may be used to drive expression of the nucleic acid sequence. A seed-specific or a constitutive promoter is particularly useful in the methods. Preferably the seed-specific promoter is the promoter of a gene encoding a late embryogenesis protein, more preferably is the promoter of the rice WSI18 gene. Preferably the constitutive promoter is also a ubiquitous promoter. See the “Definitions” section herein for definitions of the various promoter types.


It should be clear that the applicability of the present invention is not restricted to the DOF-C2 domain transcription factor or the MYB7 polypeptide-encoding nucleic acid represented by SEQ ID NO: 1 or SEQ ID NO:49, nor is the applicability of the invention restricted to expression of a DOF-C2 domain transcription factor or a MYB7 polypeptide-encoding nucleic acid when driven by a seed-specific promoter, or when driven by a root-specific promoter and/or a constitutive promoter.


The seed specific is preferably a ABA inducible promoter, preferably a WSI18 promoter from rice. Further preferably the WSI18 promoter is represented by a nucleic acid sequence substantially similar to SEQ ID NO: 47.


The constitutive promoter is preferably a GOS2 promoter, preferably a GOS2 promoter from rice. Further preferably the constitutive promoter is represented by a nucleic acid sequence substantially similar to SEQ ID NO: 53, most preferably the constitutive promoter is as represented by SEQ ID NO: 53.


See Table 2 in the “Definitions” section herein for further examples of seed specific or constitutive promoters.


Optionally, one or more terminator sequences may be used in the construct introduced into a plant. Preferably, the construct comprises an expression cassette essentially similar or identical to SEQ ID NO 48, comprising the WSI18 promoter, the nucleic acid encoding the DOF-C2 domain transcription factor polypeptide and the T-zein+T-rubisco transcription terminator sequence.


In another embodiment, the construct comprises an expression cassette essentially similar or identical to SEQ ID NO 54, comprising the rice GOS2 promoter and the nucleic acid encoding the MYB7 polypeptide.


Additional regulatory elements may include transcriptional as well as translational enhancers. Those skilled in the art will be aware of terminator and enhancer sequences that may be suitable for use in performing the invention. An intron sequence may also be added to the 5′ untranslated region (UTR) or in the coding sequence to increase the amount of the mature message that accumulates in the cytosol, as described in the definitions section. Other control sequences (besides promoter, enhancer, silencer, intron sequences, 3′UTR and/or 5′UTR regions) may be protein and/or RNA stabilizing elements. Such sequences would be known or may readily be obtained by a person skilled in the art.


The genetic constructs of the invention may further include an origin of replication sequence that is required for maintenance and/or replication in a specific cell type. One example is when a genetic construct is required to be maintained in a bacterial cell as an episomal genetic element (e.g. plasmid or cosmid molecule). Preferred origins of replication include, but are not limited to, the f1-ori and colE1.


For the detection of the successful transfer of the nucleic acid sequences as used in the methods of the invention and/or selection of transgenic plants comprising these nucleic acids, it is advantageous to use marker genes (or reporter genes). Therefore, the genetic construct may optionally comprise a selectable marker gene. Selectable markers are described in more detail in the “definitions” section herein. The marker genes may be removed or excised from the transgenic cell once they are no longer needed. Techniques for marker removal are known in the art, useful techniques are described above in the definitions section.


The invention also provides a method for the production of transgenic plants having enhanced yield-related traits relative to control plants, comprising introduction and expression in a plant of any nucleic acid encoding a DOF-C2 domain transcription factor or a MYB7 polypeptide as defined hereinabove.


More specifically, the present invention provides a method for the production of transgenic plants having increased enhanced yield-related traits, particularly increased (seed) yield and increased early vigour, which method comprises:

    • (i) introducing and expressing in a plant or plant cell a DOF-C2 domain transcription factor polypeptide-encoding nucleic acid; and
    • (ii) cultivating the plant cell under conditions promoting plant growth and development.


In another embodiment, the present invention provides a method for the production of transgenic plants having increased enhanced yield-related traits, particularly increased vegetative biomass and/or increased emergence vigour, which method comprises:

    • (i) introducing and expressing in a plant or plant cell a MYB7 polypeptide-encoding nucleic acid; and
    • (ii) cultivating the plant cell under conditions promoting plant growth and development.


The nucleic acid of (i) may be any of the nucleic acids capable of encoding a DOF-C2 domain transcription factor or a MYB7 polypeptide as defined herein.


The nucleic acid may be introduced directly into a plant cell or into the plant itself (including introduction into a tissue, organ or any other part of a plant). According to a preferred feature of the present invention, the nucleic acid is preferably introduced into a plant by transformation. The term “transformation” is described in more detail in the “definitions” section herein.


The genetically modified plant cells can be regenerated via all methods with which the skilled worker is familiar. Suitable methods can be found in the abovementioned publications by S. D. Kung and R. Wu, Potrykus or Höfgen and Willmitzer.


Generally after transformation, plant cells or cell groupings are selected for the presence of one or more markers which are encoded by plant-expressible genes co-transferred with the gene of interest, following which the transformed material is regenerated into a whole plant. To select transformed plants, the plant material obtained in the transformation is, as a rule, subjected to selective conditions so that transformed plants can be distinguished from untransformed plants. For example, the seeds obtained in the above-described manner can be planted and, after an initial growing period, subjected to a suitable selection by spraying. A further possibility consists in growing the seeds, if appropriate after sterilization, on agar plates using a suitable selection agent so that only the transformed seeds can grow into plants. Alternatively, the transformed plants are screened for the presence of a selectable marker such as the ones described above.


Following DNA transfer and regeneration, putatively transformed plants may also be evaluated, for instance using Southern analysis, for the presence of the gene of interest, copy number and/or genomic organisation. Alternatively or additionally, expression levels of the newly introduced DNA may be monitored using Northern and/or Western analysis, both techniques being well known to persons having ordinary skill in the art.


The generated transformed plants may be propagated by a variety of means, such as by clonal propagation or classical breeding techniques. For example, a first generation (or T1) transformed plant may be selfed and homozygous second-generation (or T2) transformants selected, and the T2 plants may then further be propagated through classical breeding techniques. The generated transformed organisms may take a variety of forms. For example, they may be chimeras of transformed cells and non-transformed cells; clonal transformants (e.g., all cells transformed to contain the expression cassette); grafts of transformed and untransformed tissues (e.g., in plants, a transformed rootstock grafted to an untransformed scion).


The present invention clearly extends to any plant cell or plant produced by any of the methods described herein, and to all plant parts and propagules thereof. The present invention extends further to encompass the progeny of a primary transformed or transfected cell, tissue, organ or whole plant that has been produced by any of the aforementioned methods, the only requirement being that progeny exhibit the same genotypic and/or phenotypic characteristic(s) as those produced by the parent in the methods according to the invention.


The invention also includes host cells containing an isolated nucleic acid encoding a DOF-C2 domain transcription factor or a MYB7 polypeptide as defined hereinabove. Preferred host cells according to the invention are plant cells. Host plants for the nucleic acids or the vector used in the method according to the invention, the expression cassette or construct or vector are, in principle, advantageously all plants, which are capable of synthesizing the polypeptides used in the inventive method.


The methods of the invention are advantageously applicable to any plant. Plants that are particularly useful in the methods of the invention include all plants which belong to the superfamily Viridiplantae, in particular monocotyledonous and dicotyledonous plants including fodder or forage legumes, ornamental plants, food crops, trees or shrubs. According to a preferred embodiment of the present invention, the plant is a crop plant. Examples of crop plants include soybean, sunflower, canola, alfalfa, rapeseed, cotton, tomato, potato and tobacco. Further preferably, the plant is a monocotyledonous plant. Examples of monocotyledonous plants include sugarcane. More preferably the plant is a cereal. Examples of cereals include rice, maize, wheat, barley, millet, rye, triticale, sorghum and oats. A preferred rice variety is indica or japonica, or any hybrid of these; a preferred japonica cultivar is Nipponbare.


The invention also extends to harvestable parts of a plant such as, but not limited to seeds, leaves, fruits, flowers, stems, roots, rhizomes, tubers and bulbs. The invention furthermore relates to products derived, preferably directly derived, from a harvestable part of such a plant, such as dry pellets or powders, oil, fat and fatty acids, starch or proteins.


According to a preferred feature of the invention, the modulated expression is increased expression. Methods for increasing expression of nucleic acids or genes, or gene products, are well documented in the art and examples are provided in the definitions section.


As mentioned above, a preferred method for modulating expression of a nucleic acid encoding a DOF-C2 domain transcription factor or a MYB7 polypeptide is by introducing and expressing in a plant a nucleic acid encoding a DOF-C2 domain transcription factor or a MYB7 polypeptide; however the effects of performing the method, i.e. enhancing yield-related traits may also be achieved using other well known techniques, including but not limited to T-DNA activation tagging, TILLING, homologous recombination. A description of these techniques is provided in the definitions section.


The present invention also encompasses use of nucleic acids encoding DOF-C2 domain transcription factor or MYB7 polypeptides as described herein and use of these DOF-C2 domain transcription factor or MYB7 polypeptides in enhancing any of the aforementioned yield-related traits in plants.


Nucleic acids encoding DOF-C2 domain transcription factor or MYB7 polypeptides described herein, or the DOF-C2 domain transcription factor or a MYB7 polypeptides themselves, may find use in breeding programmes in which a DNA marker is identified which may be genetically linked to a DOF-C2 domain transcription factor or a MYB7 polypeptide-encoding gene. The nucleic acids/genes, or the DOF-C2 domain transcription factor or a MYB7 polypeptides themselves may be used to define a molecular marker. This DNA or protein marker may then be used in breeding programmes to select plants having enhanced yield-related traits as defined hereinabove in the methods of the invention.


Allelic variants of a DOF-C2 domain transcription factor or a MYB7 polypeptide-encoding nucleic acid/gene may also find use in marker-assisted breeding programmes. Such breeding programmes sometimes require introduction of allelic variation by mutagenic treatment of the plants, using for example EMS mutagenesis; alternatively, the programme may start with a collection of allelic variants of so called “natural” origin caused unintentionally. Identification of allelic variants then takes place, for example, by PCR. This is followed by a step for selection of superior allelic variants of the sequence in question and which give increased yield. Selection is typically carried out by monitoring growth performance of plants containing different allelic variants of the sequence in question. Growth performance may be monitored in a greenhouse or in the field. Further optional steps include crossing plants in which the superior allelic variant was identified with another plant. This could be used, for example, to make a combination of interesting phenotypic features.


Nucleic acids encoding DOF-C2 domain transcription factor or MYB7 polypeptides may also be used as probes for genetically and physically mapping the genes that they are a part of, and as markers for traits linked to those genes. Such information may be useful in plant breeding in order to develop lines with desired phenotypes. Such use of DOF-C2 domain transcription factor or MYB7 polypeptides-encoding nucleic acids requires only a nucleic acid sequence of at least 15 nucleotides in length. The DOF-C2 domain transcription factor or the MYB7 polypeptide-encoding nucleic acids may be used as restriction fragment length polymorphism (RFLP) markers. Southern blots (Sambrook J, Fritsch E F and Maniatis T (1989) Molecular Cloning, A Laboratory Manual) of restriction-digested plant genomic DNA may be probed with the POI-encoding nucleic acids. The resulting banding patterns may then be subjected to genetic analyses using computer programs such as MapMaker (Lander et al. (1987) Genomics 1: 174-181) in order to construct a genetic map. In addition, the nucleic acids may be used to probe Southern blots containing restriction endonuclease-treated genomic DNAs of a set of individuals representing parent and progeny of a defined genetic cross. Segregation of the DNA polymorphisms is noted and used to calculate the position of the DOF-C2 domain transcription factor or MYB7 polypeptide-encoding nucleic acid in the genetic map previously obtained using this population (Botstein et al. (1980) Am. J. Hum. Genet. 32:314-331).


The production and use of plant gene-derived probes for use in genetic mapping is described in Bernatzky and Tanksley (1986) Plant Mol. Biol. Reporter 4: 37-41. Numerous publications describe genetic mapping of specific cDNA clones using the methodology outlined above or variations thereof. For example, F2 intercross populations, backcross populations, randomly mated populations, near isogenic lines, and other sets of individuals may be used for mapping. Such methodologies are well known to those skilled in the art.


The nucleic acid probes may also be used for physical mapping (i.e., placement of sequences on physical maps; see Hoheisel et al. In: Non-mammalian Genomic Analysis: A Practical Guide, Academic press 1996, pp. 319-346, and references cited therein).


In another embodiment, the nucleic acid probes may be used in direct fluorescence in situ hybridisation (FISH) mapping (Trask (1991) Trends Genet. 7:149-154). Although current methods of FISH mapping favour use of large clones (several kb to several hundred kb; see Laan et al. (1995) Genome Res. 5:13-20), improvements in sensitivity may allow performance of FISH mapping using shorter probes.


A variety of nucleic acid amplification-based methods for genetic and physical mapping may be carried out using the nucleic acids. Examples include allele-specific amplification (Kazazian (1989) J. Lab. Clin. Med 11:95-96), polymorphism of PCR-amplified fragments (CAPS; Sheffield et al. (1993) Genomics 16:325-332), allele-specific ligation (Landegren et al. (1988) Science 241:1077-1080), nucleotide extension reactions (Sokolov (1990) Nucleic Acid Res. 18:3671), Radiation Hybrid Mapping (Walter et al. (1997) Nat. Genet. 7:22-28) and Happy Mapping (Dear and Cook (1989) Nucleic Acid Res. 17:6795-6807). For these methods, the sequence of a nucleic acid is used to design and produce primer pairs for use in the amplification reaction or in primer extension reactions. The design of such primers is well known to those skilled in the art. In methods employing PCR-based genetic mapping, it may be necessary to identify DNA sequence differences between the parents of the mapping cross in the region corresponding to the instant nucleic acid sequence. This, however, is generally not necessary for mapping methods.


The methods according to the present invention result in plants having enhanced yield-related traits, as described hereinbefore. These traits may also be combined with other economically advantageous traits, such as further yield-enhancing traits, tolerance to other abiotic and biotic stresses, traits modifying various architectural features and/or biochemical and/or physiological features.


In one embodiment the invention relates to subject mater summarized as follows:


Item 1. A method for enhancing yield-related traits in plants relative to control plants, comprising modulating expression in a plant nucleic acid encoding a DOF-C2 (DNA-binding with one finger, subgroup C2) domain transcription factor polypeptide comprising feature (i) and feature (ii) as follow:


(i) a DOF domain having in increasing order of preference at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 96%, 97%, 98%, 99% or more sequence identity to either the DOF domain represented by SEQ ID NO: 83 or SEQ ID NO: 84; and


(ii) Motif I: ERKARPQKDQ (SEQ ID NO: 85) having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference five, four, three, two or one non-conservative amino acid substitutition(s); and/or


Motif II: YWSGMI (SEQ ID NO: 86) having zero, one or more conservative amino acid subtitutions and/or having in increasing order of preference three, two or one non-conservative amino acid substitutition(s).


Item 2. Method according to item 1, wherein said DOF-C2 transcription factor polypeptide furthermore comprises one, two, three, four or all of the following motifs:


Motif III: RLLFPFEDLKPLVS (SEQ ID NO: 87) having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference five, four, three, two or one non-conservative amino acid substitutition(s); and/or


Motif IV: INVKPMEEI (SEQ ID NO: 88) having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference four, three, two or one non-conservative amino acid substitutition(s); and/or;


Motif V: KNPKLLHEGAQDLNLAFPHH (SEQ ID NO: 89) having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference nine, eight, seven, six, five, four, three, two or one non-conservative amino acid substitutition(s); and/or


Motif VI: MELLRSTGCYM (SEQ ID NO: 90) having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference five, four, three, two or one non-conservative amino acid substitutition(s); and/or


Motif VII: MMDSNSVLYSSLGFPTMPDYK (SEQ ID NO: 91 having zero, one or more conservative amino acid substitution(s) and/or having in increasing order of preference nine, eight, seven, six, five, four, three, two or one non-conservative amino acid substitutition(s).


Item 3. Method according to item 1 or 2, wherein said modulated expression is effected by introducing and expressing in a plant a nucleic acid encoding a DOF-C2 transcription factor polypeptide.


Item 4. Method according to any preceding item, wherein said nucleic acid encoding a DOF-C2 transcription factor polypeptide encodes any one of the proteins listed in Table A1 or is a portion of such a nucleic acid, or a nucleic acid capable of hybridising with such a nucleic acid.


Item 5. Method according to any preceding item, wherein said nucleic acid sequence encodes an orthologue or paralogue of any of the proteins given in Table A1.


Item 6. Method according to any preceding item, wherein said enhanced yield-related traits comprise increased yield, preferably increased early vigour and/or increased seed yield relative to control plants.


Item 7. Method according to any one of items 3 to 6, wherein said nucleic acid is operably linked to a seed-specific promoter, preferably to a promoter of a gene encoding a late embryogenesis protein, most preferably to a WSI18 promoter from rice.


Item 8. Method according to any preceding item, wherein said nucleic acid encoding a DOF-C2 transcription factor polypeptide is of plant origin, preferably from a dicotyledonous plant, further preferably from the family Brassicaceae, more preferably from the genus Arabidopsis, most preferably from Arabidopsis thaliana.


Item 9. Plant or part thereof, including seeds, obtainable by a method according to any proceeding item, wherein said plant or part thereof comprises a recombinant nucleic acid encoding a DOF-C2 transcription factor polypeptide.


Item 10. Construct comprising:


(i) nucleic acid encoding a DOF-C2 transcription factor polypeptide as defined in items 1 or 2;


(ii) one or more control sequences capable of driving expression of the nucleic acid sequence of (a); and optionally


(iii) a transcription termination sequence.


Item 11. Construct according to item 10, wherein one of said control sequences is a seed-specific promoter, preferably a promoter of a gene encoding a late embryogenesis protein, most preferably a the promoter of the rice WSI18 gene.


Item 12. Use of a construct according to item 10 or 11 in a method for making plants having increased yield, particularly increased early vigour and/or increased seed yield relative to control plants.


Item 13. Plant, plant part or plant cell transformed with a construct according to item 10 or 11.


Item 14. Method for the production of a transgenic plant having increased yield, particularly increased early vigour and/or increased seed yield relative to control plants, comprising:


(i) introducing and expressing in a plant a nucleic acid encoding a DOF-C2 transcription factor polypeptide as defined in item 1 or 2; and


(ii) cultivating the plant cell under conditions promoting plant growth and development.


Item 15. Transgenic plant having increased yield, particularly increased early vigour and/or increased seed yield, relative to control plants, resulting from modulated expression of a nucleic acid encoding a DOF-C2 transcription factor polypeptide as defined in item 1 or 2, or a transgenic plant cell derived from said transgenic plant.


Item 16. Transgenic plant according to item 9, 13 or 15, or a transgenic plant cell derived thereof, wherein said plant is a crop plant or a monocot or a cereal, such as rice, maize, wheat, barley, millet, rye, triticale, sorghum and oats.


Item 17. Harvestable parts of a plant according to item 16, wherein said harvestable parts are preferably shoot biomass and/or seeds.


Item 18. Products derived from a plant according to item 16 and/or from harvestable parts of a plant according to item 17.


Item 19. Use of a nucleic acid encoding a DOF-C2 transcription factor polypeptide in increasing plant yield, particularly in increasing seed yield and/or early vigour in plants, relative to control plants.


In another embodiment the invention relates to subject mater summarized as follows:


Item 20. A method for enhancing yield-related traits in plants relative to control plants, comprising modulating expression in a plant of a nucleic acid encoding a MYB7 polypeptide, wherein said MYB7 polypeptide comprises a two SANT domains.


Item 21. Method according to item 20, wherein said MYB7 polypeptide comprises four or more of the motifs 1 to 7 (SEQ ID NO: 55 to SEQ ID NO: 61).


Item 22. Method according to item 20 or 21, wherein said modulated expression is effected by introducing and expressing in a plant a nucleic acid encoding a MYB7 polypeptide.


Item 23. Method according to the items 20 to 22, wherein said nucleic acid encoding a MYB7 polypeptide encodes any one of the proteins listed in Table A2 or is a portion of such a nucleic acid, or a nucleic acid capable of hybridising with such a nucleic acid.


Item 24. Method according to the items 20 to 23, wherein said nucleic acid sequence encodes an orthologue or paralogue of any of the proteins given in Table A2.


Item 25. Method according to the items 20 to 24, wherein said enhanced yield-related traits comprise increased increased biomass and/or increased emergence vigour relative to control plants.


Item 26. Method according to any one of items 20 to 25, wherein said enhanced yield-related traits are obtained under non-stress conditions.


Item 27. Method according to any one of items 22 to 26, wherein said nucleic acid is operably linked to a constitutive promoter, preferably to a GOS2 promoter, most preferably to a GOS2 promoter from rice.


Item 28. Method according to the items 20 to 27, wherein said nucleic acid encoding a MYB7 polypeptide is of plant origin, preferably from a dicotyledonous plant, further preferably from the family Brassicaceae, more preferably from the genus Arabidopsis, most preferably from Arabidopsis thaliana.


Item 29. Plant or part thereof, including seeds, obtainable by a method according to the items 20 to 28, wherein said plant or part thereof comprises a recombinant nucleic acid encoding a MYB7 polypeptide.


Item 30. Construct comprising:


(i) nucleic acid encoding a class MYB7 polypeptide as defined in items 20 or 21;


(ii) one or more control sequences capable of driving expression of the nucleic acid sequence of (a); and optionally


(iii) a transcription termination sequence.


Item 31. Construct according to item 30, wherein one of said control sequences is a constitutive promoter, preferably a GOS2 promoter, most preferably a GOS2 promoter from rice.


Item 32. Use of a construct according to item 30 or 31 in a method for making plants having increased yield, particularly increased biomass and/or increased emergence vigour relative to control plants.


Item 33. Plant, plant part or plant cell transformed with a construct according to item 30 or 31.


Item 34. Method for the production of a transgenic plant having increased yield, particularly increased biomass and/or increased emergence vigour relative to control plants, comprising:


(i) introducing and expressing in a plant a nucleic acid encoding a MYB7 polypeptide as defined in item 20 or 21; and


(ii) cultivating the plant cell under conditions promoting plant growth and development.


Item 35. Transgenic plant having increased yield, particularly increased biomass and/or increased emergence vigour, relative to control plants, resulting from modulated expression of a nucleic acid encoding a MYB7 polypeptide as defined in item 20 or 21, or a transgenic plant cell derived from said transgenic plant.


Item 36. Transgenic plant according to item 29, 33 or 35, or a transgenic plant cell derived thereof, wherein said plant is a crop plant or a monocot or a cereal, such as rice, maize, wheat, barley, millet, rye, triticale, sorghum and oats.


Item 37. Harvestable parts of a plant according to item 36, wherein said harvestable parts are preferably vegetative biomass.


Item 38. Products derived from a plant according to item 36 and/or from harvestable parts of a plant according to item 37.


Item 39. Use of a nucleic acid encoding a MYB7 polypeptide in enhancing yield-related traits, particularly in increasing biomass and/or emergence vigour in plants, relative to control plants.





DESCRIPTION OF FIGURES

The present invention will now be described with reference to the following figures in which:



FIG. 1 represents the sequence and domain structure SEQ ID NO: 2. The sequence of the Dof domain is shown in bold characters. Motif I to Motif V are indicated.



FIG. 2A represents a multiple alignment of the DOF-C2 transcription factor polypeptides given in table A1.



FIG. 2B represents a multiple alignment amino acid sequences alignment of Dof domains present in DOF-C2 transcription factor polypeptides given in table A1.



FIG. 3 shows a phylogenetic tree of Arabidopsis and Rice DOF-C2 transcription factor polypeptides. The cluster comprising the subgroup C2 is indicated.



FIG. 4 represents the binary vector for increased expression in Oryza sativa of a SEQ ID NO:1 under the control of a rice WSI18 promoter (pWSI18)



FIG. 5 details examples of sequences useful in performing the methods according to the present invention.



FIG. 6 represents SEQ ID NO: 50 with the two SANT domains shown in bold and the conserved motifs 1 to 7 underlined.



FIG. 7 represents a multiple alignment of various MYB7 proteins



FIG. 8 represents the binary vector for increased expression in Oryza sativa of a MYB7-encoding nucleic acid under the control of a rice GOS2 promoter (pGOS2)



FIG. 9 details examples of sequences useful in performing the methods according to the present invention.





EXAMPLES

The present invention will now be described with reference to the following examples, which are by way of illustration alone. The following examples are not intended to completely define or otherwise limit the scope of the invention.


DNA manipulation: unless otherwise stated, recombinant DNA techniques are performed according to standard protocols described in (Sambrook (2001) Molecular Cloning: a laboratory manual, 3rd Edition Cold Spring Harbor Laboratory Press, CSH, New York) or in Volumes 1 and 2 of Ausubel et al. (1994), Current Protocols in Molecular Biology, Current Protocols. Standard materials and methods for plant molecular work are described in Plant Molecular Biology Labfax (1993) by R. D. D. Croy, published by BIOS Scientific Publications Ltd (UK) and Blackwell Scientific Publications (UK).


Example 1
Identification of Sequences Related to the Nucleic Acid Sequence Used in the Methods of the Invention

Sequences (full length cDNA, ESTs or genomic) related to the nucleic acid sequence used in the methods of the present invention were identified amongst those maintained in the Entrez Nucleotides database at the National Center for Biotechnology Information (NCBI) using database sequence search tools, such as the Basic Local Alignment Tool (BLAST) (Altschul et al. (1990) J. Mol. Biol. 215:403-410; and Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402). The program is used to find regions of local similarity between sequences by comparing nucleic acid or polypeptide sequences to sequence databases and by calculating the statistical significance of matches. For example, the polypeptide encoded by the nucleic acid used in the present invention was used for the TBLASTN algorithm, with default settings and the filter to ignore low complexity sequences set off. The output of the analysis was viewed by pairwise comparison, and ranked according to the probability score (E-value), where the score reflect the probability that a particular alignment occurs by chance (the lower the E-value, the more significant the hit). In addition to E-values, comparisons were also scored by percentage identity. Percentage identity refers to the number of identical nucleotides (or amino acids) between the two compared nucleic acid (or polypeptide) sequences over a particular length. In some instances, the default parameters may be adjusted to modify the stringency of the search. For example the E-value may be increased to show less stringent matches. This way, short nearly exact matches may be identified.


Table A1 and Table A2 provide a list of nucleic acid sequences related to the nucleic acid sequence used in the methods of the present invention.









TABLE A1







Examples of DOF-C2 domain transcription factor nucleic acids and polypeptides:












Nucleic acid SEQ
Amino acid SEQ ID


Name
Organism
ID NO:
NO:





Arath_DOF_C2_1

Arabidopsis
thaliana

SEQ ID NO: 1
SEQ ID NO: 2


Arath_DOF_C2_2

Arabidopsis
thaliana

SEQ ID NO: 3
SEQ ID NO: 4


Arath_DOF_C2_3

Arabidopsis
thaliana

SEQ ID NO: 5
SEQ ID NO: 6


Arath_DOF_C2_4

Arabidopsis
thaliana

SEQ ID NO: 7
SEQ ID NO: 8


Arath_DOF_C2_5

Arabidopsis
thaliana

SEQ ID NO: 9
SEQ ID NO: 10


Arath_DOF_C2_6

Arabidopsis
thaliana

SEQ ID NO: 11
SEQ ID NO: 12


Glyma_DOF_C2_1

Glycine
max

SEQ ID NO: 13
SEQ ID NO: 14


Glyma_DOF_C2_2

Glycine
max

SEQ ID NO: 15
SEQ ID NO: 16


Glyma_DOF_C2_3

Glycine
max

SEQ ID NO: 17
SEQ ID NO: 18


Pissa_DOF_C2_1

Pisum
sativum

SEQ ID NO: 19
SEQ ID NO: 20


Vitvi_DOF_C2_1

Vitis
vinifera

SEQ ID NO: 21
SEQ ID NO: 22


Vitvi_DOF_C2_2

Vitis
vinifera

SEQ ID NO: 23
SEQ ID NO: 24


Nicta_DOF_C2_1

Nicotiana
tabacum

SEQ ID NO: 25
SEQ ID NO: 26


Horvu_DOF_C2_1

Hordeum
vulgare

SEQ ID NO: 27
SEQ ID NO: 28


Orysa_DOF_C2_1

Oryza
sativa

SEQ ID NO: 29
SEQ ID NO: 30


Orysa_DOF_C2_2

Oryza
sativa

SEQ ID NO: 31
SEQ ID NO: 32


Orysa_DOF_C2_3

Oryza
sativa

SEQ ID NO: 33
SEQ ID NO: 34




Zea
mays

SEQ ID NO: 185
SEQ ID NO: 186
















TABLE A2







Examples of MYB7 polypeptides:










Nucleic acid
Protein


Plant Source
SEQ ID NO:
SEQ ID NO:













Arabidopsis
thaliana

49
50



Gossypium
hirsutum

62
63



Vitis
vinifera

64
65



Solenostemon
scutellarioides

66
67



Solanum
lycopersicum

68
69



Humulus
lupulus

70
71



Populus
tremula x Populustremuloides

72
73



Glycine
max

74
75



Brassica
rapa subsp. Chinensis

76
77



Brassica
rapa var. purpuraria

78
79



Eucalyptus
gunnii

80
81



Zea
mays

82
83



Dendrobium sp.

84
85



Triticum
aestivum

86
87



Hordeum
vulgare

88
89



Tradescantia
fluminensis

90
91



Picea
glauca

92
93



Pinus
taeda

94
95



Gossypium
raimondii

96
97



Gossypioides
kirkii

98
99



Sorghum
bicolor

100
101



Gossypium
herbaceum

102
103



Physcomitrella
patens

104
105



Malus x domestica

106
107



Picea
mariana

108
109



Fragaria x ananassa

110
111



Petunia x hybrida

112
113



Lotus
japonicus

114
115



Populus x canescens

116
117



Daucus
carota

118
119



Fagopyrum
cymosum

120
121



Boea
crassifolia

122
123



Medicago
truncatula

124
125



Arabidopsis
thaliana

126
127



Arabidopsis
thaliana

128
129



Arabidopsis
thaliana

130
131



Oryza
sativa

132
133



Oryza
sativa

134
135



Oryza
sativa

136
137



Oryza
sativa

138
139



Antirrhinum
majus


140



B.
napus

143
144



B.
napus

145
146



B.
napus

147
148



G.
max

149
150



S.
lycopersicum

151
152



T.
aestivum

153
154



T.
aestivum

155
156



T.
aestivum

157
158



T.
aestivum

159
160



T.
aestivum

161
162



P.
patens

163
164



P.
trichocarpa

165
166



P.
trichocarpa

167
168



M.
truncatula

169
170



Z.
mays

171
172



Z.
mays

173
174



Z.
mays

175
176



Z.
mays

177
178



Z.
mays

179
180



Z.
mays

181
182



Z.
mays

183
184









In some instances, related sequences have tentatively been assembled and publicly disclosed by research institutions, such as The Institute for Genomic Research (TIGR). The Eukaryotic Gene Orthologs (EGO) database may be used to identify such related sequences, either by keyword search or by using the BLAST algorithm with the nucleic acid or polypeptide sequence of interest.


SEQ ID NO: 1 and SEQ ID NO: 11 represent two spliced variants at the locus AT4G24060 of the Arabidopsis thaliana genome.


Example 2
Alignment of DOF-C2 Domain Transcription Factor Polypeptide Sequences and MYB7 Polypeptide Sequences

Alignment of polypeptide sequences was performed using the AlignX programme from the Vector NTI (Invitrogen) which is based on the popular Clustal W algorithm of progressive alignment (Thompson et al. (1997) Nucleic Acids Res 25:4876-4882; Chenna et al. (2003). Nucleic Acids Res 31:3497-3500). Default values are for the gap open penalty of 10, for the gap extension penalty of 0,1 and the selected weight matrix is Blosum 62 (if polypeptides are aligned).


Concerning the DOF-C2 domain transcription factor polypeptides, minor manual editing may be done to further optimise the alignment. Sequence conservation among DOF-C2 domain transcription factor polypeptides is essentially in the Dof domain of the polypeptides and at the location of the conserved Motifs I to VII as represented by the consensus SEQ ID NO: 37 to 43 (see FIG. 2A). The DOF-C2 domain transcription factor polypeptides are aligned in FIG. 2A. FIG. 2B represents a multiple alignment of the DOF domains as found in the polypeptides of Table A1. A consensus sequence is indicated. Highly conserved amino acid residues amongst the Dof domain transcription factor polypeptides are indicated in the consensus sequence.


A phylogenetic tree of transcription factors from the DOF family of Arabidopsis (At) and rice (Os) is shown in FIG. 3. The clade containing the DOF polypeptides of subgroup Cc is indicated by a box. FIG. 3 was constructed using a neighbour-joining clustering algorithm as provided in the AlignX programme from the Vector NTI (Invitrogen).


Concerning the MYB7 polypeptides, minor manual editing was done to further optimise the alignment. Sequence conservation among MYB7 polypeptides is essentially in the SANT domains in the N-terminal half of the polypeptides, the C-terminal half usually being more variable in sequence length and composition. The MYB7 polypeptides are aligned in FIG. 7.


Example 3
Calculation of Global Percentage Identity Between Polypeptide Sequences Useful in Performing the Methods of the Invention

Global percentages of similarity and identity between full length polypeptide sequences useful in performing the methods of the invention were determined using one of the methods available in the art, the MatGAT (Matrix Global Alignment Tool) software (BMC Bioinformatics. 2003 4:29. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. Campanella J J, Bitincka L, Smalley J; software hosted by Ledion Bitincka). MatGAT software generates similarity/identity matrices for DNA or protein sequences without needing pre-alignment of the data. The program performs a series of pair-wise alignments using the Myers and Miller global alignment algorithm (with a gap opening penalty of 12, and a gap extension penalty of 2), calculates similarity and identity using for example Blosum 62 (for polypeptides), and then places the results in a distance matrix. Sequence similarity is shown in the bottom half of the dividing line and sequence identity is shown in the top half of the diagonal dividing line.


Parameters used in the comparison were:

    • Scoring matrix: Blosum62
    • First Gap: 12
    • Extending gap: 2


Concerning the DOF-C2 domain transcription factor polypeptides: Results of the software analysis are shown in Table B1 for the global similarity and identity over the full length of the polypeptide sequences. Percentage identity is given above the diagonal and percentage similarity is given below the diagonal (normal face).









TABLE B1







MatGAT results for global similarity and identity over the full length of the polypeptide sequences.
























1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16



























1. Arath


45.7


35.0


35.8


27.5


90.6


41.0


42.2


33.5


37.6


45.3


41.6


41.5


29.3


35.4


23.9



DOF_C2_1


2. Arath
54.5

35.9
32.3
29.3
45.4
35.2
37.3
27.5
34.9
41.1
38.1
38.2
28.2
33.6
25.4


DOF_C2_2


3. Arath
50.4
49.1

54.7
31.3
36.3
37.1
37.4
24.8
32.8
36.2
34.8
35.5
28.5
33.8
24.8


DOF_C2_3


4. Arath
51.6
43.5
63.1

35.2
36.0
36.8
35.9
28.6
40.2
40.4
37.8
36.9
26.1
34.0
24.2


DOF_C2_4


5. Arath
43.2
43.8
43.9
52.0

30.0
31.5
32.9
25.0
31.8
35.4
31.1
31.4
22.7
27.7
22.8


DOF_C2_5


6. Arath
90.6
56.5
51.2
48.0
41.8

41.4
43.1
30.4
36.2
43.3
39.9
40.4
30.3
36.8
23.2


DOF_C2_6


7. Glyma
58.4
50.6
50.7
55.6
46.4
55.6

89.7
27.2
41.5
59.6
45.0
49.0
30.4
37.6
26.8


DOF_C2_1


8. Glyma
59.4
49.4
50.7
54.5
48.1
57.6
91.8

27.8
42.8
61.2
46.5
50.2
30.8
37.9
25.5


DOF_C2_2


9. Glyma
40.0
34.4
32.2
36.3
33.3
36.0
35.3
36.0

33.6
32.9
42.0
33.8
19.3
23.4
19.8


DOF_C2_3


9. Pisa
51.0
45.7
44.2
54.1
47.6
48.2
55.2
56.9
45.8

48.6
47.7
44.2
27.1
31.2
23.6


DOF_C2_2


11. Vitvi
54.2
51.7
49.6
58.9
51.7
54.1
69.0
73.1
44.1
66.3

54.7
60.8
31.0
38.0
23.1


DOF_C2_1


12. Vitvi
48.1
46.0
44.4
50.7
41.2
45.9
52.9
54.2
51.0
60.6
62.1

45.7
26.1
32.1
22.8


DOF_C2_2


13. Nicta
54.8
49.4
50.1
51.4
47.3
52.0
63.1
66.7
43.9
63.0
75.2
55.7

30.8
35.5
25.1


DOF_C2_1


14. Horvu
37.3
37.9
38.1
34.5
33.3
40.3
38.1
37.7
22.5
34.1
38.1
32.0
38.3

58.3
22.1


DOF_C2_1


15. Orysa
45.3
48.0
48.3
46.1
40.3
48.8
50.1
48.3
29.9
40.3
48.5
38.7
46.9
63.3

27.0


DOF_C2_1


16. Orysa
37.6
42.6
42.5
40.1
34.0
38.4
36.5
35.1
28.1
33.4
35.1
30.9
35.9
31.1
38.9


DOF_C2_2


17. Orysa
49.7
49.5
49.5
43.4
39.2
52.9
50.8
48.9
28.8
43.1
49.7
40.2
47.6
56.8
71.4
37.0


DOF_C2_3









The percentage identity between the DOF-C2 domain transcription factor polypeptide sequences useful in performing the methods of the invention can be as low as 27.5% amino acid identity compared to SEQ ID NO: 2 (indicated in bold in Table B1). The percentage identity with the closest paralogous polypeptide to SEQ ID NO:2 is 45.7%. The identity of SEQ ID NO:2 to a the spliced variant Arath_DOF_C26 is 90. %. Identity between orthologous the DOF_C2 polypeptides in Table B1 which are form a dicotyledoneous plant origin is in the range of 25-45%. Identity between SEQ ID NO:2 and the orthologous DOF_C2 polypeptides shown in Table B1 which are form a monocotyledoneous plant origin is in the range of 23.9-35.4.


Concerning the MYB7 polypeptides: Results of the software analysis are shown in Table B2 for the global similarity and identity over the full length of the polypeptide sequences. Percentage identity is given below the diagonal in bold and percentage similarity is given above the diagonal (normal face).


The percentage identity between the MYB7 polypeptide sequences useful in performing the methods of the invention can be as low as 28.7% sequence identity compared to SEQ ID NO: 50.









TABLE B2





MatGAT results for global similarity and identity over the full length of the polypeptide sequences. The link between the sequence


identifiers and the corresponding amino acid sequence is given in FIG. 4, subject to the following adjustments: The sequence


identifiers are abbreviated to 6 characters, except for LOC_Os09g36730, LOC_Os08g43550, LOC_Os01g65370,


LOC_Os05g35500, AAN28271, AAN28272, AAN28273, ABQ81931, ABQ81932, ABP57070 and ABP57084, which are


respectively abbreviated as Os09g3, Os08g4, Os01g6, Os05g3, AAN281, AAN282, AAN283, ABQ811, ABQ812, ABP570 and ABP574:


























AAP329
ABQ811
ABQ812
Os01g6
ABQ512
BAF494
ABD602
CAA502
AT1G22
AAO494





AAP329

48.2
48.2
46.5
47.9
51.2
42.9
45
47.9
41.8


ABQ811

35.7


99.7
62.2
61.9
43.7
56.8
61.6
59.2
55.8


ABQ812

35.7


99.7


61.9
61.6
44.3
56.8
61.6
59.2
55.8


Os01g6

34.4


48.5


49.2


62
44
58.5
61.7
58.9
58.2


ABQ512

34.7


51.7


50.7


50.5


40.8
77
64
66.1
64.2


BAF494

35.4


30.8


31


31.7


31.5


39.7
44.3
44
39.5


ABD602

32.1


47.5


47.5


48.4


66.9


29.1


58.1
59.9
64.4


CAA502

35.3


52.6


52.6


51.4


54.9


32.3


48.3


61
66.7


AT1G22

36.3


48.8


48.8


46.4


54.2


31.2


47.5


50.9


62.6


AAO494

32.6


51


51


48.4


55


28.5


53.2


57.3


54.3




CAA783

34.2


31.1


31.4


30.8


28


55.5


27.3


27.8


29.8


26.6



AAZ204

54.5


34.6


34


34.8


33.2


35.2


32.2


33


32.1


30.8



AAT371

35


52.3


52.3


51.9


55.6


31.5


51.3


93


50


57.4



P81393

34.7


55.1


55.1


50.2


55.7


29.3


50.6


58.7


54.5


63.2



BAC756

37.6


34.5


34.5


34.8


34.7


35.2


33.6


34.5


34.5


33



ABD323

56.1


34.7


34.7


32.5


34.2


36


32.2


32.8


33.9


33.6



CAD987

35.7


59.5


59.5


49.2


54.3


31


49.6


55.9


50.2


54.8



AAA829

32.1


31.7


32.4


33.2


31


30.2


29.1


31.8


30.9


30.2



Os09g3

35.6


54.8


54.8


53


55.6


30.7


51.2


77


51.1


59.5



AT4G38

35.3


87.1


87.4


49.2


51.9


29.6


47.5


54.9


51.4


53.9



CAA646

35.3


59.4


59.4


49.5


54.2


30.3


48


57.4


50.7


55.8



P80073

31


29.6


29.6


31.4


29


33.7


28.3


27.8


28


26.8



AAN282

34.1


44.4


44.4


43


45.5


32


41.3


42.4


49.5


46.1



AAN281

34.4


44.4


44.4


44.3


46.5


32


42.2


43.8


50.5


46.8



AAL906

29.7


42.9


42.9


45.3


48.1


26.7


47.6


48.1


46.3


54.8



AAK196

34.7


62


62


50


54.4


31.9


49.1


56.4


52.3


54.9



AAN054

55.5


33.3


33.3


30.7


31.2


34.5


30.7


32.8


30.9


30.7



Os08g4

33.8


53.3


53.3


49.8


53.5


29.9


46.3


60.4


50


56.2



BAF462

34.6


60.5


60.5


50.5


55.1


31.5


48.3


57.1


52.2


54.7



AT4G34

35.6


56.2


56.5


44.4


51.6


32


44.7


52.4


50.2


49.8



AAK840

30.9


37.4


37.4


37.6


42


26.7


43.3


39


41.9


48.6



At2g16

35


55.4


55.7


47.8


48.7


32.6


46.8


54.2


50.5


55.6



ABP570

32.2


37.1


37.1


39.2


39.6


30.7


37.3


38


38.1


39.2



CAJ422

33.7


52.6


52.6


50.7


52.5


29.6


48.4


71.4


50.2


59.3



CAE090

35.5


56.8


56.8


50.2


58


31.5


47.5


56.4


54.3


58.5



ABP574

33.7


56.6


56.6


50


53.3


30.1


50.6


57.8


51.7


58.6



AAN283

34.1


45.1


45.9


44.4


47


31.5


42.1


44


50.9


47.8



Os05g3

35.5


48


48


63.5


52.9


30.9


49.2


53.8


51.9


53.8



CAO473

35.6


59.9


59.9


51.4


57.4


29.9


51.5


59.5


56.2


57.4



ABH028

35.6


56.4


56.4


51.8


54.1


29.9


50.8


52.9


50


59.3



AAS194

37.6


51.2


51.2


58.1


52.3


32.8


48.5


51.8


50.4


54.8






















CAA783
AAZ204
AAT371
P81393
BAC756
ABD323
CAD987
AAA829
Os09g3
AT4G38





AAP329
48
66.5
43.8
45.6
51.4
67.5
48.5
43.8
46.5
47.4


ABQ811
42.3
46.9
61.6
63.6
49.4
47.2
69
44.1
65.3
89.8


ABQ812
41.6
45
61.6
63.6
49.4
46.9
69
41.5
65.3
90.1


Os01g6
39.7
47.1
60.3
59.9
45.4
45.3
63.8
45.4
62.4
62.4


ABQ512
37.1
44.4
65.3
65.8
46.8
44.4
64.8
43.8
67.3
63.5


BAF494
65.8
52.3
43.7
39.5
48.8
55.5
42.9
42.8
42.1
44


ABD602
38.5
40.9
59.2
63.9
44
42.2
60.4
38.1
64.1
57.1


CAA502
37.8
43.9
96.3
66.3
44.8
43.1
71.1
43.8
82.4
65.2


AT1G22
39
43.6
63.8
66.9
46.8
45.6
61.9
43
62.6
62.1


AAO494
35.2
38.1
66
71.1
41.7
41.9
61.1
40.7
68.9
59.6


CAA783

48.2
38.7
35.2
50.6
50.4
39
42
37.3
40.9


AAZ204

35.5


42.2
42
53.7
66.2
46.3
47.7
42.2
44.4


AAT371

27.7


33


67.2
46.6
43.9
70.7
42
83
65.6


P81393

27.7


31.5


59.5


45.1
42.8
71.5
40.5
71.3
67.7


BAC756

35.9


38.4


34.7


34.4


56.9
48
46.1
44.8
50.3


ABD323

33.6


52.3


35


32.8


37.7


46.9
46.4
45.6
45.3


CAD987

28.9


34.5


56.6


63


35.4


34.9


44.3
72.2
71.3


AAA829

29.9


32.9


30.7


30.2


32.1


30.4


31.5


39.9
42


Os09g3

28.3


33


77.2


61.3


35.1


33.6


61.3


32.2


67.4


AT4G38

30.2


33.5


53.1


56.6


35.3


32.2


61.2


30.8


57.6




CAA646

28.3


36


57.4


62.6


36.9


34.2


64.5


31.1


60.4


61



P80073

33.3


32.1


27.2


25.2


30.8


31.5


27.7


29.7


28.4


27.8



AAN282

28.4


31.7


43.7


46.3


34.9


31.9


45.2


28.4


46.5


44.3



AAN281

29.5


33


45.1


47.7


35.4


32.5


46.2


29.4


47.2


44.9



AAL906

25.4


29.7


47.5


53.2


28.7


27.8


45.6


25.5


50.6


45



AAK196

31.4


35.4


57.1


66.7


33.9


34.7


71.2


31.2


61.9


63.7



AAN054

32.3


54.9


32.5


30.9


39.1


58.3


31.6


30.7


31.2


32.5



Os08g4

28.9


32.4


60.1


60.5


33


31.4


60.4


30.9


65.9


56



BAF462

28.7


32.7


57.9


61.5


36.5


33.9


71.1


31.7


62.5


61.7



AT4G34

30.4


34.3


50.2


53.2


34.2


34.1


58.6


28.8


53.2


56.5



AAK840

24.2


25.6


39.6


44


29.3


28.6


39.6


27.3


43.4


38.3



At2g16

29.6


32.4


54.1


55


34.6


31.9


57.1


30.3


55.8


59.2



ABP570

29.3


29


37.8


37


31.7


31.4


38.2


30.7


37


37.5



CAJ422

28


32.4


73.4


57.1


36.5


33.6


57.7


30.4


75.6


53.9



CAE090

29


34.6


56.9


64.5


35.2


34.4


65.7


30.9


60.9


57.8



ABP574

27.7


31.7


57.1


65.5


33.8


33


66.1


31.1


63.2


58.6



AAN283

27.7


32.5


45.4


47.9


34.2


32.7


46.2


29.4


48.8


46.3



Os05g3

30.4


33.8


55.1


55.8


35.9


31.7


51.4


32.5


57.4


50.5



CAO473

30.2


31.3


59.2


68.9


34.8


32.8


71.8


32.2


64.8


64.3



ABH028

28.7


32.4


54.3


60.9


35.3


36.1


68


32.2


59.4


59.6



AAS194

28.2


33.4


51.2


54.4


33.8


36


50.5


31.4


54.5


51.4






















CAA646
P80073
AAN282
AAN281
AAL906
AAK196
AAN054
Os08g4
BAF462
AT4G34





AAP329
48.2
42
48.5
48.8
36.8
49.1
66.4
45.3
47.1
50.3


ABQ811
69
40.9
55.4
56.5
47.3
70.7
44.8
60.9
67.3
67.7


ABQ812
69
40.9
55.4
56.5
47.3
70.7
44.8
60.9
67.3
68


Os01g6
63.8
41.1
60.3
61
50.2
63.8
44
57.1
64.8
58.9


ABQ512
62.6
40.6
61.5
62.7
53.7
65.9
41.9
66.1
64.2
63.5


BAF494
44
45.8
43.7
44.3
32.8
44
52
39.2
42.7
44.5


ABD602
60.1
36.6
57.4
56.7
54.9
61.4
40
58.4
60.4
58.4


CAA502
71.4
39.2
55.8
56.7
53.9
71.5
42.4
70
69.7
66.4


AT1G22
61.5
38.2
67.5
67.5
52.1
62.9
43.7
61.5
61.5
59.9


AAO494
61.9
36.6
57.7
57.5
62.5
62.9
38.1
66.3
61.9
60.2


CAA783
37.3
50.6
39.2
38.7
30.4
40.6
48.5
38.5
39
39.9


AAZ204
48
45.4
42.8
44.1
34.6
42.8
68.8
40.9
42
46.6


AAT371
70.3
39.2
57.4
57.8
51.7
73.2
42.9
70.2
71.7
66.1


P81393
72.5
34.2
57.4
57.8
59.1
75
39.7
70.8
70.2
64.6


BAC756
48
43.9
47.7
48.6
34.2
46.8
54.7
42.2
48
46.6


ABD323
46.9
43.7
45.8
46.4
34.4
44.7
69.3
41.4
46.4
48.1


CAD987
75.5
40.4
57.8
60
53.7
81.5
43.2
69.6
78.1
70.8


AAA829
44.1
45.4
41
42
32.5
43.3
46.4
39.2
42.5
42


Os09g3
69.6
38.5
59.6
59.3
55.4
75
42.1
77.7
71.3
67.5


AT4G38
74.1
41.1
57.1
57.4
49.6
74.5
46.1
65.6
70.9
70.2


CAA646

38.7
57.9
58.6
50.5
77.7
44.8
68.1
74
72.3


P80073

27.3


36.1
37.1
31.1
39.2
46.6
38
39
40.6


AAN282

43.8


26.4


98.1
44.9
58.9
42.1
54.7
60
55.8


AAN281

45.2


26.8


97.4


45.5
59.3
42.9
54.9
62.3
58.4


AAL906

43.2


24


36.5


36.9


54.5
32.3
59.7
54.7
50.4


AAK196

65.9


28.3


44.3


45.8


48.5


43.5
72.3
82.3
71.2


AAN054

32


31.4


30.6


32.3


26.7


32.8


38.9
42.7
44.8


Os08g4

58.6


28.7


43.6


44.3


52.5


60.3


29.9


71.3
63.5


BAF462

66.1


26.6


44.9


47.2


47.5


71.2


32


60.4


72.6


AT4G34

56.9


29


39


41.2


43.1


60.6


30.7


52.9


58.8




AAK840

40.9


22.1


33.5


35.6


46.8


38.9


27.7


43.2


38.5


38.8



At2g16

56.4


28.7


43.1


44.1


42.8


60.6


31.8


55.7


57.2


66.9



ABP570

36.4


29.1


36.1


37.1


35.5


39.1


32


39.6


38.9


35



CAJ422

56.9


29


44.2


45.5


45.5


58.2


31.7


62.5


58.2


50.5



CAE090

62.5


27.3


45.8


47.2


47.5


67.2


30.7


60.1


67.2


57.1



ABP574

64.4


26.5


46.3


47.3


50


67.5


30.3


65.7


68.3


58.8



AAN283

45.7


26.6


94.4


95.1


37.1


47.2


32.5


45


47.5


40.7



Os05g3

51.2


29.9


45.5


46.8


48.5


51.6


32


53.9


53.5


47.2



CAO473

69.6


28


44.4


45.9


50.2


76.9


32.4


62.3


72.5


60.6



ABH028

65


27.1


47.6


49


49


67.5


32.5


59.3


67.9


60.2



AAS194

49.8


30.4


47.5


48.2


45.6


54.7


33.1


51.7


54.1


48.7























AAK840
At2g16
ABP570
CAJ422
CAE090
ABP574
AAN283
Os05g3
CAO473
ABH028
AAS194





AAP329
39.4
49.1
45.3
46.5
45.9
43.5
49.1
45.9
46.8
50
49.1


ABQ811
49.3
66
52
65
64.6
67.7
55.8
55.4
66
64.3
62.6


ABQ812
49.3
66.3
52
65
64.6
67.7
57.1
55.4
66
64.3
62.2


Os01g6
47
57.8
54.7
62.4
59.6
62
60.3
73.5
62.7
63.1
69.3


ABQ512
54.9
61.7
59.6
64.4
69.6
68.9
61.6
64.2
68.5
67.3
67.4


BAF494
33.1
44.8
42.4
41.3
41.6
42.4
42.9
41.1
39.5
40.3
44.3


ABD602
59.7
59.9
51.7
59.3
61.6
62.7
57
57.3
65.7
63.6
62.6


CAA502
51.7
67.3
53.6
82.2
70.4
68.2
56.9
63.7
71.5
68.9
63


AT1G22
54.5
63.2
57.4
61.1
65
63.8
65.8
65
67.3
63.8
66.3


AAO494
63.4
62.8
52.1
66.5
66.3
69.3
58.2
62.3
68.5
69.2
61.5


CAA783
30.9
41.8
37.8
37.8
39.9
38.5
39
38.2
38.2
37.5
38.5


AAZ204
35.1
44.1
40.3
43.9
43.6
43.3
43.3
41.1
41.4
44.1
46.3


AAT371
51.7
66.5
52.5
82.2
71.3
68.7
58.5
65.7
71.7
69.4
62.6


P81393
58.2
64.3
52.1
66.9
74.1
76.2
59.7
64.6
76.9
73.5
63


BAC756
37.4
46.8
43.7
47.1
44.8
46.8
45.4
43.7
46.6
47.4
49.1


ABD323
35.6
46.1
42.8
46.4
44.4
45.6
46.1
43.9
43.6
44.2
47.2


CAD987
50.4
70.7
53.7
73.5
75.9
77.8
58.9
64.8
78.9
76.3
68.5


AAA829
35.3
43
41.5
42
41.2
42.3
42
43
41.5
41.5
44.1


Os09g3
55.4
68
51.7
83.3
75.3
76.1
62.4
67.7
77.3
75.5
64.1


AT4G38
51.8
70.2
51.8
67.7
67
70.9
60.3
59.2
72
69.1
64.5


CAA646
53.5
70.3
52.7
71.6
72.5
74.4
59.3
61.9
78.4
72.2
65.2


P80073
30.4
41.1
38.2
39.7
38.2
38.5
37.5
37.8
40.1
39.2
41.3


AAN282
49.1
60.6
53.2
58.2
60.8
58.9
97.4
60
58.5
61.5
63


AAN281
50
60.6
53.4
58.5
60.8
58.6
97
61.6
57.8
61.9
63.7


AAL906
58
49.1
44.5
51.6
54.5
56.6
46.4
53.1
56.2
54.9
52.6


AAK196
51.9
74.7
55.5
71.6
76.5
78
61
65.5
84.8
80.7
66.7


AAN054
35.5
44.3
43.2
42.4
42.1
41.1
42.4
42.7
41.6
42.7
44.3


Os08g4
53.1
65.1
52.5
74.2
72.5
77.5
57
62.7
74.9
70.8
60


BAF462
49.1
70.3
54
70.5
77.4
78.1
62.6
65.3
79.6
78.9
68.1


AT4G34
51.1
78.8
52.2
66.5
69
69
56.2
59.5
71.2
70.4
61.7


AAK840

50.2
46.8
52
57.3
57.4
49.4
52.3
55
53.4
51.9


At2g16

38.4


50.6
66.5
67.7
69.9
62.5
58.4
70.6
69.5
61.1


ABP570

36.6


35.6


51.6
50.6
53.6
53.2
54.7
53.6
56.2
55.6


CAJ422

38.8


53.2


36.4


69.5
70.9
58.2
63.6
70.9
69.1
64.4


CAE090

43


55.8


37.7


56.2


77.6
61.6
65.8
79.2
74.5
65.6


ABP574

44.7


58.9


39.2


58


66


58.6
67.7
85.3
78.3
67.8


AAN283

36.1


44.9


37.7


46.2


46.8


48


62
60.5
62.4
62.6


Os05g3

42.3


48.4


41.3


53.7


52.2


53.9


47.5


68.5
65.8
73.3


CAO473

42.3


62.5


38.7


61.4


70.1


75.5


46


57.1


80.6
66.3


ABH028

41.5


59.3


40.9


53.2


62.3


64.6


49.3


51.9


66.3


65.6


AAS194

40


48.7


39.1


50.3


54.3


53.6


47.5


58.7


54.9


53.5










Example 4
Identification of Domains Comprised in Polypeptide Sequences Useful in Performing the Methods of the Invention

The Integrated Resource of Protein Families, Domains and Sites (InterPro) database is an integrated interface for the commonly used signature databases for text- and sequence-based searches. The InterPro database combines these databases, which use different methodologies and varying degrees of biological information about well-characterized proteins to derive protein signatures. Collaborating databases include SWISS-PROT, PROSITE, TrEMBL, PRINTS, ProDom and Pfam, Smart and TIGRFAMs. Pfam is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains and families. Pfam is hosted at the Sanger Institute server in the United Kingdom. Interpro is hosted at the European Bioinformatics Institute in the United Kingdom.


The results of the InterPro scan of the polypeptide sequence as represented by SEQ ID NO: 2 are presented in Table C1.









TABLE C1







InterPro scan results (major accession numbers) of the polypeptide


sequence as represented by SEQ ID NO: 2.













Accession

e-value [amino


InterPro

number in

acid coordinates of


Accession
Reference
reference
Name of
the domain in the


number
database
database
domain
query polypeptide]





IPR003851
PFAM
PF02701
zf-Dof
2.2e−39 [48-110]T



PROFILE
PS50884
ZF_DOF_2
28.910 [53-107]T



PROSITE
PS01361
ZF_DOF_1
  8e−5 [55-91]T









The results of the InterPro scan of the polypeptide sequence as represented by SEQ ID NO: 50 are presented in Table C2.









TABLE C2







InterPro scan results (major accession numbers) of the polypeptide


sequence as represented by SEQ ID NO: 50. The amino acid


coordinates (start and stop residues) are indicated.











Accession

Amino acid coordinates


Database
number
Accession name
on SEQ ID NO 50





HMMPfam
PF00249
Myb_DNA-binding
T[14-61] 4.3E−9





T[67-112] 1.1E−10


HMMSmart
SM00717
SANT
T[13-63] 1.3E−13





T[66-114] 1.8E−17


ProfileScan
PS00037
MYB_1
T[17-25] 0.0


ProfileScan
PS00334
MYB_2
T[89-112] 0.0


ProfileScan
PS50090
MYB_3
T[9-61] 17.269





T[62-112] 16.619


Superfamily
SSF46689
Homeodomain_like
T[14-62] 4.31E−17





T[63-116] 4.99E−15









Example 5
Cloning of the Nucleic Acid Sequence Used in the Methods of the Invention

The nucleic acid sequence used in the methods of the invention was amplified by PCR using as template a custom-made Arabidopsis thaliana seedlings cDNA library (in pCMV Sport 6.0; Invitrogen, Paisley, UK). PCR was performed using Hifi Taq DNA polymerase in standard conditions, using 200 ng of template in a 50 μl PCR mix. The primers used were Primer-sense as presented by SEQ ID NO: 44; sense):


5′-ggggacaagtttgtacaaaaaagcaggcttaaacaatggatacggctcagtgg-3′ and Primer-reverse (SEQ ID NO: 45; reverse, complementary):


5′-ggggaccactttgtacaagaaagctgggtaccgagaaattaattagcacc-3′, which include the AttB sites for Gateway recombination. The amplified PCR fragment was purified also using standard methods. The first step of the Gateway procedure, the BP reaction, was then performed, during which the PCR fragment recombines in vivo with the pDONR201 plasmid to produce, according to the Gateway terminology, an “entry clone”, pSEQIDNO:1. Plasmid pDONR201 was purchased from Invitrogen, as part of the Gateway® technology.


The entry clone comprising SEQ ID NO: 1 was then used in an LR reaction with a destination vector used for Oryza sativa transformation. This vector contained as functional elements within the T-DNA borders: a plant selectable marker; a screenable marker expression cassette; and a Gateway cassette intended for LR in vivo recombination with the nucleic acid sequence of interest already cloned in the entry clone. A rice WSI18 promoter (SEQ ID NO: 47) for seed specific expression was located upstream of this Gateway cassette.


After the LR recombination step, the resulting expression vector pWSI18::SEQIDNO:1 (FIG. 4) was transformed into Agrobacterium strain LBA4044 according to methods well known in the art.


Example 6
Topology Prediction of the Polypeptide Sequences Useful in Performing the Methods of the Invention

TargetP 1.1 predicts the subcellular location of eukaryotic proteins. The location assignment is based on the predicted presence of any of the N-terminal pre-sequences: chloroplast transit peptide (cTP), mitochondrial targeting peptide (mTP) or secretory pathway signal peptide (SP). Scores on which the final prediction is based are not really probabilities, and they do not necessarily add to one. However, the location with the highest score is the most likely according to TargetP, and the relationship between the scores (the reliability class) may be an indication of how certain the prediction is. The reliability class (RC) ranges from 1 to 5, where 1 indicates the strongest prediction. TargetP is maintained at the server of the Technical University of Denmark.


For the sequences predicted to contain an N-terminal presequence a potential cleavage site can also be predicted.


A number of parameters were selected, such as organism group (non-plant or plant), cutoff sets (none, predefined set of cutoffs, or user-specified set of cutoffs), and the calculation of prediction of cleavage sites (yes or no).


The results of TargetP 1.1 analysis of the polypeptide sequence as represented by SEQ ID NO: 50 are presented Table D1. The “plant” organism group has been selected, no cutoffs defined, and the predicted length of the transit peptide requested. The subcellular localization of the polypeptide sequence as represented by SEQ ID NO: 50 may be the cytoplasm or nucleus, no transit peptide is predicted.









TABLE D1





TargetP 1.1 analysis of the polypeptide sequence as


represented by SEQ ID NO: 50


















Length (AA)
269



Chloroplastic transit peptide
0.195



Mitochondrial transit peptide
0.082



Secretory pathway signal peptide
0.022



Other subcellular targeting
0.914



Predicted Location
/



Reliability class
2



Predicted transit peptide length
/









Many other algorithms can be used to perform such analyses, including:

    • ChloroP 1.1 hosted on the server of the Technical University of Denmark;
    • Protein Prowler Subcellular Localisation Predictor version 1.2 hosted on the server of the Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia;
    • PENCE Proteome Analyst PA-GOSUB 2.5 hosted on the server of the University of Alberta, Edmonton, Alberta, Canada;
    • TMHMM, hosted on the server of the Technical University of Denmark


Example 7
Functional Assay for the MYB7 Polypeptide

MYB7 protein activity can be assayed as described by Li and Parish (1995). Briefly, the MYB7 coding sequence is cloned in frame with the T7 gene 10 leader sequence and expressed in E. coli. The proteins are purified and analysed in a mobility retardation assay, using 32P-labeled c-myb binding site (MBS) and the binding site of the maize P gene product (PBS). In this way, it was shown that MYB7 from Arabidopsis thaliana did not bind to the MBS site with high affinity, but had a binding preference for the PBS site.


Example 8
Cloning of the Nucleic Acid Sequence Used in the Methods of the Invention

The nucleic acid sequence used in the methods of the invention was amplified by PCR using as template a custom-made Arabidopsis thaliana seedlings cDNA library (in pCMV Sport 6.0; Invitrogen, Paisley, UK). PCR was performed using Hifi Taq DNA polymerase in standard conditions, using 200 ng of template in a 50 μl PCR mix. The primers used were prm05966 (SEQ ID NO: 51; sense, start codon in bold):


5′-ggggacaagtttgtacaaaaaagcaggcttaaacaatgggaagatctccttgctg-3′ and prm05967 (SEQ ID NO: 52; reverse, complementary):


5′-ggggaccactttgtacaagaaagctgggtcatttatttcatttccaagcttc-3′, which include the AttB sites for Gateway recombination. The amplified PCR fragment was purified also using standard methods. The first step of the Gateway procedure, the BP reaction, was then performed, during which the PCR fragment recombines in vivo with the pDONR201 plasmid to produce, according to the Gateway terminology, an “entry clone”, pMYB7. Plasmid pDONR201 was purchased from Invitrogen, as part of the Gateway® technology.


The entry clone comprising SEQ ID NO: 49 was then used in an LR reaction with the destination vector p00640 used for Oryza sativa (japonica cv Nipponbare) transformation. This vector contained as functional elements within the T-DNA borders: a plant selectable marker; a screenable marker expression cassette; and a Gateway cassette intended for LR in vivo recombination with the nucleic acid sequence of interest already cloned in the entry clone. A rice GOS2 promoter (SEQ ID NO: 53) for constitutive expression was located upstream of this Gateway cassette.


After the LR recombination step, the resulting expression vector pGOS2::MYB7 (FIG. 8) was transformed into Agrobacterium strain LBA4044 according to methods well known in the art.


Example 9
Plant Transformation

Rice Transformation


The Agrobacterium containing the expression vector was used to transform Oryza sativa plants. Mature dry seeds of the rice japonica cultivar Nipponbare were dehusked. Sterilization was carried out by incubating for one minute in 70% ethanol, followed by 30 minutes in 0.2% HgCl2, followed by a 6 times 15 minutes wash with sterile distilled water. The sterile seeds were then germinated on a medium containing 2,4-D (callus induction medium). After incubation in the dark for four weeks, embryogenic, scutellum-derived calli were excised and propagated on the same medium. After two weeks, the calli were multiplied or propagated by subculture on the same medium for another 2 weeks. Embryogenic callus pieces were sub-cultured on fresh medium 3 days before co-cultivation (to boost cell division activity).



Agrobacterium strain LBA4404 containing the expression vector was used for co-cultivation. Agrobacterium was inoculated on AB medium with the appropriate antibiotics and cultured for 3 days at 28° C. The bacteria were then collected and suspended in liquid co-cultivation medium to a density (OD600) of about 1. The suspension was then transferred to a Petri dish and the calli immersed in the suspension for 15 minutes. The callus tissues were then blotted dry on a filter paper and transferred to solidified, co-cultivation medium and incubated for 3 days in the dark at 25° C. Co-cultivated calli were grown on 2,4-D-containing medium for 4 weeks in the dark at 28° C. in the presence of a selection agent. During this period, rapidly growing resistant callus islands developed. After transfer of this material to a regeneration medium and incubation in the light, the embryogenic potential was released and shoots developed in the next four to five weeks. Shoots were excised from the calli and incubated for 2 to 3 weeks on an auxin-containing medium from which they were transferred to soil. Hardened shoots were grown under high humidity and short days in a greenhouse.


Approximately 35 independent T0 rice transformants were generated for one construct. The primary transformants were transferred from a tissue culture chamber to a greenhouse. After a quantitative PCR analysis to verify copy number of the T-DNA insert, only single copy transgenic plants that exhibit tolerance to the selection agent were kept for harvest of T1 seed. Seeds were then harvested three to five months after transplanting. The method yielded single locus transformants at a rate of over 50% (Aldemita and Hodges1996, Chan et al. 1993, Hiei et al. 1994).


Corn Transformation


Transformation of maize (Zea mays) is performed with a modification of the method described by Ishida et al. (1996) Nature Biotech 14(6): 745-50. Transformation is genotype-dependent in corn and only specific genotypes are amenable to transformation and regeneration. The inbred line A188 (University of Minnesota) or hybrids with A188 as a parent are good sources of donor material for transformation, but other genotypes can be used successfully as well. Ears are harvested from corn plant approximately 11 days after pollination (DAP) when the length of the immature embryo is about 1 to 1.2 mm. Immature embryos are cocultivated with Agrobacterium tumefaciens containing the expression vector, and transgenic plants are recovered through organogenesis. Excised embryos are grown on callus induction medium, then maize regeneration medium, containing the selection agent (for example imidazolinone but various selection markers can be used). The Petri plates are incubated in the light at 25° C. for 2-3 weeks, or until shoots develop. The green shoots are transferred from each embryo to maize rooting medium and incubated at 25° C. for 2-3 weeks, until roots develop. The rooted shoots are transplanted to soil in the greenhouse. T1 seeds are produced from plants that exhibit tolerance to the selection agent and that contain a single copy of the T-DNA insert.


Wheat Transformation


Transformation of wheat is performed with the method described by Ishida et al. (1996) Nature Biotech 14(6): 745-50. The cultivar Bobwhite (available from CIMMYT, Mexico) is commonly used in transformation. Immature embryos are co-cultivated with Agrobacterium tumefaciens containing the expression vector, and transgenic plants are recovered through organogenesis. After incubation with Agrobacterium, the embryos are grown in vitro on callus induction medium, then regeneration medium, containing the selection agent (for example imidazolinone but various selection markers can be used). The Petri plates are incubated in the light at 25° C. for 2-3 weeks, or until shoots develop. The green shoots are transferred from each embryo to rooting medium and incubated at 25° C. for 2-3 weeks, until roots develop. The rooted shoots are transplanted to soil in the greenhouse. T1 seeds are produced from plants that exhibit tolerance to the selection agent and that contain a single copy of the T-DNA insert.


Soybean Transformation


Soybean is transformed according to a modification of the method described in the Texas A&M patent U.S. Pat. No. 5,164,310. Several commercial soybean varieties are amenable to transformation by this method. The cultivar Jack (available from the Illinois Seed foundation) is commonly used for transformation. Soybean seeds are sterilised for in vitro sowing. The hypocotyl, the radicle and one cotyledon are excised from seven-day old young seedlings. The epicotyl and the remaining cotyledon are further grown to develop axillary nodes. These axillary nodes are excised and incubated with Agrobacterium tumefaciens containing the expression vector. After the cocultivation treatment, the explants are washed and transferred to selection media. Regenerated shoots are excised and placed on a shoot elongation medium. Shoots no longer than 1 cm are placed on rooting medium until roots develop. The rooted shoots are transplanted to soil in the greenhouse. T1 seeds are produced from plants that exhibit tolerance to the selection agent and that contain a single copy of the T-DNA insert.


Rapeseed/Canola Transformation


Cotyledonary petioles and hypocotyls of 5-6 day old young seedling are used as explants for tissue culture and transformed according to Babic et al. (1998, Plant Cell Rep 17: 183-188). The commercial cultivar Westar (Agriculture Canada) is the standard variety used for transformation, but other varieties can also be used. Canola seeds are surface-sterilized for in vitro sowing. The cotyledon petiole explants with the cotyledon attached are excised from the in vitro seedlings, and inoculated with Agrobacterium (containing the expression vector) by dipping the cut end of the petiole explant into the bacterial suspension. The explants are then cultured for 2 days on MSBAP-3 medium containing 3 mg/l BAP, 3% sucrose, 0.7% Phytagar at 23° C., 16 hr light. After two days of co-cultivation with Agrobacterium, the petiole explants are transferred to MSBAP-3 medium containing 3 mg/l BAP, cefotaxime, carbenicillin, or timentin (300 mg/l) for 7 days, and then cultured on MSBAP-3 medium with cefotaxime, carbenicillin, or timentin and selection agent until shoot regeneration. When the shoots are 5-10 mm in length, they are cut and transferred to shoot elongation medium (MSBAP-0.5, containing 0.5 mg/l BAP). Shoots of about 2 cm in length are transferred to the rooting medium (MS0) for root induction. The rooted shoots are transplanted to soil in the greenhouse. T1 seeds are produced from plants that exhibit tolerance to the selection agent and that contain a single copy of the T-DNA insert.


Alfalfa Transformation


A regenerating clone of alfalfa (Medicago sativa) is transformed using the method of (McKersie et al., 1999 Plant Physiol 119: 839-847). Regeneration and transformation of alfalfa is genotype dependent and therefore a regenerating plant is required. Methods to obtain regenerating plants have been described. For example, these can be selected from the cultivar Rangelander (Agriculture Canada) or any other commercial alfalfa variety as described by Brown DCW and A Atanassov (1985. Plant Cell Tissue Organ Culture 4: 111-112). Alternatively, the RA3 variety (University of Wisconsin) has been selected for use in tissue culture (Walker et al., 1978 Am J Bot 65:654-659). Petiole explants are cocultivated with an overnight culture of Agrobacterium tumefaciens C58C1 pMP90 (McKersie et al., 1999 Plant Physiol 119: 839-847) or LBA4404 containing the expression vector. The explants are cocultivated for 3 d in the dark on SH induction medium containing 288 mg/L Pro, 53 mg/L thioproline, 4.35 g/L K2SO4, and 100 μm acetosyringinone. The explants are washed in half-strength Murashige-Skoog medium (Murashige and Skoog, 1962) and plated on the same SH induction medium without acetosyringinone but with a suitable selection agent and suitable antibiotic to inhibit Agrobacterium growth. After several weeks, somatic embryos are transferred to BOi2Y development medium containing no growth regulators, no antibiotics, and 50 g/L sucrose. Somatic embryos are subsequently germinated on half-strength Murashige-Skoog medium. Rooted seedlings were transplanted into pots and grown in a greenhouse. T1 seeds are produced from plants that exhibit tolerance to the selection agent and that contain a single copy of the T-DNA insert.


Cotton Transformation


Cotton is transformed using Agrobacterium tumefaciens according to the method described in U.S. Pat. No. 5,159,135. Cotton seeds are surface sterilised in 3% sodium hypochlorite solution during 20 minutes and washed in distilled water with 500 μg/ml cefotaxime. The seeds are then transferred to SH-medium with 50 μg/ml benomyl for germination. Hypocotyls of 4 to 6 days old seedlings are removed, cut into 0.5 cm pieces and are placed on 0.8% agar. An Agrobacterium suspension (approx. 108 cells per ml, diluted from an overnight culture transformed with the gene of interest and suitable selection markers) is used for inoculation of the hypocotyl explants. After 3 days at room temperature and lighting, the tissues are transferred to a solid medium (1.6 g/l Gelrite) with Murashige and Skoog salts with B5 vitamins (Gamborg et al., Exp. Cell Res. 50:151-158 (1968)), 0.1 mg/l 2,4-D, 0.1 mg/l 6-furfurylaminopurine and 750 μg/ml MgCL2, and with 50 to 100 μg/ml cefotaxime and 400-500 pg/ml carbenicillin to kill residual bacteria. Individual cell lines are isolated after two to three months (with subcultures every four to six weeks) and are further cultivated on selective medium for tissue amplification (30° C., 16 hr photoperiod). Transformed tissues are subsequently further cultivated on non-selective medium during 2 to 3 months to give rise to somatic embryos. Healthy looking embryos of at least 4 mm length are transferred to tubes with SH medium in fine vermiculite, supplemented with 0.1 mg/l indole acetic acid, 6 furfurylaminopurine and gibberellic acid. The embryos are cultivated at 30° C. with a photoperiod of 16 hrs, and plantlets at the 2 to 3 leaf stage are transferred to pots with vermiculite and nutrients. The plants are hardened and subsequently moved to the greenhouse for further cultivation.


Example 10
Phenotypic Evaluation Procedure

7.1 Evaluation Setup


Approximately 35 independent T0 rice transformants were generated. The primary transformants were transferred from a tissue culture chamber to a greenhouse for growing and harvest of T1 seed. Six events, of which the T1 progeny segregated 3:1 for presence/absence of the transgene, were retained. For each of these events, approximately 10 T1 seedlings containing the transgene (hetero- and homo-zygotes) and approximately 10 T1 seedlings lacking the transgene (nullizygotes) were selected by monitoring visual marker expression. The transgenic plants and the corresponding nullizygotes were grown side-by-side at random positions. Greenhouse conditions were of shorts days (12 hours light), 28° C. in the light and 22° C. in the dark, and a relative humidity of 70%. Plants grown under non-stress conditions were watered at regular intervals to ensure that water and nutrients were not limiting and to satisfy plant needs to complete growth and development.


Four T1 events were further evaluated in the T2 generation following the same evaluation procedure as for the T1 generation but with more individuals per event. From the stage of sowing until the stage of maturity the plants were passed several times through a digital imaging cabinet. At each time point digital images (2048×1536 pixels, 16 million colours) were taken of each plant from at least 6 different angles.


Drought Screen in Connection with DOF-C2 Domain Transcription Factor Polypeptides was Performed as Follows:


Progeny of rice plants transformed with pWSI18::SEQIDNO:1 and grown from T2 seeds are grown in potting soil under normal conditions until they approached the heading stage. They were then transferred to a “dry” section where irrigation was withheld. Humidity probes were inserted in randomly chosen pots to monitor the soil water content (SWC). When SWC went below certain thresholds, the plants were automatically re-watered continuously until a normal level was reached again. The plants were then re-transferred again to normal conditions. The rest of the cultivation (plant maturation, seed harvest) was the same as for plants not grown under abiotic stress conditions. Growth and yield parameters are recorded as detailed for growth under normal conditions.


Nitrogen use Efficiency Screen in Connection with DOF-C2 Domain Transcription Factor Polypeptides was Performed as Follows:


Progeny of rice plants transformed with pWSI18::SEQIDNO:1 and grown T2 seeds are grown in potting soil under normal conditions except for the nutrient solution. The pots were watered from transplantation to maturation with a specific nutrient solution containing reduced N nitrogen (N) content, usually between 7 to 8 times less. The rest of the cultivation (plant maturation, seed harvest) was the same as for plants not grown under abiotic stress. Growth and yield parameters are recorded as detailed for growth under normal conditions.


Drought Screen in Connection with MYB7 Polypeptides is Performed as Follows:


Progeny of rice plants transformed with pGOS2::MYB7 and grown from T2 seeds are grown in potting soil under normal conditions until they approach the heading stage. They are then transferred to a “dry” section where irrigation is withheld. Humidity probes are inserted in randomly chosen pots to monitor the soil water content (SWC). When SWC goes below certain thresholds, the plants are automatically re-watered continuously until a normal level is reached again. The plants are then re-transferred again to normal conditions. The rest of the cultivation (plant maturation, seed harvest) is the same as for plants not grown under abiotic stress conditions. Growth and yield parameters are recorded as detailed for growth under normal conditions.


Nitrogen Use Efficiency Screen in Connection with MYB7 Polypeptides is Performed as Follows:


Progeny of rice plants transformed with pGOS2::MYB7 and grown from T2 seeds are grown in potting soil under normal conditions except for the nutrient solution. The pots are watered from transplantation to maturation with a specific nutrient solution containing reduced N nitrogen (N) content, usually between 7 to 8 times less. The rest of the cultivation (plant maturation, seed harvest) is the same as for plants not grown under abiotic stress. Growth and yield parameters are recorded as detailed for growth under normal conditions.


7.2 Statistical Analysis: F Test


A two factor ANOVA (analysis of variants) was used as a statistical model for the overall evaluation of plant phenotypic characteristics. An F test was carried out on all the parameters measured of all the plants of all the events transformed with the gene of the present invention. The F test was carried out to check for an effect of the gene over all the transformation events and to verify for an overall effect of the gene, also known as a global gene effect. The threshold for significance for a true global gene effect was set at a 5% probability level for the F test. A significant F test value points to a gene effect, meaning that it is not only the mere presence or position of the gene that is causing the differences in phenotype.


Because two experiments with overlapping events were carried out, a combined analysis was performed. This is useful to check consistency of the effects over the two experiments, and if this is the case, to accumulate evidence from both experiments in order to increase confidence in the conclusion. The method used was a mixed-model approach that takes into account the multilevel structure of the data (i.e. experiment-event-segregants). P values were obtained by comparing likelihood ratio test to chi square distributions.


7.3 Parameters Measured


Biomass-Related Parameter Measurement


From the stage of sowing until the stage of maturity the plants were passed several times through a digital imaging cabinet. At each time point digital images (2048×1536 pixels, 16 million colours) were taken of each plant from at least 6 different angles.


The plant aboveground area (or leafy biomass) was determined by counting the total number of pixels on the digital images from aboveground plant parts discriminated from the background. This value was averaged for the pictures taken on the same time point from the different angles and was converted to a physical surface value expressed in square mm by calibration. Experiments show that the aboveground plant area measured this way correlates with the biomass of plant parts above ground. The above ground area is the area measured at the time point at which the plant had reached its maximal leafy biomass. The early vigour is the plant (seedling) aboveground area three weeks post-germination. Increase in root biomass is expressed as an increase in total root biomass (measured as maximum biomass of roots observed during the lifespan of a plant); or as an increase in the root/shoot index (measured as the ratio between root mass and shoot mass in the period of active growth of root and shoot).


Early vigour was determined by counting the total number of pixels from aboveground plant parts discriminated from the background. This value was averaged for the pictures taken on the same time point from different angles and was converted to a physical surface value expressed in square mm by calibration. The results described below are for plants three weeks post-germination.


Seed-Related Parameter Measurements


The mature primary panicles were harvested, counted, bagged, barcode-labelled and then dried for three days in an oven at 37° C. The panicles were then threshed and all the seeds were collected and counted. The filled husks were separated from the empty ones using an air-blowing device. The empty husks were discarded and the remaining fraction was counted again. The filled husks were weighed on an analytical balance. The number of filled seeds was determined by counting the number of filled husks that remained after the separation step. The total seed yield was measured by weighing all filled husks harvested from a plant. Total seed number per plant was measured by counting the number of husks harvested from a plant. Thousand Kernel Weight (TKW) is extrapolated from the number of filled seeds counted and their total weight. The Harvest Index (HI) in the present invention is defined as the ratio between the total seed yield and the above ground area (mm2), multiplied by a factor 106. The total number of flowers per panicle as defined in the present invention is the ratio between the total number of seeds and the number of mature primary panicles. The seed fill rate as defined in the present invention is the proportion (expressed as a %) of the number of filled seeds over the total number of seeds (or florets).


Example 11
Results of the Phenotypic Evaluation of the Transgenic Plants

The results of the evaluation of transgenic rice plants expressing a DOF-C2 transcription factor nucleic acid under the control of WSI 18 promoter (SEQ ID NO: 47) or under the RCc3 promoter as described in Table 2A. An increase of at least 5% was observed in at least one of the following parameters: emergence vigour (early vigour), total seed yield, total number of seeds, number of filled seeds, number of flowers per panicle and harvest index


Performance of the plants transformed with vector pWSI18::SEQIDNO:1 and grown under non-stress conditions are presented below in Table D2.









TABLE D2







Results of the phenotypic evaluation of the transgenic plants


transformed with the plant transformation vector comprising


SEQ ID NO: 1 as described in Example 5.











% increased in transgenic



Yield-related trait
versus control plants













Early Vigour
9



Total Weight of Seeds
11



Number of filled seeds
12



Number of Flowers per panicle
6



Harvest Index
8



Number of total seeds
6









Example 12
Results of the Phenotypic Evaluation of the Transgenic Plants

Evaluation of transgenic rice plants (the progeny of plants transformed with pGOS2::MYB7 and grown from T2 seeds) expressing a MYB7 nucleic acid under non-stress conditions revealed an overall increase of more than 5% for aboveground biomass (AreaMax) with a p-value of 0.0012, and for emergence vigour (early vigour) with a p-value lower than 0.00001.

Claims
  • 1. A method for enhancing yield-related traits comprising modulating expression in a plant of a nucleic acid encoding a DOF-C2 domain transcription factor polypeptide or a MYB-domain protein.
  • 2. The method according to claim 1 for enhancing yield-related traits in plants relative to control plants, comprising modulating expression a) in a plant nucleic acid encoding a DOF-C2 (DNA-binding with one finger, subgroup C2) domain transcription factor polypeptide comprising feature (i) and feature (ii) as follow: (i) a DOF domain having at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 96%, 97%, 98%, 99% or more sequence identity to either the DOF domain represented by SEQ ID NO: 35 or SEQ ID NO: 36; and(ii) Motif I: ERKARPQKDQ (SEQ ID NO: 37) having zero, one or more conservative amino acid substitution(s) and/or having five, four, three, two or one non-conservative amino acid sub stitutition(s); and/or Motif II: YWSGMI (SEQ ID NO: 38) having zero, one or more conservative amino acid subtitutions and/or having three, two or one non-conservative amino acid substitutition(s) orb) in a plant of a nucleic acid encoding a MYB7 polypeptide, wherein said MYB7 polypeptide comprises a two SANT domains.
  • 3. The method of claim 2, wherein a) said DOF-C2 transcription factor polypeptide furthermore comprises one, two, three, four or all of the following motifs: Motif III: RLLFPFEDLKPLVS (SEQ ID NO: 39) having zero, one or more conservative amino acid substitution(s) and/or having five, four, three, two or one non-conservative amino acid substitutition(s); and/orMotif IV: INVKPMEEI (SEQ ID NO: 40) having zero, one or more conservative amino acid substitution(s) and/or having four, three, two or one non-conservative amino acid substitutition(s); and/or;Motif V: KNPKLLHEGAQDLNLAFPHH (SEQ ID NO: 41) having zero, one or more conservative amino acid substitution(s) and/or having nine, eight, seven, six, five, four, three, two or one non-conservative amino acid sub substitutition(s); and/orMotif VI: MELLRSTGCYM (SEQ ID NO: 42) having zero, one or more conservative amino acid substitution(s) and/or having five, four, three, two or one non-conservative amino acid substitutition(s); and/orMotif VII: MMDSNSVLYSSLGFPTMPDYK (SEQ ID NO: 43 having zero, one or more conservative amino acid substitution(s) and/or having nine, eight, seven, six, five, four, three, two or one non-conservative amino acid substitutition(s); orb) said MYB7 polypeptide comprises four or more of the motifs 1 to 7 (SEQ ID NO:55 to SEQ ID NO: 61).
  • 4. The method of claim 2, wherein said modulated expression is effected by introducing and expressing in a plant a nucleic acid encoding a DOF-C2 transcription factor polypeptide or a nucleic acid encoding a MYB7 polypeptide.
  • 5. The method of claim 2, wherein a) said nucleic acid encoding a DOF-C2 transcription factor polypeptide encodes any one of the proteins listed in Table A1 or is a portion of such a nucleic acid, or a nucleic acid capable of hybridising with such a nucleic acid orb) said nucleic acid encoding a MYB7 polypeptide encodes any one of the proteins listed in Table A2 or is a portion of such a nucleic acid, or a nucleic acid capable of hybridising with such a nucleic acid.
  • 6. The method of claim 2, wherein said nucleic acid sequence encodes an orthologue or paralogue of any of the proteins given in Table A1 or Table A2.
  • 7. The method of claim 2, wherein said enhanced yield-related traits comprise a) increased yield, increased early vigour and/or increased seed yield relative to control plants or b) increased biomass and/or increased emergence vigour relative to control plants.
  • 8. The method of claim 2, wherein said enhanced yield-related traits are obtained under non-stress conditions.
  • 9. The method of claim 2, wherein said nucleic acid is operably linked to a) a seed-specific promoter, a promoter of a gene encoding a late embryogenesis protein, or a WSI18 promoter from rice orb) a constitutive promoter, a GOS2 promoter, most preferably to or a GOS2 promoter from rice.
  • 10. The method of claim 2, wherein said nucleic acid encoding a DOF-C2 transcription factor polypeptide or a MYB7 polypeptide is of plant origin.
  • 11. A plant or part thereof, including seeds, obtained by the method of claim 2, wherein said plant or part thereof comprises a recombinant nucleic acid encoding a DOF-C2 transcription factor polypeptide or a MYB7 polypeptide.
  • 12. A construct comprising: (i) a nucleic acid encoding a DOF-C2 transcription factor polypeptide or a class MYB7 polypeptide as defined in claim 3;(ii) one or more control sequences capable of driving expression of the nucleic acid sequence of (a); and optionally(iii) a transcription termination sequence.
  • 13. The construct of claim 12, wherein a) one of said control sequences is a seed-specific promoter, a promoter of a gene encoding a late embryogenesis protein, or a promoter of the rice WSI18 gene orb) one of said control sequences is a constitutive promoter, a GOS2 promoter, or a GOS2 promoter from rice.
  • 14. A method for making plants having increased yield comprising introducing the construct of claim 12 in a plant; wherein the increased yield comprises a) increased early vigour and/or increased seed yield relative to control plants or b) increased biomass and/or increased emergence vigour relative to control plants.
  • 15. A plant, plant part or plant cell transformed with a construct of claim 12.
  • 16. A method for the production of a transgenic plant having increased yield, increased biomass and/or increased vigour and/or increased seed yield relative to control plants, comprising: (i) introducing and expressing in a plant a nucleic acid encoding a DOF-C2 transcription factor polypeptide or a nucleic acid encoding a MYB7 polypeptide as defined in claim 2; and(ii) cultivating the plant cell under conditions promoting plant growth and development.
  • 17. A transgenic plant having increased yield, increased biomass, increased vigour, and/or increased seed yield, relative to control plants, resulting from modulated expression of a nucleic acid encoding a DOF-C2 transcription factor polypeptide or a MYB7 polypeptide as defined in claim 2, or a transgenic plant cell derived from said transgenic plant.
  • 18. A transgenic plant according to claim 11, or a transgenic plant cell derived thereof, wherein said plant is a crop plant or a monocot or a cereal.
  • 19. Harvestable parts of a plant according to claim 18, wherein said harvestable parts are shoot biomass and/or seeds or vegetative biomass.
  • 20. Products derived from a plant according to claim 18 and/or from harvestable parts thereof.
  • 21. (canceled)
Priority Claims (2)
Number Date Country Kind
07119497.1 Oct 2007 EP regional
07119793.3 Oct 2007 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2008/064673 10/29/2008 WO 00 4/27/2010
Provisional Applications (2)
Number Date Country
60985747 Nov 2007 US
60987433 Nov 2007 US