PLANTS HAVING INCREASED TOLERANCE TO HERBICIDES

Abstract
The present invention refers to a method for controlling undesired vegetation at a plant cultivation site, the method comprising the steps of providing, at said site, a plant that comprises at least one nucleic acid comprising a nucleotide sequence encoding a wild-type hydroxyphenyl pyruvate dioxygenase or a mutated hydroxyphenyl pyruvate dioxygenase (mut-HPPD) which is resistant or tolerant to a HPPD-inhibiting benzamide, applying to said site an effective amount of said benzamide herbicide.
Description

The present invention relates in general to methods for conferring on plants agricultural levels of tolerance towards an herbicide. Particularly, the invention refers to plants having an increased tolerance to HPPD-inhibiting a benzamide herbicides. More specifically, the present invention relates to methods and plants obtained by mutagenesis and cross-breeding and transformation that have an increased tolerance to a HPPD-inhibiting benzamide herbicide as described herein.


BACKGROUND OF THE INVENTION

Herbicides that inhibit 4-hydroxyphenylpyruvate dioxygenase (4-HPPD; EC 1.13.11.27), a key enzyme in the biosynthesis of the prenylquinones plastoquinone and tocopherols, have been used for selective weed control since the early 1990s. They block the conversion of 4-hydroxyphenylpyruvate to homogentisate in the biosynthetic pathway (Matringe et al., 2005, Pest Manag Sci., vol. 61:269-276; Mitchell et al., 2001, Pest Manag Sci. vol 57:120-128). Plastoquinone is thought to be a necessary cofactor of the enzyme phytoene desaturase in carotenoid biosynthesis (Boeger and Sandmann, 1998, Pestic Outlook, vol 9:29-35). Its inhibition results in the depletion of the plant plastoquinone and vitamin E pools, leading to bleaching symptoms. The loss of carotenoids, particularly in their function as protectors of the photosystems against photooxidation, leads to oxidative degradation of chlorophyll and photosynthetic membranes in growing shoot tissues. Consequently, chloroplast synthesis and function are disturbed (Boeger and Sandmann, 1998). The enzyme homogentisate solanesyl transferase (HST) catalyses the step following HPPD in the plastoquinone biosynthetic pathway. HST is a prenyl transferase that both decarboxylates homogentisate and also transfers to it the solanesyl group from solanesyl diphosphate and thus forms 2-methyl-6-solanesyl-1,4-benzoquinol (MSBQ), an intermediate along the biosynthetic pathway to plastoquinone. HST enzymes are membrane bound and the genes that encode them include a plastid targeting sequence.


Three main strategies are available for making plants tolerant to herbicides, i.e. (1) detoxifying the herbicide with an enzyme which transforms the herbicide, or its active metabolite, into non-toxic products, such as, for example, the enzymes for tolerance to bromoxynil or to Basta (EP242236, EP337899); (2) mutating the target enzyme into a functional enzyme which is less sensitive to the herbicide, or to its active metabolite, such as, for example, the enzymes for tolerance to glyphosate (EP293356, Padgette S. R. et al., J. Biol. Chem., 266, 33, 1991); or (3) overexpressing the sensitive enzyme so as to produce quantities of the target enzyme in the plant which are sufficient in relation to the herbicide, in view of the kinetic constants of this enzyme, so as to have enough of the functional enzyme available despite the presence of its inhibitor. The third strategy was described for successfully obtaining plants which were tolerant to HPPD inhibitors (WO96/38567). US2009/0172831 discloses nucleotide sequences encoding amino acid sequences having enzymatic activity such that the amino acid sequences are resistant to HPPD inhibitor herbicidal chemicals.


To date, the prior art has not described HPPD-inhibiting benzamide herbicide tolerant plants containing at least one mutated HPPD nucleic acid according to the present invention. Nor has the prior art described HPPD-inhibiting benzamide herbicide tolerant crop plants containing mutations on genomes other than the genome from which the HPPD gene is derived. Therefore, what is needed in the art is the identification of HPPD-inhibiting benzamide herbicide tolerance genes from additional genomes and species. What is also needed in the art are crop plants and crop plants having increased tolerance to herbicides such as HPPD-inhibiting benzamide herbicide and containing at least one mutated HPPD nucleic acid according to the present invention. Also needed are methods for controlling weed growth in the vicinity of such crop plants or crop plants. These compositions and methods would allow for the use of spray over techniques when applying herbicides to areas containing crop plant or crop plants.


SUMMARY OF THE INVENTION

The problem is solved by the present invention which refers to a method for controlling undesired vegetation at a plant cultivation site, the method comprising the steps of:

  • a) providing, at said site, a plant that comprises at least one nucleic acid comprising a nucleotide sequence encoding a wild type hydroxyphenyl pyruvate dioxygenase or a mutated hydroxyphenyl pyruvate dioxygenase (mut-HPPD) which is resistant or tolerant to a HPPD-inhibiting benzamide herbicide
  • b) applying to said site an effective amount of said herbicide.


    Wherein said benzamide herbicide comprises the compound of formula I,




embedded image




    • an N-oxide or an agriculturally suitable salt thereof,

    • wherein

    • Q is Q1 or Q2 or Q3 or Q4,







embedded image




    • R1 is selected from the group consisting of halogen, C1-C8-alkyl, C1-C8-haloalkyl, nitro, C1-C4-alkoxy-C1-C4-alkyl, cyano-Z1, C2-C8-alkenyl, C2-C8-alkynyl, C3-C10-cycloalkyl-Z1, C2-C8-haloalkenyl, C3-C8-haloalkynyl, C1-C8-alkoxy, C1-C4-alkoxy-C1-C4-alkoxy-Z1, C1-C4-alkylthio-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkylthio-Z1, C2-C6-alkenyloxy, C2-C6-alkynyloxy, C1-C6-haloalkoxy, C1-C4-haloalkoxy-C1-C4-alkyl, C1-C4-haloalkoxy-C1-C4-alkoxy-Z1, R1b—S(O)k—Z1, phenoxy-Z1 and heterocyclyloxy-Z1, where heterocyclyloxy is an oxygen bound 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where the cyclic groups in phenoxy and heterocyclyloxy are unsubstituted or substituted by 1, 2, 3 or 4 groups R11, which are identical or different;

    • R2 is R2cR2dNC(O)NR2c—Z2—;

    • R3 is selected from the group consisting of hydrogen, halogen, hydroxy-Z2, nitro, C1-C4-nitroalkyl, cyano, C1-C4-cyanoalkyl, C1-C6-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C3-C10-cycloalkyl-Z2, C3-C10-cycloalkoxy-Z2, where the C3-C10-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C8-haloalkyl, C2-C8-haloalkenyl, C3-C8-haloalkynyl, C1-C8-alkoxy-Z2, C1-C8-haloalkoxy-Z2, C3-C10-cycloalkyl-C1-C2-alkoxy, C1-C4-alkoxy-C1-C4-alkoxy-Z2, C1-C4-alkylthio-C1-C4-alkylthio-Z2, C2-C8-alkenyloxy-Z2, C2-C8-alkynyloxy-Z2, C2-C8-haloalkenyloxy-Z2, C3-C8-haloalkynyloxy-Z2, C1-C4-haloalkoxy-C1-C4-alkoxy-Z2, (tri-C1-C4-alkyl)silyl-Z2, R2b—S(O)k—Z2, R2c—C(═O)—Z2, R2dO—C(═O)—Z2, R2dO—N═CH—Z2, R2eR2fN—C(═O)—Z2, R2gR2hN—Z2, phenyl-Z2a, heterocyclyl-Z2a, where heterocyclyl is a 3-, 4-, 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where the cyclic groups in phenyl-Z2a and heterocy-clyl-Z2a are unsubstituted or substituted by 1, 2, 3 or 4 groups R21, which are identical or different, rhodano, C3-C6-cycloalkenyl, C3-C6-halocycloalkenyl, C3-C6-cycloalkenyl-C1-C6-alkyl, C3-C6-halocycloalkenyl-C1-C6-alkyl, OC(O)R22, OC(O)OR25, OC(O)N(R22)2, OSO2R25, SO2OR22, SO2N(R22)2, SO2N(R22)C(O)R22, SO2N(R22)C(O)OR25, SO2N(R22)C(O)N(R22)2, N(R22)C(O)OR25, N(R22)C(O)N(R22)2, N(R22)S(O)2OR22, N(R22)S(O)2N(R22)2, C(O)N(R22)OR22, C(O)N(R22)N(R22)2, C(O)N(R22)C(O)R22, C(O)N(R22)C(O)OR25, C(O)N(R22)C(O)N(R22)2, C(O)N(R22)SO2R25, C(O)N(R22)SO2OR22, C(O)N(R22)SO2N(R22)2, P(O)(OH)2, P(O)(O—C1-C4-alkyl)2, C1-C6-alkyl-OC(O)R22, C1-C6-alkyl-OC(O)OR25, C1-C6-alkyl-OC(O)N(R22)2, C1-C6-alkyl-OSO2R25, C1-C6-alkyl-SO2OR22, C1-C6-alkyl-SO2N(R22)2, C1-C6-alkyl-SO2N(R22)C(O)R22, C1-C6-alkyl-SO2N(R22)C(O)OR25, C1-C6-alkyl-SO2N(R22)C(O)N(R22)2, C1-C6-alkyl-N(R22)C(O)OR25, C1-C6-alkyl-N(R22)C(O)N(R22)2, C1-C6-alkyl-N(R22)S(O)2OR22, C1-C6-alkyl-N(R22)S(O)2N(R22)2, C1-C6-alkyl-C(O)N(R22)OR22, C1-C6-alkyl-C(O)N(R22)N(R22)2, C1-C6-alkyl-C(O)N(R22)C(O)R22, C1-C6-alkyl-C(O)N(R22)C(O)OR25, C1-C6-alkyl-C(O)N(R22)C(O)N(R22)2, C1-C6-alkyl-C(O)N(R22)SO2R25, C1-C6-alkyl-C(O)N(R22)SO2OR22, C1-C6-alkyl-C(O)N(R22)SO2N(R22)2, C1-C6-alkyl-P(O)(OH)2 and C1-C6-alkyl-P(O)(O—C1-C4-alkyl)2;

    • R4 is selected from the group consisting of hydrogen, halogen, C1-C8-alkyl, cyano-Z1, nitro, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C2-C8-alkenyl, C2-C8-alkynyl, C1-C8-haloalkyl, C1-C3-alkylamino, C1-C3-dialkylamino, C1-C3-alkylamino-S(O)k, C1-C3-alkylcarbonyl, C1-C8-alkoxy, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkoxy-Z1, C1-C4-alkylthio-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkylthio-Z, C2-C6-alkenyloxy, C2-C6-alkynyloxy, C1-C6-haloalkoxy, C1-C4-haloalkoxy-C1-C4-alkyl, C1-C4-haloalkoxy-C1-C4-alkoxy-Z1, R1b—S(O)k—Z1, phenoxy-Z1 and heterocyclyloxy-Z1, where heterocyclyloxy is an oxygen bound 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where the cyclic groups in phenoxy and heterocyclyloxy are unsubstituted or substituted by 1, 2, 3 or 4 groups R11, which are identical or different;

    • R5 is selected from the group consisting of halogen, cyano-Z1, nitro, C1-C8-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C2-C8-alkenyl, C2-C8-alkynyl, C1-C8-haloalkyl, C1-C3-alkylamino, C1-C3-dialkylamino, C1-C3-alkylamino-S(O)k, C1-C3-alkylcarbonyl, C1-C8-alkoxy, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkoxy-Z1, C1-C4-alkylthio-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkylthio-Z1, C2-C6-alkenyloxy, C2-C6-alkynyloxy, C1-C6-haloalkoxy, C1-C4-haloalkoxy-C1-C4-alkyl, C1-C4-haloalkoxy-C1-C4-alkoxy-Z1, R1b—S(O)k—Z1, phenoxy-Z1 and heterocyclyloxy-Z, where heterocyclyloxy is an oxygen bound 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where the cyclic groups in phenoxy and heterocyclyloxy are unsubstituted or substituted by 1, 2, 3 or 4 groups R11, which are identical or different;

    • R6 is selected from the group consisting of C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cyclo-alkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-haloalkoxy-C1-C4-alkyl, Rb—S(O)n—C1-C3-alkyl, Rc—C(═O)—C1-C3-alkyl, RdO—C(═O)—C1-C3-alkyl, ReRfN—C(═O)—C1-C3-alkyl, RgRhN—C1-C3-alkyl, phenyl-Z and heterocyclyl-Z, where heterocyclyl is a 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl and heterocyclyl are unsubstituted or substituted by 1, 2, 3 or 4 groups R′, which are identical or different;

    • R′, R11, R21 independently of each other are selected from the group consisting of halogen, NO2, CN, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-halocycloalkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C6-alkoxy, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkyl, C1-C4-haloalkoxy-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkoxy, C3-C7-cycloalkoxy and C1-C6-haloalkyloxy, or two radicals R′, R11 or R21 bound to the same carbon atom together may form a group ═O;

    • Z, Z1, Z2 independently of each other are selected from the group consisting of a covalent bond and C1-C4-alkanediyl;

    • Z2a is selected from the group consisting of a covalent bond, C1-C4-alkanediyl, O—C1-C4-alkanediyl, C1-C4-alkanediyl-O and C1-C4-alkanediyl-O—C1-C4-alkanediyl;

    • Rb, R1b, R2b independently of each other are selected from the group consisting of C1-C6-alkyl, C3-C7-cycloalkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, phenyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl and heterocyclyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • Rc, R2c independently of each other are selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C1-C6-alkoxy, C2-C6-alkenyl, C1-C4-alkyl-C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4—S(O)n—C1-C4-alkyl, C1-C4-alkylamino-C1-C4-alkyl, C1-C4-dialkylamino-C1-C4-alkyl, C1-C6-cyanoalkyl, phenyl, benzyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl, benzyl and heterocyclyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • Rd, R2d independently of each other are selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C1-C6-alkoxy, C2-C6-alkenyl, C1-C4-alkyl-C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4—S(O)n—C1-C4-alkyl, C1-C4-alkylamino-C1-C4-alkyl, C1-C4-dialkylamino-C1-C4-alkyl, C1-C6-cyanoalkyl, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • R2c, R2d together with the nitrogen atom, to which they are bound may form a 4, -5-, 6- or 7-membered, saturated or unsaturated cyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • Re, Rf independently of each other are selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C2-C6-alkenylene, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy, or

    • Re, Rf together with the nitrogen atom, to which they are bound may form a 5-, 6- or 7-membered, saturated or unsaturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • R2e, R2f independently of each other have the meanings given for Re, Rf;

    • Rg is selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C2-C6-alkenylene, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylsulfonyl, C1-C4-alkylcarbonyl, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • Rh is selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylsulfonyl, C1-C4-alkylcarbonyl, a radical C(═O)—Rk, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy, or

    • Rg, Rh together with the nitrogen atom, to which they are bound may form a 5-, 6- or 7-membered, saturated or unsaturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of ═O, halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • R2g, R2h independently of each other have the meanings given for Rg, Rh;

    • Rk has the meanings given for Rc;

    • R22 is selected from the group consisting of hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C3-C6-haloalkynyl, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halocycloalkyl, C3-C6-cycloalkyl-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkyl, C3-C6-cycloalkyl-C1-C6-alkoxy-C1-C6-alkyl, phenyl, phenyl-C1-C6-alkyl, heteroaryl, heteroaryl-C1-C6-alkyl, heterocyclyl, heterocyclyl-C1-C6-alkyl, phenyl-O—C1-C6-alkyl, heteroaryl-O—C1-C6-alkyl, heterocyclyl-O—C1-C6-alkyl, phenyl-N(R23)—C1-C6-alkyl, heteroaryl-N(R23)—C1-C6-alkyl, heterocyclyl-N(R23)—C1-C6-alkyl, phenyl-S(O)n—C1-C6-alkyl, heteroaryl-S(O)n—C1-C6-alkyl, heterocyclyl-S(O)n—C1-C6-alkyl, where the 15 aforementioned radicals are substituted by s residues selected from the group consisting of nitro, halogen, cyano, rhodano, C1-C6-alkyl, C1-C6-haloalkyl, C3-C6-cycloalkyl, C(O)OR23, C(O)N(R23)2, OR23, N(R23)2, S(O)nR24, S(O)2OR23, S(O)2N(R23)2 and R23O—C1-C6-alkyl, and where heterocy-clyl bears 0, 1 or 2 oxo groups;

    • R23 is selected from the group consisting of hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C6-cycloalkyl, C3-C6-cycloalkyl-C1-C6-alkyl and phenyl;

    • R24 is selected from the group consisting of C1-C6-alkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C6-cycloalkyl, C3-C6-cycloalkyl-C1-C6-alkyl and phenyl;

    • R25 is selected from the group consisting of C1-C6-alkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C3-C6-haloalkynyl, C3-C6-cycloalkyl, C3-C6-cycloalkenylene, C3-C6-halocycloalkyl, C3-C6-cycloalkyl-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkyl, C3-C6-cycloalkyl-C1-C6-alkoxy-C1-C6-alkyl, phenyl, phenyl-C1-C6-alkyl, heteroaryl, heteroaryl-C1-C6-alkyl, heterocyclyl, heterocyclyl-C1-C6-alkyl, phenyl-O—C1-C6-alkyl, heteroaryl-O—C1-C6-alkyl, heterocyclyl-O—C1-C6-alkyl, phenyl-N(R23)—C1-C6-alkyl, heteroaryl-N(R23)—C1-C6-alkyl, heterocyclyl-N(R23)—C1-C6-alkyl, phenyl-S(O)n—C1-C6-alkyl, heteroaryl-S(O)n—C1-C6-alkyl, heterocyclyl-S(O)n—C1-C6-alkyl, where the 15 aforementioned radicals are substituted by s residues selected from the group consisting of nitro, halogen, cyano, rhodano, C1-C6-alkyl, C1-C6-haloalkyl, C3-C6-cycloalkyl, C(O)OR23, C(O)N(R23)2, OR23, N(R23)2, S(O)nR24, S(O)2OR23, S(O)2N(R23)2 and R23O—C1-C6-alkyl, and where heterocy-clyl bears 0, 1 or 2 oxo groups;

    • R26 is C1-C6-alkyl or C1-C4-alkoxy-C1-C4-alkyl;

    • R27 is selected from the group consisting of hydrogen, cyano and C1-C4-haloalkylcarbonyl;

    • R28, R29 independently of each other are C1-C6-alkyl, or

    • R28, R29 together with the sulfur atom, to which they are bound may form a 5- or 6-membered saturated ring, which may carry as a ring member 1 oxygen atom;

    • k is 0, 1 or 2;

    • n is 0, 1 or 2.





Another object refers to a method of identifying a plant or algae containing a nucleic acid encoding a mut-HPPD which is resistant or tolerant to a HPPD-inhibiting benzamide herbicide, the method comprising:

  • a) identifying an effective amount of a HPPD-inhibiting, benzamide herbicide in a culture of plant cells or green algae.
  • b) treating said plant cells or green algae with a mutagenizing agent,
  • c) contacting said mutagenized cell population with an effective amount of HPPD-inhibiting, benzamide herbicide, identified in a),
  • d) selecting at least one cell surviving these test conditions,
  • e) PCR-amplification and sequencing of HPPD genes from cells selected in d) and comparing such sequences to wild-type HPPD gene sequences, respectively.


In a preferred embodiment, the mutagenizing agent is ethylmethanesulfonate.


In another embodiment, the invention refers to a method of producing a transgenic plant cell with an increased resistance to a HPPD-inhibiting benzamide herbicide as described herein as compared to a wild type variety of the plant cell comprising, transforming the plant cell with an expression cassette comprising a wild-type or a mut-HPPD nucleic acid.


In another embodiment, the invention refers to a method of producing a transgenic plant with an increased resistance to a HPPD-inhibiting benzamide herbicide as described herein comprising, (a) transforming a plant cell with an expression cassette comprising a wild-type or a mut-HPPD nucleic acid, and (b) generating a plant with an increased resistance to HPPD-inhibiting benzamide herbicide from the plant cell.


Preferably, the expression cassette further comprises a transcription initiation regulatory region and a translation initiation regulatory region that are functional in the plant.





DESCRIPTION OF THE DRAWING


FIG. 1 shows Arabidopsis MC24 control plants sprayed at 9 leaf stage without herbicide as assessed 14 days after treatment.



FIG. 2 shows MC24 plants sprayed at 9 leaf stage with 4-bromo-3-(dicyclopropylcarbamoylamino)-6-fluoro-2-methyl-N-(1-methyltetrazol-5-yl) benzamide 14 days after treatment



FIG. 3 shows Transgenic MC24 plants expressing the Scenedesmus obliquus HPPD coding sequence lacking the amino acids 442-477 (SEQ ID NO: 49) sprayed at 9 leaf stage with 4-bromo-3-(dicyclopropylcarbamoylamino)-6-fluoro-2-methyl-N-(1-methyltetrazol-5-yl) benzamide 14 days after treatment.



FIG. 4 shows Transgenic MC24 plants expressing the Scenedesmus obliquus HPPD coding sequence sprayed at 9 leaf stage with 4-bromo-3-(dicyclopropylcarbamoylamino)-6-fluoro-2-methyl-N-(1-methyltetrazol-5-yl) benzamide, 14 days after treatment





KEY TO SEQUENCE LISTING











TABLE 1





SEQ




ID




NO:
Description
Organism

















1
HPPD nucleic acid

Hordeum



51
HPPD nucl acid opt

Hordeum



2
HPPD amino acid

Hordeum



3
HPPD nucleic acid

Fragilariopsis



4
HPPD nucl acid opt

Fragilariopsis



5
HPPD amino acid

Fragilariopsis



6
HPPD nucleic acid

Chlorella



7
HPPD nucl acid opt

Chlorella



8
HPPD amino acid

Chlorella



9
HPPD nucleic acid

Thalassiosira



10
HPPD nucl acid opt

Thalassiosira



11
HPPD amino acid

Thalassiosira



12
HPPD nucleic acid

Cyanothece



13
HPPD nucl acid opt

Cyanothece



14
HPPD amino acid

Cyanothece



15
HPPD nucleic acid

Acaryochlonis



16
HPPD nucl acid opt

Acaryochlonis



17
HPPD amino acid

Acaryochlonis



18
HPPD nucleic acid

Synechocystis



19
HPPD nucl acid opt

Synechocystis



20
HPPD amino acid

Synechocystis



21
HPPD nucleic acid1

Alopecurus



22
HPPD amino acid1

Alopecurus



23
HPPD nucleic acid2

Alopecurus



24
HPPD amino acid2

Alopecurus



25
HPPD nucleic acid1

Sorghum



26
HPPD amino acid1

Sorghum



27
HPPD nucleic acid2

Sorghum



28
HPPD amino acid2

Sorghum



29
HPPD nucleic acid1

Poa



30
HPPD amino acid1

Poa



31
HPPD nucleic acid2

Poa



32
HPPD amino acid2

Poa



33
HPPD nucleic acid

Lolium



34
HPPD amino acid

Lolium



35
HPPD nucleic acid

Synechococcus



36
HPPD amino acid

Synechococcus



37
HPPD nucleic acid

Blepharisma



38
HPPD amino acid

Blepharisma



39
HPPD nucleic acid

Picrophilus



40
HPPD amino acid

Picrophilus



41
HPPD nucleic acid

Kordia



42
HPPD amino acid

Kordia



43
HPPD nucleic acid1

Rhodococcus



44
HPPD amino acid1

Rhodococcus



45
HPPD nucleic acid2

Rhodococcus



46
HPPD amino acid2

Rhodococcus



47
HPPD nucleic acid

Scenedesmus






obliquus long



48
HPPD amino acid

Scenedesmus






obliquus long



49
HPPD nucleic acid

Scenedesmus






obliquus short



50
HPPD amino acid

Scenedesmus






obliquus short



52
HPPD nucleic acid

Arabidopsis



53
HPPD amino acid

Arabidopsis



54
HPPD nucleic acid1

Chlamydomonas



55
HPPD amino acid1

Chlamydomonas



56
HPPD nucleic acid2

Chlamydomonas



57
HPPD amino acid2

Chlamydomonas



58
HPPD amino acid

Physcomitrella



59
HPPD amino acid

Oryza



60
HPPD amino acid

Triticum



61
HPPD amino acid

Zea



62
HPPD amino acid

Glycine



63
HPPD amino acid

ViEs



64
HPPD amino acid

Pseudomonas






fluorescens






strain 87-79



65
HPPD amino acid

Pseudomonas






fluorescens



66
HPPD amino acid

Avena sativa



67
HPPD amino acid

Zea mays variant



68
HPPD nucleic acid

Zea mays mut 10



69
HPPD nucleic acid

Zea mays mut 406










DETAILED DESCRIPTION

The articles “a” and “an” are used herein to refer to one or more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one or more elements.


As used herein, the word “comprising,” or variations such as “comprises” or “comprising,” will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.


The inventors of the present invention have found, that the tolerance or resistance of a plant to a HPPD-inhibiting benzamide herbicide as defined herein below could be remarkably increased by overexpressing wild type or mutated HPPD enzymes comprising SEQ ID NO: 2, 5, 8, 11, 14, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67.


Consequently, the present invention refers to a method for controlling undesired vegetation at a plant cultivation site, the method comprising the steps of:


a) providing, at said site, a plant that comprises at least one nucleic acid comprising

    • (i) a nucleotide sequence encoding a wild-type hydroxyphenyl pyruvate dioxygenase (HPPD) or a mutated hydroxyphenyl pyruvate dioxygenase (mut-HPPD) which is resistant or tolerant to a HPPD-inhibiting benzamide herbicide


      b) applying to said site an effective amount of said herbicide,


      Wherein said benzamide herbicide comprises the compound of formula I,




embedded image




    • an N-oxide or an agriculturally suitable salt thereof,

    • wherein

    • Q is Q1 or Q2 or Q3 or Q4,







embedded image




    • R1 is selected from the group consisting of halogen, C1-C8-alkyl, C1-C8-haloalkyl, nitro, C1-C4-alkoxy-C1-C4-alkyl, cyano-Z1, C2-C8-alkenyl, C2-C8-alkynyl, C3-C10-cycloalkyl-Z1, C2-C8-haloalkenyl, C3-C8-haloalkynyl, C1-C8-alkoxy, C1-C4-alkoxy-C1-C4-alkoxy-Z1, C1-C4-alkylthio-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkylthio-Z1, C2-C6-alkenyloxy, C2-C6-alkynyloxy, C1-C6-haloalkoxy, C1-C4-haloalkoxy-C1-C4-alkyl, C1-C4-haloalkoxy-C1-C4-alkoxy-Z1, R1b—S(O)k—Z1, phenoxy-Z1 and heterocyclyloxy-Z1, where heterocyclyloxy is an oxygen bound 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where the cyclic groups in phenoxy and heterocyclyloxy are unsubstituted or substituted by 1, 2, 3 or 4 groups R11, which are identical or different;

    • R2 is R2cR2dNC(O)NR2c—Z2—;

    • R3 is selected from the group consisting of hydrogen, halogen, hydroxy-Z2, nitro, C1-C4-nitroalkyl, cyano, C1-C4-cyanoalkyl, C1-C6-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C3-C10-cycloalkyl-Z2, C3-C10-cycloalkoxy-Z2, where the C3-C10-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C8-haloalkyl, C2-C8-haloalkenyl, C3-C8-haloalkynyl, C1-C8-alkoxy-Z2, C1-C8-haloalkoxy-Z2, C3-C10-cycloalkyl-C1-C2-alkoxy, C1-C4-alkoxy-C1-C4-alkoxy-Z2, C1-C4-alkylthio-C1-C4-alkylthio-Z2, C2-C8-alkenyloxy-Z2, C2-C8-alkynyloxy-Z2, C2-C8-haloalkenyloxy-Z2, C3-C8-haloalkynyloxy-Z2, C1-C4-haloalkoxy-C1-C4-alkoxy-Z2, (tri-C1-C4-alkyl)silyl-Z2, R2b—S(O)k—Z2, R2c—C(═O)—Z2, R2dO—C(═O)—Z2, R2dO—N═CH—Z2, R2eR2fN—C(═O)—Z2, R2gR2hN—Z2, phenyl-Z2a, heterocyclyl-Z2a, where heterocyclyl is a 3-, 4-, 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where the cyclic groups in phenyl-Z2a and heterocy-clyl-Z2a are unsubstituted or substituted by 1, 2, 3 or 4 groups R21, which are identical or different, rhodano, C3-C6-cycloalkenyl, C3-C6-halocycloalkenyl, C3-C6-cycloalkenyl-C1-C6-alkyl, C3-C6-halocycloalkenyl-C1-C6-alkyl, OC(O)R22, OC(O)OR25, OC(O)N(R22)2, OSO2R25, SO2OR22, SO2N(R22)2, SO2N(R22)C(O)R22, SO2N(R22)C(O)OR25, SO2N(R22)C(O)N(R22)2, N(R22)C(O)OR25, N(R22)C(O)N(R22)2, N(R22)S(O)2OR22, N(R22)S(O)2N(R22)2, C(O)N(R22)OR22, C(O)N(R22)N(R22)2, C(O)N(R22)C(O)R22, C(O)N(R22)C(O)OR25, C(O)N(R22)C(O)N(R22)2, C(O)N(R22)SO2R25, C(O)N(R22)SO2OR22, C(O)N(R22)SO2N(R22)2, P(O)(OH)2, P(O)(O—C1-C4-alkyl)2, C1-C6-alkyl-OC(O)R22, C1-C6-alkyl-OC(O)OR25, C1-C6-alkyl-OC(O)N(R22)2, C1-C6-alkyl-OSO2R25, C1-C6-alkyl-SO2OR22, C1-C6-alkyl-SO2N(R22)2, C1-C6-alkyl-SO2N(R22)C(O)R22, C1-C6-alkyl-SO2N(R22)C(O)OR25, C1-C6-alkyl-SO2N(R22)C(O)N(R22)2, C1-C6-alkyl-N(R22)C(O)OR25, C1-C6-alkyl-N(R22)C(O)N(R22)2, C1-C6-alkyl-N(R22)S(O)2OR22, C1-C6-alkyl-N(R22)S(O)2N(R22)2, C1-C6-alkyl-C(O)N(R22)OR22, C1-C6-alkyl-C(O)N(R22)N(R22)2, C1-C6-alkyl-C(O)N(R22)C(O)R22, C1-C6-alkyl-C(O)N(R22)C(O)OR25, C1-C6-alkyl-C(O)N(R22)C(O)N(R22)2, C1-C6-alkyl-C(O)N(R22)SO2R25, C1-C6-alkyl-C(O)N(R22)SO2OR22, C1-C6-alkyl-C(O)N(R22)SO2N(R22)2, C1-C6-alkyl-P(O)(OH)2 and C1-C6-alkyl-P(O)(O—C1-C4-alkyl)2;

    • R4 is selected from the group consisting of hydrogen, halogen, C1-C8-alkyl, cyano-Z1, nitro, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C2-C8-alkenyl, C2-C8-alkynyl, C1-C8-haloalkyl, C1-C3-alkylamino, C1-C3-dialkylamino, C1-C3-alkylamino-S(O)k, C1-C3-alkylcarbonyl, C1-C8-alkoxy, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkoxy-Z1, C1-C4-alkylthio-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkylthio-Z1, C2-C6-alkenyloxy, C2-C6-alkynyloxy, C1-C6-haloalkoxy, C1-C4-haloalkoxy-C1-C4-alkyl, C1-C4-haloalkoxy-C1-C4-alkoxy-Z1, R1b—S(O)k—Z1, phenoxy-Z1 and heterocyclyloxy-Z1, where heterocyclyloxy is an oxygen bound 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where the cyclic groups in phenoxy and heterocyclyloxy are unsubstituted or substituted by 1, 2, 3 or 4 groups R11, which are identical or different;

    • R5 is selected from the group consisting of halogen, cyano-Z1, nitro, C1-C8-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C2-C8-alkenyl, C2-C8-alkynyl, C1-C8-haloalkyl, C1-C3-alkylamino, C1-C3-dialkylamino, C1-C3-alkylamino-S(O)k, C1-C3-alkylcarbonyl, C1-C8-alkoxy, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkoxy-Z1, C1-C4-alkylthio-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkylthio-Z1, C2-C6-alkenyloxy, C2-C6-alkynyloxy, C1-C6-haloalkoxy, C1-C4-haloalkoxy-C1-C4-alkyl, C1-C4-haloalkoxy-C1-C4-alkoxy-Z1, R1b—S(O)k—Z1, phenoxy-Z1 and heterocyclyloxy-Z, where heterocyclyloxy is an oxygen bound 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where the cyclic groups in phenoxy and heterocyclyloxy are unsubstituted or substituted by 1, 2, 3 or 4 groups R11, which are identical or different;

    • R6 is selected from the group consisting of C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cyclo-alkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-haloalkoxy-C1-C4-alkyl, Rb—S(O)n—C1-C3-alkyl, Rc—C(═O)—C1-C3-alkyl, RdO—C(═O)—C1-C3-alkyl, ReRfN—C(═O)—C1-C3-alkyl, RgRhN—C1-C3-alkyl, phenyl-Z and heterocyclyl-Z, where heterocyclyl is a 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl and heterocyclyl are unsubstituted or substituted by 1, 2, 3 or 4 groups R′, which are identical or different;

    • R′, R11, R21 independently of each other are selected from the group consisting of halogen, NO2, CN, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-halocycloalkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C6-alkoxy, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkyl, C1-C4-haloalkoxy-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkoxy, C3-C7-cycloalkoxy and C1-C6-haloalkyloxy, or two radicals R′, R11 or R21 bound to the same carbon atom together may form a group ═O;

    • Z, Z1, Z2 independently of each other are selected from the group consisting of a covalent bond and C1-C4-alkanediyl;

    • Z2a is selected from the group consisting of a covalent bond, C1-C4-alkanediyl, O—C1-C4-alkanediyl, C1-C4-alkanediyl-O and C1-C4-alkanediyl-O—C1-C4-alkanediyl;

    • Rb, R1b, R2b independently of each other are selected from the group consisting of C1-C6-alkyl, C3-C7-cycloalkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, phenyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl and heterocyclyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • Rc, R2c independently of each other are selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C1-C6-alkoxy, C2-C6-alkenyl, C1-C4-alkyl-C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4—S(O)n—C1-C4-alkyl, C1-C4-alkylamino-C1-C4-alkyl, C1-C4-dialkylamino-C1-C4-alkyl, C1-C6-cyanoalkyl, phenyl, benzyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl, benzyl and heterocyclyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • Rd, R2d independently of each other are selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C1-C6-alkoxy, C2-C6-alkenyl, C1-C4-alkyl-C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4—S(O)n—C1-C4-alkyl, C1-C4-alkylamino-C1-C4-alkyl, C1-C4-dialkylamino-C1-C4-alkyl, C1-C6-cyanoalkyl, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • R2c, R2d together with the nitrogen atom, to which they are bound may form a 4, -5-, 6- or 7-membered, saturated or unsaturated cyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • Re, Rf independently of each other are selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C2-C6-alkenylene, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy, or

    • Re, Rf together with the nitrogen atom, to which they are bound may form a 5-, 6- or 7-membered, saturated or unsaturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • R2e, R2f independently of each other have the meanings given for Re, Rf;

    • Rg is selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C2-C6-alkenylene, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylsulfonyl, C1-C4-alkylcarbonyl, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • Rh is selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylsulfonyl, C1-C4-alkylcarbonyl, a radical C(═O)—Rk, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy, or

    • Rg, Rh together with the nitrogen atom, to which they are bound may form a 5-, 6- or 7-membered, saturated or unsaturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of ═O, halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • R2g, R2h independently of each other have the meanings given for Rg, Rh;

    • Rk has the meanings given for Rc;

    • R22 is selected from the group consisting of hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C3-C6-haloalkynyl, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halocycloalkyl, C3-C6-cycloalkyl-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkyl, C3-C6-cycloalkyl-C1-C6-alkoxy-C1-C6-alkyl, phenyl, phenyl-C1-C6-alkyl, heteroaryl, heteroaryl-C1-C6-alkyl, heterocyclyl, heterocyclyl-C1-C6-alkyl, phenyl-O—C1-C6-alkyl, heteroaryl-O—C1-C6-alkyl, heterocyclyl-O—C1-C6-alkyl, phenyl-N(R23)—C1-C6-alkyl, heteroaryl-N(R23)—C1-C6-alkyl, heterocyclyl-N(R23)—C1-C6-alkyl, phenyl-S(O)n—C1-C6-alkyl, heteroaryl-S(O)n—C1-C6-alkyl, heterocyclyl-S(O)n—C1-C6-alkyl, where the 15 aforementioned radicals are substituted by s residues selected from the group consisting of nitro, halogen, cyano, rhodano, C1-C6-alkyl, C1-C6-haloalkyl, C3-C6-cycloalkyl, C(O)OR23, C(O)N(R23)2, OR23, N(R23)2, S(O)nR24, S(O)2OR23, S(O)2N(R23)2 and R23O—C1-C6-alkyl, and where heterocy-clyl bears 0, 1 or 2 oxo groups;

    • R23 is selected from the group consisting of hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C6-cycloalkyl, C3-C6-cycloalkyl-C1-C6-alkyl and phenyl;

    • R24 is selected from the group consisting of C1-C6-alkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C6-cycloalkyl, C3-C6-cycloalkyl-C1-C6-alkyl and phenyl;

    • R25 is selected from the group consisting of C1-C6-alkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C3-C6-haloalkynyl, C3-C6-cycloalkyl, C3-C6-cycloalkenylene, C3-C6-halocycloalkyl, C3-C6-cycloalkyl-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkyl, C3-C6-cycloalkyl-C1-C6-alkoxy-C1-C6-alkyl, phenyl, phenyl-C1-C6-alkyl, heteroaryl, heteroaryl-C1-C6-alkyl, heterocyclyl, heterocyclyl-C1-C6-alkyl, phenyl-O—C1-C6-alkyl, heteroaryl-O—C1-C6-alkyl, heterocyclyl-O—C1-C6-alkyl, phenyl-N(R23)—C1-C6-alkyl, heteroaryl-N(R23)—C1-C6-alkyl, heterocyclyl-N(R23)—C1-C6-alkyl, phenyl-S(O)n—C1-C6-alkyl, heteroaryl-S(O)n—C1-C6-alkyl, heterocyclyl-S(O)n—C1-C6-alkyl, where the 15 aforementioned radicals are substituted by s residues selected from the group consisting of nitro, halogen, cyano, rhodano, C1-C6-alkyl, C1-C6-haloalkyl, C3-C6-cycloalkyl, C(O)OR23, C(O)N(R23)2, OR23, N(R23)2, S(O)nR24, S(O)2OR23, S(O)2N(R23)2 and R23O—C1-C6-alkyl, and where heterocy-clyl bears 0, 1 or 2 oxo groups;

    • R26 is C1-C6-alkyl or C1-C4-alkoxy-C1-C4-alkyl;

    • R27 is selected from the group consisting of hydrogen, cyano and C1-C4-haloalkylcarbonyl;

    • R28, R29 independently of each other are C1-C6-alkyl, or

    • R28, R29 together with the sulfur atom, to which they are bound may form a 5- or 6-membered saturated ring, which may carry as a ring member 1 oxygen atom;

    • k is 0, 1 or 2;

    • n is 0, 1 or 2.





The term “control of undesired vegetation” is to be understood as meaning the killing of weeds and/or otherwise retarding or inhibiting the normal growth of the weeds. Weeds, in the broadest sense, are understood as meaning all those plants which grow in locations where they are undesired. The weeds of the present invention include, for example, dicotyledonous and monocotyledonous weeds. Dicotyledonous weeds include, but are not limited to, weeds of the genera: Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, and Taraxacum. Monocotyledonous weeds include, but are not limited to, weeds of of the genera: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristyslis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, and Apera. In addition, the weeds of the present invention can include, for example, crop plants that are growing in an undesired location. For example, a volunteer maize plant that is in a field that predominantly comprises soybean plants can be considered a weed, if the maize plant is undesired in the field of soybean plants.


The term “plant” is used in its broadest sense as it pertains to organic material and is intended to encompass eukaryotic organisms that are members of the Kingdom Plantae, examples of which include but are not limited to vascular plants, vegetables, grains, flowers, trees, herbs, bushes, grasses, vines, ferns, mosses, fungi and algae, etc, as well as clones, offsets, and parts of plants used for asexual propagation (e.g. cuttings, pipings, shoots, rhizomes, underground stems, clumps, crowns, bulbs, corms, tubers, rhizomes, plants/tissues produced in tissue culture, etc.). The term “plant” further encompasses whole plants, ancestors and progeny of the plants and plant parts, including seeds, shoots, stems, leaves, roots (including tubers), flowers, florets, fruits, pedicles, peduncles, stamen, anther, stigma, style, ovary, petal, sepal, carpel, root tip, root cap, root hair, leaf hair, seed hair, pollen grain, microspore, cotyledon, hypocotyl, epicotyl, xylem, phloem, parenchyma, endosperm, a companion cell, a guard cell, and any other known organs, tissues, and cells of a plant, and tissues and organs, wherein each of the aforementioned comprise the gene/nucleic acid of interest. The term “plant” also encompasses plant cells, suspension cultures, callus tissue, embryos, meristematic regions, gametophytes, sporophytes, pollen and microspores, again wherein each of the aforementioned comprises the gene/nucleic acid of interest.


Plants that are particularly useful in the methods of the invention include all plants which belong to the superfamily Viridiplantae, in particular monocotyledonous and dicotyledonous plants including fodder or forage legumes, ornamental plants, food crops, trees or shrubs selected from the list comprising Acer spp., Actinidia spp., Abelmoschus spp., Agave sisalana, Agropyron spp., Agrostis stolonifera, Allium spp., Amaranthus spp., Ammophila arenaria, Ananas comosus, Annona spp., Apium graveolens, Arachis spp, Artocarpus spp., Asparagus officinalis, Avena spp. (e.g. Avena sativa, Avena fatua, Avena byzantina, Avena fatua var. sativa, Avena hybrida), Averrhoa carambola, Bambusa sp., Benincasa hispida, Bertholletia excelsea, Beta vulgars, Brassica spp. (e.g. Brassica napus, Brassica rapa ssp. [canola, oilseed rape, turnip rape]), Cadaba farnosa, Camellia sinensis, Canna indica, Cannabis sativa, Capsicum spp., Carex elata, Carca papaya, Carissa macrocarpa, Carya spp., Carthamus tinctorius, Castanea spp., Ceiba pentandra, Cichorium endivia, Cinnamomum spp., Citrullus lanatus, Citrus spp., Cocos spp., Coffea spp., Colocasia esculenta, Cola spp., Corchorus sp., Coriandrum sativum, Corylus spp., Crataegus spp., Crocus sativus, Cucurbita spp., Cucumis spp., Cynara spp., Daucus carota, Desmodium spp., Dimocarpuslongan, Dioscorea spp., Diospyros spp., Echinochloa spp., Elaeis (e.g. Elaeis guineensis, Elaeis oleifera), Eleusine coracana, Eragrostis tef Erianthus sp., Eriobotrya japonica, Eucalyptus sp., Eugenia uniflora, Fagopyrum spp., Fagus spp., Festuca arundinacea, Ficus carica, Fortunella spp., Fragaria spp., Ginkgo biloba, Glycine spp. (e.g. Glycine max, Soja hispida or Soja max), Gossypium hirsutum, Helianthus spp. (e.g. Helianthus annuus), Hemerocallis fulva, Hibiscus spp., Hordeum spp. (e.g. Hordeum vulgare), lpomoea batatas, Juglans spp., Lactuca sativa, Lathyrus spp., Lens culinans, Linum usitatissimum, Litchi chinensis, Lotus spp., Luffa acutangula, Lupinus spp., Luzula sylvatica, Lycopersicon spp. (e.g. Lycopersicon esculentum, Lycopersi conlycopersicum, Lycopersicon pyriforme), Macrotyloma spp., Malus spp., Malpighiaemarginata, Mammea americana, Mangifera indica, Manihot spp., Manilkara zapota, Medicago sativa, Melilotus spp., Mentha spp., Miscanthus sinensis, Momordica spp., Morus nigra, Musa spp., Nicotiana spp., Olea spp., Opuntia spp., Ornithopus spp., Oryza spp. (e.g. Oryza sativa, Oryza latifolia), Panicum miliaceum, Panicum virgatum, Passiflora edulis, Pastinaca sativa, Pennisetum sp., Persea spp., Petroselinum crispum, Phalaris arundinacea, Phaseolus spp., Phleum pratense, Phoenix spp., Phragmites australis, Physalis spp., Pinus spp., Pistacia vera, Pisum spp., Poa spp., Populus spp., Prosopis spp., Prunus spp., Psidium spp., Punica granatum, Pyrus communis, Quercus spp., Raphanus sativus, Rheum rhabarbarum, Ribes spp., Ricinus communis, Rubus spp., Saccharum spp., Salix sp., Sambucus spp., Secale cereale, Sesamum spp., Sinapis sp., Solanum spp. (e.g. Solanum tuberosum, Solanum integrifolium or Solanum lycopersicum), Sorghum bicolor, Spinacia spp., Syzygium spp., Tagetes spp., Tamarindusindica, Theobroma cacao, Trifolium spp., Tripsacum dactyloides, Triticosecaie rimpaui, Triticum spp. (e.g. Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triticum sativum, Triticum monococcum or Triticum vulgare), Tropaeolum minus, Tropaeolum majus, Vaccinium spp., Vicia spp., Vigna spp., Viola odorata, Vitis spp., Zea mays, Zizania palustris, Ziziphus spp., amaranth, artichoke, asparagus, broccoli, Brussels sprouts, cabbage, canola, carrot, cauliflower, celery, collard greens, flax, kale, lentil, oilseed rape, okra, onion, potato, rice, soybean, strawberry, sugar beet, sugar cane, sunflower, tomato, squash, tea and algae, amongst others. According to a preferred embodiment of the present invention, the plant is a crop plant. Examples of crop plants include inter alia soybean, sunflower, canola, alfalfa, rapeseed, cotton, tomato, potato or tobacco. Further preferably, the plant is a monocotyledonous plant, such as sugarcane. Further preferably, the plant is a cereal, such as rice, maize, wheat, barley, millet, rye, sorghum or oats.


In a preferred embodiment, the plant has been previously produced by a process comprising recombinantly preparing a plant by introducing and over-expressing a wild-type or mut-HPPD, as described in greater detail hereinafter.


In another preferred embodiment, the plant has been previously produced by a process comprising in situ mutagenizing plant cells, to obtain plant cells which express a mut-HPPD.


As disclosed herein, the nucleic acids of the invention find use in enhancing the herbicide tolerance of plants that comprise in their genomes a gene encoding a herbicide-tolerant wild-type or mut-HPPD protein. Such a gene may be an endogenous gene or a transgene, as described hereinafter.


Therefore, in another embodiment the present invention refers to a method of increasing or enhancing the HPPD-inhibiting benzamide herbicide tolerance or resistance of a plant, the method comprising overexpressing a nucleic acid encoding a wild type or mut HPPD enzymes comprising SEQ ID NO: 2, 5, 8, 11, 14, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67.


Additionally, in certain embodiments, the nucleic acids of the present invention can be stacked with any combination of polynucleotide sequences of interest in order to create plants with a desired phenotype. For example, the nucleic acids of the present invention may be stacked with any other polynucleotides encoding polypeptides having pesticidal and/or insecticidal activity, such as, for example, the Bacillus thuringiensis toxin proteins (described in U.S. Pat. Nos. 5,366,892; 5,747,450; 5,737,514; 5,723,756; 5,593,881; and Geiser et al (1986) Gene 48: 109). The combinations generated can also include multiple copies of any one of the polynucleotides of interest.


By way of example, polynucleotides that may be stacked with the nucleic acids of the present invention include nucleic acids encoding polypeptides conferring resistance to pests/pathogens such as viruses, nematodes, insects or fungi, and the like. Exemplary polynucleotides that may be stacked with nucleic acids of the invention include polynucleotides encoding: polypeptides having pesticidal and/or insecticidal activity, such as other Bacillus thuringiensis toxic proteins (described in U.S. Pat. Nos. 5,366,892; 5,747,450; 5,737,514; 5,723,756; 5,593,881; and Geiser et al., (1986) Gene 48:109), lectins (Van Damme et al. (1994) Plant Mol. Biol. 24:825, pentin (described in U.S. Pat. No. 5,981,722), and the like; traits desirable for disease or herbicide resistance (e.g., fumonisin detoxification genes (U.S. Pat. No. 5,792,931); avirulence and disease resistance genes (Jones et al. (1994) Science 266:789; Martin et al., (1993) Science 262:1432; Mindrinos et al. (1994) Cell 78:1089); acetolactate synthase (ALS) mutants that lead to herbicide resistance such as the S4 and/or Hra mutations; glyphosate resistance (e.g., 5-enol-pyrovyl-shikimate-3-phosphate-synthase (EPSPS) gene, described in U.S. Pat. Nos. 4,940,935 and 5,188,642; or the glyphosate N-acetyltransferase (GAT) gene, described in Castle et al. (2004) Science, 304:1151-1154; and in U.S. Patent App. Pub. Nos. 20070004912, 20050246798, and 20050060767)); glufosinate resistance (e.g, phosphinothricin acetyl transferase genes PAT and BAR, described in U.S. Pat. Nos. 5,561,236 and 5,276,268); resistance to herbicides including sulfonyl urea, DHT (2,4D), and PPO herbicides (e.g., glyphosate acetyl transferase, aryloxy alkanoate dioxygenase, acetolactate synthase, and protoporphyrinogen oxidase); a cytochrome P450 or variant thereof that confers herbicide resistance or tolerance to, inter alia, HPPD herbicides (U.S. patent application Ser. No. 12/156,247; U.S. Pat. Nos. 6,380,465; 6,121,512; 5,349,127; 6,649,814; and 6,300,544; and PCT Patent App. Pub. No. WO2007000077); and traits desirable for processing or process products such as high oil (e.g., U.S. Pat. No. 6,232,529); modified oils (e.g., fatty acid desaturase genes (U.S. Pat. No. 5,952,544; WO 94/11516)); modified starches (e.g., ADPG pyrophosphorylases (AGPase), starch synthases (SS), starch branching enzymes (SBE), and starch debranching enzymes (SDBE)); and polymers or bioplastics (e.g., U.S. Pat. No. 5,602,321; beta-ketothiolase, polyhydroxybutyrate synthase, and acetoacetyl-CoA reductase (Schubert et al. (1988) J. Bacteriol. 170:5837-5847) facilitate expression of polyhydroxyalkanoates (PHAs)); the disclosures of which are herein incorporated by reference.


In a particularly preferred embodiment, the plant comprises at least one additional heterologous nucleic acid comprising (iii) a nucleotide sequence encoding a herbicide tolerance enzyme selected, for example, from the group consisting of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), Glyphosate acetyl transferase (GAT), Cytochrome P450, phosphinothricin acetyltransferase (PAT), Acetohydroxyacid synthase (AHAS; EC 4.1.3.18, also known as acetolactate synthase or ALS), Protoporphyrinogen oxidase (PPGO), Phytoene desaturase (PD) and dicamba degrading enzymes as disclosed in WO 02/068607.


Generally, the term “herbicide” is used herein to mean an active ingredient that kills, controls, or otherwise adversely modifies the growth of plants. The preferred amount or concentration of the herbicide is an “effective amount” or “effective concentration.” By “effective amount” and “effective concentration” is intended an amount and concentration, respectively, that is sufficient to kill or inhibit the growth of a similar, wild-type, plant, plant tissue, plant cell, or host cell, but that said amount does not kill or inhibit as severely the growth of the herbicide-resistant plants, plant tissues, plant cells, and host cells of the present invention. Typically, the effective amount of a herbicide is an amount that is routinely used in agricultural production systems to kill weeds of interest. Such an amount is known to those of ordinary skill in the art. Herbicidal activity is exhibited by HPPD-inhibiting benzamide herbicide useful for the present invention when they are applied directly to the plant or to the locus of the plant at any stage of growth or before planting or emergence. The effect observed depends on the plant species to be controlled, the growth stage of the plant, the application parameters of dilution and spray drop size, the particle size of solid components, the environmental conditions at the time of use, the specific compound employed, the specific adjuvants and carriers employed, the soil type, and the like, as well as the amount of chemical applied. These and other factors can be adjusted as is known in the art to promote non-selective or selective herbicidal action. Generally, it is preferred to apply the HPPD-inhibiting benzamide herbicide postemergence to relatively immature undesirable vegetation to achieve the maximum control of weeds.


By a “herbicide-tolerant” or “herbicide-resistant” plant, it is intended that a plant that is tolerant or resistant to at least one herbicide at a level that would normally kill, or inhibit the growth of, a normal or wild-type plant. By “herbicide-tolerant mut-HPPD protein” or “herbicide-resistant mut-HPPD protein”, it is intended that such a mut-HPPD protein displays higher HPPD activity, relative to the HPPD activity of a wild-type mut-HPPD protein, when in the presence of at least one herbicide that is known to interfere with HPPD activity and at a concentration or level of the herbicide that is known to inhibit the HPPD activity of the wild-type mut-HPPD protein. Furthermore, the HPPD activity of such a herbicide-tolerant or herbicide-resistant mut-HPPD protein may be referred to herein as “herbicide-tolerant” or “herbicide-resistant” HPPD activity.


In a preferred embodiment, the HPPD-inhibiting benzamide herbicide comprises the compound of Formula I


Wherein said benzamide herbicide comprises the compound of formula I,




embedded image




    • an N-oxide or an agriculturally suitable salt thereof,

    • wherein

    • Q is Q1 or Q2 or Q3 or Q4,







embedded image




    • R1 is selected from the group consisting of halogen, C1-C8-alkyl, C1-C8-haloalkyl, nitro, C1-C4-alkoxy-C1-C4-alkyl, cyano-Z1, C2-C8-alkenyl, C2-C8-alkynyl, C3-C10-cycloalkyl-Z1, C2-C8-haloalkenyl, C3-C8-haloalkynyl, C1-C8-alkoxy, C1-C4-alkoxy-C1-C4-alkoxy-Z1, C1-C4-alkylthio-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkylthio-Z1, C2-C6-alkenyloxy, C2-C6-alkynyloxy, C1-C6-haloalkoxy, C1-C4-haloalkoxy-C1-C4-alkyl, C1-C4-haloalkoxy-C1-C4-alkoxy-Z1, R1b—S(O)k—Z1, phenoxy-Z1 and heterocyclyloxy-Z1, where heterocyclyloxy is an oxygen bound 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where the cyclic groups in phenoxy and heterocyclyloxy are unsubstituted or substituted by 1, 2, 3 or 4 groups R11, which are identical or different;

    • R2 is R2cR2dNC(O)NR2c—Z2—;

    • R3 is selected from the group consisting of hydrogen, halogen, hydroxy-Z2, nitro, C1-C4-nitroalkyl, cyano, C1-C4-cyanoalkyl, C1-C6-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C3-C10-cycloalkyl-Z2, C3-C10-cycloalkoxy-Z2, where the C3-C10-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C8-haloalkyl, C2-C8-haloalkenyl, C3-C8-haloalkynyl, C1-C8-alkoxy-Z2, C1-C8-haloalkoxy-Z2, C3-C10-cycloalkyl-C1-C2-alkoxy, C1-C4-alkoxy-C1-C4-alkoxy-Z2, C1-C4-alkylthio-C1-C4-alkylthio-Z2, C2-C8-alkenyloxy-Z2, C2-C8-alkynyloxy-Z2, C2-C8-haloalkenyloxy-Z2, C3-C8-haloalkynyloxy-Z2, C1-C4-haloalkoxy-C1-C4-alkoxy-Z2, (tri-C1-C4-alkyl)silyl-Z2, R2b—S(O)k—Z2, R2c—C(═O)—Z2, R2dO—C(═O)—Z2, R2dO—N═CH—Z2, R2eR2fN—C(═O)—Z2, R2gR2hN—Z2, phenyl-Z2a, heterocyclyl-Z2a, where heterocyclyl is a 3-, 4-, 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where the cyclic groups in phenyl-Z2a and heterocy-clyl-Z2a are unsubstituted or substituted by 1, 2, 3 or 4 groups R21, which are identical or different, rhodano, C3-C6-cycloalkenyl, C3-C6-halocycloalkenyl, C3-C6-cycloalkenyl-C1-C6-alkyl, C3-C6-halocycloalkenyl-C1-C6-alkyl, OC(O)R22, OC(O)OR25, OC(O)N(R22)2, OSO2R25, SO2OR22, SO2N(R22)2, SO2N(R22)C(O)R22, SO2N(R22)C(O)OR25, SO2N(R22)C(O)N(R22)2, N(R22)C(O)OR25, N(R22)C(O)N(R22)2, N(R22)S(O)2OR22, N(R22)S(O)2N(R22)2, C(O)N(R22)OR22, C(O)N(R22)N(R22)2, C(O)N(R22)C(O)R22, C(O)N(R22)C(O)OR25, C(O)N(R22)C(O)N(R22)2, C(O)N(R22)SO2R25, C(O)N(R22)SO2OR22, C(O)N(R22)SO2N(R22)2, P(O)(OH)2, P(O)(O—C1-C4-alkyl)2, C1-C6-alkyl-OC(O)R22, C1-C6-alkyl-OC(O)OR25, C1-C6-alkyl-OC(O)N(R22)2, C1-C6-alkyl-OSO2R25, C1-C6-alkyl-SO2OR22, C1-C6-alkyl-SO2N(R22)2, C1-C6-alkyl-SO2N(R22)C(O)R22, C1-C6-alkyl-SO2N(R22)C(O)OR25, C1-C6-alkyl-SO2N(R22)C(O)N(R22)2, C1-C6-alkyl-N(R22)C(O)OR25, C1-C6-alkyl-N(R22)C(O)N(R22)2, C1-C6-alkyl-N(R22)S(O)2OR22, C1-C6-alkyl-N(R22)S(O)2N(R22)2, C1-C6-alkyl-C(O)N(R22)OR22, C1-C6-alkyl-C(O)N(R22)N(R22)2, C1-C6-alkyl-C(O)N(R22)C(O)R22, C1-C6-alkyl-C(O)N(R22)C(O)OR25, C1-C6-alkyl-C(O)N(R22)C(O)N(R22)2, C1-C6-alkyl-C(O)N(R22)SO2R25, C1-C6-alkyl-C(O)N(R22)SO2OR22, C1-C6-alkyl-C(O)N(R22)SO2N(R22)2, C1-C6-alkyl-P(O)(OH)2 and C1-C6-alkyl-P(O)(O—C1-C4-alkyl)2;

    • R4 is selected from the group consisting of hydrogen, halogen, C1-C8-alkyl, cyano-Z1, nitro, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C2-C8-alkenyl, C2-C8-alkynyl, C1-C8-haloalkyl, C1-C3-alkylamino, C1-C3-dialkylamino, C1-C3-alkylamino-S(O)k, C1-C3-alkylcarbonyl, C1-C8-alkoxy, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkoxy-Z1, C1-C4-alkylthio-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkylthio-Z, C2-C6-alkenyloxy, C2-C6-alkynyloxy, C1-C6-haloalkoxy, C1-C4-haloalkoxy-C1-C4-alkyl, C1-C4-haloalkoxy-C1-C4-alkoxy-Z1, R1b—S(O)k—Z1, phenoxy-Z1 and heterocyclyloxy-Z1, where heterocyclyloxy is an oxygen bound 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where the cyclic groups in phenoxy and heterocyclyloxy are unsubstituted or substituted by 1, 2, 3 or 4 groups R11, which are identical or different;

    • R5 is selected from the group consisting of halogen, cyano-Z1, nitro, C1-C8-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C2-C8-alkenyl, C2-C8-alkynyl, C1-C8-haloalkyl, C1-C3-alkylamino, C1-C3-dialkylamino, C1-C3-alkylamino-S(O)k, C1-C3-alkylcarbonyl, C1-C8-alkoxy, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkoxy-Z1, C1-C4-alkylthio-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkylthio-Z1, C2-C6-alkenyloxy, C2-C6-alkynyloxy, C1-C6-haloalkoxy, C1-C4-haloalkoxy-C1-C4-alkyl, C1-C4-haloalkoxy-C1-C4-alkoxy-Z1, R1b—S(O)k—Z1, phenoxy-Z1 and heterocyclyloxy-Z, where heterocyclyloxy is an oxygen bound 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where the cyclic groups in phenoxy and heterocyclyloxy are unsubstituted or substituted by 1, 2, 3 or 4 groups R11, which are identical or different;

    • R6 is selected from the group consisting of C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cyclo-alkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-haloalkoxy-C1-C4-alkyl, Rb—S(O)n—C1-C3-alkyl, Rc—C(═O)—C1-C3-alkyl, RdO—C(═O)—C1-C3-alkyl, ReRfN—C(═O)—C1-C3-alkyl, RgRhN—C1-C3-alkyl, phenyl-Z and heterocyclyl-Z, where heterocyclyl is a 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl and heterocyclyl are unsubstituted or substituted by 1, 2, 3 or 4 groups R1, which are identical or different;

    • R1, R11, R21 independently of each other are selected from the group consisting of halogen, NO2, CN, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-halocycloalkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C6-alkoxy, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkyl, C1-C4-haloalkoxy-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkoxy, C3-C7-cycloalkoxy and C1-C6-haloalkyloxy, or two radicals R1, R11 or R21 bound to the same carbon atom together may form a group ═O;

    • Z, Z1, Z2 independently of each other are selected from the group consisting of a covalent bond and C1-C4-alkanediyl;

    • Z2a is selected from the group consisting of a covalent bond, C1-C4-alkanediyl, O—C1-C4-alkanediyl, C1-C4-alkanediyl-O and C1-C4-alkanediyl-O—C1-C4-alkanediyl;

    • Rb, R1b, R2b independently of each other are selected from the group consisting of C1-C6-alkyl, C3-C7-cycloalkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, phenyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl and heterocyclyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • Rc, R2c independently of each other are selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C1-C6-alkoxy, C2-C6-alkenyl, C1-C4-alkyl-C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4—S(O)n—C1-C4-alkyl, C1-C4-alkylamino-C1-C4-alkyl, C1-C4-dialkylamino-C1-C4-alkyl, C1-C6-cyanoalkyl, phenyl, benzyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl, benzyl and heterocyclyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • Rd, R2d independently of each other are selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C1-C6-alkoxy, C2-C6-alkenyl, C1-C4-alkyl-C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4—S(O)n—C1-C4-alkyl, C1-C4-alkylamino-C1-C4-alkyl, C1-C4-dialkylamino-C1-C4-alkyl, C1-C6-cyanoalkyl, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • R2c, R2d together with the nitrogen atom, to which they are bound may form a 4, -5-, 6- or 7-membered, saturated or unsaturated cyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • Re, Rf independently of each other are selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C2-C6-alkenylene, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy, or

    • Re, Rf together with the nitrogen atom, to which they are bound may form a 5-, 6- or 7-membered, saturated or unsaturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • R2e, R2f independently of each other have the meanings given for Re, Rf;

    • Rg is selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C2-C6-alkenylene, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylsulfonyl, C1-C4-alkylcarbonyl, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • Rh is selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylsulfonyl, C1-C4-alkylcarbonyl, a radical C(═O)—Rk, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy, or

    • Rg, Rh together with the nitrogen atom, to which they are bound may form a 5-, 6- or 7-membered, saturated or unsaturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of ═O, halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • R2g, R2h independently of each other have the meanings given for Rg, Rh;

    • Rk has the meanings given for Rc;

    • R22 is selected from the group consisting of hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C3-C6-haloalkynyl, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halocycloalkyl, C3-C6-cycloalkyl-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkyl, C3-C6-cycloalkyl-C1-C6-alkoxy-C1-C6-alkyl, phenyl, phenyl-C1-C6-alkyl, heteroaryl, heteroaryl-C1-C6-alkyl, heterocyclyl, heterocyclyl-C1-C6-alkyl, phenyl-O—C1-C6-alkyl, heteroaryl-O—C1-C6-alkyl, heterocyclyl-O—C1-C6-alkyl, phenyl-N(R23)—C1-C6-alkyl, heteroaryl-N(R23)—C1-C6-alkyl, heterocyclyl-N(R23)—C1-C6-alkyl, phenyl-S(O)n—C1-C6-alkyl, heteroaryl-S(O)n—C1-C6-alkyl, heterocyclyl-S(O)n—C1-C6-alkyl, where the 15 aforementioned radicals are substituted by s residues selected from the group consisting of nitro, halogen, cyano, rhodano, C1-C6-alkyl, C1-C6-haloalkyl, C3-C6-cycloalkyl, C(O)OR23, C(O)N(R23)2, OR23, N(R23)2, S(O)nR24, S(O)2OR23, S(O)2N(R23)2 and R23O—C1-C6-alkyl, and where heterocy-clyl bears 0, 1 or 2 oxo groups;

    • R23 is selected from the group consisting of hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C6-cycloalkyl, C3-C6-cycloalkyl-C1-C6-alkyl and phenyl;

    • R24 is selected from the group consisting of C1-C6-alkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C6-cycloalkyl, C3-C6-cycloalkyl-C1-C6-alkyl and phenyl;

    • R25 is selected from the group consisting of C1-C6-alkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C3-C6-haloalkynyl, C3-C6-cycloalkyl, C3-C6-cycloalkenylene, C3-C6-halocycloalkyl, C3-C6-cycloalkyl-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkyl, C3-C6-cycloalkyl-C1-C6-alkoxy-C1-C6-alkyl, phenyl, phenyl-C1-C6-alkyl, heteroaryl, heteroaryl-C1-C6-alkyl, heterocyclyl, heterocyclyl-C1-C6-alkyl, phenyl-O—C1-C6-alkyl, heteroaryl-O—C1-C6-alkyl, heterocyclyl-O—C1-C6-alkyl, phenyl-N(R23)—C1-C6-alkyl, heteroaryl-N(R23)—C1-C6-alkyl, heterocyclyl-N(R23)—C1-C6-alkyl, phenyl-S(O)n—C1-C6-alkyl, heteroaryl-S(O)n—C1-C6-alkyl, heterocyclyl-S(O)n—C1-C6-alkyl, where the 15 aforementioned radicals are substituted by s residues selected from the group consisting of nitro, halogen, cyano, rhodano, C1-C6-alkyl, C1-C6-haloalkyl, C3-C6-cycloalkyl, C(O)OR23, C(O)N(R23)2, OR23, N(R23)2, S(O)nR24, S(O)2OR23, S(O)2N(R23)2 and R23O—C1-C6-alkyl, and where heterocy-clyl bears 0, 1 or 2 oxo groups;

    • R26 is C1-C6-alkyl or C1-C4-alkoxy-C1-C4-alkyl;

    • R27 is selected from the group consisting of hydrogen, cyano and C1-C4-haloalkylcarbonyl;

    • R28, R29 independently of each other are C1-C6-alkyl, or

    • R28, R29 together with the sulfur atom, to which they are bound may form a 5- or 6-membered saturated ring, which may carry as a ring member 1 oxygen atom;

    • k is 0, 1 or 2;

    • n is 0, 1 or 2.





The remarks made below as to preferred embodiments of the variables (substituents) of the compounds of formula I are valid on their own as well as preferably in combination with each other, as well as in combination with the stereoisomers, salts, tautomers or N-oxides thereof.


The remarks made below concerning preferred embodiments of the variables further are valid on their own as well as preferably in combination with each other concerning the compounds of formula I, where applicable, as well as concerning the uses and methods according to the invention and the composition according to the invention.


Preferred compounds according to the invention are compounds of formula I or a stereoisomer, salt or N-oxide thereof, wherein the salt is an agriculturally suitable salt. Further preferred compounds according to the invention are compounds of formula I or an N-oxide or salt thereof, especially an agriculturally suitable salt. Particularly preferred compounds according to the invention are compounds of formula I or a salt thereof, especially an agriculturally suitable salt thereof.


According to one embodiment of the invention the variable Q in the compounds of formula I is Q1:




embedded image


Herein, the arrow represents the binding site of the variable Q1 conjugated to the remaining part of the compound of formula I. Compounds of formula I wherein Q is Q1 have the following formula I.A, where the variables R1, R2, R3, R4, R5 and R6 are as defined herein:




embedded image


According to another embodiment of the invention the variable Q in the compounds of formula I is Q2:




embedded image


Herein, the arrow represents the binding site of the variable Q2 conjugated to the remaining part of the compound of formula I. Compounds of formula I wherein Q is Q2 have the following formula I.B, where the variables R1, R2, R3, R4, R5 and R6 are as defined herein:




embedded image


According to yet further embodiment of the invention the variable Q in the compounds of formula I is Q3:




embedded image


Herein, the arrow represents the binding site of the variable Q3 conjugated to the remaining part of the compound of formula I. Compounds of formula I wherein Q is Q3 have the following formula I.C. where the variables R1, R2, R3, R4, R5 and R6 are as defined herein:




embedded image


According to one embodiment of the invention the variable Q in the compounds of formula I is Q4:




embedded image


Herein, the arrow represents the binding site of the variable Q4 conjugated to the remaining part of the compound of formula I. Compounds of formula I wherein Q is Q4 have the following formula I.D, where the variables R1, R2, R3, R4, R5 and R6 are as defined herein:




embedded image


Preferred compounds according to the invention are compounds of formula I, wherein R1 is selected from the group consisting of cyano, halogen, nitro, C1-C6-alkyl, C3-C6-cycloalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-haloalkyl, C1-C6-alkoxy, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-haloalkoxy-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkoxy-Z1, C1-C4-alkylthio-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkylthio-Z1, C2-C6-alkenyloxy, C2-C6-alkynyloxy, C1-C6-haloalkoxy, C1-C4-haloalkoxy-C1-C4-alkoxy and R1b—S(O)k, where Z1 is as defined in claim 1, where k is 0, 1 or 2 and where R1 is selected from C1-C4-alkyl and C1-C4-haloalkyl.


Also preferred compounds according to the invention are compounds of formula I, wherein R1 is selected from the group consisting of halogen, CN, nitro, C1-C4-alkyl, C3-C6-cycloalkyl, C1-C4-haloalkyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-haloalkoxy-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkylthio-C1-C4-alkyl, C1-C4-alkoxy, C1-C4-haloalkoxy, C3-C4-alkenyloxy, C3-C4-alkynyloxy, C1-C4-alkoxy-C1-C4-alkoxy, C1-C4-haloalkoxy-C1-C4-alkoxy, C1-C4-alkyl-S(O)k and C1-C4-haloalkyl-S(O)k, where k is 0 or 2.


In a preferred embodiment, R1 is selected from the group consisting of halogen, nitro, C1-C4-alkyl, C3-C6-cycloalkyl, C1-C4-haloalkyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylthio, C1-C4-haloalkylthio and C1-C4-alkylsulfonyl.


In a further preferred embodiment, R1 is selected from the group consisting of halogen, C1-C4-alkyl and C1-C4-alkoxy.


In particular, R1 is chlorine, fluorine, CF3, CH3, SO2CH3, NO2, CH2OCH2CH2OCH3, CH(CH2)2 or CH2OCH3.


Also particular, R1 is chlorine, CH3, or OCH3.

    • According to one group of embodiments of the present invention, R2 is R2cR2dNC(O)NR2c—Z2—;


In a preferred embodiment, R2 is R2cR2dNC(O)NR2c—Z2— and R2c is selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C1-C6-alkoxy, C2-C6-alkenyl, C1-C4-alkyl-C2-C6-alkenyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4—S(O)n—C1-C4-alkyl, C1-C4-alkylamino-C1-C4-alkyl, C1-C4-dialkylamino-C1-C4-alkyl, C1-C6-cyanoalkyl, phenyl, benzyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl, benzyl and heterocyclyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;


In another preferred embodiment, R2 is R2cR2dNC(O)NR2c—Z2— and R2c is selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, phenyl, benzyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of 0, N and S, where phenyl, benzyl and heterocyclyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;


In a preferred embodiment, R2 is R2cR1dNC(O)NR2c—Z2— and R2d is selected from from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C1-C6-alkoxy, C2-C6-alkenyl, C1-C4-alkyl-C2-C6-alkenyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4—S(O)n—C1-C4-alkyl, C1-C4-alkylamino-C1-C4-alkyl, C1-C4-dialkylamino-C1-C4-alkyl, C1-C6-cyanoalkyl, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;


In another preferred embodiment, R2 is R2cR2dNC(O)NR2c—Z2— and R2d is selected from from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;


In yet another preferred embodiment, R2c, R2d together with the nitrogen atom, to which they are bound may form a 4, -5-, 6- or 7-membered, saturated or unsaturated cyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;

    • In a preferred embodiment, R2 is R2cR2dNC(O)NR2c—Z2— and R2d is selected from from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C4-cycloalkyl-C1-C4-alkyl, C1-C6-haloalkyl, C1-C6-alkoxy, C2-C6-alkenyl, C1-C4-alkyl-C2-C6-alkenyl, C2-C6-alkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4—S(O)—C1-C4-alkyl, C1-C6-cyanoalkyl and benzyl.
    • In a more preferred embodiment, R2 is R2cR1dNC(O)NR2c—Z2— and R2d is selected from from the group consisting of hydrogen, C1-C6-alkyl, C3—C-cycloalkyl-C1-C4-alkyl, C1-C6-haloalkyl, C1-C6-alkoxy, C2-C6-alkenyl, C1-C4-alkyl-C2-C6-alkenyl, and C1-C4-alkoxy-C1-C4-alkyl, C1-C4—S(O)n—C1-C4-alkyl, C1-C4-alkylamino-C1-C4-alkyl, C1-C4-dialkylamino-C1-C4-alkyl.


Herein, particularly preferably, R2d is methyl, ethyl, (C3H5)—CH2—(CH2cPr; cyclopropylmethyl) or iso-propyl. Herein, very particularly preferably, R2d is methyl, ethyl, cyclopropyl or phenyl, where phenyl is unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;


Preferred compounds according to the invention are compounds of formula I, where R3 is selected from the group consisting of hydrogen, halogen, cyano, nitro, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy, C1-C4-haloalkoxy, C2-C4-alkenyl, C2- C4-alkynyl, C3-C4-alkenyloxy, C3-C4-alkynyloxy or R2b—S(O)k, where k is 0, 1 or 2 and where R2b is selected from C1-C4-alkyl and C1-C4-haloalkyl.


More preferably, R3 is selected from the group consisting of hydrogen, halogen, cyano, nitro, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylthio, C1-C4-haloalkylthio, C1-C4-alkyl-S(O)2 and C1-C4-haloalkyl-S(O)2.


In a particular preferred embodiment, R3 is selected from the group consisting of hydrogen, halogen, C1-C4-haloalkyl and phenyl, where phenyl is unsubstituted or substituted by 1, 2, 3 or 4 groups R21, which are identical or different.


In particular, R3 is chlorine, fluorine, CF3, SO2CH3, CN, H, Br or CH3.


More particular, R3 is hydrogen, chlorine, bromine, CF3, or methoxyphenyl.


Preferred compounds according to the invention are compounds of formula I, where R4 is selected from the group consisting of hydrogen, CHF2, CF3, CN, NO2, CH3 and halogen.


More preferably, R4 is hydrogen, chlorine, fluorine, CN or CH3.


According to a particular embodiment of the invention R4 is hydrogen, chlorine or fluorine, in particular hydrogen.


Preferred compounds according to the invention are compounds of formula I, wherein R5 is selected from the group consisting of CHF2, CF3 and halogen.


More preferably, R5 is halogen, in particular chlorine or fluorine, preferably fluorine.


Preferred compounds according to the invention are compounds of formula I, wherein R6 is selected from the group consisting of C1-C4-alkyl, C3-C7-cycloalkyl, C1-C4-haloalkyl, C2-C6-alkenyl, C2-C6-alkynyl and C1-C4-alkoxy-C1-C4-alkyl.


Preferably, R6 may be selected from the group consisting of hydrogen, C1-C4-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C4-alkoxy-C1-C4-alkyl, C3-C7-cycloalkyl, C1-C4-haloalkyl, R—C(═O)—C1-C2-alkyl, RdO—C(═O)—C1-C2-alkyl, ReRfN—C(═O)—C1-C2-alkyl, Rk—C(═O)NH—C1-C2-alkyl and benzyl, where


Rc is C1-C4-alkyl or C1-C4-haloalkyl,


Rd is C1-C4-alkyl,


Re is hydrogen or C1-C4-alkyl,


Rf is hydrogen or C1-C4-alkyl, or


Re, Rf together with the nitrogen atom, to which they are bound may form a 5-, 6- or 7-membered, saturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2, 3 or 4 methyl groups,


Rk is C1-C4-alkyl.


More preferred compounds according to the invention are compounds of formula I, wherein R6 is selected from the group consisting of C1-C4-alkyl, C3-C7-cycloalkyl, C1-C4-haloalkyl, C2-C6-alkenyl, C2-C6-alkynyl and C1-C4-alkoxy-C1-C4-alkyl.


Even more preferred compounds according to the invention are compounds of formula I, wherein R6 is selected from the group consisting of C1-C4-alkyl and C1-C2-alkoxy-C1-C2-alkyl, particularly from methyl, ethyl, n-propyl, methoxymethyl, ethoxymethyl and methoxyethyl.


Particularly preferred compounds according to the invention are compounds of formula I, wherein R6 is selected from the group consisting of methyl, ethyl, n-propyl and methoxyethyl.


In this context, the variables R′, R11, R21, Z, Z1, Z2, Z2, Rb, R1b, R2b, Rc, R2c, Rd, R2d, Re, R2e, Rf, R2f, Rg, R2g, Rh, R2h, Rk, n, k, R22, R23, R24, R25, R26, R27, R28, R29, s and t, independently of each other, preferably have one of the following meanings:


R′, R11, R21 independently of each other are selected from halogen, C1-C4-alkyl, C3-C6-cycloalkyl, C3-C6-halocycloalkyl, C1-C4-haloalkyl, C1-C4-alkoxy, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkoxy and C1—C-haloalkyloxy; and more preferably from halogen, C1-C4-alkyl, C3-C6-cycloalkyl, C1-C4-haloalkyl and C1-C4-alkoxy.


Also more preferably R′, R11, R21 independently of each other are selected from halogen, C1-C4-alkyl, C3-C6-cycloalkyl, C1-C4-haloalkyl, C1-C4-alkoxy, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkyl and C1-C4-alkoxy-C1-C4-alkoxy; in particular from halogen, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-haloalkyl, C1-C4-alkoxy-C1-C4-alkyl and C1-C4-alkoxy-C1-C4-alkoxy; and specifically from Cl, F, Br, methyl, ethyl, methoxy and trifluoromethyl.


Z, Z1, Z2 independently of each other are selected from a covalent bond, methanediyl and ethanediyl, and in particular are a covalent bond.


Z2a is selected from a covalent bond, C1-C2-alkanediyl, O—C1-C2-alkanediyl, C1-C2-alkanediyl-O and C1-C2-alkanediyl-O—C1-C2-alkanediyl; more preferably from a covalent bond, methanediyl, ethanediyl, O-methanediyl, O-ethanediyl, methanediyl-O, and ethanediyl-O; and in particular from a covalent bond, methanediyl and ethanediyl.


Rb, R1b, R2b independently of each other are selected from C1-C6-alkyl, C3-C7-cycloalkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, phenyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2 or 3 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl and heterocyclyl are unsubstituted or substituted by 1, 2 or 3 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C2-haloalkyl and C1-C2-alkoxy.


More preferably Rb, R1b, R2b independently of each other are selected from C1-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, C1-C4-haloalkyl, C2-C4-haloalkenyl, C2-C4-haloalkynyl, C3-C6-cycloalkyl, phenyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2 or 3 heteroatoms as ring members, which are selected from the group consisting of O, N and S.


In particular, Rb, R1b, R2b independently of each other are selected from C1-C4-alkyl, C1-C4-haloalkyl, C2-C4-alkenyl, C2-C4-haloalkenyl, C2-C4-alkynyl, C3-C6-cycloalkyl, phenyl and heterocy-clyl, where heterocyclyl is a 5- or 6-membered aromatic heterocyclic radical having 1 or 2 nitrogen atoms as ring members.


Rc, R2c, Rk independently of each other are selected from hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, which is unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C1-C6-alkoxy, C2-C6-alkenyl, C1-C4-alkyl-C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4—S(O)n—C1-C4-alkyl, C1-C4-alkylamino-C1-C4-alkyl, C1-C4-dialkylamino-C1-C4-alkyl, C1-C6-cyanoalkyl, phenyl, benzyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2 or 3 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl, benzyl and heterocyclyl are unsubstituted or substituted by 1, 2 or 3 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl and C1-C4-alkoxy.


More preferably R, R2c, Rk independently of each other are selected from hydrogen, C1-C4-alkyl, C1-C4-haloalkyl, C2-C-alkenyl, C2-C-haloalkenyl, C2-C-alkynyl, C3-C6-cycloalkyl, phenyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2 or 3 heteroatoms as ring members, which are selected from the group consisting of O, N and S.


In particular, Rc, R2c, Rk independently of each other are selected from hydrogen, C1-C4-alkyl, C1-C4-haloalkyl, C2-C4-alkenyl, C2-C4-haloalkenyl, C3-C6-cycloalkyl, phenyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered aromatic heterocyclic radical having 1 or 2 nitrogen atoms as ring members.


Rd, R2d independently of each other are selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C1-C6-alkoxy, C2-C6-alkenyl, C1-C4-alkyl-C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4—S(O)—C1-C4-alkyl, C1-C4-alkylamino-C1-C4-alkyl, C1-C4-dialkylamino-C1-C4-alkyl, C1-C6-cyanoalkyl, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;


More preferably Rd, R2d independently of each other are selected from C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-alkoxy, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C1-C4-alkoxy-C1-C4-alkyl and C3-C7-cycloalkyl, which is unsubstituted or partially or completely halogenated; and in particular from C1-C4-alkyl, C1-C4-haloalkyl, C2-C4-alkenyl, C2-C4-haloalkenyl, C2-C4-alkynyl and C3-C6-cycloalkyl.


R2c, R2d together with the nitrogen atom, to which they are bound may form a 4, -5-, 6- or 7-membered, saturated or unsaturated cyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;


Re, Rf, R2e, R2f independently of each other are selected from hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, which is unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C1-C4-alkoxy-C1-C4-alkyl, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1, 2 or 3 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl and C1-C4-alkoxy, or Re and Rf or R2e and R2f together with the nitrogen atom, to which they are bound may form a 5-, 6- or 7-membered, saturated or unsaturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl and C1-C4-alkoxy.


More preferably Re, Rf, R2e, R2f independently of each other are selected from hydrogen, C1-C6-alkyl, C1-C6-haloalkyl and benzyl, or Re and Rf or R2e and R2f together with the nitrogen atom, to which they are bound may form a 5- or 6-membered, saturated or unsaturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2 or 3 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl and C1-C4-haloalkyl.


In particular, Re, Rf, R2e, R2f independently of each other are selected from hydrogen and C1-C4-alkyl, or Re and Rf or R2e and R2f together with the nitrogen atom, to which they are bound may form a 5- or 6-membered, saturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2 or 3 methyl groups.


Rg, R2g independently of each other are selected from hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, which is unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylsulfonyl, C1-C4-alkylcarbonyl, phenyl and benzyl.


More preferably Rg, R2g independently of each other are selected from hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, benzyl, C1-C4-alkoxy-C1-C4-alkyl and C3-C7-cycloalkyl, which is unsubstituted or partially or completely halogenated; and in particular from hydrogen, C1-C4-alkyl, C1-C4-haloalkyl, C2-C4-alkenyl, C2-C4-haloalkenyl, benzyl and C3-C6-cycloalkyl.


Rh, R2h independently of each other are selected from hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, which is unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkylsulfonyl, C1-C4-alkylcarbonyl, phenyl, benzyl and a radical C(═O)—Rk, where Rk is H, C1-C4-alkyl, C1-C4-haloalkyl or phenyl.


More preferably Rh, R2h independently of each other are selected from hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, benzyl, C1-C4-alkoxy-C1-C4-alkyl and C3-C7-cycloalkyl, which is unsubstituted or partially or completely halogenated; and in particular from hydrogen, C1-C4-alkyl, C1-C4-haloalkyl, C2-C4-alkenyl, C2-C4-haloalkenyl, benzyl and C3-C6-cycloalkyl; or


Rg and Rh or R2g and R2h together with the nitrogen atom, to which they are bound may form a 5-, 6- or 7-membered, saturated or unsaturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of ═O, halogen, C1-C4-alkyl, C1-C4-haloalkyl and C1-C4-alkoxy;


more preferably Rg and Rh or R2g and R2h together with the nitrogen atom, to which they are bound may form a 5- or 6-membered, saturated or unsaturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2 or 3 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl and C1-C4-haloalkyl;


and in particular, Rg and Rh or R2g and R2h together with the nitrogen atom, to which they are bound may form a 5- or 6-membered, saturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1, 2 or 3 methyl groups.


n and k independently of each other are 0 or 2, and in particular 2.


R22 is selected from hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, C3-C6-cycloalkyl, C3-C6-halocycloalkyl, C3-C6-cycloalkyl-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkyl, C3-C6-cycloalkyl-C1-C6-alkoxy-C1-C6-alkyl, phenyl, phenyl-C1-C6-alkyl, heteroaryl, heteroaryl-C1-C6-alkyl, heterocyclyl, heterocyclyl-C1-C6-alkyl, phenyl-O—C1-C6-alkyl, heteroaryl-O—C1-C6-alkyl, heterocyclyl-O—C1-C6-alkyl, where the 9 aforementioned radicals are substituted by s residues selected from the group consisting of nitro, halogen, C1-C6-alkyl, C1-C6-haloalkyl, C(O)OR23, C(O)N(R23)2, OR23, N(R23)2, S(O)nR24 and R23O—C1-C6-alkyl, and where heterocyclyl bears 0, 1 or 2 oxo groups.


More preferably R22 is selected from hydrogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy-C1-C4-alkyl, C3-C6-cycloalkyl, C3-C6-cycloalkyl-C1-C2-alkyl, phenyl and phenyl-C1-C2-alkyl. In particular, R22 is hydrogen or C1-C4-alkyl.


R23 is selected from hydrogen, C1-C4-alkyl, C1-C4-haloalkyl and C3-C6-cycloalkyl. In particular, R23 is hydrogen or C1-C4-alkyl.


R24 is selected from C1-C4-alkyl, C1-C4-haloalkyl and C3-C6-cycloalkyl. In particular, R24 is C1-C4-alkyl.


R25 is selected from C1-C6-alkyl, C1-C6-haloalkyl, C3-C6-cycloalkyl, C3-C6-halocycloalkyl, C3-C6-cycloalkyl-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkyl, C3-C6-cycloalkyl-C1-C6-alkoxy-C1-C6-alkyl, phenyl, phenyl-C1-C6-alkyl, heteroaryl, heteroaryl-C1-C6-alkyl, heterocyclyl, heterocyclyl-C1-C6-alkyl, phenyl-O—C1-C6-alkyl, heteroaryl-O—C1-C6-alkyl, heterocy-clyl-O—C1-C6-alkyl, where the 9 aforementioned radicals are substituted by s residues selected from the group consisting of nitro, halogen, C1-C6-alkyl, C1-C6-haloalkyl, C(O)OR23, C(O)N(R23)2, OR23, N(R23)2, S(O)nR24 and R23O—C1-C6-alkyl, and where heterocyclyl bears 0, 1 or 2 oxo groups.


More preferably R25 is selected from C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy-C1-C4-alkyl, C3-C6-cycloalkyl, C3-C6-cycloalkyl-C1-C2-alkyl, phenyl and phenyl-C1-C2-alkyl. In particular, R25 is C1-C4-alkyl.


R26 is selected from the group consisting of methyl, ethyl and methoxyethyl.


R27 is selected from the group consisting of hydrogen, cyano and trifluoroacetyl.


R28 is ethyl and R29 is ethyl, or R28 and R29 together are —(CH2)5— or —(CH2)2—O—(CH2)2—.


s is 0, 1, 2 or 3. In one particular embodiment of the invention, s is 0. In another particular embodiment of the invention, s is 1, 2 or 3.


t is 0 or 1. In one particular embodiment of the invention, t is 0. In another particular embodiment of the invention, t is 1.


Particularly preferred are compounds of formula I, wherein the variables R1 and R3 have the following meanings:

  • R1 is selected from the group consisting of halogen, nitro, C1-C4-alkyl, C3-C6-cycloalkyl, C1-C4-haloalkyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylthio, C1-C4-haloalkylthio and C1-C4-alkylsulfonyl; and
  • R3 is selected from the group consisting of hydrogen, halogen, cyano, nitro, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylthio, C1-C4-haloalkylthio and C1-C4-alkylsulfonyl.


Especially preferred are compounds of formula I, where the variables R1, R2, R3, R4, R5 and R6 have the following meanings:

  • R1 is selected from the group consisting of halogen, nitro, cyclopropyl, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkoxy-C1-C4-alkyl and C1-C4-alkyl-S(O)2;
  • R2 is R2cR2dNC(O)NR2c—Z2— with R2c and R2d independently of each other selected from the group consisting of
    • hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, C1-C6-haloalkyl, C1-C6-alkoxy, C2-C6-alkenyl, C2-C6-alkynyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4—S(O)n—C1-C4-alkyl, C1-C4-alkamino-C1-C4-alkyl, C1-C4-dialkamino-C1-C4-alkyl, C1-C6-cyanoalkyl and benzyl
  • R3 is selected from the group consisting of hydrogen, halogen, cyano, nitro, C1-C4-alkyl, C1-C4-haloalkyl and C1-C4-alkyl-S(O)2;
  • R4 is selected from the group consisting of hydrogen, cyano, methyl and halogen;
  • R5 is selected from the group consisting of halogen, CHF2 and CF3;
  • R6 is selected from the group consisting of C1-C4-alkyl and C1-C2-alkoxy-C1-C2-alkyl.


Also especially preferred are compounds of formula I, where the variables R1, R2, R3, R4, R5 and R6 have the following meanings:

  • R1 is selected from the group consisting of halogen, nitro, cyclopropyl, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkoxy, C1-C4-alkoxy-C1-C4-alkoxy-C1-C4-alkyl and C1-C4-alkyl-S(O)2;
  • R2 is R2cR2dNC(O)NR2c—Z2— with R2c and R2d independently of each other selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6-haloalkyl, C1-C6-alkoxy, C2-C6-alkenyl, C1-C4-alkyl-C2-C6-alkenyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4—S(O)n—C1-C4-alkyl, C1-C4-alkylamino-C1-C4-alkyl, C1-C4-dialkylamino-C1-C4-alkyl, C1-C6-cyanoalkyl, phenyl, benzyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl, benzyl and heterocyclyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;
  • R3 is selected from the group consisting of hydrogen, halogen, cyano, nitro, C1-C4-alkyl, C1-C4-haloalkyl and C1-C4-alkyl-S(O)2;
  • R4 is selected from the group consisting of hydrogen, cyano, methyl and halogen;
  • R5 is selected from the group consisting of halogen, CHF2 and CF3;
  • R6 is selected from the group consisting of C1-C4-alkyl and C1-C2-alkoxy-C1-C2-alkyl.


Also especially preferred are compounds of formula I, where the variables R1, R2, R3, R4, R5 and R6 have the following meanings:


R1 is selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-alkoxy;


R2 is R2cR2dNC(O)NR2c—Z2— with R2c and R2d independently of each other selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, phenyl, benzyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl, benzyl and heterocyclyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;


R3 is selected from the group consisting of hydrogen, halogen, C1-C4-haloalkyl;


R4 is selected from the group consisting of hydrogen;


R5 is selected from the group consisting of halogen;


R6 is selected from the group consisting of C1-C4-alkyl and C1-C2-alkoxy-C1-C2-alkyl.


Specifically preferred are compounds of formula I, where the variables R1, R2, R3, R4, R5 and R6 have the following meanings:

  • R1 is selected from the group consisting of chlorine, methyl, methoxy;
  • R2 is R2cR2dNC(O)NR2c—Z2— with R2c and R2d independently of each other selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-C1-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, phenyl, benzyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1, 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl, benzyl and heterocyclyl are unsubstituted or substituted by 1, 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy and C1-C4-haloalkoxy;
  • R3 is selected from the group consisting of hydrogen, chlorine, bromine, trifluoromethyl and methoxyphenyl;
  • R4 is selected from the group consisting of hydrogen;
  • R5 is selected from the group consisting of fluorine;
  • R6 is selected from the group consisting of methyl, ethyl, methoxyethyl and ethoxymethyl.


Specifically preferred are compounds of formula I, where the variables R1, R2, R3, R4, R5 and R6 have the following meanings:

  • R1 is selected from the group consisting of chlorine, nitro, methyl, cyclopropyl, trifluoromethyl, methoxymethyl, CH2OCH2CH2OCH3 and methylsulfonyl;
  • R2 is R2cR2dNC(O)NR2c—Z2— with R2c and R2d independently of each other selected from the group consisting of hydrogen, C1-C6-alkyl, C3-C7-cycloalkyl-C1-C4-alkyl, C1-C6-haloalkyl, C1-C6-alkoxy, C2-C6-alkenyl, C2-C6-alkynyl, C1-C4-alkoxy-C1-C4-alkyl
  • R3 is selected from the group consisting of hydrogen, fluorine, chlorine, bromine, cyano, nitro, methyl, trifluoromethyl and methylsulfonyl;
  • R4 is selected from the group consisting of hydrogen, cyano, methyl, chlorine and fluorine;
  • R5 is selected from the group consisting of chlorine and fluorine;
  • R6 is selected from the group consisting of methyl, ethyl, propyl, methoxymethyl, methoxyethyl and ethoxymethyl.


Especially preferred are compounds of formula I, where the variables R1, R3, R4, R5 and R6 have the following meanings:

  • R1 is selected from the group consisting of halogen, nitro, cyclopropyl, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkoxy-C1-C4-alkyl and C1-C4-alkyl-S(O)2;
  • R3 is selected from the group consisting of hydrogen, halogen, cyano, nitro, C1-C4-alkyl, C1-C4-haloalkyl and C1-C4-alkyl-S(O)2;
  • R4 is selected from the group consisting of hydrogen, cyano, methyl and halogen;
  • R5 is selected from the group consisting of halogen, CHF2 and CF3;
  • R6 is selected from the group consisting of C1-C4-alkyl and C1-C2-alkoxy-C1-C2-alkyl.


Especially preferred are compounds of formula I, where the variables R1, R3, R4, R5 and R6 have the following meanings:

  • R1 is selected from the group consisting of chlorine, nitro, methyl, cyclopropyl, trifluoromethyl, methoxymethyl, CH2OCH2CH2OCH3 and methylsulfonyl;
  • R3 is selected from the group consisting of hydrogen, fluorine, chlorine, bromine, cyano, nitro, methyl, trifluoromethyl and methylsulfonyl;
  • R4 is selected from the group consisting of hydrogen, cyano, methyl, chlorine and fluorine;
  • R5 is selected from the group consisting of chlorine and fluorine;
  • R6 is selected from the group consisting of methyl, ethyl, propyl, methoxymethyl, methoxyethyl and ethoxymethyl.


Specifically preferred are compounds of formula I, where the variables R1, R3, R4, R5 and R6 have the following meanings:

    • R1 is selected from the group consisting of chlorine, nitro, methyl, cyclopropyl, trifluoromethyl, methoxymethyl, CH2OCH2CH2OCH3 and methylsulfonyl;
    • R3 is selected from the group consisting of hydrogen, fluorine, chlorine, bromine, cyano, nitro, methyl, trifluoromethyl and methylsulfonyl;
    • R4 is selected from the group consisting of hydrogen, cyano, methyl, chlorine and fluorine;
    • R5 is selected from the group consisting of chlorine and fluorine;
    • R6 is selected from the group consisting of methyl, ethyl, propyl, methoxymethyl, methoxyethyl and ethoxymethyl.


Examples of preferred compounds I.A, wherein Q is Q1 and R4 is H, are the individual compounds compiled in Tables 1 to 20 below. Moreover, the meanings mentioned below for the individual variables in the Tables are, per se, independently of the combination in which they are mentioned, a particularly preferred embodiment of the substituents in question.




embedded image


Table 1 Compounds of formula I.A (I.A-1.1-I.A-1.288) in which R2 is (Me)2NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 2 Compounds of formula I.A (I.A-2.1-I.A-2.288) in which R2 is (Me)2NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 3 Compounds of formula I.A (I.A-3.1-I.A-3.288) in which R2 is MeEtNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 4 Compounds of formula I.A (I.A-4.1-I.A-4.288) in which R2 is MeEtNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 5 Compounds of formula I.A (I.A-5.1-I.A-5.288) in which R2 is (Me)iPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 6 Compounds of formula I.A (I.A-6.1-I.A-6.288) in which R2 is (Me)iPrNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 7 Compounds of formula I.A (I.A-7.1-I.A-7.288) in which R2 is (Me)cPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 8 Compounds of formula I.A (I.A-8.1-I.A-8.288) in which R2 is (Me)cPrNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 9 Compounds of formula I.A (I.A-9.1-I.A-9.288) in which R2 is (Me)(CH3OCH2CH2—)NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 10 Compounds of formula I.A (I.A-10.1-I.A-10.288) in which R2 is (Me)(CH3OCH2CH2—)NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 11 Compounds of formula I.A (I.A-11.1-I.A-11.288) in which R2 is (Me)(CH3SCH2CH2—)NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 12 Compounds of formula I.A (I.A-12.1-I.A-12.288) in which R2 is (Me)(CH3SCH2CH2—)NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 13 Compounds of formula I.A (I.A-13.1-I.A-13.288) in which R2 is (N-morpholino)NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 14 Compounds of formula I.A (I.A-14.1-I.A-14.288) in which R2 is (N-morpholino)NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 15 Compounds of formula I.A (I.A-15.1-I.A-15.288) in which R2 is (Et)2NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 16 Compounds of formula I.A (I.A-16.1-I.A-16.288) in which R2 is (Et)2NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 17 Compounds of formula I.A (I.A-17.1-I.A-17.288) in which R2 is (Et)iPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 18 Compounds of formula I.A (I.A-18.1-I.A-18.288) in which R2 is (Et)iPrNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 19 Compounds of formula I.A (I.A-19.1-I.A-19.288) in which R2 is (Et)cPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 20 Compounds of formula I.A (I.A-20.1-I.A-20.288) in which R2 is (Et)cPrNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;














TABLE A







Entry
R1
R3
R6









 A-1
Cl
H
CH3



 A-2
Cl
H
CH2CH3



 A-3
Cl
H
CH2CH2CH3



 A-4
Cl
H
CH2CH2OCH3



 A-5
Cl
F
CH3



 A-6
Cl
F
CH2CH3



 A-7
Cl
F
CH2CH2CH3



 A-8
Cl
F
CH2CH2OCH3



 A-9
Cl
Cl
CH3



 A-10
Cl
Cl
CH2CH3



 A-11
Cl
Cl
CH2CH2CH3



 A-12
Cl
Cl
CH2CH2OCH3



 A-13
Cl
Br
CH3



 A-14
Cl
Br
CH2CH3



 A-15
Cl
Br
CH2CH2CH3



 A-16
Cl
Br
CH2CH2OCH3



 A-17
Cl
CN
CH3



 A-18
Cl
CN
CH2CH3



 A-19
Cl
CN
CH2CH2CH3



 A-20
Cl
CN
CH2CH2OCH3



 A-21
Cl
CH3
CH3



 A-22
Cl
CH3
CH2CH3



 A-23
Cl
CH3
CH2CH2CH3



 A-24
Cl
CH3
CH2CH2OCH3



 A-25
Cl
CF3
CH3



 A-26
Cl
CF3
CH2CH3



 A-27
Cl
CF3
CH2CH2CH3



 A-28
Cl
CF3
CH2CH2OCH3



 A-29
Cl
SO2CH3
CH3



 A-30
Cl
SO2CH3
CH2CH3



 A-31
Cl
SO2CH3
CH2CH2CH3



 A-32
Cl
SO2CH3
CH2CH2OCH3



 A-33
Cl
NO2
CH3



 A-34
Cl
NO2
CH2CH3



 A-35
Cl
NO2
CH2CH2CH3



 A-36
Cl
NO2
CH2CH2OCH3



 A-37
NO2
H
CH3



 A-38
NO2
H
CH2CH3



 A-39
NO2
H
CH2CH2CH3



 A-40
NO2
H
CH2CH2OCH3



 A-41
NO2
F
CH3



 A-42
NO2
F
CH2CH3



 A-43
NO2
F
CH2CH2CH3



 A-44
NO2
F
CH2CH2OCH3



 A-45
NO2
Cl
CH3



 A-46
NO2
Cl
CH2CH3



 A-47
NO2
Cl
CH2CH2CH3



 A-48
NO2
Cl
CH2CH2OCH3



 A-49
NO2
Br
CH3



 A-50
NO2
Br
CH2CH3



 A-51
NO2
Br
CH2CH2CH3



 A-52
NO2
Br
CH2CH2OCH3



 A-53
NO2
CN
CH3



 A-54
NO2
ON
CH2CH3



 A-55
NO2
CN
CH2CH2CH3



 A-56
NO2
ON
CH2CH2OCH3



 A-57
NO2
CH3
CH3



 A-58
NO2
CH3
CH2CH3



 A-59
NO2
CH3
CH2CH2CH3



 A-60
NO2
CH3
CH2CH2OCH3



 A-61
NO2
CF3
CH3



 A-62
NO2
CF3
CH2CH3



 A-63
NO2
CF3
CH2CH2CH3



 A-64
NO2
CF3
CH2CH2OCH3



 A-65
NO2
SO2CH3
CH3



 A-66
NO2
SO2CH3
CH2CH3



 A-67
NO2
SO2CH3
CH2CH2CH3



 A-68
NO2
SO2CH3
CH2CH2OCH3



 A-69
NO2
NO2
CH3



 A-70
NO2
NO2
CH2CH3



 A-71
NO2
NO2
CH2CH2CH3



 A-72
NO2
NO2
CH2CH2OCH3



 A-73
CH3
H
CH3



 A-74
CH3
H
CH2CH3



 A-75
CH3
H
CH2CH2CH3



 A-76
CH3
H
CH2CH2OCH3



 A-77
CH3
F
CH3



 A-78
CH3
F
CH2CH3



 A-79
CH3
F
CH2CH2CH3



 A-80
CH3
F
CH2CH2OCH3



 A-81
CH3
Cl
CH3



 A-82
CH3
Cl
CH2CH3



 A-83
CH3
Cl
CH2CH2CH3



 A-84
CH3
Cl
CH2CH2OCH3



 A-85
CH3
Br
CH3



 A-86
CH3
Br
CH2CH3



 A-87
CH3
Br
CH2CH2CH3



 A-88
CH3
Br
CH2CH2OCH3



 A-89
CH3
CN
CH3



 A-90
CH3
CN
CH2CH3



 A-91
CH3
CN
CH2CH2CH3



 A-92
CH3
CN
CH2CH2OCH3



 A-93
CH3
CH3
CH3



 A-94
CH3
CH3
CH2CH3



 A-95
CH3
CH3
CH2CH2CH3



 A-96
CH3
CH3
CH2CH2OCH3



 A-97
CH3
CF3
CH3



 A-98
CH3
CF3
CH2CH3



 A-99
CH3
CF3
CH2CH2CH3



A-100
CH3
CF3
CH2CH2OCH3



A-101
CH3
SO2CH3
CH3



A-102
CH3
SO2CH3
CH2CH3



A-103
CH3
SO2CH3
CH2CH2CH3



A-104
CH3
SO2CH3
CH2CH2OCH3



A-105
CH3
NO2
CH3



A-106
CH3
NO2
CH2CH3



A-107
CH3
NO2
CH2CH2CH3



A-108
CH3
NO2
CH2CH2OCH3



A-109
cyclopropyl
H
CH3



A-110
cyclopropyl
H
CH2CH3



A-111
cyclopropyl
H
CH2CH2CH3



A-112
cyclopropyl
H
CH2CH2OCH3



A-113
cyclopropyl
F
CH3



A-114
cyclopropyl
F
CH2CH3



A-115
cyclopropyl
F
CH2CH2CH3



A-116
cyclopropyl
F
CH2CH2OCH3



A-117
cyclopropyl
Cl
CH3



A-118
cyclopropyl
Cl
CH2CH3



A-119
cyclopropyl
Cl
CH2CH2CH3



A-120
cyclopropyl
Cl
CH2CH2OCH3



A-121
cyclopropyl
Br
CH3



A-122
cyclopropyl
Br
CH2CH3



A-123
cyclopropyl
Br
CH2CH2CH3



A-124
cyclopropyl
Br
CH2CH2OCH3



A-125
cyclopropyl
ON
CH3



A-126
cyclopropyl
ON
CH2CH3



A-127
cyclopropyl
ON
CH2CH2CH3



A-128
cyclopropyl
ON
CH2CH2OCH3



A-129
cyclopropyl
CH3
CH3



A-130
cyclopropyl
CH3
CH2CH3



A-131
cyclopropyl
CH3
CH2CH2CH3



A-132
cyclopropyl
CH3
CH2CH2OCH3



A-133
cyclopropyl
CF3
CH3



A-134
cyclopropyl
CF3
CH2CH3



A-135
cyclopropyl
CF3
CH2CH2CH3



A-136
cyclopropyl
CF3
CH2CH2OCH3



A-137
cyclopropyl
SO2CH3
CH3



A-138
cyclopropyl
SO2CH3
CH2CH3



A-139
cyclopropyl
SO2CH3
CH2CH2CH3



A-140
cyclopropyl
SO2CH3
CH2CH2OCH3



A-141
cyclopropyl
NO2
CH3



A-142
cyclopropyl
NO2
CH2CH3



A-143
cyclopropyl
NO2
CH2CH2CH3



A-144
cyclopropyl
NO2
CH2CH2OCH3



A-145
CH2OCH3
H
CH3



A-146
CH2OCH3
H
CH2CH3



A-147
CH2OCH3
H
CH2CH2CH3



A-148
CH2OCH3
H
CH2CH2OCH3



A-149
CH2OCH3
F
CH3



A-150
CH2OCH3
F
CH2CH3



A-151
CH2OCH3
F
CH2CH2CH3



A-152
CH2OCH3
F
CH2CH2OCH3



A-153
CH2OCH3
Cl
CH3



A-154
CH2OCH3
Cl
CH2CH3



A-155
CH2OCH3
Cl
CH2CH2CH3



A-156
CH2OCH3
Cl
CH2CH2OCH3



A-157
CH2OCH3
Br
CH3



A-158
CH2OCH3
Br
CH2CH3



A-159
CH2OCH3
Br
CH2CH2CH3



A-160
CH2OCH3
Br
CH2CH200H3



A-161
CH2OCH3
CN
CH3



A-162
CH2OCH3
CN
CH2CH3



A-163
CH2OCH3
CN
CH2CH2CH3



A-164
CH2OCH3
CN
CH2CH200H3



A-165
CH2OCH3
CH3
CH3



A-166
CH2OCH3
CH3
CH2CH3



A-167
CH2OCH3
CH3
CH2CH2CH3



A-168
CH2OCH3
CH3
CH2CH2OCH3



A-169
CH2OCH3
CF3
CH3



A-170
CH2OCH3
CF3
CH2CH3



A-171
CH2OCH3
CF3
CH2CH2CH3



A-172
CH2OCH3
CF3
CH2CH2OCH3



A-173
CH2OCH3
SO2CH3
CH3



A-174
CH2OCH3
SO2CH3
CH2CH3



A-175
CH2OCH3
SO2CH3
CH2CH2CH3



A-176
CH2OCH3
SO2CH3
CH2CH2OCH3



A-177
CH2OCH3
NO2
CH3



A-178
CH2OCH3
NO2
CH2CH3



A-179
CH2OCH3
NO2
CH2CH2CH3



A-180
CH2OCH3
NO2
CH2CH2OCH3



A-181
CH2OCH2CH2OCH3
H
CH3



A-182
CH2OCH2CH2OCH3
H
CH2CH3



A-183
CH2OCH2CH2OCH3
H
CH2CH2CH3



A-184
CH2OCH2CH2OCH3
H
CH2CH2OCH3



A-185
CH2OCH2CH2OCH3
F
CH3



A-186
CH2OCH2CH2OCH3
F
CH2CH3



A-187
CH2OCH2CH2OCH3
F
CH2CH2CH3



A-188
CH2OCH2CH2OCH3
F
CH2CH2OCH3



A-189
CH2OCH2CH2OCH3
Cl
CH3



A-190
CH2OCH2CH2OCH3
Cl
CH2CH3



A-191
CH2OCH2CH2OCH3
Cl
CH2CH2CH3



A-192
CH2OCH2CH2OCH3
Cl
CH2CH2OCH3



A-193
CH2OCH2CH2OCH3
Br
CH3



A-194
CH2OCH2CH2OCH3
Br
CH2CH3



A-195
CH2OCH2CH2OCH3
Br
CH2CH2CH3



A-196
CH2OCH2CH2OCH3
Br
CH2CH2OCH3



A-197
CH2OCH2CH2OCH3
CN
CH3



A-198
CH2OCH2CH2OCH3
CN
CH2CH3



A-199
CH2OCH2CH2OCH3
CN
CH2CH2CH3



A-200
CH2OCH2CH2OCH3
CN
CH2CH2OCH3



A-201
CH2OCH2CH2OCH3
CH3
CH3



A-202
CH2OCH2CH2OCH3
CH3
CH2CH3



A-203
CH2OCH2CH2OCH3
CH3
CH2CH2CH3



A-204
CH2OCH2CH2OCH3
CH3
CH2CH2OCH3



A-205
CH2OCH2CH2OCH3
CF3
CH3



A-206
CH2OCH2CH2OCH3
CF3
CH2CH3



A-207
CH2OCH2CH2OCH3
CF3
CH2CH2CH3



A-208
CH2OCH2CH2OCH3
CF3
CH2CH2OCH3



A-209
CH2OCH2CH2OCH3
SO2CH3
CH3



A-210
CH2OCH2CH2OCH3
SO2CH3
CH2CH3



A-211
CH2OCH2CH2OCH3
SO2CH3
CH2CH2CH3



A-212
CH2OCH2CH2OCH3
SO2CH3
CH2CH2OCH3



A-213
CH2OCH2CH2OCH3
NO2
CH3



A-214
CH2OCH2CH2OCH3
NO2
CH2CH3



A-215
CH2OCH2CH2OCH3
NO2
CH2CH2CH3



A-216
CH2OCH2CH2OCH3
NO2
CH2CH2OCH3



A-217
SO2CH3
H
CH3



A-218
SO2CH3
H
CH2CH3



A-219
SO2CH3
H
CH2CH2CH3



A-220
SO2CH3
H
CH2CH2OCH3



A-221
SO2CH3
F
CH3



A-222
SO2CH3
F
CH2CH3



A-223
SO2CH3
F
CH2CH2CH3



A-224
SO2CH3
F
CH2CH2OCH3



A-225
SO2CH3
Cl
CH3



A-226
SO2CH3
Cl
CH2CH3



A-227
SO2CH3
Cl
CH2CH2CH3



A-228
SO2CH3
Cl
CH2CH2OCH3



A-229
SO2CH3
Br
CH3



A-230
SO2CH3
Br
CH2CH3



A-231
SO2CH3
Br
CH2CH2CH3



A-232
SO2CH3
Br
CH2CH2OCH3



A-233
SO2CH3
CN
CH3



A-234
SO2CH3
CN
CH2CH3



A-235
SO2CH3
CN
CH2CH2CH3



A-236
SO2CH3
CN
CH2CH200H3



A-237
SO2CH3
CH3
CH3



A-238
SO2CH3
CH3
CH2CH3



A-239
SO2CH3
CH3
CH2CH2CH3



A-240
SO2CH3
CH3
CH2CH2OCH3



A-241
SO2CH3
CF3
CH3



A-242
SO2CH3
CF3
CH2CH3



A-243
SO2CH3
CF3
CH2CH2CH3



A-244
SO2CH3
CF3
CH2CH2OCH3



A-245
SO2CH3
SO2CH3
CH3



A-246
SO2CH3
SO2CH3
CH2CH3



A-247
SO2CH3
SO2CH3
CH2CH2CH3



A-248
SO2CH3
SO2CH3
CH2CH200H3



A-249
SO2CH3
NO2
CH3



A-250
SO2CH3
NO2
CH2CH3



A-251
SO2CH3
NO2
CH2CH2CH3



A-252
SO2CH3
NO2
CH2CH2OCH3



A-253
CF3
H
CH3



A-254
CF3
H
CH2CH3



A-255
CF3
H
CH2CH2CH3



A-256
CF3
H
CH2CH2OCH3



A-257
CF3
F
CH3



A-258
CF3
F
CH2CH3



A-259
CF3
F
CH2CH2CH3



A-260
CF3
F
CH2CH2OCH3



A-261
CF3
Cl
CH3



A-262
CF3
Cl
CH2CH3



A-263
CF3
Cl
CH2CH2CH3



A-264
CF3
Cl
CH2CH2OCH3



A-265
CF3
Br
CH3



A-266
CF3
Br
CH2CH3



A-267
CF3
Br
CH2CH2CH3



A-268
CF3
Br
CH2CH2OCH3



A-269
CF3
CN
CH3



A-270
CF3
CN
CH2CH3



A-271
CF3
CN
CH2CH2CH3



A-272
CF3
CN
CH2CH2OCH3



A-273
CF3
CH3
CH3



A-274
CF3
CH3
CH2CH3



A-275
CF3
CH3
CH2CH2CH3



A-276
CF3
CH3
CH2CH2OCH3



A-277
CF3
CF3
CH3



A-278
CF3
CF3
CH2CH3



A-279
CF3
CF3
CH2CH2CH3



A-280
CF3
CF3
CH2CH2OCH3



A-281
CF3
SO2CH3
CH3



A-282
CF3
SO2CH3
CH2CH3



A-283
CF3
SO2CH3
CH2CH2CH3



A-284
CF3
SO2CH3
CH2CH2OCH3



A-285
CF3
NO2
CH3



A-286
CF3
NO2
CH2CH3



A-287
CF3
NO2
CH2CH2CH3



A-288
CF3
NO2
CH2CH2OCH3










Examples of preferred compounds I.B, wherein Qis Q2 and R4 is H, are the individual compounds compiled in Tables 21 to 40 below. Moreover, the meanings mentioned below for the individual variables in the Tables are, per se, independently of the combination in which they are mentioned, a particularly preferred embodiment of the substituents in question.




embedded image


Table 21 Compounds of formula I.B (I.B-1.1-I.B-1.288) in which R2 is (Me)2NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 22 Compounds of formula I.B (I.B-2.1-I.B-2.288) in which R2 is (Me)2NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 23 Compounds of formula I.B (I.B-3.1-I.B-3.288) in which R2 is MeEtNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 24 Compounds of formula I.B (I.B-4.1-I.B-4.288) in which R2 is MeEtNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 25 Compounds of formula I.B (I.B-5.1-I.B-5.288) in which R2 is (Me)iPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 26 Compounds of formula I.B (I.B-6.1-I.B-6.288) in which R2 is (Me)iPrNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 27 Compounds of formula I.B (I.B-7.1-I.B-7.288) in which R2 is (Me)cPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 28 Compounds of formula I.B (I.B-8.1-I.B-8.288) in which R2 is (Me)cPrNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 29 Compounds of formula I.B (I.B-9.1-I.B-9.288) in which R2 is (Me)(CH3OCH2CH2—)NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 30 Compounds of formula I.B (I.B-10.1-I.B-10.288) in which R2 is (Me)(CH3OCH2CH2—)NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 31 Compounds of formula I.B (I.B-11.1-I.B-11.288) in which R2 is (Me)(CH3SCH2CH2—)NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 32 Compounds of formula I.B (I.B-12.1-I.B-12.288) in which R2 is (Me)(CH3SCH2CH2—)NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 33 Compounds of formula I.B (I.B-13.1-I.B-13.288) in which R2 is (N-morpholino)NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 34 Compounds of formula I.B (I.B-14.1-I.B-14.288) in which R2 is (N-morpholino)NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 35 Compounds of formula I.B (I.B-15.1-I.B-15.288) in which R2 is (Et)2NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 36 Compounds of formula I.B (I.B-16.1-I.B-16.288) in which R2 is (Et)2NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 37 Compounds of formula I.B (I.B-17.1-I.B-17.288) in which R2 is (Et)iPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 38 Compounds of formula I.B (I.B-18.1-I.B-18.288) in which R2 is (Et)iPrNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 39 Compounds of formula I.B (I.B-19.1-I.B-19.288) in which R2 is (Et)cPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 40 Compounds of formula I.B (I.B-20.1-I.B-20.288) in which R2 is (Et)cPrNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Examples of preferred compounds I.C, wherein Q is Q3 and R4 is H, are the individual compounds compiled in Tables 41 to 60 below. Moreover, the meanings mentioned below for the individual variables in the Tables are, per se, independently of the combination in which they are mentioned, a particularly preferred embodiment of the substituents in question.




embedded image


Table 41 Compounds of formula I.C (I.C-1.1-I.C-1.288) in which R2 is (Me)2NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 42 Compounds of formula I.C (I.C-2.1-I.C-2.288) in which R2 is (Me)2NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 43 Compounds of formula I.C (I.C-3.1-I.C-3.288) in which R2 is MeEtNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 44 Compounds of formula I.C (I.C-4.1-I.C-4.288) in which R2 is MeEtNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 45 Compounds of formula I.C (I.C-5.1-I.C-5.288) in which R2 is (Me)iPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 46 Compounds of formula I.C (I.C-6.1-I.C-6.288) in which R2 is (Me)iPrNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 47 Compounds of formula I.C (I.C-7.1-I.C-7.288) in which R2 is (Me)cPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A:


Table 48 Compounds of formula I.C (I.C-8.1-I.C-8.288) in which R2 is (Me)cPrNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 49 Compounds of formula I.C (I.C-9.1-I.C-9.288) in which R2 is (Me)(CH3OCH2CH2—)NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 50 Compounds of formula I.C (I.C-10.1-I.C-10.288) in which R2 is (Me)(CH3OCH2CH2—)NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 51 Compounds of formula I.C (I.C-11.1-I.C-11.288) in which R2 is (Me)(CH3SCH2CH2—)NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 52 Compounds of formula I.C (I.C-12.1-I.C-12.288) in which R2 is (Me)(CH3SCH2CH2—)NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 53 Compounds of formula I.C (I.C-13.1-I.C-13.288) in which R2 is (N-morpholino)NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 54 Compounds of formula I.C (I.C-14.1-I.C-14.288) in which R2 is (N-morpholino)NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 55 Compounds of formula I.C (I.C-15.1-I.C-15.288) in which R2 is (Et)2NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 56 Compounds of formula I.C (I.C-16.1-I.C-16.288) in which R2 is (Et)2NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 57 Compounds of formula I.C (I.C-17.1-I.C-17.288) in which R2 is (Et)iPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 58 Compounds of formula I.C (I.C-18.1-I.C-18.288) in which R2 is (Et)iPrNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 59 Compounds of formula I.C (I.C-19.1-I.C-19.288) in which R2 is (Et)cPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 60 Compounds of formula I.C (I.C-20.1-I.C-20.288) in which R2 is (Et)cPrNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Examples of preferred compounds I.D, wherein Q is Q4 and R4 is H, are the individual compounds compiled in Tables 61 to 80 below. Moreover, the meanings mentioned below for the individual variables in the Tables are, per se, independently of the combination in which they are mentioned, a particularly preferred embodiment of the substituents in question.




embedded image


Table 61 Compounds of formula I.D (I.A-1.1-I.D-1.288) in which R2 is (Me)2NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 62 Compounds of formula I.D (I.A-2.1-I.D-2.288) in which R2 is (Me)2NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 63 Compounds of formula I.D (I.A-3.1-I.D-3.288) in which R2 is MeEtNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 64 Compounds of formula I.D (I.D-4.1-I.D-4.288) in which R2 is MeEtNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 65 Compounds of formula I.D (I.D-5.1-I.D-5.288) in which R2 is (Me)iPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 66 Compounds of formula I.D (I.D-6.1-I.D-6.288) in which R2 is (Me)iPrNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 67 Compounds of formula I.D (I.D-7.1-I.D-7.288) in which R2 is (Me)cPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 68 Compounds of formula I.D (I.D-8.1-I.D-8.288) in which R2 is (Me)cPrNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 69 Compounds of formula I.D (I.D-9.1-I.D-9.288) in which R2 is (Me)(CH3OCH2CH2—)NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 70 Compounds of formula I.D (I.D-10.1-I.D-10.288) in which R2 is (Me)(CH3OCH2CH2—)NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 71 Compounds of formula I.D (I.D-11.1-I.D-11.288) in which R2 is (Me)(CH3SCH2CH2—)NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 72 Compounds of formula I.D (I.D-12.1-I.D-12.288) in which R2 is (Me)(CH3SCH2CH2—)NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 73 Compounds of formula I.D (I.D-13.1-I.D-13.288) in which R2 is (N-morpholino)NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 74 Compounds of formula I.D (I.D-14.1-I.D-14.288) in which R2 is (N-morpholino)NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 75 Compounds of formula I.D (I.D-15.1-I.D-15.288) in which R2 is (Et)2NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 76 Compounds of formula I.D (I.D-16.1-I.D-16.288) in which R2 is (Et)2NC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 77 Compounds of formula I.D (I.D-17.1-I.D-17.288) in which R2 is (Et)iPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 78 Compounds of formula I.D (I.D-18.1-I.D-18.288) in which R2 is (Et)iPrNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 79 Compounds of formula I.D (I.D-19.1-I.D-19.288) in which R2 is (Et)cPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 80 Compounds of formula I.D (I.D-20.1-I.D-20.288) in which R2 is (Et)cPrNC(O)NH— and R5 is Cl and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Further examples of preferred compounds I.A, wherein Q is Q1 and R4 is H, are the individual compounds compiled in Tables 81 to 87 below. Moreover, the meanings mentioned below for the individual variables in the Tables are, per se, independently of the combination in which they are mentioned, a particularly preferred embodiment of the substituents in question.




embedded image


Table 81 Compounds of formula I.A (I.A-81.1-I.A-81.288) in which R2 is (iPr)cPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 82 Compounds of formula I.A (I.A-82.1-I.A-82.288) in which R2 is (cPr)2NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 83 Compounds of formula I.A (I.A-83.1-I.A-83.288) in which R2 is (Me)PhNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 84 Compounds of formula I.A (I.A-84.1-I.A-84.288) in which R2 is (Et)PhNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 85 Compounds of formula I.A (I.A-85.1-I.A-85.288) in which R2 is (iPr)PhNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 86 Compounds of formula I.A (I.A-86.1-I.A-86.288) in which R2 is (nPr)PhNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 87 Compounds of formula I.A (I.A-87.1-I.A-87.288) in which R2 is (Me)(4-Cl-Ph)NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Further examples of preferred compounds I.B, wherein Q is Q2 and R4 is H, are the individual compounds compiled in Tables 88 to 94 below. Moreover, the meanings mentioned below for the individual variables in the Tables are, per se, independently of the combination in which they are mentioned, a particularly preferred embodiment of the substituents in question.




embedded image


Table 88 Compounds of formula I.B (I.B-88.1-I.B-88.288) in which R2 is (iPr)cPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 89 Compounds of formula I.B (I.B-89.1-I.B-89.288) in which R2 is (cPr)2NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 90 Compounds of formula I.B (I.B-90.1-I.B-90.288) in which R2 is (Me)PhNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 91 Compounds of formula I.B (I.B-91.1-I.B-91.288) in which R2 is (Et)PhNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 92 Compounds of formula I.B (I.B-92.1-I.B-92.288) in which R2 is (iPr)PhNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 93 Compounds of formula I.B (I.B-93.1-I.B-93.288) in which R2 is (nPr)PhNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 94 Compounds of formula I.B (I.B-94.1-I.B-94.288) in which R2 is (Me)(4-Cl-Ph)NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Further examples of preferred compounds I.C, wherein Q is Q3 and R4 is H, are the individual compounds compiled in Tables 95 to 101 below. Moreover, the meanings mentioned below for the individual variables in the Tables are, per se, independently of the combination in which they are mentioned, a particularly preferred embodiment of the substituents in question.




embedded image


Table 95 Compounds of formula I.C (I.C-95.1-I.C-95.288) in which R2 is (iPr)cPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 96 Compounds of formula I.C (I.C-96.1-I.C-96.288) in which R2 is (cPr)2NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 97 Compounds of formula I.C (I.C-97.1-I.C-97.288) in which R2 is (Me)PhNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 98 Compounds of formula I.C (I.C-98.1-I.C-98.288) in which R2 is (Et)PhNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 99 Compounds of formula I.C (I.C-99.1-I.C-99.288) in which R2 is (iPr)PhNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 100 Compounds of formula I.C (I.C-100.1-I.C-100.288) in which R2 is (nPr)PhNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 101 Compounds of formula I.C (I.C-101.1-I.C-101.288) in which R2 is (Me)(4-Cl-Ph)NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Further examples of preferred compounds I.D, wherein Q is Q4 and R4 is H, are the individual compounds compiled in Tables 102 to 108 below. Moreover, the meanings mentioned below for the individual variables in the Tables are, per se, independently of the combination in which they are mentioned, a particularly preferred embodiment of the substituents in question.




embedded image


Table 102 Compounds of formula I.D (I.D-102.1-I.D-102.288) in which R2 is (iPr)cPrNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 103 Compounds of formula I.D (I.D-103.1-I.D-103.288) in which R2 is (cPr)2NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 104 Compounds of formula I.D (I.D-104.1-I.D-104.288) in which R2 is (Me)PhNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 105 Compounds of formula I.D (I.D-105.1-I.D-105.288) in which R2 is (Et)PhNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 106 Compounds of formula I.D (I.D-106.1-I.D-106.288) in which R2 is (iPr)PhNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 107 Compounds of formula I.D (I.D-107.1-I.D-107.288) in which R2 is (nPr)PhNC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


Table 108 Compounds of formula I.D (I.D-108.1-I.D-108.288) in which R2 is (Me)(4-Cl-Ph)NC(O)NH— and R5 is F and the combination of R1, R3 and R6 for a compound corresponds in each case to one row of Table A;


The HPPD-inhibiting benzamide herbicides useful for the present invention are often best applied in conjunction with one or more other herbicides to obtain control of a wider variety of undesirable vegetation. When used in conjunction with other herbicides, the presently claimed compounds can be formulated with the other herbicide or herbicides, tank mixed with the other herbicide or herbicides, or applied sequentially with the other herbicide or herbicides.


The herbicidal compounds useful for the present invention may be used in conjunction with additional herbicides to which the crop plant is naturally tolerant, or to which it is resistant via expression of one or more additional transgenes as mentioned supra, or to which it is resistant via mutagenesis and breeding methods as described hereinafter.


Unless already included in the disclosure above, the HPPD-inhibiting benzamide herbicides of the present invention can, further, be used in conjunction with compounds:


a) From the Group of Lipid Biosynthesis Inhibitors:

Alloxydim, Alloxydim-natrium, Butroxydim, Clethodim, Clodinafop, Clodinafop-propargyl, Cycloxydim, Cyhalofop, Cyhalofop-butyl, Diclofop, Diclofop-methyl, Fenoxaprop, Fenoxapropethyl, Fenoxaprop-P, Fenoxaprop-P-ethyl, Fluazifop, Fluazifop-butyl, Fluazifop-P, FluazifopP-butyl, Haloxyfop, Haloxyfop-methyl, Haloxyfop-P, Haloxyfop-P-methyl, Metamifop, Pinoxaden, Profoxydim, Propaquizafop, Quizalofop, Quizalofop-ethyl, Quizalofop-tefuryl, Quizalofop-P, Quizalofop-P-ethyl, Quizalofop-P-tefuryl, Sethoxydim, Tepraloxydim, Tralkoxydim, Benfuresat, Butylat, Cycloat, Dalapon, Dimepiperat, EPTC, Esprocarb, Ethofumesat, Flupropanat, Molinat, Orbencarb, Pebulat, Prosulfocarb, TCA, Thiobencarb, Tiocarbazil, Triallat and Vernolat;


b) From the Group of ALS-Inhibitors:

Amidosulfuron, Azimsulfuron, Bensulfuron, Bensulfuron-methyl, Bispyribac, Bispyribac-natrium, Chlorimuron, Chlorimuron-ethyl, Chlorsulfuron, Cinosulfuron, Cloransulam, Cloransulam-methyl, Cyclosulfamuron, Diclosulam, Ethametsulfuron, Ethametsulfuron-methyl, Ethoxysulfuron, Flazasulfuron, Florasulam, Flucarbazon, Flucarbazon-natrium, Flucetosulfuron, Flumetsulam, Flupyrsulfuron, Flupyrsulfuron-methyl-natrium, Foramsulfuron, Halosulfuron, Halosulfuron-methyl, Imazamethabenz, Imazamethabenz-methyl, Imazamox, Imazapic, Imazapyr, Imazaquin, Imazethapyr, Imazosulfuron, lodosulfuron, lodosulfuron-methyl-natrium, Mesosulfuron, Metosulam, Metsulfuron, Metsulfuron-methyl, Nicosulfuron, Orthosulfamuron, Oxasulfuron, Penoxsulam, Primisulfuron, Primisulfuron-methyl, Propoxycarbazon, Propoxycarbazon-natrium, Prosulfuron, Pyrazosulfuron, Pyrazosulfuron-ethyl, Pyribenzoxim, Pyrimisulfan, Pyriftalid, Pyriminobac, Pyriminobac-methyl, Pyrithiobac, Pyrithiobac-natrium, Pyroxsulam, Rimsulfuron, Sulfometuron, Sulfometuron-methyl, Sulfosulfuron, Thiencarbazon, Thiencarbazon-methyl, Thifensulfuron, Thifensulfuron-methyl, Triasulfuron, Tribenuron, Tribenuron-methyl, Trifloxysulfuron, Triflusulfuron, Triflusulfuron-methyl and Tritosulfuron;


c) From the Group of Photosynthese-Inhibitors:

Ametryn, Amicarbazon, Atrazin, Bentazon, Bentazon-natrium, Bromacil, Bromofenoxim, Bromoxynil and its salts and esters, Chlorobromuron, Chloridazon, Chlorotoluron, Chloroxuron, Cyanazin, Desmedipham, Desmetryn, Dimefuron, Dimethametryn, Diquat, Diquat-dibromid, Diuron, Fluometuron, Hexazinon, loxynil and its salts and esters, Isoproturon, Isouron, Karbutilat, Lenacil, Linuron, Metamitron, Methabenzthiazuron, Metobenzuron, Metoxuron, Metribuzin, Monolinuron, Neburon, Paraquat, Paraquat-dichlorid, Paraquat-dimetilsulfat, Pentanochlor, Phenmedipham, Phenmedipham-ethyl, Prometon, Prometryn, Propanil, Propazin, Pyridafol, Pyridat, Siduron, Simazin, Simetryn, Tebuthiuron, Terbacil, Terbumeton, Terbuthylazin, Terbutryn, Thidiazuron and Trietazin;


d) From the Group of Protoporphyrinogen-IX-Oxidase-Inhibitors:

Acifluorfen, Acifluorfen-natrium, Azafenidin, Bencarbazon, Benzfendizon, Benzoxazinone (as described in WO2010/145992), Bifenox, Butafenacil, Carfentrazon, Carfentrazon-ethyl, Chlomethoxyfen, Cinidon-ethyl, Fluazolat, Flufenpyr, Flufenpyr-ethyl, Flumiclorac, Flumicloracpentyl, Flumioxazin, Fluoroglycofen, Fluoroglycofen-ethyl, Fluthiacet, Fluthiacet-methyl, Fomesafen, Halosafen, Lactofen, Oxadiargyl, Oxadiazon, Oxyfluorfen, Pentoxazon, Profluazol, Pyraclonil, Pyraflufen, Pyraflufen-ethyl, Saflufenacil, Sulfentrazon, Thidiazimin, 2-Chlor-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluormethyl)-1(2-pyrimidinyl]-4-fluor-N-[(isopropyl)methylsulfamoyl]benzamid (H-1; CAS 372137-35-4), [3-[2-Chlor-4-fluor-5-(1-methyl-6-trifluormethyl-2,4-dioxo-1,2,3,4,-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetic acid-ethylester (H-2; CAS 353292-31-6), N-Ethyl-3-(2,6-dichlor-4-trifluormethylphenoxy)-5-methyl-1H-pyrazol-1-carboxamid (H-3; CAS 452098-92-9), N-Tetrahydrofurfuryl-3-(2,6-dichlor-4-tri-fluormethylphenoxy)-5-methyl-1H-pyrazol-1-carboxamid (H-4; CAS 915396-43-9), N-Ethyl-3-(2-chlor-6-fluor-4-trifluormethylphenoxy)-5-methyl-1H-pyrazol-1-carboxamid (H-5; CAS 452099-05-7) and N-Tetrahydrofurfuryl-3-(2-chlor-6-fluor-4-trifluormethylphenoxy)-5-methyl-1H-pyrazol-1-carboxamid (H-6; CAS 45100-03-7);


e) From the Group of Bleacher-Herbicides:

Aclonifen, Amitrol, Beflubutamid, Benzobicyclon, Benzofenap, Clomazon, Diflufenican, Fluridon, Flurochloridon, Flurtamon, Isoxaflutol, Mesotrion, Norflurazon, Picolinafen, Pyrasulfutol, Pyrazolynat, Pyrazoxyfen, Sulcotrion, Tefuryltrion, Tembotrion, Topramezon, 4-Hydroxy-3-[[2-[(2-methoxyethoxy)methyl]-6-(trifluormethyl)-3-pyridyl]carbonyl]bicyclo[3.2.1]oct-3-en-2-one (H-7; CAS 352010-68-5) and 4-(3-Trifluormethylphenoxy)-2-(4-trifluormethylphenyl)pyrimidin (H-8; CAS 180608-33-7);


f) From the Group of EPSP-Synthase-Inhibitors:
Glyphosat, Glyphosat-isopropylammonium and Glyphosat-trimesium (Sulfosat);
g) From the Group of Glutamin-Synthase-Inhibitors:
Bilanaphos (Bialaphos), Bilanaphos-natrium, Glufosinat and Glufosinat-ammonium;
h) From the Group of DHP-Synthase-Inhibitors: Asulam;
i) From the Group of Mitose-Inhibitors:

Amiprophos, Amiprophos-methyl, Benfluralin, Butamiphos, Butralin, Carbetamid, Chlorpropham, Chlorthal, Chlorthal-dimethyl, Dinitramin, Dithiopyr, Ethalfluralin, Fluchloralin, Oryzalin, Pendimethalin, Prodiamin, Propham, Propyzamid, Tebutam, Thiazopyr and Trifluralin;


j) From the Group of VLCFA-Inhibitors:

Acetochlor, Alachlor, Anilofos, Butachlor, Cafenstrol, Dimethachlor, Dimethanamid, Dimethenamid-P, Diphenamid, Fentrazamid, Flufenacet, Mefenacet, Metazachlor, Metolachlor, Metolachlor-S, Naproanilid, Napropamid, Pethoxamid, Piperophos, Pretilachlor, Propachlor, Propisochlor, Pyroxasulfon (KIH-485) and Thenylchlor; Compounds of the formula 2:




embedded image


Particularly preferred Compounds of the formula 2 are:


3-[5-(2,2-Difluor-ethoxy)-1-methyl-3-trifluormethyl-1H-pyrazol-4-ylmethansulfonyl]-4-fluor-5,5-dimethyl-4,5-dihydro-isoxazol (2-1); 3-{[5-(2,2-Difluor-ethoxy)-1-methyl-3-trifluormethyl-1H-pyrazol-4-yl]-fluor-methansulfonyl}-5,5-dimethyl-4,5-dihydro-isoxazol (2-2); 4-(4-Fluor-5,5-di-methyl-4,5-dihydro-isoxazol-3-sulfonylmethyl)-2-methyl-5-trifluormethyl-2H-[1,2,3]triazol (2-3); 4-[(5,5-Dimethyl-4,5-dihydro-isoxazol-3-sulfonyl)-fluor-methyl]-2-methyl-5-trifluormethyl-2H-[1,2,3]triazol (2-4); 4-(5,5-Dimethyl-4,5-dihydro-isoxazol-3-sulfonylmethyl)-2-methyl-5-trifluor-methyl-2H-[1,2,3]triazol (2-5); 3-{[5-(2,2-Difluor-ethoxy)-1-methyl-3-trifluormethyl-1H-pyrazol-4-yl]-difluor-methansulfonyl}-5,5-dimethyl-4,5-dihydro-isoxazol (2-6); 4-[(5,5-Dimethyl-4,5-di-hydro-isoxazol-3-sulfonyl)-difluor-methyl]-2-methyl-5-trifluormethyl-2H-[1,2,3]triazol (2-7); 3-{[5-(2,2-Difluor-ethoxy)-1-methyl-3-trifluormethyl-1H-pyrazol-4-yl]-difluor-methansulfonyl}-4-fluor-5,5-dimethyl-4,5-dihydro-isoxazol (2-8); 4-[Difluor-(4-fluor-5,5-dimethyl-4,5-dihydro-isox-azol-3-sulfonyl)-methyl]-2-methyl-5-trifluormethyl-2H-[1,2,3]triazol (2-9);


k) From the Group of Cellulose-Biosynthese-Inhibitors:
Chlorthiamid, Dichlobenil, Flupoxam and Isoxaben;
l) From the Group of Uncoupling-Herbicides:

Dinoseb, Dinoterb and DNOC and its salts;


m) From the Group of Auxin-Herbicides:

2,4-D and its salts and esters, 2,4-DB and its salts and esters, Aminopyralid and its salts wie Aminopyralid-tris(2-hydroxypropyl)ammonium and its esters, Benazolin, Benazolin-ethyl, Chloramben and its salts and esters, Clomeprop, Clopyralid and its salts and esters, Dicamba and its salts and esters, Dichlorprop and its salts and esters, Dichlorprop-P and its salts and esters, Fluroxypyr, Fluroxypyr-butometyl, Fluroxypyr-meptyl, MCPA and its salts and esters, MCPA-thioethyl, MCPB and its salts and esters, Mecoprop and its salts and esters, Mecoprop-P and its salts and esters, Picloram and its salts and esters, Quinclorac, Quinmerac, TBA (2,3,6) and its salts and esters, Triclopyr and its salts and esters, and 5,6-Di-chlor-2-cyclopropyl-4-pyrimidincarbonic acid (H-9; CAS 858956-08-8) and its salts and esters;


n) from the group of Auxin-Transport-Inhibitors: Diflufenzopyr, Diflufenzopyr-natrium, Naptalam and Naptalam-natrium;


o) from the group of other Herbicides: Bromobutid, Chlorflurenol, Chlorflurenol-methyl, Cinmethylin, Cumyluron, Dalapon, Dazomet, Difenzoquat, Difenzoquat-metilsulfate, Dimethipin, DSMA, Dymron, Endothal and its salts, Etobenzanid, Flamprop, Flamprop-isopropyl, Flamprop-methyl Flamprop-M-isopropyl, Flamprop-M-methyl, Flurenol, Flurenol-butyl, Flurprimidol, Fosamin, Fosamine-ammonium, Indanofan, Maleinic acid-hydrazid, Mefluidid, Metam, Methylazid, Methylbromid, Methyl-dymron, Methyljodid. MSMA, oleic acid, Oxaziclomefon, Pelargonic acid, Pyributicarb, Quinoclamin, Triaziflam, Tridiphan and 6-Chlor-3-(2-cyclopropyl-6-methylphenoxy)-4-pyridazinol (H-10; CAS 499223-49-3) and its salts and esters.


Examples for preferred Safeners C are Benoxacor, Cloquintocet, Cyometrinil, Cyprosulfamid, Dichlormid, Dicyclonon, Dietholate, Fenchlorazol, Fenclorim, Flurazol, Fluxofenim, Furilazol, Isoxadifen, Mefenpyr, Mephenat, Naphthalic acid anhydrid, Oxabetrinil, 4-(Dichloracetyl)-1-oxa-4-azaspiro[4.5]decan (H-11; MON4660, CAS 71526-07-3) and 2,2,5-Trimethyl-3-(dichlor-acetyl)-1,3-oxazolidin (H-12; R-29148, CAS 52836-31-4).


The compounds of groups a) to o) and the Safeners C are known Herbicides and Safeners, see e.g. The Compendium of Pesticide Common Names (http://www.alanwood.net/pesticides/); B. Hock, C. Fedtke, R. R. Schmidt, Herbicides, Georg Thieme Verlag, Stuttgart 1995. Other herbicidal effectors are known from WO 96/26202, WO 97/41116, WO 97/41117, WO 97/41118, WO 01/83459 and WO 2008/074991 as well as from W. Kramer et al. (ed.) “Modern Crop Protection Compounds”, Vol. 1, Wiley VCH, 2007 and the literature cited therein.


Some of the herbicides that are useful in conjunction with the HPPD-inhibiting benzamide herbicides of the present invention include benzobicyclon, mesotrione, sulcotrione, tefuryltrione, tembotrione, 4-hydroxy-3-[[2-(2-methoxyethoxy)methyl]-6-(trifluoromethyl)-3-pyridinyl]carbonyl]-bicyclo[3.2.1]-oct-3-en-2-one (bicyclopyrone), ketospiradox or the free acid thereof, benzofenap, pyrasulfotole, pyrazolynate, pyrazoxyfen, topramezone, [2-chloro-3-(2-methoxyethoxy)-4-(methylsulfonyl)phenyl](I-ethyl-5-hydroxy-1H-pyrazol-4-yl)-methanone, (2,3-dihydro-3,3,4-trimethyl-1,1-dioxidobenzo[b]thien-5-yl)(5-hydroxy-1-methyl-1H-pyrazol-4-yl)-methanone, isoxachlortole, isoxaflutole, α-(cyclopropylcarbonyl)-2-(methylsulfonyl)-β-oxo-4-chloro-benzenepropanenitrile, and α-(cyclopropylcarbonyl)-2-(methylsulfonyl)-s-oxo-4-(tri-fluoromethyl)-benzenepropanenitrile.


In a particularly preferred embodiment the additional herbicide is


(1-Ethyl-5-prop-2-ynyloxy-1H-pyrazol-4-yl)-[4-methansulfonyl-2-methyl-3-(3-methyl-4,5-dihydro-isoxazol-5-yl)-phenyl]-methanon



embedded image


or


(1-Ethyl-5-hydroxy-1H-pyrazol-4-yl)-[4-methansulfonyl-2-methyl-3-(3-methyl-4,5-dihydro-isoxazol-5-yl)-phenyl]-methanon



embedded image


The above described compounds are described in great detail in EP 09177628.6 which is entirely incorporated herein by reference.


Particularly preferred herbicides that can be employed in conjunction with the compounds of the present invention include sulfonamides such as metosulam, flumetsulam, cloransulam-methyl, diclosulam, penoxsulam and florasulam, sulfonylureas such as chlorimuron, tribenuron, sulfometuron, nicosulfuron, chlorsulfuron, amidosulfuron, triasulfuron, prosulfuron, tritosulfuron, thifensulfuron, sulfosulfuron and metsulfuron, imidazolinones such as imazaquin, imazapic, ima-zethapyr, imzapyr, imazamethabenz and imazamox, phenoxyalkanoic acids such as 2,4-D, MCPA, dichlorprop and mecoprop, pyridinyloxyacetic acids such as triclopyr and fluroxypyr, carboxylic acids such as clopyralid, picloram, aminopyralid and dicamba, dinitroanilines such as trifluralin, benefin, benfluralin and pendimethalin, chloroacetanilides such as alachlor, acetochlor and metolachlor, semicarbazones (auxin transport inhibitors) such as chlorflurenol and diflufenzopyr, aryloxyphenoxypropionates such as fluazifop, haloxyfop, diclofop, clodinafop and fenoxaprop and other common herbicides including glyphosate, glufosinate, acifluorfen, bentazon, clomazone, fumiclorac, fluometuron, fomesafen, lactofen, linuron, isoproturon, simazine, norflurazon, paraquat, diuron, diflufenican, picolinafen, cinidon, sethoxydim, tralkoxydim, quinmerac, isoxaben, bromoxynil, metribuzin and mesotrione.


The HPPD-inhibiting benzamide herbicides useful for the present invention can, further, be used in conjunction with glyphosate and glufosinate on glyphosate-tolerant or glufosinate-tolerant crops.


It is generally preferred to use the compounds of the invention in combination with herbicides that are selective for the crop being treated and which complement the spectrum of weeds controlled by these compounds at the application rate employed. It is further generally preferred to apply the compounds of the invention and other complementary herbicides at the same time, either as a combination formulation or as a tank mix.


The term “mut-HPPD nucleic acid” refers to an HPPD nucleic acid having a sequence that is mutated from a wild-type HPPD nucleic acid and that confers increased “HPPD-inhibiting benzamide herbicide” tolerance to a plant in which it is expressed. Furthermore, the term “mutated hydroxyphenyl pyruvate dioxygenase (mut-HPPD)” refers to the replacement of an amino acid of the wild-type primary sequences SEQ ID NO: 2, 5, 8, 11, 14, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, a variant, a derivative, a homologue, an orthologue, or paralogue thereof, with another amino acid. The expression “mutated amino acid” will be used below to designate the amino acid which is replaced by another amino acid, thereby designating the site of the mutation in the primary sequence of the protein.


Several HPPDs and their primary sequences have been described in the state of the art, in particular the HPPDs of bacteria such as Pseudomonas (Ruetschi et al., Eur. J. Biochem., 205, 459-466, 1992, WO96/38567), of plants such as Arabidopsis (WO96/38567, Genebank AF047834) or of carrot (WO96/38567, Genebank 87257), of Coccicoides (Genebank COI-TRP), HPPDs of Brassica, cotton, Synechocystis, and tomato (U.S. Pat. No. 7,297,541), of mammals such as the mouse or the pig. Furthermore, artificial HPPD sequences have been described, for example in U.S. Pat. Nos. 6,768,044; 6,268,549;


In a preferred embodiment, the nucleotide sequence of (i) comprises the sequence of SEQ ID NO: 1, 51, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 52, 54, 56, 68, 69 or a variant or derivative thereof.


In a particularly preferred embodiment, the mut-HPPD nucleic acid useful for the present invention comprises a mutated nucleic acid sequence of SEQ ID NO: 1 or SEQ ID NO: 52, or a variant or derivative thereof.


Furthermore, it will be understood by the person skilled in the art that the nucleotide sequences of (i) or (ii) encompasse homologues, paralogues and orthologues of SEQ ID NO: 1, 51, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 52, 54, 56, 68, 69, as defined hereinafter.


The term “variant” with respect to a sequence (e.g., a polypeptide or nucleic acid sequence such as—for example—a transcription regulating nucleotide sequence of the invention) is intended to mean substantially similar sequences. For nucleotide sequences comprising an open reading frame, variants include those sequences that, because of the degeneracy of the genetic code, encode the identical amino acid sequence of the native protein. Naturally occurring allelic variants such as these can be identified with the use of well-known molecular biology techniques, as, for example, with polymerase chain reaction (PCR) and hybridization techniques. Variant nucleotide sequences also include synthetically derived nucleotide sequences, such as those generated, for example, by using site-directed mutagenesis and for open reading frames, encode the native protein, as well as those that encode a polypeptide having amino acid substitutions relative to the native protein. Generally, nucleotide sequence variants of the invention will have at least 30, 40, 50, 60, to 70%, e.g., preferably 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, to 79%, generally at least 80%, e.g., 81%-84%, at least 85%, e.g., 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, to 98% and 99% nucleotide “sequence identity” to the nucleotide sequence of SEQ ID NO:1, 51, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 52, 54, 56, 68, 69, 47, or 49. By “variant” polypeptide is intended a polypeptide derived from the protein of SEQ ID NO: 2, 5, 8, 11, 14, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, by deletion (so-called truncation) or addition of one or more amino acids to the N-terminal and/or C-terminal end of the native protein; deletion or addition of one or more amino acids at one or more sites in the native protein; or substitution of one or more amino acids at one or more sites in the native protein. Such variants may result from, for example, genetic polymorphism or from human manipulation. Methods for such manipulations are generally known in the art.


In a preferred embodiment, variants of the polynucleotides useful for the present invention will have at least 30, 40, 50, 60, to 70%, e.g., preferably 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, to 79%, generally at least 80%, e.g., 81%-84%, at least 85%, e.g., 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, to 98% and 99% nucleotide “sequence identity” to the nucleotide sequence of SEQ ID NO:1, 47, 49, or SEQ ID NO: 52.


It is recognized that the polynucleotide molecules and polypeptides of the invention encompass polynucleotide molecules and polypeptides comprising a nucleotide or an amino acid sequence that is sufficiently identical to nucleotide sequences set forth in SEQ ID NOs: 1, 51, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 52, 54, 56, 68, 69, 47, or 49, or to the amino acid sequences set forth in SEQ ID NOs: 2, 5, 8, 11, 14, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 48, or 50. The term “sufficiently identical” is used herein to refer to a first amino acid or nucleotide sequence that contains a sufficient or minimum number of identical or equivalent (e.g., with a similar side chain) amino acid residues or nucleotides to a second amino acid or nucleotide sequence such that the first and second amino acid or nucleotide sequences have a common structural domain and/or common functional activity.


“Sequence identity” refers to the extent to which two optimally aligned DNA or amino acid sequences are invariant throughout a window of alignment of components, e.g., nucleotides or amino acids. An “identity fraction” for aligned segments of a test sequence and a reference sequence is the number of identical components that are shared by the two aligned sequences divided by the total number of components in reference sequence segment, i.e., the entire reference sequence or a smaller defined part of the reference sequence. “Percent identity” is the identity fraction times 100. Optimal alignment of sequences for aligning a comparison window are well known to those skilled in the art and may be conducted by tools such as the local homology algorithm of Smith and Waterman, the homology alignment algorithm of Needleman and Wunsch, the search for similarity method of Pearson and Lipman, and preferably by computerized implementations of these algorithms such as GAP, BESTFIT, FASTA, and TFASTA available as part of the GCG. Wisconsin Package. (Accelrys Inc. Burlington, Mass.)


The terms “polynucleotide(s)”, “nucleic acid sequence(s)”, “nucleotide sequence(s)”, “nucleic acid(s)”, “nucleic acid molecule” are used interchangeably herein and refer to nucleotides, either ribonucleotides or deoxyribonucleotides or a combination of both, in a polymeric unbranched form of any length.


“Derivatives” of a protein encompass peptides, oligopeptides, polypeptides, proteins and enzymes having amino acid substitutions, deletions and/or insertions relative to the unmodified protein in question and having similar biological and functional activity as the unmodified protein from which they are derived.


“Homologues” of a protein encompass peptides, oligopeptides, polypeptides, proteins and enzymes having amino acid substitutions, deletions and/or insertions relative to the unmodified protein in question and having similar biological and functional activity as the unmodified protein from which they are derived.


A deletion refers to removal of one or more amino acids from a protein.


An insertion refers to one or more amino acid residues being introduced into a predetermined site in a protein. Insertions may comprise N-terminal and/or C-terminal fusions as well as intra-sequence insertions of single or multiple amino acids. Generally, insertions within the amino acid sequence will be smaller than N- or C-terminal fusions, of the order of about 1 to 10 residues. Examples of N- or C-terminal fusion proteins or peptides include the binding domain or activation domain of a transcriptional activator as used in the yeast two-hybrid system, phage coat proteins, (histidine)-6-tag, glutathione S-transferase-tag, protein A, maltosebinding protein, dihydrofolate reductase, Tag•100 epitope, c-myc epitope, FLAG-epitope, lacZ, CMP (calmodulin-binding peptide), HA epitope, protein C epitope and VSV epitope.


A substitution refers to replacement of amino acids of the protein with other amino acids having similar properties (such as similar hydrophobicity, hydrophilicity, antigenicity, propensity to form or break α-helical structures or β-sheet structures). Amino acid substitutions are typically of single residues, but may be clustered depending upon functional constraints placed upon the polypeptide and may range from 1 to 10 amino acids; insertions will usually be of the order of about 1 to 10 amino acid residues. The amino acid substitutions are preferably conservative amino acid substitutions. Conservative substitution tables are well known in the art (see for example Creighton (1984) Proteins. W.H. Freeman and Company (Eds).









TABLE 3







Examples of conserved amino acid substitutions















Conservative




Conservative
Sub-
Sub-



Residue
stitutions
Residue
stitutions







Ala
Ser
Leu
Ile; Val



Arg
Lys
Lys
Arg; Gln



Asn
Gln; His
Met
Leu; Ile



Asp
Glu
Phe
Met; Leu; Tyr



Gln
Asn
Ser
Thr; Gly



Cys
Ser
Thr
Ser; Val



Glu
Asp
Trp
Tyr



Gly
Pro
Tyr
Trp; Phe



His
Asn; Gln
Val
Ile; Leu



Ile
Leu, Val










Amino acid substitutions, deletions and/or insertions may readily be made using peptide synthetic techniques well known in the art, such as solid phase peptide synthesis and the like, or by recombinant DNA manipulation. Methods for the manipulation of DNA sequences to produce substitution, insertion or deletion variants of a protein are well known in the art. For example, techniques for making substitution mutations at predetermined sites in DNA are well known to those skilled in the art and include M13 mutagenesis, T7-Gen in vitro mutagenesis (USB, Cleveland, Ohio), QuikChange Site Directed mutagenesis (Stratagene, San Diego, Calif.), PCR-mediated site-directed mutagenesis or other site-directed mutagenesis protocols.


“Derivatives” further include peptides, oligopeptides, polypeptides which may, compared to the amino acid sequence of the naturally-occurring form of the protein, such as the protein of interest, comprise substitutions of amino acids with non-naturally occurring amino acid residues, or additions of non-naturally occurring amino acid residues. “Derivatives” of a protein also encompass peptides, oligopeptides, polypeptides which comprise naturally occurring altered (glycosylated, acylated, prenylated, phosphorylated, myristoylated, sulphated etc.) or non-naturally altered amino acid residues compared to the amino acid sequence of a naturally-occurring form of the polypeptide. A derivative may also comprise one or more nonamino acid substituents or additions compared to the amino acid sequence from which it is derived, for example a reporter molecule or other ligand, covalently or non-covalently bound to the amino acid sequence, such as a reporter molecule which is bound to facilitate its detection, and non-naturally occurring amino acid residues relative to the amino acid sequence of a naturally-occurring protein. Furthermore, “derivatives” also include fusions of the naturally-occurring form of the protein with tagging peptides such as FLAG, HIS6 or thioredoxin (for a review of tagging peptides, see Terpe, Appl. Microbiol. Biotechnol. 60, 523-533, 2003).


“Orthologues” and “paralogues” encompass evolutionary concepts used to describe the ancestral relationships of genes. Paralogues are genes within the same species that have originated through duplication of an ancestral gene; orthologues are genes from different organisms that have originated through speciation, and are also derived from a common ancestral gene. A non-limiting list of examples of such orthologues is shown in Table 1.


It is well-known in the art that paralogues and orthologues may share distinct domains harboring suitable amino acid residues at given sites, such as binding pockets for particular substrates or binding motifs for interaction with other proteins.


The term “domain” refers to a set of amino acids conserved at specific positions along an alignment of sequences of evolutionarily related proteins. While amino acids at other positions can vary between homologues, amino acids that are highly conserved at specific positions indicate amino acids that are likely essential in the structure, stability or function of a protein. Identified by their high degree of conservation in aligned sequences of a family of protein homologues, they can be used as identifiers to determine if any polypeptide in question belongs to a previously identified polypeptide family.


The term “motif” or “consensus sequence” refers to a short conserved region in the sequence of evolutionarily related proteins. Motifs are frequently highly conserved parts of domains, but may also include only part of the domain, or be located outside of conserved domain (if all of the amino acids of the motif fall outside of a defined domain).


Specialist databases exist for the identification of domains, for example, SMART (Schultz et al. (1998) Proc. Natl. Acad. Sci. USA 95, 5857-5864; Letunic et al. (2002) Nucleic Acids Res 30, 242-244), InterPro (Mulder et al., (2003) Nucl. Acids. Res. 31, 315-318), Prosite (Bucher and Bairoch (1994), A generalized profile syntax for biomolecular sequences motifs and its function in automatic sequence interpretation. (In) ISMB-94; Proceedings 2nd International Conference on Intelligent Systems for Molecular Biology. Altman R., Brutlag D., Karp P., Lathrop R., Searls D., Eds., pp 53-61, AAAI Press, Menlo Park; Hulo et al., Nucl. Acids. Res. 32:0134-D137, (2004)), or Pfam (Bateman et al., Nucleic Acids Research 30(1): 276-280 (2002)). A set of tools for in silico analysis of protein sequences is available on the ExPASy proteomics server (Swiss Institute of Bioinformatics (Gasteiger et al., ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Res. 31:3784-3788(2003)). Domains or motifs may also be identified using routine techniques, such as by sequence alignment.


Methods for the alignment of sequences for comparison are well known in the art, such methods include GAP, BESTFIT, BLAST, FASTA and TFASTA. GAP uses the algorithm of Needleman and Wunsch ((1970) J Mol Biol 48: 443-453) to find the global (i.e. spanning the complete sequences) alignment of two sequences that maximizes the number of matches and minimizes the number of gaps. The BLAST algorithm (Altschul et al. (1990) J Mol Biol 215: 403-10) calculates percent sequence identity and performs a statistical analysis of the similarity between the two sequences. The software for performing BLAST analysis is publicly available through the National Centre for Biotechnology Information (NCBI). Homologues may readily be identified using, for example, the ClustalW multiple sequence alignment algorithm (version 1.83), with the default pairwise alignment parameters, and a scoring method in percentage. Global percentages of similarity and identity may also be determined using one of the methods available in the MatGAT software package (Campanella et al., BMC Bioinformatics. 2003 Jul. 10; 4:29. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences). Minor manual editing may be performed to optimise alignment between conserved motifs, as would be apparent to a person skilled in the art. Furthermore, instead of using full-length sequences for the identification of homologues, specific domains may also be used. The sequence identity values may be determined over the entire nucleic acid or amino acid sequence or over selected domains or conserved motif(s), using the programs mentioned above using the default parameters. For local alignments, the Smith-Waterman algorithm is particularly useful (Smith T F, Waterman M S (1981) J. Mol. Biol 147(1); 195-7).


The inventors of the present invention have surprisingly found that by substituting one or more of the key amino acid residues the herbicide tolerance or resistance of a plant the benzamide compound as described herein could be remarkably increased as compared to the activity of the wild type HPPD enzymes with SEQ ID NO: 2, 5, 8, 11, 14, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67. Preferred substitutions of mut-HPPD are those that increase the herbicide tolerance of the plant, but leave the biological activity of the dioxygenase activity substantially unaffected.


Accordingly, in another object of the present invention the key amino acid residues of a HPPD enzyme comprising SEQ ID NO: 2, 5, 8, 11, 14, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, a variant, derivative, othologue, paralogue or homologue thereof, is substituted by any other amino acid.


In one embodiment, the key amino acid residues of a HPPD enzyme, a variant, derivative, othologue, paralogue or homologue thereof, is substituted by a conserved amino acid as depicted in Table 3 above.


It will be understood by the person skilled in the art that amino acids located in a close proximity to the positions of amino acids mentioned below may also be substituted. Thus, in another embodiment the mut HPPD useful for the present invention comprises a sequence of SEQ ID NO: 2, 5, 8, 11, 14, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, or a variant, derivative, orthologue, paralogue or homologue thereof, wherein an amino acid 3, 2 or ±1 amino acid positions from a key amino acid is substituted by any other amino acid.


Based on techniques well-known in the art, a highly characteristic sequence pattern can be developed, by means of which further of mut-HPPD candidates with the desired activity may be searched.


Searching for further mut-HPPD candidates by applying a suitable sequence pattern would also be encompassed by the present invention. It will be understood by a skilled reader that the present sequence pattern is not limited by the exact distances between two adjacent amino acid residues of said pattern. Each of the distances between two neighbours in the above patterns may, for example, vary independently of each other by up to ±10, ±5 3, +2 or ±1 amino acid positions without substantially affecting the desired activity.


In line with said above functional and spatial analysis of individual amino acid residues based on the crystallographic data as obtained according to the present invention, unique partial amino acid sequences characteristic of potentially useful mut-HPPD candidates of the invention may be identified.


In a particularly preferred embodiment, the mut-HPPD refers to a variant or derivative of SEQ ID NO: 2 wherein the substitutions are selected from the following Table 4a.









TABLE 4a







(Sequence ID No: 2): single


amino acid substitutions










Key amino




acid position
Substituents







Val212
Ile, Leu



Val213
Thr, Ala



Asn215
Ala, His



Ala236
Leu, Ser, Arg



Phe238
Val, Ala



Leu250
Val, Met



Ser252
Thr



Pro265
Ala



Asn267
Tyr, Gln



GIn278
His, Asn, Ser



Ile279
Thr



Arg309
Lys, Ala



Leu320
Asn, Gln, His, Tyr,



Pro321
Ala, Arg, Gly, Asn



Leu334
Glu, Cys



Leu353
Met, Tyr, Ala, Ser



Phe366
Ile, Leu, Tyr



Gly371
Ile, Phe



Thr375
Pro



Phe377
Ala, Leu, Ser



Gly403
Arg



Phe404
Leu, Pro



Lys406
Thr



Gly407
Cys, His



Phe409
Ile, His



Glu411
Thr



Leu412
Met, Phe, Trp, Ala, Ser



Ile416
Val, Phe



Ser410
Gly



Va1254
Ala










It is to be understood that any amino acid besides the ones mentioned in the above tables could be used as a substitutent. Assays to test for the functionality of such mutants are readily available in the art, and respectively, described in the Example section of the present invention.


In a preferred embodiment, the amino acid sequence of a mut-HPPD differs from an amino acid sequence of a wildtype HPPD at one or more of the following positions corresponding to positions: 212, 213, 215, 236, 238, 250, 252, 254, 265, 267, 278, 279, 309, 320, 321, 334, 353, 366, 371, 375, 377, 403, 404, 406, 407, 409, 411, 410, 412 or 416 of SEQ ID NO:2.


Examples of differences at these amino acid positions include, but are not limited to, one or more of the following:


the amino acid corresponding to or at position 236 is other than alanine;


the amino acid corresponding to or at position 411 is other than glutamic acid;


the amino acid corresponding to or at position 320 is other than leucine;


the amino acid corresponding to or at position 403 is other than glycine;


the amino acid corresponding to or at position 334 is other than leucine;


the amino acid corresponding to or at position 353 is other than leucine;


the amino acid corresponding to or at position 321 is other than proline;


the amino acid corresponding to or at position 212 is other than valine;


the amino acid corresponding to or at position 407 is other than glycine;


the amino acid corresponding to or at position 377 is other than phenylalanine;


the amino acid corresponding to or at position 412 is other than leucine;


the amino acid corresponding to or at position 278 is other than glutamine;


the amino acid corresponding to or at position 406 is other than lysine;


the amino acid corresponding to or at position 404 is other than phenylalanine;


the amino acid corresponding to or at position 409 is other than phenylalanine;


the amino acid corresponding to or at position 416 is other than isoleucine;


the amino acid corresponding to or at position 250 is other than leucine;


the amino acid corresponding to or at position 267 is other than asparagine;


the amino acid corresponding to or at position 252 is other than serine;


the amino acid corresponding to or at position 265 is other than proline;


the amino acid corresponding to or at position 371 is other than glycine;


the amino acid corresponding to or at position 375 is other than threonine;


the amino acid corresponding to or at position 309 is other than arginine;


the amino acid corresponding to or at position 279 is other than isoleucine;


the amino acid corresponding to or at position 366 is other than phenylalanine;


the amino acid corresponding to or at position 238 is other than phenylalanine;


the amino acid corresponding to or at position 213 is other than valine;


the amino acid corresponding to or at position 215 is other than asparagine;


the amino acid corresponding to or at position 410 is other than serine;


the amino acid corresponding to or at position 254 is other than valine.


In some embodiments, the mut HPPD enzyme comprises a polypeptide of SEQ ID NO:2, a variant, derivative, homologue or orthologue thereof, having one or more substitutions at the following positions:


the amino acid corresponding to or at position 236 is leucine, serine or arginine;


the amino acid corresponding to or at position 411 is threonine;


the amino acid corresponding to or at position 320 is asparagine, glutamine, histidine or tyrosine;


the amino acid corresponding to or at position 403 is arginine;


the amino acid corresponding to or at position 334 is glutamic acid or cysteine;


the amino acid corresponding to or at position 353 is methionine, tyrosine, alanine, or serine;


the amino acid corresponding to or at position 321 is alanine, arginine, glycine or asparagine;


the amino acid corresponding to or at position 212 is isoleucine or leucine;


the amino acid corresponding to or at position 407 is cysteine or histidine;


the amino acid corresponding to or at position 377 is alanine, leucine or serine;


the amino acid corresponding to or at position 412 is methionine, phenylalanine, tryptophan, alanine or serine;


the amino acid corresponding to or at position 278 is histidine, asparagine or serine;


the amino acid corresponding to or at position 406 is threonine;


the amino acid corresponding to or at position 404 is leucine or proline;


the amino acid corresponding to or at position 409 is isoleucine or histidine;


the amino acid corresponding to or at position 416 is valine or phenylalanine;


the amino acid corresponding to or at position 250 is valine or methionine;


the amino acid corresponding to or at position 267 is tyrosine or glutamine;


the amino acid corresponding to or at position 252 is threonine;


the amino acid corresponding to or at position 265 is alanine;


the amino acid corresponding to or at position 371 is isoleucine or phenylalanine;


the amino acid corresponding to or at position 375 is proline;


the amino acid corresponding to or at position 309 is lysine or alanine;


the amino acid corresponding to or at position 279 is threonine;


the amino acid corresponding to or at position 366 is isoleucine, leucine or tyrosine;


the amino acid corresponding to or at position 238 is valine or alanine;


the amino acid corresponding to or at position 213 is threonine or alanine;


the amino acid corresponding to or at position 215 is alanine or histidine;


the amino acid corresponding to or at position 410 is glycine;


the amino acid corresponding to or at position 254 is alanine.


Furthermore, the inventors of the present invention have surprisingly found that by substituting at least two of the key amino acid residues of SEQ ID NO: 2 with specific residues, the herbicide tolerance or resistance could be remarkably increased as compared to the activity of the wild type HPPD enzymes or HPPD enzymes in which only one amino acid residue had been substituted. Therefore, in another preferred embodiment the present invention the variant or derivative of the mut-HPPD refers to a polypeptide of SEQ ID NO: 2, wherein two, three, four or five key amino acids are substituted by another amino acid residue. Particularly preferred double, triple, quadruple, or quintuple mutations are described in Table 4b.









TABLE 4b







(with reference to Sequence ID No: 2): combined


amino acid substitutions










Combination
Key amino acid position



No
and and its substitutents














1
A236L, E411T



2
L320H, P321A



3
L320H, P321R



4
L320N, P321A



5
L320N, P321R



6
L320Q, P321A



7
L320Q, P321R



8
L320Y, P321A



9
L320Y, P321R



10
L353M, P321R



11
L353M, P321R, A236L



12
L353M, P321R, A236L, E411T



13
L353M, P321R, E411T



14
L353M, P321R, L320H



15
L353M, P321R, L320N



16
L353M, P321R, L320Q



17
L353M, P321R, L320Y



18
L353M, P321R, V2121



19
L353M, P321R, V2121, L334E



20
L353M, P321R, V212L, L334E



21
L353M, P321R, V212L, L334E, A236L



22
L353M, P321R, V212L,




L334E, A236L, E411T



23
L353M, P321R, V212L, L334E, E411T



24
L353M, P321R, V212L, L334E, L320H



25
L353M, P321R, V212L, L334E, L320N



26
L353M, P321R, V212L, L334E, L320Q



27
L353M, P321R, V212L, L334E, L320Y



28
L353M, V2121










In a particularly preferred embodiment, the mut HPPD enzyme comprising a polypeptide of SEQ ID NO: 2, a variant, derivative, homologue, paralogue or orthologue thereof, useful for the present invention comprises one or more of the following: the amino acid corresponding to or at position 320 is histidine, asparagine or glutamine; the amino acid position 334 is glutamic acid; the amino acid position 353 is methionine; the amino acid corresponding to or at position 321 alanine or arginine; the amino acid corresponding to or at position 212 is isoleucine.


In an especially particularly preferred embodiment, the mut HPPD refers to a polypeptide comprising SEQ ID NO: 2, wherein the leucine corresponding to or at position 320 is substituted by a histidine, and the proline corresponding to or at position 321 is substituted by an alanine.


In another especially particularly preferred embodiment, the mut HPPD refers to a polypeptide comprising SEQ ID NO: 2, wherein Leucine corresponding to or at position 353 is substituted by a Methionine, the Proline corresponding to or at position 321 is substituted by an Arginine, and the Leucine corresponding to or at position 320 is substituted by an Asparagine.


In another especially particularly preferred embodiment, the mut HPPD refers to a polypeptide comprising SEQ ID NO: 2, wherein the Leucine corresponding to or at position 353 is substituted by a Methionine, the Proline corresponding to or at position 321 is substituted by an Arginine, and the Leucine corresponding to or at position 320 is substituted by a glutamine.


In another preferred embodiment, the mut-HPPD refers to a variant or derivative of SEQ ID NO: 53 wherein the substitutions are selected from the following Table 4c.









TABLE 4c







(Sequence ID No. 53): single amino acid substitutions









Key amino

Preferred


acid position
Substituents
substituents





Val228
Thr, Ala
Thr, Ala


Asn230
Ala, His
Ala, His


Ala251
Ser, Arg
Ser, Arg


Phe253
Val, Ala
Val, Ala


Leu265
Val, Met
Val, Met


Ser267
Thr
Thr


Pro280
Ala
Ala


Asn282
Tyr, Gln
Tyr, Gln


Lys291
Arg, Ala
Arg


GIn293
Ala, Leu, Ile, Val,
His, Asn, Ser



His, Asn, Ser



Ile294
Thr
Thr


Arg324
Lys, Ala
Lys, Ala


Met335
Ala, Trp, Phe, Leu, Ile,
Gln, Asn,



Val, Asn, Gln, His, Tyr,
His, Tyr



Ser, Thr, Cys



Pro336
Ala, Arg, Gly, Asn
Ala, Gly


Ser337
Ala, Pro, Thr
Pro, Thr


Pro339
Deletion
Deletion


Pro340
Gly
Gly


Glu363
Gln
Gln


Leu368
Met, Tyr,
Met


Phe381
Ile, Leu, Tyr
Ile, Leu


Leu385
Ala, Val, Gln, Asp
Val, Asp


Gly386
Ile, Phe
Ile, Phe


Thr390
Pro
Pro


Phe392
Ala, Leu, Ser
Ala


Ile393
Ala, Leu, Phe, Val
Leu


Phe419
Leu, Pro
Leu, Pro


Lys421
Thr
Thr


Gly422
His, Met, Phe, Cys
His, Cys


Phe424
Ile, His
Ile, His


Leu427
Phe, Trp, Ala, Ser, Met
Phe


Ile431
Val, Phe
Val, Phe


Ser425
Gly
Gly


Va1269
Ala
Ala









It is to be understood that any amino acid besides the ones mentioned in the above tables could be used as a substitutent. Assays to test for the functionality of such mutants are readily available in the art, and respectively, described in the Example section of the present invention.


In another preferred embodiment, the mut-HPPD amino acid sequence differs from a wild-type amino acid sequence of an HPPD at one or more positions corresponding to or at the following positions of SEQ ID NO:53:


228, 230, 251, 253, 265, 267, 280, 282, 291, 293, 294, 324, 335, 336, 337, 339, 340, 363, 368, 381, 385, 386, 390, 392, 393, 419, 421, 422, 424, 427, 431, 425, 269.


Examples of differences at these amino acid positions include, but are not limited to, one or more of the following:


the amino acid corresponding to or at position 228 is other than valine;


the amino acid corresponding to or at position 230 is other than asparagine;


the amino acid corresponding to or at position 251 is other than alanine;


the amino acid corresponding to or at position 253 is other than phenylalanine;


the amino acid corresponding to or at position 265 is other than leucine;


the amino acid corresponding to or at position 267 is other than serine;


the amino acid corresponding to or at position 280 is other than proline;


the amino acid corresponding to or at position 282 is other than asparagine;


the amino acid corresponding to or at position 291 is other than lysine;


the amino acid corresponding to or at position 293 is other than glutamine;


the amino acid corresponding to or at position 294 is other than isoleucine;


the amino acid corresponding to or at position 324 is other than arginine;


the amino acid corresponding to or at position 335 is other than methionine;


the amino acid corresponding to or at position 336 is other than proline;


the amino acid corresponding to or at position 337 is other than serine;


the amino acid corresponding to or at position 339 is other than proline;


the amino acid corresponding to or at position 340 is other than proline;


the amino acid corresponding to or at position 363 is other than glutamic acid;


the amino acid corresponding to or at position 368 is other than leucine;


the amino acid corresponding to or at position 381 is other than phenylalanine;


the amino acid corresponding to or at position 385 is other than leucine;


the amino acid corresponding to or at position 386 is other than glycine;


the amino acid corresponding to or at position 390 is other than threonine;


the amino acid corresponding to or at position 392 is other than phenylalanine;


the amino acid corresponding to or at position 393 is other than an isoleucine;


the amino acid corresponding to or at position 419 is other than phenylalanine;


the amino acid corresponding to or at position 421 is other than lysine;


the amino acid corresponding to or at position 422 is other than glycine;


the amino acid corresponding to or at position 424 is other than phenylalanine;


the amino acid corresponding to or at position 427 is other than leucine;


the amino acid corresponding to or at position 431 is other than isoleucine;


the amino acid corresponding to or at position 425 is other than serine;


the amino acid corresponding to or at position 269 is other than valine.


In some embodiments, the mut-HPPD enzyme comprises one or more substitutions at positions corresponding to the following positions of SEQ ID NO: 53:


the amino acid corresponding to or at position 228 is Thr, or Ala;


the amino acid corresponding to or at position 230 is Ala, or His;


the amino acid corresponding to or at position 251 is Ser, or Arg;


the amino acid corresponding to or at position 253 is Val, or Ala;


the amino acid corresponding to or at position 265 is Val, or Met;


the amino acid corresponding to or at position 267 is threonine;


the amino acid corresponding to or at position 280 is Ala;


the amino acid corresponding to or at position 282 is Tyr, or Gln;


the amino acid corresponding to or at position 291 is Arg, or Ala;


the amino acid corresponding to or at position 293 is alanine, leucine, isoleucine, valine, histidine, asparagine or serine, preferably histidine, asparagine or serine;


the amino acid corresponding to or at position 294 is threonine:


the amino acid corresponding to or at position 324 is Lys, or Ala;


the amino acid corresponding to or at position 335 is alanine, tryptophane, phenylalanine, leucine, isoleucine, valine, asparagine, glutamine, histidine, tyrosine, serine, threonine or cysteine, preferably Gln, Asn, His, or Tyr;


the amino acid corresponding to or at position 336 is alanine, arginine, Gly, or Asn, preferably alanine or glycine;


the amino acid corresponding to or at position 337 is alanine, threonine or proline, preferably threonine or proline;


the amino acid corresponding to or at position 339 is deleted;


the amino acid corresponding to or at position 340 is glycine;


the amino acid corresponding to or at position 363 is glutamine;


the amino acid corresponding to or at position 368 is methionine or tyrosine, preferably methionine;


the amino acid corresponding to or at position 381 is Ile, Leu, or Tyr, preferably Isoleucine or leucine;


the amino acid corresponding to or at position 385 is valine, alanine, Gln, or Asp, preferably valine or aspartic acid;


the amino acid corresponding to or at position 386 is lie, or Phe;


the amino acid corresponding to or at position 390 is Pro;


the amino acid corresponding to or at position 392 is alanine, leucine or serine, preferably alanine;


the amino acid corresponding to or at position 393 is Ala, Leu, Phe, Val, preferably leucine;


the amino acid corresponding to or at position 419 is Leu or Pro;


the amino acid corresponding to or at position 421 is threonine;


the amino acid corresponding to or at position 422 is histidine, methionine, phenylalanine, or cysteine, preferably histidine or cysteine;


the amino acid corresponding to or at position 424 is Ile or His;


the amino acid corresponding to or at position 427 is phenylalanine, tryptophan, Ala, Ser, or Met, preferably phenylalanine;


the amino acid corresponding to or at position 431 is Val or Phe;


the amino acid corresponding to or at position 425 is glycine;


the amino acid corresponding to or at position 269 is alanine.


Furthermore, the inventors of the present invention have found that by substituting at least two of the key amino acid residues of SEQ ID NO: 53 with specific residues, the herbicide tolerance or resistance could be remarkably increased as compared to the activity of the wild type HPPD enzymes or HPPD enzymes in which only one amino acid residue had been substituted. Therefore, in another preferred embodiment the present invention the variant or derivative of the mut-HPPD refers to a polypeptide of SEQ ID NO: 53, a homologue, orthologue, or paralogue thereof, wherein two, three, four or five key amino acids are substituted by another amino acid residue. Particularly preferred double, triple, quadruple, or quintuple mutations are described in Table 4d.









TABLE 4d







(reference to Sequence ID No: 53): combined


amino acid substitutions













Key amino

Preferred



Combina-
acid

sub-



tion No
position
Substituents
stituents







1
Pro336
Ala, Arg
Ala




Glu363
Gln
Gln



2
Pro336
Ala, Arg
Ala




Glu363
Gln
Gln




Leu385
Ala, Val
Val



3
Pro336
Ala, Arg
Ala




Glu363
Gln
Gln




Leu385
Ala, Val
Val




Ile393
Ala, Leu
Leu



4
Leu385
Ala, Val
Val




Ile393
Ala, Leu
Leu



5
Met335
Ala, Trp, Phe, Leu,
Gln, Asn,





Ile, Val, Asn, Gln,
His,





His, Tyr, Ser, Thr, Cys
Tyr




Pro336
Ala, Arg, Gly
Ala, Gly



6
Met335
Ala, Trp, Phe, Leu, Ile,
Gln, Asn,





Val, Asn, Gln,
His,





His, Tyr, Ser, Thr, Cys
Tyr




Pro336
Ala, Arg, Gly
Ala, Gly




Glu363
Gln
Gln



7
Met335
Ala, Trp, Phe, Leu,
Gln, Asn,





Ile, Val, Asn, Gln,
His,





His, Tyr, Ser, Thr, Cys
Tyr, Leu




Pro336
Ala, Arg, Gly
Ala, Arg,






Gly




Ser337
Ala, Pro, Thr
Pro, Thr




Pro339
Deletion
Deletion




Pro340
Gly
Gly










In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 avariant, derivative, orthologue, paralogue or homologue thereof, in which: the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, or Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gn.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 avariant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gn.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Ala, Val.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Val.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Val.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Ala, Val, and the amino acid corresponding to or at position 393 of SEQ ID NO:53 is Ala, Leu.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 393 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 393 of SEQ ID NO:53 is Leu.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 393 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 393 of SEQ ID NO:53 is Leu.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 393 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 393 of SEQ ID NO:53 is Leu.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 393 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 393 of SEQ ID NO:53 is Leu.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Ala, Val, and the amino acid corresponding to or at position 393 of SEQ ID NO:53 is Ala, Leu.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 393 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 393 of SEQ ID NO:53 is Leu.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 393 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 385 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 393 of SEQ ID NO:53 is Leu.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, Trp, Phe, Leu, le, Val, Asn, Gln, His, Tyr, Ser, Thr, Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, Arg, Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Trp, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Trp, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Trp, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Phe, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Phe, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Phe, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Leu, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Leu, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Leu, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is lie, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is lie, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is lie, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Asn, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Asn, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Asn, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is His, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is His, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is His, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Tyr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Tyr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Tyr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ser, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ser, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ser, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, Trp, Phe, Leu, le, Val, Asn, Gln, His, Tyr, Ser, Thr, Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, Arg, Gly, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Trp, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Trp, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Trp, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Phe, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Phe, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Phe, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Leu, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Leu, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Leu, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Leu, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ile, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ile, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Asn, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Asn, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Asn, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is His, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is His, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is His, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Tyr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Tyr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Tyr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ser, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ser, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ser, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 363 of SEQ ID NO:53 is Gln.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, Trp, Phe, Leu, le, Val, Asn, Gln, His, Tyr, Ser, Thr, Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, Arg, Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, Pro, Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Trp, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Trp, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Trp, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Trp, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Trp, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Trp, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Trp, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Trp, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Trp, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Phe, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Phe, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Phe, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Phe, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Phe, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Phe, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Phe, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Phe, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Phe, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Leu, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Leu, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Leu, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Leu, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Leu, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Leu, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Leu, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Leu, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Leu, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is lie, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is lie, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is lie, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is lie, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is lie, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is lie, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is lie, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is lie, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is lie, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Val, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Asn, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which: the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Asn, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Asn, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Asn, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Asn, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Asn, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Asn, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Asn, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Asn, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Gln, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is His, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is His, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is His, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is His, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is His, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is His, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is His, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is His, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is His, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Tyr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Tyr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Tyr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Tyr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Tyr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Tyr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Tyr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Tyr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Tyr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ser, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ser, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ser, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ser, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ser, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ser, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ser, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ser, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Ser, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Arg, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Ala, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Pro, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another preferred embodiment, the mut-HPPD comprises a sequence of SEQ ID NO: 53 a variant, derivative, orthologue, paralogue or homologue thereof, in which:


the amino acid corresponding to or at position 335 of SEQ ID NO:53 is Cys, and the amino acid corresponding to or at position 336 of SEQ ID NO:53 is Gly, and the amino acid corresponding to or at position 337 of SEQ ID NO:53 is Thr, and the amino acid corresponding to or at position 339 of SEQ ID NO:53 is deleted, and the amino acid corresponding to or at position 340 of SEQ ID NO:53 is Gly.


In another embodiment, the variant or derivative of the HPPD enzyme of SEQ ID NO: 67 comprises one or more of the following substitutions:


the alanine corresponding to or at position 8 is substituted by threonine;


the glycine corresponding to or at position 68 is substituted by alanine;


the valine at position 261 is substituted by alanine;


the methionine corresponding to or at position 301 is substituted by isoleucine;


the methionine corresponding to or at position 327 is substituted by leucine;


the alanine corresponding to or at position 328 is substituted by proline;


the threonine corresponding to or at position 331 is substituted by proline;


the arginine corresponding to or at position 341 is substituted by glutamic acid;


the lysine corresponding to or at position 352 is substituted by asparagine;


the leucine corresponding to or at position 360 is substituted by methionine;


The leucine corresponding to or at position 383 is substituted by phenylalanine;


The glycine corresponding to or at position 414 is substituted by aspartic acid.


In another embodiment, the variant or derivative of the HPPD enzyme of SEQ ID NO: 67 comprises one or more of the following substitutions:


the alanine corresponding to or at position 8 is substituted by threonine;


the histidine corresponding to or at position 44 is substituted by glutamine;


the glycine at position 68 is substituted by alanine;


the alanine corresponding to or at position 71 is substituted by valine;


the phenylalanine at position 98 is substituted by leucine;


the phenylalanine corresponding to or at position 233 is substituted by methionine;


the alanine corresponding to or at position 253 is substituted by threonine;


the valine corresponding to or at position 261 is substituted by alanine;


the methionine corresponding to or at position 301 is substituted by isoleucine;


the glutamine corresponding to or at position 316 is substituted by arginine;


the methionine corresponding to or at position 327 is substituted by leucine;


the alanine corresponding to or at position 328 is substituted by proline;


the threonine corresponding to or at position 331 is substituted by proline;


the arginine corresponding to or at position 341 is substituted by cysteine;


the lysine corresponding to or at position 352 is substituted by asparagine;


the leucine corresponding to or at position 360 is substituted by methionine;


the leucine corresponding to or at position 383 is substituted by phenylalanine;


the serine corresponding to or at position 417 is substituted by glycine.


In a further preferred embodiment, the amino acid sequence differs from an amino acid sequence of an HPPD of SEQ ID NO: 57 corresponding to or at position 418. Preferably, the amino acid corresponding to or at position 418 is other than alanine. More preferably, the amino acid corresponding to or at position 418 is threonine.


In a further preferred embodiment, the amino acid sequence differs from an amino acid sequence of an HPPD of SEQ ID NO: 57 corresponding to or at position 237. Preferably, the amino acid corresponding to or at position 237 is other than serine. More preferably, the amino acid corresponding to or at position 237 is leucine.


The corresponding positions, i.e. preferred sites to be substituted are listed in the following-Table 4 e)




























TABLE 4e







SEQ-









Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos


ID
Pos 1
Pos 2
Pos 3
Pos 4
Pos 5
Pos 6
Pos 7
Pos 8
Pos 9
10
11
12
13
14
15
16
17
18
19





53
A227
V228
N230
A251
F253
L265
S267
V269
P280
N282
K291
Q293
I294
R324
M335
P336
S337
P339
P340


2
V212
V213
N215
A236
F238
L250
S252
V254
P265
N267
R276
Q278
I279
R309
L320
P321
P322
L324
P325


5
A270
V271
N273
A294
F296
L308
S310
V312
P323
N325
K333
Q335
I336
R366
M378
K379
R380
S382
E383


8
A227
V228
N230
A251
F253
L265
S267
V269
P280
N282
K291
Q293
I294
R324
M335
P336
R337
S339
P340


11
T192
V193
N195
A216
F218
L230
S232
V234
P245
N247
K255
Q257
I258
R288
M300
K301
R302
S304
D305


14
V152
V153
N155
Q178
F180
L189
S191
A193
N204
N206
N212
Q214
I215
R245
L252
S253
V254
N256
S257


17
G160
V161
N163
R186
F188
L197
S199
V201
P212
N214
N220
Q222
I223
K253
L260
D261
I262
P264
S265


20
V145
V146
N148
Q171
F173
L182
S184
A186
N197
N199
S205
Q207
I208
R238
L245
K246
I247
T249
G250


22
V218
V219
N221
A242
F244
L256
S258
V260
P271
N273
R282
Q284
I285
R315
M326
A327
P328
Q330
A331


24
V218
V219
N221
A242
F244
L256
S258
V260
P271
N273
R282
Q284
I285
R315
M326
A327
P328
Q330
A331


26
I218
V219
N221
A242
F244
L256
S258
V260
P271
N273
R282
Q284
I285
Q315
M326
A327
P328
A330
P331


28
I218
V219
N221
A242
F244
L256
S258
V260
P271
N273
R282
Q284
I285
Q315
M326
A327
P328
A330
P331


30
V212
V213
N215
A236
F238
L250
S252
V254
P265
N267
R276
Q278
I279
Q309
M320
A321
P322
Q324
P325


32
V212
V213
N215
A236
F238
L250
S252
V254
P265
N267
R276
Q278
I279
Q309
M320
A321
P322
Q324
P325


34
V218
V219
N221
A242
F244
L256
S258
V260
P271
N273
R282
Q284
I285
R315
M326
A327
P328
Q330
A331


36
V144
V145
N147
Y170
Y172
L181
S183
V185
A196
N198
A204
Q206
I207
R237
L244
Q245
V246
P248
Q249


38
V184
V185
N187
W210
A212
L224
S226
V228
P239
N241
K249
Q251
I252
R282
L289
E290
V291
P293
K294


40
I176
V177
N179
I202
F204
L216
S218
V220
P230
N232
K240
Q242
I243
E273
L280
K281
T282
G284
S285


42
M194
V195
N197
I220
F222
L234
S236
V238
P249
N251
K259
Q261
I262
R292
L299
Y300
V301
D303
T304


44
A207
V208
N210
A233
F235
L247
S249
V251
P262
N264
K272
Q274
I275
R305
L312
N313
T314
D316
A317


46
A207
V208
N210
A233
F235
L247
S249
V251
P262
N264
K272
Q274
I275
R305
L312
N313
T314
D316
A317


55
A213
V214
N216
S237
F239
L251
S253
V255
P266
N268
K277
Q279
I280
R310
M321
P322
R323
N325
A326


57
A213
V214
N216
S237
F239
L251
S253
V255
P266
N268
K277
Q279
I280
R310
M321
P322
R323
N325
A326


58
A214
V215
N217
A238
F240
L252
S254
V256
P267
N269
K278
Q280
I281
R311
M322
P323
K324
P326
P327


59
V224
V225
N227
A248
F250
L262
S254
V256
P277
N279
R288
Q290
I291
R321
L332
A333
P334
P336
P337


60
V214
V215
N217
A238
F240
L252
S254
V256
P267
N269
R278
Q280
I281
R311
L322
P323
P324
C326
R327


61
I219
V220
N222
A243
F245
L257
S259
V261
P272
N274
R283
Q285
I286
Q316
M327
A328
P329
T331
S332


62
A226
V227
N229
A250
F252
L264
S266
V268
P279
N281
K290
Q292
I293
R323
M334
P335
S336
P338
P339


63
T223
V224
N226
A247
F249
L261
S263
V265
P276
N278
K287
Q289
I290
R320
M331
P332
S333
P335
P336


64
L163
T164
N166
R189
F191
L200
S202
A204
P215
N217
A224
Q226
I227
K257
M264
T265
A266
P268
D269


65
L163
T164
N166
R189
F191
L200
S202
A204
P215
N217
A224
Q226
I227
K257
M264
T265
A266
P268
D269


66
V218
V219
N221
A242
F244
L256
S258
V260
P271
N273
R282
Q284
I285
R315
M326
A327
P328
Q330
A331


67
I219
V220
N222
A243
F245
L257
S259
V261
P272
N274
R283
Q285
I286
Q316
M327
A328
P329
T331
S332




























SEQ-
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos


ID
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37





53
R349
E363
L368
F381
L385
G386
T390
F392
I393
G418
F419
K421
G422
F424
S425
E426
L427
I431


2
L334
Q348
L353
F366
V370
G371
T375
F377
L378
G403
F404
K406
G407
F409
S410
E411
L412
I416


5
R392
E406
L411
F424
V428
G429
T433
F435
F436
G467
F468
K470
G471
F473
R474
E475
L476
I480


8
R349
E363
L368
F381
L385
G386
T390
F392
F393
G423
F424
K426
G427
F429
S430
E431
L432
I436


11
R314
E328
L333
F346
L350
G351
T355
F357
L358
G396
F397
Q399
G400
F402
R403
E404
L405
I409


14
R267
E283
L288
F304
I308
F309
T313
F315
F316
G327
F328
Q330
G331
F333
Q334
A335
L336
I340


17
E275
E287
L292
F308
I312
F313
T317
F319
F320
G331
F332
Q334
R335
F337
L338
A339
L340
M344


20
Y260
Q272
L277
F293
C297
Y298
T302
F304
W305
G316
F317
Q319
G320
F322
Q323
A324
L325
V329


22
L340
Q354
L359
F372
V376
G377
T381
F383
L384
G409
F410
K412
G413
F415
S416
E417
L418
I422


24
L340
Q354
L359
F372
V376
G377
T381
F383
L384
G409
F410
K412
G413
F415
S416
E417
L418
I422


26
R340
Q354
L359
F372
V376
G377
T381
F383
L384
G409
F410
K412
G413
F415
S416
Q417
L418
I422


28
R340
Q354
L359
F372
V376
G377
T381
F383
L384
G409
F410
K412
G413
F415
S416
Q417
L418
I422


30
I334
Q348
L353
F366
V370
G371
T375
F377
L378
G403
F404
K406
G407
F409
S410
E411
L412
I416


32
I334
Q348
L353
F366
V370
G371
T375
F377
L378
G403
F404
K406
G407
F409
S410
E411
L412
I416


34
I340
Q354
L359
F372
V376
G377
T381
F383
L384
G409
F410
K412
G413
F415
S416
E417
L418
I422


36
G259
V276
L281
F301
L305
F306
T310
F312
F313
G324
F325
E327
A328
F330
Q331
A332
L333
L337


38
R302
E318
L323
F336
V340
E341
T345
F347
Y348
G358
F359
I361
G362
F364
K365
A366
L367
L371


40
R293
E305
L310
F323
V327
T328
T332
F334
F335
S345
F346
N348
G349
F351
K352
A353
L354
I358


42
R312
K324
L329
F342
I346
V347
T351
F353
F354
S364
F365
V367
G368
F370
K371
A372
L373
I377


44
R327
Q339
L344
F357
L361
G362
T366
F368
F369
G379
F380
A382
G383
F385
Q386
A387
L388
I392


46
R327
Q339
L344
F357
L361
G362
T366
F368
F369
G379
F380
A382
G383
F385
Q386
A387
L388
I392


55
R335
E349
L354
F367
L371
G372
T376
F378
I379
G410
F411
K413
G414
F416
G417
A418
L419
I423


57
R335
E349
L354
F367
L371
G372
T376
F378
I379
G410
F411
K413
G414
F416
G417
A418
L419
I423


58
R336
D350
L355
F368
V372
G373
S377
F379
V380
G406
F407
K409
G410
F412
S413
E414
L415
I419


59
R346
Q360
L365
F378
V382
G383
T387
F389
L390
G415
F416
K418
G419
F421
S422
E423
L424
I423


60
I336
Q350
L355
F368
V372
G373
T377
F379
L380
G405
F406
K408
G409
F411
S412
E413
L414
I418


61
R341
Q355
L360
F373
V377
G378
T382
F384
L385
G410
F411
K413
G414
F416
S417
Q418
L419
I423


62
R348
E362
L367
F380
V384
G385
T389
F391
I392
G417
F418
K420
G421
F423
S424
E425
L426
I430


63
R345
E359
L364
F377
L381
G382
T386
F388
I389
G414
F415
K417
G418
F420
S421
E422
L423
I427


64
R278
Q290
L295
F312
L316
M317

F321
F322
G332
F333
E335
G336
F338
K339
A340
L341
I345


65
R278
Q290
L295
F312
L316
M317

F321
F322
G332
F333
E335
G336
F338
K339
A340
L341
I345


66
I340
Q354
L359
F372
V376
G377
T381
F383
L384
G409
F410
K412
G413
F415
S416
E417
L418
I422


67
R341
Q355
L360
F373
V377
G378
T382
F384
L385
G410
F411
K413
G414
F416
S417
Q418
L419
I423









Furthermore, the inventors of the present invention have found out that by substituting the amino acids at some positions in the HPPD polypeptide sequences of Scenedesmus obliquus, the the tolerance of plants towards the benzamides as described herein could be remarkably increased.


Thus, in a preferred embodiment, the mutated HPPD of the present invention comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, which comprises one or more of the following:


the amino acid corresponding to or at position 30 is other than proline, the amino acid corresponding to or at position 39 is other than Phe, the amino acid corresponding to or at position 54 is other than Gly, the amino acid corresponding to or at position 57 is other than Met, the amino acid corresponding to or at position 84 is other than Phe, the amino acid corresponding to or at position 210 is other than Val, the amino acid corresponding to or at position 212 is other than Asn, the amino acid corresponding to or at position 223 is other than Val, the amino acid corresponding to or at position 243 is other than Val, the amino acid corresponding to or at position 247 is other than Leu, the amino acid corresponding to or at position 249 is other than Ser, the amino acid corresponding to or at position 251 is other than Val, the amino acid corresponding to or at position 264 is other than Asn, the amino acid corresponding to or at position 291 is other than Leu, the amino acid corresponding to or at position 306 is other than His, the amino acid corresponding to or at position 317 is other than Gln, the amino acid corresponding to or at position 318 is other than Ala, the amino acid corresponding to or at position 319 is other than Ala, the amino acid corresponding to or at position 321 is other than Gly, the amino acid corresponding to or at position 326 is other than Lys, the amino acid corresponding to or at position 327 is other than Arg, the amino acid corresponding to or at position 331 is other than Lys, the amino acid corresponding to or at position 341 is other than Trp, the amino acid corresponding to or at position 342 is other than Ala, the amino acid corresponding to or at position 345 is other than Glu, the amino acid corresponding to or at position 350 is other than Leu, the amino acid corresponding to or at position 363 is other than Phe, the amino acid corresponding to or at position 367 is other than Leu, the amino acid corresponding to or at position 373 is other than Ile, the amino acid corresponding to or at position 374 is other than Phe, the amino acid corresponding to or at position 375 is other than lie, the amino acid corresponding to or at position 379 is other than Glu, the amino acid corresponding to or at position 405 is other than Gly, the amino acid corresponding to or at position 407 is other than Phe, the amino acid corresponding to or at position 410 is other than Gly, the amino acid corresponding to or at position 412 is other than Phe, the amino acid corresponding to or at position 414 is other than Glu, the amino acid corresponding to or at position 419 is other than lie, the amino acid corresponding to or at position 421 is other than Glu, the amino acid corresponding to or at position 422 is other than Tyr.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 367 is Val, and the amino acid corresponding to or at position 375 is Leu.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 367 is Val, and the amino acid corresponding to or at position 375 is Leu, and the amino acid corresponding to or at position 39 is Leu.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 367 is Val, and the amino acid corresponding to or at position 375 is Leu, and the amino acid corresponding to or at position 39 is Trp.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 345 is Ala, Arg, Asn, Asp, Cys, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, particularly preferred Gln


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 345 is Gln, and the amino acid corresponding to or at position 341 is Ile.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 345 is Gln, and the amino acid corresponding to or at position 326 is Glu.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 345 is Gln, and the amino acid corresponding to or at position 326 is Asp.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 345 is Gln, and the amino acid corresponding to or at position 326 is Gln.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 318 is Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, particularly preferred Pro.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 319 is Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val, particularly preferred Pro.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 318 is Pro, and the amino acid corresponding to or at position 319 is Pro.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 321 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 350 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, particularly preferred Met.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 405 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 251 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, or Tyr, particularly preferred Ala.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 317 is Ala, Arg, Asn, Asp, Cys, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, particularly preferred His or Met.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 379 is Ala, Arg, Asn, Asp, Cys, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, particularly preferred Gln.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 350 is Met, and the amino acid corresponding to or at position 318 is Arg.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 350 is Met, and the amino acid corresponding to or at position 318 is Gly.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 350 is Met, and the amino acid corresponding to or at position 318 is Arg, and the amino acid corresponding to or at position 317 is Asn.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 210 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, or Tyr.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 317 is His, and the amino acid corresponding to or at position 318 is Gly, and the amino acid corresponding to or at position 345 is Gln.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 317 is Met, and the amino acid corresponding to or at position 318 is Gly, and the amino acid corresponding to or at position 345 is Gln.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 363 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Pro, Ser, Thr, Trp, Tyr, or Val, particularly preferred Ile.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 419 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, particularly preferred Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 249 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 247 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, le, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 407 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 306 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, particularly preferred Lys.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 30 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 54 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 57 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 84 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 212 is Ala, Arg, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 223 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, or Tyr.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 243 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, or Tyr.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 264 is Ala, Arg, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 291 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, le, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 327 is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 331 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 342 is Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 373 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 374 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 410 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 412 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 414 is Ala, Arg, Asn, Asp, Cys, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 421 is Ala, Arg, Asn, Asp, Cys, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 422 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, or Val.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 251 is Ala, and the amino acid corresponding to or at position 405 is Asp.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 327 is Gly, and the amino acid corresponding to or at position 421 is Asp.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 251 is Ala, and the amino acid corresponding to or at position 306 is Arg, and the amino acid corresponding to or at position 317 is Leu, and the amino acid corresponding to or at position 318 is Pro, and the amino acid corresponding to or at position 321 is Pro, and the amino acid corresponding to or at position 331 is Glu, and the amino acid corresponding to or at position 350 is Met.


In another preferred embodiment, the mutated HPPD comprises a variant of the sequence of SEQ ID NO: 50, or a homologue or functional equivalent thereof, in which:


the amino acid corresponding to or at position 407 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Pro, Ser, Thr, Trp, Tyr, or Val.


Following mutagenesis of one of the sequences as shown herein, the encoded protein can be expressed recombinantly and the activity of the protein can be determined using, for example, assays described herein.


It will be within the knowledge of the skilled artisan to identify conserved regions and motifs shared between the homologues, orthologues and paralogues of of SEQ ID NO: 2, 5, 8, 11, 14, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, and respectively SEQ ID NO: 48 or 50, such as those depicted in Table 1. Having identified such conserved regions that may represent suitable binding motifs, amino acids corresponding to the amino acids listed in Table 4a and 4b, 4c, and 4d can be chosen to be substituted by any other amino acid by conserved amino acids as shown in table 3, and more preferably by the amino acids of tables 4a and 4b, 4c, and 4d.


In addition, the present invention refers to a method for identifying a HPPD-inhibiting benzamide herbicide by using a mut-HPPD encoded by a nucleic acid which comprises the nucleotide sequence of SEQ ID NO: 1, 51, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 52, 54, 56, 68, 69, or a variant or derivative thereof.


Said method comprises the steps of:

  • a) generating a transgenic cell or plant comprising a nucleic acid encoding a mut-HPPD, wherein the mut-HPPD is expressed;
  • b) applying a HPPD-inhibiting benzamide herbicide to the transgenic cell or plant of a) and to a control cell or plant of the same variety;
  • c) determining the growth or the viability of the transgenic cell or plant and the control cell or plant after application of said HPPD-inhibiting benzamide herbicide, and
  • d) selecting “HPPD-inhibiting benzamide herbicides” which confer reduced growth to the control cell or plant as compared to the growth of the transgenic cell or plant.


By “control cell” or “similar, wild-type, plant, plant tissue, plant cell or host cell” is intended a plant, plant tissue, plant cell, or host cell, respectively, that lacks the herbicide-resistance characteristics and/or particular polynucleotide of the invention that are disclosed herein. The use of the term “wild-type” is not, therefore, intended to imply that a plant, plant tissue, plant cell, or other host cell lacks recombinant DNA in its genome, and/or does not possess herbicide-resistant characteristics that are different from those disclosed herein.


Another object refers to a method of identifying a nucleotide sequence encoding a mut-HPPD which is resistant or tolerant to a HPPD-inhibiting benzamide herbicide, the method comprising:

  • a) generating a library of mut-HPPD-encoding nucleic acids,
  • b) screening a population of the resulting mut-HPPD-encoding nucleic acids by expressing each of said nucleic acids in a cell or plant and treating said cell or plant with a HPPD-inhibiting benzamide herbicide,
  • c) comparing the HPPD-inhibiting benzamide herbicide-tolerance levels provided by said population of mut-HPPD encoding nucleic acids with the HPPD-inhibiting benzamide herbicide-tolerance level provided by a control HPPD-encoding nucleic acid,
  • d) selecting at least one mut-HPPD-encoding nucleic acid that provides a significantly increased level of tolerance to a HPPD-inhibiting benzamide herbicide as compared to that provided by the control HPPD-encoding nucleic acid.


In a preferred embodiment, the mut-HPPD-encoding nucleic acid selected in step d) provides at least 2-fold as much resistance or tolerance of a cell or plant to a HPPD-inhibiting benzamide herbicide as compared to that provided by the control HPPD-encoding nucleic acid.


In a further preferred embodiment, the mut-HPPD-encoding nucleic acid selected in step d) provides at least 2-fold, at least 5-fold, at least 10-fold, at least 20-fold, at least 50-fold, at least 100-fold, at least 500-fold, as much resistance or tolerance of a cell or plant to a HPPD-inhibiting benzamide herbicide as compared to that provided by the control HPPD-encoding nucleic acid.


The resistance or tolerance can be determined by generating a transgenic plant or host cell a plant cell, comprising a nucleic acid sequence of the library of step a) and comparing said transgenic plant with a control plant or host cell a plant cell.


Another object refers to a method of identifying a plant or algae containing a nucleic acid comprising a nucleotide sequence encoding a mut-HPPD which is resistant or tolerant to a HPPD-inhibiting benzamide herbicide, the method comprising:

  • a) identifying an effective amount of a HPPD-inhibiting benzamide herbicide in a culture of plant cells or green algae that leads to death of said cells.
  • b) treating said plant cells or green algae with a mutagenizing agent,
  • c) contacting said mutagenized cells population with an effective amount of HPPD-inhibiting benzamide herbicide, identified in a),
  • d) selecting at least one cell surviving these test conditions,
  • e) PCR-amplification and sequencing of HPPD genes from cells selected in d) and comparing such sequences to wild-type HPPD gene sequences, respectively.


In a preferred embodiment, said mutagenizing agent is ethylmethanesulfonate (EMS).


Many methods well known to the skilled artisan are available for obtaining suitable candidate nucleic acids for identifying a nucleotide sequence encoding a mut-HPPD from a variety of different potential source organisms including microbes, plants, fungi, algae, mixed cultures etc. as well as environmental sources of DNA such as soil. These methods include inter alia the preparation of cDNA or genomic DNA libraries, the use of suitably degenerate oligonucleotide primers, the use of probes based upon known sequences or complementation assays (for example, for growth upon tyrosine) as well as the use of mutagenesis and shuffling in order to provide recombined or shuffled mut-HPPD-encoding sequences.


Nucleic acids comprising candidate and control HPPD encoding sequences can be expressed in yeast, in a bacterial host strain, in an alga or in a higher plant such as tobacco or Arabidopsis and the relative levels of inherent tolerance of the HPPD encoding sequences screened according to a visible indicator phenotype of the transformed strain or plant in the presence of different concentrations of the selected HPPD-inhibiting benzamide herbicide.


Dose responses and relative shifts in dose responses associated with these indicator phenotypes (formation of brown color, growth inhibition, herbicidal effect etc) are conveniently expressed in terms, for example, of GR50 (concentration for 50% reduction of growth) or MIC (minimum inhibitory concentration) values where increases in values correspond to increases in inherent tolerance of the expressed HPPD. For example, in a relatively rapid assay system based upon transformation of a bacterium such as E. coli, each mut-HPPD encoding sequence may be expressed, for example, as a DNA sequence under expression control of a controllable promoter such as the lacZ promoter and taking suitable account, for example by the use of synthetic DNA, of such issues as codon usage in order to obtain as comparable a level of expression as possible of different HPPD sequences. Such strains expressing nucleic acids comprising alternative candidate HPPD sequences may be plated out on different concentrations of the selected HPPD-inhibiting benzamide herbicide in, optionally, a tyrosine supplemented medium and the relative levels of inherent tolerance of the expressed HPPD enzymes estimated on the basis of the extent and MIC for inhibition of the formation of the brown, ochronotic pigment.


In another embodiment, candidate nucleic acids are transformed into plant material to generate a transgenic plant, regenerated into morphologically normal fertile plants which are then measured for differential tolerance to selected HPPD-inhibiting benzamide-herbicides. Many suitable methods for transformation using suitable selection markers such as kanamycin, binary vectors such as from Agrobacterium and plant regeneration as, for example, from tobacco leaf discs are well known in the art. Optionally, a control population of plants is likewise transformed with a nuclaic acid expressing the control HPPD. Alternatively, an untransformed dicot plant such as Arabidopsis or Tobacco can be used as a control since this, in any case, expresses its own endogenous HPPD. The average, and distribution, of herbicide tolerance levels of a range of primary plant transformation events or their progeny to HPPD-inhibiting benzamide herbicides are evaluated in the normal manner based upon plant damage, meristematic bleaching symptoms etc. at a range of different concentrations of herbicides. These data can be expressed in terms of, for example, GR50 values derived from dose/response curves having “dose” plotted on the x-axis and “percentage kill”, “herbicidal effect”, “numbers of emerging green plants” etc. plotted on the y-axis where increased GR50 values correspond to increased levels of inherent tolerance of the expressed HPPD. Herbicides can suitably be applied pre-emergence or post-emergence.


Another object refers to an isolated nucleic acid encoding a mut-HPPD, wherein the nucleic acid is identifiable by a method as defined above.


In another embodiment, the invention refers to a plant cell transformed by a wild-type or a mut-HPPD nucleic acid or or a plant cell which has been mutated to obtain a plant expressing a wild-type or a mut-HPPD nucleic acid, wherein expression of the nucleic acid in the plant cell results in increased resistance or tolerance to a HPPD-inhibiting benzamide herbicide as compared to a wildtype variety of the plant cell.


The term “expression/expressing” or “gene expression” means the transcription of a specific gene or specific genes or specific genetic construct. The term “expression” or “gene expression” in particular means the transcription of a gene or genes or genetic construct into structural RNA (rRNA, tRNA) or mRNA with or without subsequent translation of the latter into a protein. The process includes transcription of DNA and processing of the resulting mRNA product.


To obtain the desired effect, i.e. plants that are tolerant or resistant to the HPPD-inhibiting benzamide herbicide of the present invention, it will be understood that at least one nucleic acid is “over-expressed” by methods and means known to the person skilled in the art.


The term “increased expression” or “overexpression” as used herein means any form of expression that is additional to the original wild-type expression level. Methods for increasing expression of genes or gene products are well documented in the art and include, for example, overexpression driven by appropriate promoters, the use of transcription enhancers or translation enhancers. Isolated nucleic acids which serve as promoter or enhancer elements may be introduced in an appropriate position (typically upstream) of a non-heterologous form of a polynucleotide so as to upregulate expression of a nucleic acid encoding the polypeptide of interest. For example, endogenous promoters may be altered in vivo by mutation, deletion, and/or substitution (see, Kmiec, U.S. Pat. No. 5,565,350; Zarling et al., WO9322443), or isolated promoters may be introduced into a plant cell in the proper orientation and distance from a gene of the present invention so as to control the expression of the gene.


If polypeptide expression is desired, it is generally desirable to include a polyadenylation region at the 3′-end of a polynucleotide coding region. The polyadenylation region can be derived from the natural gene, from a variety of other plant genes, or from T-DNA. The 3′ end sequence to be added may be derived from, for example, the nopaline synthase or octopine synthase genes, or alternatively from another plant gene, or less preferably from any other eukaryotic gene.


An intron sequence may also be added to the 5′ untranslated region (UTR) or the coding sequence of the partial coding sequence to increase the amount of the mature message that accumulates in the cytosol. Inclusion of a spliceable intron in the transcription unit in both plant and animal expression constructs has been shown to increase gene expression at both the mRNA and protein levels up to 1000-fold (Buchman and Berg (1988) Mol. Cell biol. 8: 4395-4405; Callis et al. (1987) Genes Dev 1:1183-1200). Such intron enhancement of gene expression is typically greatest when placed near the 5′ end of the transcription unit. Use of the maize introns Adh1-S intron 1, 2, and 6, the Bronze-1 intron are known in the art. For general information see: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, N.Y. (1994) The term “introduction” or “transformation” as referred to herein encompasses the transfer of an exogenous polynucleotide into a host cell, irrespective of the method used for transfer.


Plant tissues capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, may be transformed with a genetic construct of the present invention and a whole plant may be regenerated there from. The particular tissue chosen will vary depending on the clonal propagation systems available for, and best suited to, the particular species being transformed. Exemplary tissue targets include leaf disks, pollen, embryos, cotyledons, hypocotyls, megagametophytes, callus tissue, existing meristematic tissue (e.g., apical meristem, axillary buds, and root meristems), and induced meristem tissue (e.g., cotyledon meristem and hypocotyl meristem). The polynucleotide may be transiently or stably introduced into a host cell and may be maintained non-integrated, for example, as a plasmid. Alternatively, it may be integrated into the host genome. The resulting transformed plant cell may then be used to regenerate a transformed plant in a manner known to persons skilled in the art.


The transfer of foreign genes into the genome of a plant is called transformation. Transformation of plant species is now a fairly routine technique. Advantageously, any of several transformation methods may be used to introduce the gene of interest into a suitable ancestor cell. The methods described for the transformation and regeneration of plants from plant tissues or plant cells may be utilized for transient or for stable transformation. Transformation methods include the use of liposomes, electroporation, chemicals that increase free DNA uptake, injection of the DNA directly into the plant, particle gun bombardment, transformation using viruses or pollen and microprojection. Methods may be selected from the calcium/polyethylene glycol method for protoplasts (Krens, F. A. et al., (1982) Nature 296, 72-74; Negrutiu I et al. (1987) Plant Mol Biol 8: 363-373); electroporation of protoplasts (Shillito R. D. et al. (1985) Bio/Technol 3, 1099-1102); microinjection into plant material (Crossway A et al., (1986) Mol. Gen Genet 202: 179-185); DNA or RNA-coated particle bombardment (Klein T M et al., (1987) Nature 327: 70) infection with (non-integrative) viruses and the like. Transgenic plants, including transgenic crop plants, are preferably produced via Agrobacterium-mediated transformation. An advantageous transformation method is the transformation inpianta. To this end, it is possible, for example, to allow the agrobacteria to act on plant seeds or to inoculate the plant meristem with agrobacteria. It has proved particularly expedient in accordance with the invention to allow a suspension of transformed agrobacteria to act on the intact plant or at least on the flower primordia. The plant is subsequently grown on until the seeds of the treated plant are obtained (Clough and Bent, Plant J. (1998) 16, 735-743). Methods for Agrobacterium-mediated transformation of rice include well known methods for rice transformation, such as those described in any of the following: European patent application EP 1198985 A1, Aldemita and Hodges (Planta 199: 612-617, 1996); Chan et al. (Plant Mol Biol 22 (3): 491-506, 1993), Hiei et al. (Plant J 6 (2): 271-282, 1994), which disclosures are incorporated by reference herein as if fully set forth. In the case of corn transformation, the preferred method is as described in either Ishida et al. (Nat. Biotechnol 14(6): 745-50, 1996) or Frame et al. (Plant Physiol 129(1): 13-22, 2002), which disclosures are incorporated by reference herein as if fully set forth. Said methods are further described by way of example in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds. S.D. Kung and R. Wu, Academic Press (1993) 128-143 and in Potrykus Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991) 205-225). The nucleic acids or the construct to be expressed is preferably cloned into a vector, which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984) 8711). Agrobacteria transformed by such a vector can then be used in known manner for the transformation of plants, such as plants used as a model, like Arabidopsis (Arabidopsis thalianais within the scope of the present invention not considered as a crop plant), or crop plants such as, by way of example, tobacco plants, for example by immersing bruised leaves or chopped leaves in an agrobacterial solution and then culturing them in suitable media. The transformation of plants by means of Agrobacterium tumefaciens is described, for example, by Höfgen and Willmitzer in Nucl. Acid Res. (1988) 16, 9877 or is known inter alia from F. F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, eds. S.D. Kung and R. Wu, Academic Press, 1993, pp. 15-38.


In addition to the transformation of somatic cells, which then have to be regenerated into intact plants, it is also possible to transform the cells of plant meristems and in particular those cells which develop into gametes. In this case, the transformed gametes follow the natural plant development, giving rise to transgenic plants. Thus, for example, seeds of Arabidopsis are treated with agrobacteria and seeds are obtained from the developing plants of which a certain proportion is transformed and thus transgenic [Feldman, K A and Marks M D (1987). Mol Gen Genet 208:274-289; Feldmann K (1992). In: C Koncz, N-H Chua and J Shell, eds, Methods in Arabidopsis Research. Word Scientific, Singapore, pp. 274-289]. Alternative methods are based on the repeated removal of the inflorescences and incubation of the excision site in the center of the rosette with transformed agrobacteria, whereby transformed seeds can likewise be obtained at a later point in time (Chang (1994). Plant J. 5: 551-558; Katavic (1994). Mol Gen Genet, 245: 363-370). However, an especially effective method is the vacuum infiltration method with its modifications such as the “floral dip” method. In the case of vacuum infiltration of Arabidopsis, intact plants under reduced pressure are treated with an agrobacterial suspension [Bechthold, N (1993). C R Acad Sci Paris Life Sci, 316: 1194-1199], while in the case of the “floral dip” method the developing floral tissue is incubated briefly with a surfactant-treated agrobacterial suspension [Clough, S J and Bent A F (1998) The Plant J. 16, 735-743]. A certain proportion of transgenic seeds is harvested in both cases, and these seeds can be distinguished from non-transgenic seeds by growing under the above-described selective conditions. In addition the stable transformation of plastids is of advantages because plastids are inherited maternally in most crops reducing or eliminating the risk of transgene flow through pollen. The transformation of the chloroplast genome is generally achieved by a process which has been schematically displayed in Klaus et al., 2004 [Nature Biotechnology 22 (2), 225-229]. Briefly the sequences to be transformed are cloned together with a selectable marker gene between flanking sequences homologous to the chloroplast genome. These homologous flanking sequences direct site specific integration into the plastome. Plastidal transformation has been described for many different plant species and an overview is given in Bock (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol. 2001 Sep. 21; 312 (3):425-38 or Maliga, P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol. 21, 20-28. Further biotechnological progress has recently been reported in form of marker free plastid transformants, which can be produced by a transient co-integrated maker gene (Klaus et al., 2004, Nature Biotechnology 22(2), 225-229). The genetically modified plant cells can be regenerated via all methods with which the skilled worker is familiar. Suitable methods can be found in the abovementioned publications by S.D. Kung and R. Wu, Potrykus or Höfgen and Willmitzer.


Generally after transformation, plant cells or cell groupings are selected for the presence of one or more markers which are encoded by plant-expressible genes co-transferred with the gene of interest, following which the transformed material is regenerated into a whole plant.


To select transformed plants, the plant material obtained in the transformation is, as a rule, subjected to selective conditions so that transformed plants can be distinguished from untransformed plants. For example, the seeds obtained in the above-described manner can be planted and, after an initial growing period, subjected to a suitable selection by spraying. A further possibility consists in growing the seeds, if appropriate after sterilization, on agar plates using a suitable selection agent so that only the transformed seeds can grow into plants. Alternatively, the transformed plants are screened for the presence of a selectable marker such as the ones described above.


Following DNA transfer and regeneration, putatively transformed plants may also be evaluated, for instance using Southern analysis, for the presence of the gene of interest, copy number and/or genomic organisation. Alternatively or additionally, expression levels of the newly introduced DNA may be monitored using Northern and/or Western analysis, both techniques being well known to persons having ordinary skill in the art.


The generated transformed plants may be propagated by a variety of means, such as by clonal propagation or classical breeding techniques. For example, a first generation (or T1) transformed plant may be selfed and homozygous second-generation (or T2) transformants selected, and the T2 plants may then further be propagated through classical breeding techniques. The generated transformed organisms may take a variety of forms. For example, they may be chimeras of transformed cells and non-transformed cells; clonal transformants (e.g., all cells transformed to contain the expression cassette); grafts of transformed and untransformed tissues (e.g., in plants, a transformed rootstock grafted to an untransformed scion).


Preferably, the wild-type or mut-HPPD nucleic acid (a) (b) comprises a polynucleotide sequence selected from the group consisting of: a) a polynucleotide as shown in SEQ ID NO: 1, 51, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 52, 54, 56, 68, 69, or a variant or derivative thereof; b) a polynucleotide encoding a polypeptide as shown in SEQ ID NO: 2, 5, 8, 11, 14, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, oravariantorderivative thereof; c) a polynucleotide comprising at least 60 consecutive nucleotides of any of a) through b); and d) a polynucleotide complementary to the polynucleotide of any of a) through c).


Preferably, the expression of the nucleic acid in the plant results in increased resistance to HPPD-inhibiting benzamide herbicide as compared to a wild-type variety of the plant.


In another embodiment, the invention refers to a plant a transgenic plant, comprising a plant cell according to the present invention, wherein expression of the nucleic acid in the plant results in the plant's increased resistance to HPPD-inhibiting benzamide herbicide as compared to a wild-type variety of the plant.


The plants described herein can be either transgenic crop plants or non-transgenic plants.


For the purposes of the invention, “transgenic”, “transgene” or “recombinant” means with regard to, for example, a nucleic acid sequence, an expression cassette, gene construct or a vector comprising the nucleic acid sequence or an organism transformed with the nucleic acid sequences, expression cassettes or vectors according to the invention, all those constructions brought about by recombinant methods in which either

  • (a) the nucleic acid sequences encoding proteins useful in the methods of the invention, or
  • (b) genetic control sequence(s) which is operably linked with the nucleic acid sequence according to the invention, for example a promoter, or
  • (c) a) and b)


    are not located in their natural genetic environment or have been modified by recombinant methods, it being possible for the modification to take the form of, for example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide residues. The natural genetic environment is understood as meaning the natural genomic or chromosomal locus in the original plant or the presence in a genomic library. In the case of a genomic library, the natural genetic environment of the nucleic acid sequence is preferably retained, at least in part. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp at least 500 bp, especially preferably at least 1000 bp, most preferably at least 5000 bp. A naturally occurring expression cassette—for example the naturally occurring combination of the natural promoter of the nucleic acid sequences with the corresponding nucleic acid sequence encoding a polypeptide useful in the methods of the present invention, as defined above—becomes a transgenic expression cassette when this expression cassette is modified by non-natural, synthetic (“artificial”) methods such as, for example, mutagenic treatment. Suitable methods are described, for example, in U.S. Pat. No. 5,565,350 or WO 00/15815.


A transgenic plant for the purposes of the invention is thus understood as meaning, as above, that the nucleic acids used in the method of the invention are not at their natural locus in the genome of said plant, it being possible for the nucleic acids to be expressed homologously or heterologously. However, as mentioned, transgenic also means that, while the nucleic acids according to the invention or used in the inventive method are at their natural position in the genome of a plant, the sequence has been modified with regard to the natural sequence, and/or that the regulatory sequences of the natural sequences have been modified. Transgenic is preferably understood as meaning the expression of the nucleic acids according to the invention at an unnatural locus in the genome, i.e. homologous or, heterologous expression of the nucleic acids takes place. Preferred transgenic plants are mentioned herein. Furthermore, the term “transgenic” refers to any plant, plant cell, callus, plant tissue, or plant part that contains all or part of at least one recombinant polynucleotide. In many cases, all or part of the recombinant polynucleotide is stably integrated into a chromosome or stable extrachromosomal element, so that it is passed on to successive generations. For the purposes of the invention, the term “recombinant polynucleotide” refers to a polynucleotide that has been altered, rearranged, or modified by genetic engineering. Examples include any cloned polynucleotide, or polynucleotides, that are linked orjoined to heterologous sequences. The term “recombinant” does not refer to alterations of polynucleotides that result from naturally occurring events, such as spontaneous mutations, or from non-spontaneous mutagenesis followed by selective breeding.


Plants containing mutations arising due to non-spontaneous mutagenesis and selective breeding are referred to herein as non-transgenic plants and are included in the present invention. In embodiments wherein the plant is transgenic and comprises multiple mut-HPPD nucleic acids, the nucleic acids can be derived from different genomes or from the same genome. Alternatively, in embodiments wherein the plant is non-transgenic and comprises multiple mut-HPPD nucleic acids, the nucleic acids are located on different genomes or on the same genome.


In certain embodiments, the present invention involves herbidicide-resistant plants that are produced by mutation breeding. Such plants comprise a polynucleotide encoding a mut-HPPD are tolerant to one or more “HPPD-inhibiting benzamide herbicides”. Such methods can involve, for example, exposing the plants or seeds to a mutagen, particularly a chemical mutagen such as, for example, ethyl methanesulfonate (EMS) and selecting for plants that have enhanced tolerance to at least one or more HPPD-inhibiting benzamide herbicide.


However, the present invention is not limited to herbicide-tolerant plants that are produced by a mutagenesis method involving the chemical mutagen EMS. Any mutagenesis method known in the art may be used to produce the herbicide-resistant plants of the present invention. Such mutagenesis methods can involve, for example, the use of any one or more of the following mutagens: radiation, such as X-rays, Gamma rays (e.g., cobalt 60 or cesium 137), neutrons, (e.g., product of nuclear fission by uranium 235 in an atomic reactor), Beta radiation (e.g., emitted from radioisotopes such as phosphorus 32 or carbon 14), and ultraviolet radiation (preferably from 250 to 290 nm), and chemical mutagens such as base analogues (e.g., 5-bromo-uracil), related compounds (e.g., 8-ethoxy caffeine), antibiotics (e.g., streptonigrin), alkylating agents (e.g., sulfur mustards, nitrogen mustards, epoxides, ethylenamines, sulfates, sulfonates, sulfones, lactones), azide, hydroxylamine, nitrous acid, or acridines. Herbicide-resistant plants can also be produced by using tissue culture methods to select for plant cells comprising herbicide-resistance mutations and then regenerating herbicide-resistant plants therefrom. See, for example, U.S. Pat. Nos. 5,773,702 and 5,859,348, both of which are herein incorporated in their entirety by reference. Further details of mutation breeding can be found in “Principals of Cultivar Development” Fehr, 1993 Macmillan Publishing Company the disclosure of which is incorporated herein by reference


In addition to the definition above, the term “plant” is intended to encompass crop plants at any stage of maturity or development, as well as any tissues or organs (plant parts) taken or derived from any such plant unless otherwise clearly indicated by context. Plant parts include, but are not limited to, stems, roots, flowers, ovules, stamens, leaves, embryos, meristematic regions, callus tissue, anther cultures, gametophytes, sporophytes, pollen, microspores, protoplasts, and the like.


The plant of the present invention comprises at least one mut-HPPD nucleic acid or over-expressed wild-type HPPD nucleic acid, and has increased tolerance to a HPPD-inhibiting benzamide herbicide as compared to a wild-type variety of the plant. It is possible for the plants of the present invention to have multiple wild-type or mut-HPPD nucleic acids from different genomes since these plants can contain more than one genome. For example, a plant contains two genomes, usually referred to as the A and B genomes. Because HPPD is a required metabolic enzyme, it is assumed that each genome has at least one gene coding for the HPPD enzyme (i.e. at least one HPPD gene). As used herein, the term “HPPD gene locus” refers to the position of an HPPD gene on a genome, and the terms “HPPD gene” and “HPPD nucleic acid” refer to a nucleic acid encoding the HPPD enzyme. The HPPD nucleic acid on each genome differs in its nucleotide sequence from an HPPD nucleic acid on another genome. One of skill in the art can determine the genome of origin of each HPPD nucleic acid through genetic crossing and/or either sequencing methods or exonuclease digestion methods known to those of skill in the art.


The present invention includes plants comprising one, two, three, or more mut-HPPD alleles, wherein the plant has increased tolerance to a HPPD-inhibiting benzamide herbicide as compared to a wild-type variety of the plant. The mut-HPPD alleles can comprise a nucleotide sequence selected from the group consisting of a polynucleotide as defined in SEQ ID NO: 1, 51, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 52, 54, 56, 68, 69, or a variant or derivative thereof, a polynucleotide encoding a polypeptide as defined in SEQ ID NO: 2, 5, 8, 11, 14, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, or a variant or derivative, homologue, orthologue, paralogue thereof, a polynucleotide comprising at least 60 consecutive nucleotides of any of the aforementioned polynucleotides; and a polynucleotide complementary to any of the aforementioned polynucleotides.


“Alleles” or “allelic variants” are alternative forms of a given gene, located at the same chromosomal position. Allelic variants encompass Single Nucleotide Polymorphisms (SNPs), as well as Small Insertion/Deletion Polymorphisms (INDELs). The size of INDELs is usually less than 100 bp. SNPs and INDELs form the largest set of sequence variants in naturally occurring polymorphic strains of most organisms


The term “variety” refers to a group of plants within a species defined by the sharing of a common set of characteristics or traits accepted by those skilled in the art as sufficient to distinguish one cultivar or variety from another cultivar or variety. There is no implication in either term that all plants of any given cultivar or variety will be genetically identical at either the whole gene or molecular level or that any given plant will be homozygous at all loci. A cultivar or variety is considered “true breeding” for a particular trait if, when the true-breeding cultivar or variety is self-pollinated, all of the progeny contain the trait. The terms “breeding line” or “line” refer to a group of plants within a cultivar defined by the sharing of a common set of characteristics or traits accepted by those skilled in the art as sufficient to distinguish one breeding line or line from another breeding line or line. There is no implication in either term that all plants of any given breeding line or line will be genetically identical at either the whole gene or molecular level or that any given plant will be homozygous at all loci. A breeding line or line is considered “true breeding” for a particular trait if, when the true-breeding line or breeding line is self-pollinated, all of the progeny contain the trait. In the present invention, the trait arises from a mutation in a HPPD gene of the plant or seed.


In some embodiments, traditional plant breeding is employed whereby the HPPD-inhibiting herbicides-tolerant trait is introduced in the progeny plant resulting therefrom. In one embodiment, the present invention provides a method for producing a HPPD-inhibiting herbicides-tolerant progeny plant, the method comprising: crossing a parent plant with a HPPD-inhibiting herbicides-tolerant plant to introduce the HPPD-inhibiting herbicides-tolerance characteristics of the HPPD-inhibiting herbicides-tolerant plant into the germplasm of the progeny plant, wherein the progeny plant has increased tolerance to the HPPD-inhibiting herbicides relative to the parent plant. In other embodiments, the method further comprises the step of introgressing the HPPD-inhibiting herbicides-tolerance characteristics through traditional plant breeding techniques to obtain a descendent plant having the HPPD-inhibiting herbicides-tolerance characteristics.


The herbicide-resistant plants of the invention that comprise polynucleotides encoding mut-HPPD polypeptides also find use in methods for increasing the herbicide-resistance of a plant through conventional plant breeding involving sexual reproduction. The methods comprise crossing a first plant that is a herbicide-resistant plant of the invention to a second plant that may or may not be resistant to the same herbicide or herbicides as the first plant or may be resistant to different herbicide or herbicides than the first plant. The second plant can be any plant that is capable of producing viable progeny plants (i.e., seeds) when crossed with the first plant. Typically, but not necessarily, the first and second plants are of the same species. The methods can optionally involve selecting for progeny plants that comprise the mut-HPPD polypeptides of the first plant and the herbicide resistance characteristics of the second plant. The progeny plants produced by this method of the present invention have increased resistance to a herbicide when compared to either the first or second plant or both. When the first and second plants are resistant to different herbicides, the progeny plants will have the combined herbicide tolerance characteristics of the first and second plants. The methods of the invention can further involve one or more generations of backcrossing the progeny plants of the first cross to a plant of the same line or genotype as either the first or second plant. Alternatively, the progeny of the first cross or any subsequent cross can be crossed to a third plant that is of a different line or genotype than either the first or second plant. The present invention also provides plants, plant organs, plant tissues, plant cells, seeds, and non-human host cells that are transformed with the at least one polynucleotide molecule, expression cassette, or transformation vector of the invention. Such transformed plants, plant organs, plant tissues, plant cells, seeds, and non-human host cells have enhanced tolerance or resistance to at least one herbicide, at levels of the herbicide that kill or inhibit the growth of an untransformed plant, plant tissue, plant cell, or non-human host cell, respectively. Preferably, the transformed plants, plant tissues, plant cells, and seeds of the invention are Arabidopsis thaliana and crop plants.


In other aspects, plants of the invention include those plants which, in addition to being HPPD-inhibiting herbicides-tolerant, have been subjected to further genetic modifications by breeding, mutagenesis or genetic engineering, e.g. have been rendered tolerant to applications of specific other classes of herbicides, such as AHAS inhibitors; auxinic herbicides; bleaching herbicides such as hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors or phytoene desaturase (PDS) inhibitors; EPSPS inhibitors such as glyphosate; glutamine synthetase (GS) inhibitors such as glufosinate; lipid biosynthesis inhibitors such as acetyl CoA carboxylase (ACCase) inhibitors; or oxynil {i.e. bromoxynil or ioxynil) herbicides as a result of conventional methods of breeding or genetic engineering, Thus, HPPD-inhibiting herbicides-tolerant plants of the invention can be made resistant to multiple classes of herbicides through multiple genetic modifications, such as resistance to both glyphosate and glufosinate or to both glyphosate and a herbicide from another class such as HPPD inhibitors, AHAS inhibitors, or ACCase inhibitors. These herbicide resistance technologies are, for example, described in Pest Management Science (at volume, year, page): 61, 2005, 246; 61, 2005, 258; 61, 2005, 277; 61, 2005, 269; 61, 2005, 286; 64, 2008, 326; 64, 2008, 332; Weed Science 57, 2009, 108; Australian Journal of Agricultural Research 58, 2007, 708; Science 316, 2007, 1185; and references quoted therein. For example, HPPD-inhibiting herbicides-tolerant plants of the invention, in some embodiments, may be tolerant to ACCase inhibitors, such as “dims” {e.g., cycloxydim, sethoxydim, clethodim, or tepraloxydim), “fops” {e.g., clodinafop, diclofop, fluazifop, haloxyfop, or quizalofop), and “dens” (such as pinoxaden); to auxinic herbicides, such as dicamba; to EPSPS inhibitors, such as glyphosate; to other HPPD inhibitors; and to GS inhibitors, such as glufosinate.


In addition to these classes of inhibitors, HPPD-inhibiting herbicides-tolerant plants of the invention may also be tolerant to herbicides having other modes of action, for example, chlorophyll/carotenoid pigment inhibitors, cell membrane disrupters, photosynthesis inhibitors, cell division inhibitors, root inhibitors, shoot inhibitors, and combinations thereof.


Such tolerance traits may be expressed, e.g.: as mutant or wildtype HPPD proteins, as mutant AHASL proteins, mutant ACCase proteins, mutant EPSPS proteins, or mutant glutamine synthetase proteins; or as mutant native, inbred, or transgenic aryloxyalkanoate dioxygenase (AAD or DHT), haloarylnitrilase (BXN), 2,2-dichloropropionic acid dehalogenase (DEH), glyphosate-N-acetyltransferase (GAT), glyphosate decarboxylase (GDC), glyphosate oxidoreductase (GOX), glutathione-S-transferase (GST), phosphinothricin acetyltransferase (PAT or bar), or CYP450s proteins having an herbicide-degrading activity. HPPD-inhibiting herbicides-tolerant plants hereof can also be stacked with other traits including, but not limited to, pesticidal traits such as Bt Cry and other proteins having pesticidal activity toward coleopteran, lepidopteran, nematode, or other pests; nutrition or nutraceutical traits such as modified oil content or oil profile traits, high protein or high amino acid concentration traits, and other trait types known in the art.


Furthermore, in other embodiments, HPPD-inhibiting herbicides-tolerant plants are also covered which are, by the use of recombinant DNA techniques and/or by breeding and/or otherwise selected for such characteristics, rendered able to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as [delta]-endotoxins, e.g. CryIA(b), CryIA(c), CryIF, CryIF(a2), CryIIA(b), CryIIIA, CryIIB(bl) or Cry9c; vegetative insecticidal proteins (VIP), e.g. VIP1, VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, e.g. Photorhabdus spp. or Xenorhabdus spp.; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins; toxins produced by fungi, such streptomycete toxins; plant lectins, such as pea or barley lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxy-steroid oxidase, ecdysteroid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase; ion channel blockers, such as blockers of sodium or calcium channels; juvenile hormone esterase; diuretic hormone receptors (helicokinin receptors); stilben synthase, bibenzyl synthase, chitinases or glucanases. In the context of the present invention these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins. Hybrid proteins are characterized by a new combination of protein domains, (see, e.g. WO 02/015701). Further examples of such toxins or genetically modified plants capable of synthesizing such toxins are disclosed, e.g., in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/18810 und WO 03/52073. The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e.g. in the publications mentioned above. These insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins tolerance to harmful pests from all taxonomic groups of arthropods, especially to beetles (Coeloptera), two-winged insects (Diptera), and moths (Lepidoptera) and to nematodes (Nematoda).


In some embodiments, expression of one or more protein toxins (e.g., insecticidal proteins) in the HPPD-inhibiting herbicides-tolerant plants is effective for controlling organisms that include, for example, members of the classes and orders: Coleoptera such as the American bean weevil Acanthoscelides obtectus; the leaf beetle Agelastica alni; click beetles (Agriotes lineatus, Agriotes obscurus, Agriotes bicolor); the grain beetle Ahasverus advena; the summer schafer Amphimallon solstitialis; the furniture beetle Anobium punctatum; Anthonomus spp. (weevils); the Pygmy mangold beetle Atomaria linearis; carpet beetles (Anthrenus spp., Attagenus spp.); the cowpea weevil Callosobruchus maculates; the fried fruit beetle Carpophilus hemipterus; the cabbage seedpod weevil Ceutorhynchus assimilis; the rape winter stem weevil Ceutorhynchus picitarsis; the wireworms Conoderus vespertinus and Conoderus falli; the banana weevil Cosmopolites sordidus; the New Zealand grass grub Costelytra zealandica; the June beetle Cotinis nitida; the sunflower stem weevil Cylindrocopturus adspersus; the larder beetle Dermestes lardarius; the corn rootworms Diabrotica virgifera, Diabrotica virgifera virgifera, and Diabrotica barberi; the Mexican bean beetle Epilachna varivestis; the old house borer Hylotropes bajulus; the lucerne weevil Hypera postica; the shiny spider beetle Gibbium psylloides; the cigarette beetle Lasioderma serricorne; the Colorado potato beetle Leptinotarsa decemlineata; Lyctus beetles {Lyctus spp., the pollen beetle Meligethes aeneus; the common cockshafer Melolontha melolontha; the American spider beetle Mezium americanum; the golden spider beetle Niptus hololeuc s; the grain beetles Oryzaephilus surinamensis and Oryzaephilus Mercator; the black vine weevil Otiorhynchus sulcatus; the mustard beetle Phaedon cochleariae, the crucifer flea beetle Phyllotreta cruciferae; the striped flea beetle Phyllotreta striolata; the cabbage steam flea beetle Psylliodes chrysocephala; Ptinus spp. (spider beetles); the lesser grain borer Rhizopertha dominica; the pea and been weevil Sitona lineatus; the rice and granary beetles Sitophilus oryzae and Sitophilus granaries; the red sunflower seed weevil Smicronyx fulvus; the drugstore beetle Stegobium paniceum; the yellow mealworm beetle Tenebrio molitor, the flour beetles Tribolium castaneum and Tribolium confusum; warehouse and cabinet beetles {Trogoderma spp.); the sunflower beetle Zygogramma exclamationis; Dermaptera (earwigs) such as the European earwig Forficula auricularia and the striped earwig Labidura riparia; Dictyoptera such as the oriental cockroach Blatta orientalis; the greenhouse millipede Oxidus gracilis; the beet fly Pegomyia betae; the frit fly Oscinella frit; fruitflies (Dacus spp., Drosophila spp.); Isoptera (termites) including species from the familes Hodotermitidae, Kalotermitidae, Mastotermitidae, Rhinotermitidae, Serritermitidae, Termitidae, Termopsidae; the tarnished plant bug Lygus lineolaris; the black bean aphid Aphis fabae; the cotton or melon aphid Aphis gossypii; the green apple aphid Aphis pomi; the citrus spiny whitefly Aleurocanthus spiniferus; the sweet potato whitefly Bemesia tabaci; the cabbage aphid Brevicoryne brassicae; the pear psylla Cacopsylla pyricola; the currant aphid Cryptomyzus ribis; the grape phylloxera Daktulosphaira vitifoliae; the citrus psylla Diaphorina citri; the potato leafhopper Empoasca fabae; the bean leafhopper Empoasca Solana; the vine leafhopper Empoasca vitis; the woolly aphid Eriosoma lanigerum; the European fruit scale Eulecanium corni; the mealy plum aphid Hyalopterus arundinis; the small brown planthopper Laodelphax striatellus; the potato aphid Macrosiphum euphorbiae; the green peach aphid Myzus persicae; the green rice leafhopper Nephotettix cinticeps; the brown planthopper Nilaparvata lugens; the hop aphid Phorodon humuli; the bird-cherry aphid Rhopalosiphum padi; the grain aphid Sitobion avenae; Lepidoptera such as Adoxophyes orana (summer fruit tortrix moth); Archips podana (fruit tree tortrix moth); Bucculatrix pyrivorella (pear leafminer); Bucculatrix thurberiella (cotton leaf perforator); Bupalus piniarius (pine looper); Carpocapsa pomonella (codling moth); Chilo suppressalis (striped rice borer); Choristoneura fumiferana (eastern spruce budworm); Cochylis hospes (banded sunflower moth); Diatraea grandiosella (southwestern corn borer); Eupoecilia ambiguella (European grape berry moth); Helicoverpa armigera (cotton bollworm); Helicoverpa zea (cotton bollworm); Heliothis vires cens (tobacco budworm), Homeosoma electellum (sunflower moth); Homona magnanima (oriental tea tree tortrix moth); Lithocolletis blancardella (spotted tentiform leafminer); Lymantria dispar (gypsy moth); Malacosoma neustria (tent caterpillar); Mamestra brassicae (cabbage armyworm); Mamestra configurata (Bertha armyworm); Operophtera brumata (winter moth); Ostrinia nubilalis (European corn borer), Panolis flammea (pine beauty moth), Phyllocnistis citrella (citrus leafminer); Pieris brassicae (cabbage white butterfly); Rachiplusia ni (soybean looper); Spodoptera exigua (beet armywonn); Spodoptera littoralis (cotton leafworm); Sylepta derogata (cotton leaf roller); Trichoplusia ni (cabbage looper); Orthoptera such as the common cricket Acheta domesticus, tree locusts (Anacridium spp.), the migratory locust Locusta migratoria, the twostriped grasshopper Melanoplus bivittatus, the differential grasshopper Melanoplus differ entialis, the redlegged grasshopper Melanoplus femurrubrum, the migratory grasshopper Melanoplus sanguinipes, the northern mole cricket Neocurtilla hexadectyla, the red locust Nomadacris septemfasciata, the shortwinged mole cricket Scapteriscus abbreviatus, the southern mole cricket Scapteriscus borellii, the tawny mole cricket Scapteriscus vicinus, and the desert locust Schistocerca gregaria; Symphyla such as the garden symphylan Scutigerella immaculata; Thysanoptera such as the tobacco thrips Frankliniella fusca, the flower thrips Frankliniella intonsa, the western flower thrips Frankliniella occidentalism the cotton bud thrips Frankliniella schultzei, the banded greenhouse thrips Hercinothrips femoralis, the soybean thrips Neohydatothrips variabilis, Kelly's citrus thrips Pezothrips kellyanus, the avocado thrips Scirtothrips perseae, the melon thrips Thrips palmi, and the onion thrips Thrips tabaci; and the like, and combinations comprising one or more of the foregoing organisms.


In some embodiments, expression of one or more protein toxins (e.g., insecticidal proteins) in the HPPD-inhibiting herbicides-tolerant plants is effective for controlling flea beetles, i.e. members of the flea beetle tribe of family Chrysomelidae against Phyllotreta spp., such as Phyllotreta cruciferae and/or Phyllotreta triolata. In other embodiments, expression of one or more protein toxins {e.g., insecticidal proteins) in the HPPD-inhibiting herbicides-tolerant plants is effective for controlling cabbage seedpod weevil, the Bertha armyworm, Lygus bugs, or the diamondback moth.


It is to be understood that the plant of the present invention can comprise a wild-type HPPD nucleic acid in addition to a mut-HPPD nucleic acid. It is contemplated that the HPPD-inhibiting benzamide herbicide tolerant lines may contain a mutation in only one of multiple HPPD isoenzymes. Therefore, the present invention includes a plant comprising one or more mut-HPPD nucleic acids in addition to one or more wild type HPPD nucleic acids.


In another embodiment, the invention refers to a seed produced by a transgenic plant comprising a plant cell of the present invention, wherein the seed is true breeding for an increased resistance to a HPPD-inhibiting benzamide herbicide as compared to a wild type variety of the seed.


In another embodiment, the invention refers to a method of producing a transgenic plant cell with an increased resistance to a HPPD-inhibiting benzamide herbicide as compared to a wild-type variety of the plant cell comprising, transforming the plant cell with an expression cassette comprising a nucleic acid encoding a wildtype or a mut-HPPD as defined SUPRA.


In another embodiment, the invention refers to a method of producing a transgenic plant comprising, (a) transforming a plant cell with an expression cassette comprising a nucleic acid encoding a wild-type or a mut-HPPD, and (b) generating a plant with an increased resistance to HPPD-inhibiting benzamide herbicide from the plant cell.


Consequently, HPPD nucleic acids encoding a wildtype or a mut-HPPD useful for the invention are provided in expression cassettes for expression in the plant of interest. The cassette will include regulatory sequences operably linked to a HPPD nucleic acid sequence encoding a wildtype or a mut-HPPD of the invention. The term “regulatory element” as used herein refers to a polynucleotide that is capable of regulating the transcription of an operably linked polynucleotide. It includes, but not limited to, promoters, enhancers, introns, 5′ UTRs, and 3′ UTRs. By “operably linked” is intended a functional linkage between a promoter and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence. Generally, operably linked means that the nucleic acid sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in the same reading frame. The cassette may additionally contain at least one additional gene to be cotransformed into the organism. Alternatively, the additional gene(s) can be provided on multiple expression cassettes.


Such an expression cassette is provided with a plurality of restriction sites for insertion of the HPPD nucleic acid sequence to be under the transcriptional regulation of the regulatory regions. The expression cassette may additionally contain selectable marker genes.


The expression cassette will include in the 5′-3′ direction of transcription, a transcriptional and translational initiation region (i.e., a promoter), a mut-HPPD nucleic acid sequence of the invention, and a transcriptional and translational termination region (i.e., termination region) functional in plants. The promoter may be native or analogous, or foreign or heterologous, to the plant host and/or to the HPPD nucleic acid sequence of the invention. Additionally, the promoter may be the natural sequence or alternatively a synthetic sequence. Where the promoter is “foreign” or “heterologous” to the plant host, it is intended that the promoter is not found in the native plant into which the promoter is introduced. Where the promoter is “foreign” or “heterologous” to the HPPD nucleic acid sequence of the invention, it is intended that the promoter is not the native or naturally occurring promoter for the operably linked HPPD nucleic acid sequence of the invention. As used herein, a chimeric gene comprises a coding sequence operably linked to a transcription initiation region that is heterologous to the coding sequence.


While it may be preferable to express the HPPD nucleic acids of the invention using heterologous promoters, the native promoter sequences may be used. Such constructs would change expression levels of the HPPD protein in the plant or plant cell. Thus, the phenotype of the plant or plant cell is altered.


The termination region may be native with the transcriptional initiation region, may be native with the operably linked HPPD sequence of interest, may be native with the plant host, or may be derived from another source (i.e., foreign or heterologous to the promoter, the HPPD nucleic acid sequence of interest, the plant host, or any combination thereof). Convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. See also Guerineau et al. (1991) Mol. Gen. Genet. 262: 141-144; Proudfoot (1991) Cell 64:671-674; Sanfacon et al. (1991) Genes Dev. 5: 141-149; Mogen et al. (1990) Plant Cell 2: 1261-1272; Munroe et al. (1990) Gene 91: 151-158; Ballas t al. (1989) Nucleic Acids Res. 17:7891-7903; and Joshi et al. (1987) Nucleic Acid Res. 15:9627-9639. Where appropriate, the gene(s) may be optimized for increased expression in the transformed plant. That is, the genes can be synthesized using plant-preferred codons for improved expression. See, for example, Campbell and Gowri (1990) Plant Physiol. 92: 1-11 for a discussion of host-preferred codon usage. Methods are available in the art for synthesizing plant-preferred genes. See, for example, U.S. Pat. Nos. 5,380,831, and 5,436,391, and Murray et al. (1989) Nucleic Acids Res. 17:477-498, herein incorporated by reference.


Additional sequence modifications are known to enhance gene expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other such well-characterized sequences that may be deleterious to gene expression. The G-C content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. When possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures. Nucleotide sequences for enhancing gene expression can also be used in the plant expression vectors. These include the introns of the maize Adhl, intron I gene (Callis et al. Genes and Development 1: 1183-1200, 1987), and leader sequences, (W-sequence) from the Tobacco Mosaic virus (TMV), Maize Chlorotic Mottle Virus and Alfalfa Mosaic Virus (Gallie et al. Nucleic Acid Res. 15:8693-8711, 1987 and Skuzeski et al. Plant Mol. Biol. 15:65-79, 1990). The first intron from the shrunken-1 locus of maize, has been shown to increase expression of genes in chimeric gene constructs. U.S. Pat. Nos. 5,424,412 and 5,593,874 disclose the use of specific introns in gene expression constructs, and Gallie et al. (Plant Physiol. 106:929-939, 1994) also have shown that introns are useful for regulating gene expression on a tissue specific basis. To further enhance or to optimize mut-HPPD gene expression, the plant expression vectors of the invention may also contain DNA sequences containing matrix attachment regions (MARs). Plant cells transformed with such modified expression systems, then, may exhibit overexpression or constitutive expression of a nucleotide sequence of the invention.


The expression cassettes may additionally contain 5′ leader sequences in the expression cassette construct. Such leader sequences can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5′ noncoding region) (Elroy-Stein et al. (1989) Proc. Natl. Acad. ScL USA 86:6126-6130); potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Gallie et al. (1995) Gene 165(2):233-238), MDMV leader (Maize Dwarf Mosaic Virus) (Virology 154:9-20), and human immunoglobulin heavy-chain binding protein (BiP) (Macejak et al. (1991) Nature 353:90-94); untranslated leader from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4) (Jobling et al. (1987) Nature 325:622-625); tobacco mosaic virus leader (TMV) (Gallie et al. (1989) in Molecular Biology of RNA, ed. Cech (Liss, New York), pp. 237-256); and maize chlorotic mottle virus leader (MCMV) (Lommel et al. (1991) Virology 81:382-385). See also, Della-Cioppa et al. (1987) Plant Physiol. 84:965-968. Other methods known to enhance translation can also be utilized, for example, introns, and the like.


In preparing the expression cassette, the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame. Toward this end, adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like. For this purpose, in vitro mutagenesis, primer repair, restriction, annealing, resubstitutions, e.g., transitions and transversions, may be involved.


A number of promoters can be used in the practice of the invention. The promoters can be selected based on the desired outcome. The nucleic acids can be combined with constitutive, tissue-preferred, or other promoters for expression in plants. Such constitutive promoters include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in WO 99/43838 and U.S. Pat. No. 6,072,050; the core CaMV 35S promoter (Odell et al. (1985) Nature 313:810-812); rice actin (McElroy et al. (1990) Plant Cell 2: 163-171); ubiquitin (Christensen et al. (1989) Plant Mol. Biol. 12:619-632 and Christensen et al. (1992) Plant Mol. Biol. 18:675-689); pEMU (Last et al. (1991) Theor. Appl. Genet. 81:581-588); MAS (Velten et al. (1984) EMBO J. 3:2723-2730); ALS promoter (U.S. Pat. No. 5,659,026), and the like. Other constitutive promoters include, for example, U.S. Pat. Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; 5,608,142; and 6,177,611.


Tissue-preferred promoters can be utilized to target enhanced HPPD expression within a particular plant tissue. Such tissue-preferred promoters include, but are not limited to, leaf-preferred promoters, root-preferred promoters, seed-preferred promoters, and stem-preferred promoters. Tissue-preferred promoters include Yamamoto et al. (1997) Plant J. 12(2):255-265; Kawamata et al. (1997) Plant Cell Physiol. 38(7):792-803; Hansen et al. (1997) Mol. Gen Genet. 254(3):337-343; Russell et al. (1997) Transgenic Res. 6(2): 157-168; Rinehart et al. (1996) Plant Physiol. 112(3): 1331-1341; Van Camp et al. (1996) Plant Physiol. 112(2):525-535; Canevascini et al. (1996) Plant Physiol. 112(2):513-524; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Lam (1994) Results Probl. Cell Differ. 20: 181-196: Orozco et al. (1993) Plant Mol Biol. 23(6): 1129-1138; Matsuoka et al. (1993) Proc Natl. Acad. Sci. USA 90(20):9586-9590; and Guevara-Garcia et al. (1993) Plant J. 4(3):495-505. Such promoters can be modified, if necessary, for weak expression. In one embodiment, the nucleic acids of interest are targeted to the chloroplast for expression. In this manner, where the nucleic acid of interest is not directly inserted into the chloroplast, the expression cassette will additionally contain a chloroplast-targeting sequence comprising a nucleotide sequence that encodes a chloroplast transit peptide to direct the gene product of interest to the chloroplasts. Such transit peptides are known in the art. With respect to chloroplast-targeting sequences, “operably linked” means that the nucleic acid sequence encoding a transit peptide (i.e., the chloroplast-targeting sequence) is linked to the HPPD nucleic acid of the invention such that the two sequences are contiguous and in the same reading frame. See, for example, Von Heijne et al. (1991) Plant Mol. Biol. Rep. 9: 104-126; Clark et al. (1989) J. Biol. Chem. 264:17544-17550; Della-Cioppa et al. (1987) Plant Physiol. 84:965-968; Romer et al. (1993) Biochem. Biophys. Res. Commun. 196:1414-1421; and Shah et al. (1986) Science 233:478-481. Any chloroplast transit peptide known in the art can be fused to the amino acid sequence of a mature HPPD protein of the invention by operably linking a choloroplast-targeting sequence to the 5′-end of a nucleotide sequence encoding a mature mut-HPPD protein of the invention. Chloroplast targeting sequences are known in the art and include the chloroplast small subunit of ribulose-1,5-bisphosphate carboxylase (Rubisco) (de Castro Silva Filho et al. (1996) Plant Mol. Biol. 30:769-780; Schnell et al. (1991) J. Biol. Chem. 266(5):3335-3342); 5-(enolpyruvyl)shikimate-3-phosphate synthase (EPSPS) (Archer et al. (1990) J. Bioenerg. Biomemb. 22(6):789-810); tryptophan synthase (Zhao et al. (1995) J. Biol. Chem. 270(11):6081-6087); plastocyanin (Lawrence et al. (1997) J. Biol. Chem. 272(33):20357-20363); chorismate synthase (Schmidt et al. (1993) J. Biol. Chem. 268(36):27447-27457); and the light harvesting chlorophyll a/b binding protein (LHBP) (Lamppa et al. (1988) J. Biol. Chem. 263: 14996-14999). See also Von Heijne et al. (1991) Plant Mol. Biol. Rep. 9: 104-126; Clark et al. (1989) J. Biol. Chem. 264:17544-17550; Della-Cioppa et al. (1987) Plant Physiol. 84:965-968; Romer et al. (1993) Biochem. Biophys. Res. Commun. 196: 1414-1421; and Shah et al. (1986) Science 233:478-481.


Methods for transformation of chloroplasts are known in the art. See, for example, Svab et al. (1990) Proc. Natl. Acad. ScL USA 87:8526-8530; Svab and Maliga (1993) Proc. Natl. Acad. Sci. USA 90:913-917; Svab and Maliga (1993) EMBO J. 12:601-606. The method relies on particle gun delivery of DNA containing a selectable marker and targeting of the DNA to the plastid genome through homologous recombination. Additionally, plastid transformation can be accomplished by transactivation of a silent plastid-bome transgene by tissue-preferred expression of a nuclear-encoded and plastid-directed RNA polymerase. Such a system has been reported in McBride et al. (1994) Proc. Natl. Acad. Sci. USA 91:7301-7305. The nucleic acids of interest to be targeted to the chloroplast may be optimized for expression in the chloroplast to account for differences in codon usage between the plant nucleus and this organelle. In this manner, the nucleic acids of interest may be synthesized using chloroplast-preferred codons. See, for example, U.S. Pat. No. 5,380,831, herein incorporated by reference.


In a preferred embodiment, the HPPD nucleic acid encoding a wildtype or a mut-HPPD (a) or the HST nucleic acid (b) comprises a polynucleotide sequence selected from the group consisting of: a) a polynucleotide as shown in SEQ ID NO: 1, 51, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 52, 54, 56, 68, 69, or a variant or derivative thereof; b) a polynucleotide encoding a polypeptide as shown in SEQ ID NO: 2, 5, 8, 11, 14, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, or a variant or derivative thereof; c) a polynucleotide comprising at least 60 consecutive nucleotides of any of a) through b); and d) a polynucleotide complementary to the polynucleotide of any of a) through c)


Preferably, the expression cassette further comprises a transcription initiation regulatory region and a translation initiation regulatory region that are functional in the plant.


While the polynucleotides of the invention find use as selectable marker genes for plant transformation, the expression cassettes of the invention can include another selectable marker gene for the selection of transformed cells. Selectable marker genes, including those of the present invention, are utilized for the selection of transformed cells or tissues. Marker genes include, but are not limited to, genes encoding antibiotic resistance, such as those encoding neomycin phosphotransferase II (NEO) and hygromycin phosphotransferase (HPT), as well as genes conferring resistance to herbicidal compounds, such as glufosinate ammonium, bromoxynil, imidazolinones, and 2,4-dichlorophenoxyacetate (2,4-D). See generally, Yarranton (1992) Curr. Opin. Biotech. 3:506-511; Christophers on et al (1992) Proc. Natl. Acad. ScL USA 89:6314-6318; Yao et al. (1992) Cell 71:63-72; Reznikoff (1992) Mol Microbiol 6:2419-2422; Barkley et al (1980) in The Operon, pp. 177-220; Hu et al (1987) Cell 48:555-566; Brown et al (1987) Cell 49:603-612; Figge et al (1988) Cell 52:713-722; Deuschle et al (1989) Proc. Natl Acad. AcL USA 86:5400-5404; Fuerst et al (1989) Proc. Natl Acad. ScL USA 86:2549-2553; Deuschle et al (1990) Science 248:480-483; Gossen (1993) Ph.D. Thesis, University of Heidelberg; Reines et al (1993) Proc. Natl Acad. ScL USA 90: 1917-1921; Labow et al (1990) Mol Cell Biol 10:3343-3356; Zambretti et al (1992) Proc. Natl Acad. ScL USA 89:3952-3956; Bairn et al (1991) Proc. Natl Acad. ScL USA 88:5072-5076; Wyborski et al (1991) Nucleic Acids Res. 19:4647-4653; Hillenand-Wissman (1989) Topics Mol Struc. Biol 10: 143-162; Degenkolb et al (1991) Antimicrob. Agents Chemother. 35: 1591-1595; Kleinschnidt et al (1988) Biochemistry 27: 1094-1104; Bonin (1993) Ph.D. Thesis, University of Heidelberg; Gossen et al (1992) Proc. Natl Acad. ScL USA 89:5547-5551; Oliva et al (1992) Antimicrob. Agents Chemother. 36:913-919; Hlavka et al (1985) Handbook of Experimental Pharmacology, Vol. 78 (Springer-Verlag, Berlin); Gill et al (1988) Nature 334:721-724. Such disclosures are herein incorporated by reference. The above list of selectable marker genes is not meant to be limiting. Any selectable marker gene can be used in the present invention.


The invention further provides an isolated recombinant expression vector comprising the expression cassette containing a HPPD nucleic acid as described above, wherein expression of the vector in a host cell results in increased tolerance to a HPPD-inhibiting benzamide herbicide as compared to a wild type variety of the host cell. As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid,” which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as “expression vectors.” In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, “plasmid” and “vector” can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses, and adeno-associated viruses), which serve equivalent functions.


The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed. Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cells and those that direct expression of the nucleotide sequence only in certain host cells or under certain conditions. It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of polypeptide desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce polypeptides or peptides, including fusion polypeptides or peptides, encoded by nucleic acids as described herein (e.g., mut-HPPD polypeptides, fusion polypeptides, etc.).


In a preferred embodiment of the present invention, the HPPD polypeptides are expressed in plants and plant cells such as unicellular plant cells (such as algae) (See Falciatore et al., 1999, Marine Biotechnology 1(3):239-251 and references therein) and plant cells from higher plants (e.g., the spermatophytes, such as crop plants). A HPPD polynucleotide may be “introduced” into a plant cell by any means, including transfection, transformation or transduction, electroporation, particle bombardment, agroinfection, biolistics, and the like.


Suitable methods for transforming or transfecting host cells including plant cells can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989) and other laboratory manuals such as Methods in Molecular Biology, 1995, Vol. 44, Agrobacterium protocols, ed: Gartland and Davey, Humana Press, Totowa, N.J. As increased tolerance to HPPD-inhibiting benzamide herbicides is a general trait wished to be inherited into a wide variety of plants like maize, wheat, rye, oat, triticale, rice, barley, soybean, peanut, cotton, rapeseed and canola, manihot, pepper, sunflower and tagetes, solanaceous plants like potato, tobacco, eggplant, and tomato, Vicia species, pea, alfalfa, bushy plants (coffee, cacao, tea), Salix species, trees (oil palm, coconut), and perennial grasses. Forage crops are also preferred target plants for a genetic engineering as one further embodiment of the present invention. In a preferred embodiment, the plant is a crop plant. Forage crops include, but are not limited to, Wheatgrass, Canarygrass, Bromegrass, Wildrye Grass, Bluegrass, Orchardgrass, Alfalfa, Salfoin, Birdsfoot Trefoil, Alsike Clover, Red Clover, and Sweet Clover.


In one embodiment of the present invention, transfection of a mut-HPPD polynucleotide into a plant is achieved by Agrobacterium mediated gene transfer. One transformation method known to those of skill in the art is the dipping of a flowering plant into an Agrobacteriasolution, wherein the Agrobacteriacontains the mut-HPPD nucleic acid, followed by breeding of the transformed gametes. Agrobacteriummediated plant transformation can be performed using for example the GV3101 (pMP90) (Koncz and Schell, 1986, Mol. Gen. Genet. 204:383-396) or LBA4404 (Clontech) Agrobacterium tumefaciens strain. Transformation can be performed by standard transformation and regeneration techniques (Deblaere et al., 1994, Nucl. Acids. Res. 13:4777-4788; Gelvin, Stanton B. and Schilperoort, Robert A, Plant Molecular Biology Manual, 2nd Ed.—Dordrecht: Kluwer Academic Publ., 1995.—in Sect., Ringbuc Zentrale Signatur: BT11-P ISBN 0-7923-2731-4; Glick, Bernard R. and Thompson, John E., Methods in Plant Molecular Biology and Biotechnology, Boca Raton: CRC Press, 1993 360 S., ISBN 0-8493-5164-2). For example, rapeseed can be transformed via cotyledon or hypocotyl transformation (Moloney et al., 1989, Plant Cell Report 8:238-242; De Block et al., 1989, Plant Physiol. 91:694-701). Use of antibiotics for Agrobacterium and plant selection depends on the binary vector and the Agrobacteriumstrain used for transformation. Rapeseed selection is normally performed using kanamycin as selectable plant marker. Agrobacterium-mediated gene transfer to flax can be performed using, for example, a technique described by Mlynarova et al., 1994, Plant Cell Report 13:282-285. Additionally, transformation of soybean can be performed using for example a technique described in European Patent No. 0424 047, U.S. Pat. No. 5,322,783, European Patent No. 0397 687, U.S. Pat. No. 5,376,543, or U.S. Pat. No. 5,169,770. Transformation of maize can be achieved by particle bombardment, polyethylene glycol mediated DNA uptake, or via the silicon carbide fiber technique. (See, for example, Freeling and Walbot “The maize handbook” Springer Verlag: New York (1993) ISBN 3-540-97826-7). A specific example of maize transformation is found in U.S. Pat. No. 5,990,387, and a specific example of wheat transformation can be found in PCT Application No. WO 93/07256.


According to the present invention, the introduced HPPD polynucleotide may be maintained in the plant cell stably if it is incorporated into a non-chromosomal autonomous replicon or integrated into the plant chromosomes. Alternatively, the introduced mut-HPPD polynucleotide may be present on an extra-chromosomal non-replicating vector and be transiently expressed or transiently active. In one embodiment, a homologous recombinant microorganism can be created wherein the mut-HPPD polynucleotide is integrated into a chromosome, a vector is prepared which contains at least a portion of an HPPD gene into which a deletion, addition, or substitution has been introduced to thereby alter, e.g., functionally disrupt, the endogenous HPPD gene and to create a mut-HPPD gene. To create a point mutation via homologous recombination, DNA-RNA hybrids can be used in a technique known as chimeraplasty (Cole-Strauss et al., 1999, Nucleic Acids Research 27(5):1323-1330 and Kmiec, 1999, Gene therapy American Scientist 87(3):240-247). Other homologous recombination procedures in Triticum species are also well known in the art and are contemplated for use herein.


In the homologous recombination vector, the wildtype or mut-HPPD gene can be flanked at its 5′ and 3′ ends by an additional nucleic acid molecule of the HPPD gene to allow for homologous recombination to occur between the exogenous wildtype or mut-HPPD gene carried by the vector and an endogenous HPPD gene, in a microorganism or plant. The additional flanking HPPD nucleic acid molecule is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several hundreds of base pairs up to kilobases of flanking DNA (both at the 5′ and 3′ ends) are included in the vector (see e.g., Thomas, K. R., and Capecchi, M. R., 1987, Cell 51:503 for a description of homologous recombination vectors or Strepp et al., 1998, PNAS, 95(8):4368-4373 for cDNA based recombination in Physcomitrella patens). However, since the mut-HPPD gene normally differs from the HPPD gene at very few amino acids, a flanking sequence is not always necessary. The homologous recombination vector is introduced into a microorganism or plant cell (e.g., via polyethylene glycol mediated DNA), and cells in which the introduced mut-HPPD gene has homologously recombined with the endogenous HPPD gene are selected using art-known techniques.


In another embodiment, recombinant microorganisms can be produced that contain selected systems that allow for regulated expression of the introduced gene. For example, inclusion of a mut-HPPD gene on a vector placing it under control of the lac operon permits expression of the mut-HPPD gene only in the presence of IPTG. Such regulatory systems are well known in the art.


Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms “host cell” and “recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but they also apply to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein. A host cell can be any prokaryotic or eukaryotic cell. For example, a mut-HPPD polynucleotide can be expressed in bacterial cells such as C. glutamicum, insect cells, fungal cells, or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells), algae, ciliates, plant cells, fungi or other microorganisms like C. glutamicum. Other suitable host cells are known to those skilled in the art.


A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) a mut-HPPD polynucleotide. Accordingly, the invention further provides methods for producing mut-HPPD polypeptides using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a mut-HPPD polypeptide has been introduced, or into which genome has been introduced a gene encoding a wild-type or mut-HPPD polypeptide) in a suitable medium until mut-HPPD polypeptide is produced. In another embodiment, the method further comprises isolating mut-HPPD polypeptides from the medium or the host cell. Another aspect of the invention pertains to isolated mut-HPPD polypeptides, and biologically active portions thereof. An “isolated” or “purified” polypeptide or biologically active portion thereof is free of some of the cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. The language “substantially free of cellular material” includes preparations of mut-HPPD polypeptide in which the polypeptide is separated from some of the cellular components of the cells in which it is naturally or recombinantly produced. In one embodiment, the language “substantially free of cellular material” includes preparations of a mut-HPPD polypeptide having less than about 30% (by dry weight) of non-mut-HPPD material (also referred to herein as a “contaminating polypeptide”), more preferably less than about 20% of non-mut-HPPD material, still more preferably less than about 10% of non-mut-HPPD material, and most preferably less than about 5% non-mut-HPPD material.


When the mut-HPPD polypeptide, or biologically active portion thereof, is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the polypeptide preparation. The language “substantially free of chemical precursors or other chemicals” includes preparations of mut-HPPD polypeptide in which the polypeptide is separated from chemical precursors or other chemicals that are involved in the synthesis of the polypeptide. In one embodiment, the language “substantially free of chemical precursors or other chemicals” includes preparations of a mut-HPPD polypeptide having less than about 30% (by dry weight) of chemical precursors or non-mut-HPPD chemicals, more preferably less than about 20% chemical precursors or non-mut-HPPD chemicals, still more preferably less than about 10% chemical precursors or non-mut-HPPD chemicals, and most preferably less than about 5% chemical precursors or non-mut-HPPD chemicals. In preferred embodiments, isolated polypeptides, or biologically active portions thereof, lack contaminating polypeptides from the same organism from which the mut-HPPD polypeptide is derived. Typically, such polypeptides are produced by recombinant expression of, for example, a mut-HPPD polypeptide in plants other than, or in microorganisms such as C. glutamicum, ciliates, algae, or fungi.


As described above, the present invention teaches compositions and methods for increasing the HPPD-inhibiting benzamide tolerance of a crop plant or seed as compared to a wild-type variety of the plant or seed. In a preferred embodiment, the HPPD-inhibiting tolerance of a crop plant or seed is increased such that the plant or seed can withstand a HPPD-inhibiting herbicide application of preferably approximately 1-1000 g ai ha−1, more preferably 20-160 g ai ha−1, and most preferably 40-80 g ai ha−1. As used herein, to “withstand” a HPPD-inhibiting herbicide application means that the plant is either not killed or not injured by such application.


Furthermore, the present invention provides methods that involve the use of at least one HPPD-inhibiting benzamide herbicide as listed SUPRA.


In these methods, the HPPD-inhibiting benzamide herbicide can be applied by any method known in the art including, but not limited to, seed treatment, soil treatment, and foliar treatment. Prior to application, the HPPD-inhibiting benzamide herbicide can be converted into the customary formulations, for example solutions, emulsions, suspensions, dusts, powders, pastes and granules. The use form depends on the particular intended purpose; in each case, it should ensure a fine and even distribution of the compound according to the invention.


By providing plants having increased tolerance to HPPD-inhibiting benzamide herbicide, a wide variety of formulations can be employed for protecting plants from weeds, so as to enhance plant growth and reduce competition for nutrients. A HPPD-inhibiting benzamide herbicide can be used by itself for pre-emergence, post-emergence, pre-planting, and at-planting control of weeds in areas surrounding the crop plants described herein, or a HPPD-inhibiting benzamide herbicide formulation can be used that contains other additives. The HPPD-inhibiting benzamide herbicide can also be used as a seed treatment. Additives found in a HPPD-inhibiting benzamide herbicide formulation include other herbicides, detergents, adjuvants, spreading agents, sticking agents, stabilizing agents, or the like. The HPPD-inhibiting benzamide herbicide formulation can be a wet or dry preparation and can include, but is not limited to, flowable powders, emulsifiable concentrates, and liquid concentrates. The HPPD-inhibiting benzamide herbicide and herbicide formulations can be applied in accordance with conventional methods, for example, by spraying, irrigation, dusting, or the like.


Suitable formulations are described in detail in PCT/EP2009/063387 and PCT/EP2009/063386, which are incorporated herein by reference.


It should also be understood that the foregoing relates to preferred embodiments of the present invention and that numerous changes may be made therein without departing from the scope of the invention. The invention is further illustrated by the following examples, which are not to be construed in any way as imposing limitations upon the scope thereof. On the contrary, it is to be clearly understood that resort may be had to various other embodiments, modifications, and equivalents thereof, which, after reading the description herein, may suggest themselves to those skilled in the art without departing from the spirit of the present invention and/or the scope of the appended claims.


EXAMPLES
Example 1: Cloning of HPPD Encoding Genes

HPPD encoding genes, were synthesized by Geneart (Regensburg, Germany) or Entelechon (Regensburg, Germany) and subcloned into a modified pET24D (Novagen) expression vector resulting in N-terminally His-tagged expression constructs.


Example 2: Heterologous Expression and Purification of Recombinant HPPD Enzymes

Recombinant HPPD enzymes are produced and overexpressed in E. coli Chemically competent BL21 (DE3) cells (Invitrogen, Carlsbad, USA) are transformed with pEXP5-NT/TOPO® (see EXAMPLE 1) or with other expression vectors according to the manufacturer's instructions.


Transformed cells are grown in autoinduction medium (ZYM 5052 supplemented with 100 μg/ml ampicillin) for 6 h at 37° C. followed by 24 h at 25° C.


Cells are harvested by centrifugation (8000×g) at OD600 (optical density at 600 nm) of 8 to 12. The cell pellet is resuspended in a lysis buffer (50 mM sodium phosphate buffer, 0.5 M NaCl, 10 mM Imidazole, pH 7,0) supplemented with complete EDTA free protease inhibitor mix (Roche-Diagnostics) and homogenized using an Avestin Press. The homogenate is cleared by centrifugation (40,000×g). His6-tagged HPPD or mutant variants are purified by affinity chromatography on a Protino Ni-IDA 1000 Packed Column (Macherey-Nagel) according to the manufacturer's instructions. Purified HPPD or mutant variants are dialyzed against 100 mM sodium phosphate buffer pH 7.0, supplemented with 10% glycerin and stored at −86° C. Protein content is determined according to Bradford using the Bio-Rad protein assay (Bio-Rad Laboratories, Hercules, USA). The purity of the enzyme preparation is estimated by SDS-PAGE.


Example 3: Assay for HPPD Activity

HPPD produces homogentisic acid and CO2 from 4-hydroxyphenylpyruvate (4-HPP) and O2. The activity assay for HPPD is based on the analysis of homogentisic acid by reversed phase HPLC.


The assay mixture can contain 150 mM potassium phosphate buffer pH 7.0, 50 mM L-ascorbic acid, 100 μM Catalase (Sigma-Aldrich), 1 μM FeSO4 and 0.2 units of purified HPPD enzyme in a total volume of 505 μl. 1 unit is defined as the amount of enzyme that is required to produce 1 nmol of HGA per minute at 20° C.


After a preincubation of 30 min the reaction is started by adding 4-HPP to a final concentration of 0.05 mM. The reaction is allowed to proceed for 45 min at room temperature. The reaction is stopped by the addition of 50 μl of 4.5 M phosphoric acid. The sample is filtered using a 0.2 μM pore size PVDF filtration device.


5 μl of the cleared sample is analyzed on an UPLC HSS T3 column (particle size 1.8 μm, dimensions 2.1×50 mm; Waters) by isocratic elution using 90% 20 mM NaH2PO4 pH 2.2, 10% methanol (v/v).


HGA is detected electrochemically at 750 mV (mode: DC; polarity: positive) and quantified by integrating peak areas (Empower software; Waters).


Inhibitors are dissolved in DMSO (dimethylsulfoxide) to a concentration of 0.5 mM. From this stock solution serial five-fold dilutions are prepared in DMSO, which are used in the assay. The respective inhibitor solution accounts for 1% of the assay volume. Thus, final inhibitor concentrations range from 5 μM to 320 μM, respectively. Activities are normalized by setting the uninhibited enzyme activity to 100%. IC50 values are calculated using non-linear regression.


Example 4: In Vitro Characterization of Wild-Type HPPD Enzymes

Using methods which are described in the above examples or well known in the art, purified recombinant wild-type HPPD enzymes are characterized with respect to their kinetic properties and sensitivity towards HPPD inhibiting herbicides. Apparent michaelis constants (Km) and maximal reaction velocities (Vmax) are calculated by non-linear regression with the software GraphPad Prism 5 (GraphPad Software, La Jolla, USA) using a substrate inhibition model. Apparent kcat values are calculated from Vmax assuming 100% purity of the enzyme preparation. Weighted means (by standard error) of Km and IC50 values are calculated from at least three independent experiments. The Cheng-Prusoff equation for competitive inhibition (Cheng, Y. C.; Prusoff, W. H. Biochem Pharmacol 1973, 22, 3099-3108) is used to calculate dissociation constants (Ki).


Field performance of the HPPD enzyme, which is used as a herbicide tolerance trait may depend not only on its lack of sensitivity towards HPPD inhibiting herbicides but also on its activity. To assess the potential performance of a herbicide tolerance trait a tolerance index (TI) is calculated using the following formula:







T





I

=



k

c

a

t


×

K
i



K
m






Easy comparison and ranking of each trait is enabled by normalizing tolerance indexes on Arabidopsis wild-type HPPD.


Example 5: Rational Mutagenesis

By means of structural biology and sequence alignment it is possible to choose a certain number of amino acids which can either directly or indirectly be involved in the binding of “HPPD-inhibiting benzamide herbicides” and then to mutagenize them and obtain tolerant HPPD enzymes.


(A) Site-Directed Mutagenesis

PCR-based site directed mutagenesis of pEXP5-NT/TOPO®-AtHPPD is done with the QuikChange II Site-Directed Mutagenesis Kit (Stratagene, Santa Clara, USA) according to the manufacturers instructions. This technique requires two chemically synthesized DNA primers (forward and reverse primer) for each mutation.


Mutant plasmids are isolated from E. coli TOP10 by performing a plasmid minipreparation and confirmed by DNA sequencing.


The combination of single amino acid substitutions is achieved by a stepwise mutagenesis approach.


(B) In Vitro Characterization of HPPD Mutants

Purified, mutant HPPD enzymes are obtained by the methods described above. Dose response and kinetic measurements are carried out using the described HPPD activity assay. Apparent michaelis constants (Km) and maximal reaction velocities (Vmax) are calculated by non-linear regression with the software GraphPad Prism 5 (GraphPad Software, La Jolla, USA) using a substrate inhibition model. Apparent kcat values are calculated from Vmax assuming 100% purity of the enzyme preparation. Weighted means (by standard error) of Km and IC50 values are calculated from at least three independent experiments. The Cheng-Prusoff equation for competitive inhibition (Cheng, Y. C.; Prusoff, W. H. Biochem Pharmacol 1973, 22, 3099-3108) is used to calculate dissociation constants (Ki).


Field performance of the optimized HPPD enzyme, which is used as a herbicide tolerance trait may depend not only on its lack of sensitivity towards HPPD inhibiting herbicides but also on its activity. To assess the potential performance of a herbicide tolerance trait a tolerance index (TI) is calculated using the following formula:







T





I

=



k

c

a

t


×

K
i



K
m






Easy comparison and ranking of each trait is enabled by normalizing tolerance indexes on the respective wild-type HPPD.


Example 6

Preparation of Plants which Express Heterologous HPPD Enzymes and which are Tolerant to “HPPD-Inhibiting Benzamide Herbicides”


Various methods for the production of stably transformed plants are well known in the art. HPPD-inhibiting benzamide herbicide tolerant soybean (G/ycine max) or corn (Zeamays) plants can be produced by a method described by Olhoft et al. (US patent 2009/0049567). Briefly, HPPD encoding polynucleotides are cloned into a binary vector using standard cloning techniques as described by Sambrook et al. (Molecular cloning (2001) Cold Spring Harbor Laboratory Press). The final vector construct contains an HPPD encoding sequence flanked by a promoter sequence (e.g. the ubiquitin promoter (PcUbi) sequence) and a terminator sequence (e.g. the nopaline synthase terminator (NOS) sequence) and a resistance marker gene cassette (e.g. AHAS). Optionally, the HPPD gene can provide the means of selection.



Agrobacterium-mediated transformation is used to introduce the DNA into soybean's axillary meristem cells at the primary node of seedling explants. After inoculation and co-cultivation with Agrobacteria, the explants are transferred to shoot induction medium without selection for one week. The explants are subsequently transferred to shoot induction medium with 1-3 μM imazapyr (Arsenal) for 3 weeks to select for transformed cells. Explants with healthy callus/shoot pads at the primary node are then transferred to shoot elongation medium containing 1-3 μM imazapyr until a shoot elongates or the explant dies. After regeneration, transformants are transplanted to soil in small pots, placed in growth chambers (16 hr day/8 hr night; 25° C. day/23° C. night; 65% relative humidity; 130-150 mE m−2 s−1) and subsequently tested for the presence of the T-DNA via Taqman analysis. After a few weeks, healthy, transgenic positive, single copy events are transplanted to larger pots and allowed to grow in the growth chamber.


Transformation of corn plants is done by a method described by McElver and Singh (WO 2008/124495). Plant transformation vector constructs containing HPPD sequences are introduced into maize immature embryos via Agrobacterium-mediated transformation. Transformed cells are selected in selection media supplemented with 0.5-1.5 μM imazethapyr for 3-4 weeks. Transgenic plantlets are regenerated on plant regeneration media and rooted afterwards. Transgenic plantlets are subjected to TaqMan analysis for the presence of the transgene before being transplanted to potting mixture and grown to maturity in greenhouse. Arabidopsis thaliana is transformed with HPPD sequences by floral dip method as decribed by McElver and Singh (WO 2008/124495). Transgenic Arabidopsis plants are subjected to TaqMan analysis for analysis of the number of integration loci.


Transformation of Oryza sativa(rice) are done by protoplast transformation as decribed by Peng et al. (U.S. Pat. No. 6,653,529) T0 or T1 transgenic plant of soybean, corn, rice and Arabidopsis tha/iana containing HPPD sequences are tested for improved tolerance to “HPPD-inhibiting benzamide herbicides” in greenhouse studies.


Example 7: Greenhouse Experiments

Transgenic plants expressing heterologous HPPD enzymes are tested for tolerance against HPPD-inhibiting benzamide herbicides in greenhouse experiments.


For the pre-emergence treatment, the herbicides are applied directly after sowing by means of finely distributing nozzles. The containers are irrigated gently to promote germination and growth and subsequently covered with transparent plastic hoods until the plants have rooted. This cover causes uniform germination of the test plants, unless this has been impaired by the herbicides.


For post emergence treatment, the test plants are first grown to a height of 3 to 15 cm, depending on the plant habit, and only then treated with the herbicides. For this purpose, the test plants are either sown directly and grown in the same containers, or they are first grown separately and transplanted into the test containers a few days prior to treatment.


For testing of T0 plants, cuttings can be used. In the case of soybean plants, an optimal shoot for cutting is about 7.5 to 10 cm tall, with at least two nodes present. Each cutting is taken from the original transformant (mother plant) and dipped into rooting hormone powder (indole-3-butyric acid, IBA). The cutting is then placed in oasis wedges inside a bio-dome.


Wild type cuttings are also taken simultaneously to serve as controls. The cuttings are kept in the bio-dome for 5-7 days and then transplanted to pots and then acclimated in the growth chamber for two more days. Subsequently, the cuttings are transferred to the greenhouse, acclimated for approximately 4 days, and then subjected to spray tests as indicated.


Depending on the species, the plants are kept at 10-25° C. or 20-35° C. The test period extends over 3 weeks. During this time, the plants are tended and their response to the individual treatments is evaluated. Herbicide injury evaluations are taken at 2 and 3 weeks after treatment. Plant injury is rated on a scale of 0 to 9, 0 being no injury and 9 being complete death.


Tolerance to HPPD-inhibiting benzamide herbicides can also be assessed in Arabidopsis. In this case transgenic Arabidopsis thaliana plants are assayed for improved tolerance to HPPD-inhibiting benzamide herbicides in 48-well plates. Seeds are surface sterilized by stirring for 5 min in ethanol+water (70+30 by volume), rinsing one time with ethanol+water (70+30 by volume) and two times with a sterile, deionized water. The seeds are resuspended in 0.1% agar dissolved in water (w/v). Four to five seeds per well are plated on solid nutrient medium consisting of half-strength Murashige Skoog nutrient solution, pH 5.8 (Murashige and Skoog (1962) Physiologia Plantarum 15: 473-497). Compounds are dissolved in dimethylsulfoxid (DMSO) and added to the medium prior solidification (final DMSO concentration 0.1%). Multi well plates are incubated in a growth chamber at 22° C., 75% relative humidity and 110 μmol Phot*m−2*s−1 with 14:10 h light:dark photoperiod. Seven to ten days after seeding growth inhibition is evaluated by comparison to wild type plants. Tolerance factor is calculated by dividing the plant growth IC50 value of transgenic plants containing a HPPD sequence by that of wildtype plants.


Additionally, T1 and T2 transgenic Arabidopsis plants can be tested for improved tolerance to HPPD-inhibiting benzamide herbicides in a greenhouse studies. Herbicide injury scoring is done 2-3 weeks after treatment and is rated on a scale of 0 to 100%, 0% being no injury and 100% being complete death.


First transgenic lines are preselected with imazamox to sort out seeds that do not carry the marker gene used in transformation during the floral dip method. The seedlings are then transfered to pots with a diameter of 10 cm and grown in soil to the nine leaf stage.


Preselected transgenic Arabidopsis plants expressing heterologous Scenedesmus obliquus HPPD mutant enzymes as defined in Seq ID No. 48 and Seq ID No. 50 are tested for tolerance against HPPD-inhibiting 4-bromo-3-(dicyclopropylcarbamoylamino)-6-fluoro-2-methyl-N(1-methyltetrazol-5-yl) benzamide herbicide in greenhouse experiments.


Transgenic lines are tested expressing heterologous Scenedesmus obliquus HPPD coding sequences under control of the constitutive parsley ubiquitin promoter and the nos terminator. One construct contains the full length Scenedesmus obliquus HPPD enzyme (Seq ID No. 47) while in a second construct the naturally occurring C-terminal insertion of 36 amino acids at position 442-477 is deleted (Seq ID No. 49). Both coding sequences carry the mutation F363I.


Broadleaf plants are more sensitive to HPPD inhibitors when applied post-emergence as compared to a pre-emergence testing. Therefore, transgenic lines are tested in a post emergence setting at about the nine leaf stage.


First the untransformed motherline Arabidopsis thaliana MC24 is sprayed without herbicide. Any of the control plants show herbicidal injury (see FIG. 1)


A dose response test is carried out with the motherline Arabidopsis thaliana MC24 used for transformation to test the sensitivity towards the herbicide. 4-bromo-3-(dicyclopropylcarbamoylamino)-6-fluoro-2-methyl-N-(1-methyltetrazol-5-yl) benzamide is applied at rates from 0.8 to 100 g/ha. All untransformed MC24 plants die even at the lowest rate which shows the sensitivity of Arabidopsis towards the herbicide (see FIG. 2)


For the herbicide treatment of transgenic lines 4-bromo-3-(dicyclopropylcarbamoylamino)-6-fluoro-2-methyl-N-(1-methyltetrazol-5-yl) benzamide is applied at use rates of 25, 50 and 100 g/ha (see FIG. 3)


Treated plants are assessed 14 days after treatment (DAT) in the post-emergence setting. Ratings and pictures at 14 DAT treatment are shown in FIG. 3.


Transgenic lines expressing the short Scenedesmus obliquus HPPD (SEQ ID NO:50) show herbicide tolerance when treated with 25 to 100 g/ha of 4-bromo-3-(dicyclopropylcarbamoylamino)-6-fluoro-2-methyl-N-(1-methyltetrazol-5-yl). Little herbicidal injury is observed at 50 to 100 g/ha. (see FIG. 3)


Transgenic lines expressing the Scenedesmus obliquus HPPD full length coding sequence (SEQ ID NO: 47) show herbicide tolerance when treated with 25-100 g/ha of 4-bromo-3-(dicyclopropylcarbamoylamino)-6-fluoro-2-methyl-N-(1-methyltetrazol-5-yl). (see FIG. 4).


The assessment results show that the Scenedesmus obliquus HPPD gene carrying the the F363I mutation mediates herbicide tolerance and very little to no injury when applied with shown rates of 4-bromo-3-(dicyclopropylcarbamoylamino)-6-fluoro-2-methyl-N-(1-methyltetrazol-5-yl) benzamide as assessed 14 days after treatment. The full length sequence shows slightly better herbicide tolerance as compared to the HPPD not containing the C-terminal loop


Example 8: Field Trial

Transgenic plants expressing heterologous HPPD enzymes are tested for tolerance against HPPD-inhibiting herbicides in field experiments.


A study can be conducted at a field trial location to evaluate the effect of HPPD herbicides on the phenotypic and phenologic characteristics of a soybean variety containing different transgenes.


The trial is designed as a randomized complete block with a split-plot treatment design. The trial contains mainplots defined by ‘herbicide treatment’ (combination of herbicide and application rate). The herbicide treatments are applied post-emergence at the V2-V3 plant growth stage. Each Mainplot contains subplots defined by ‘transgenic event’ (Commercial soybean variety ‘Jake’ containing one of different HPPD expressing constructs) and Jake (control). Each plot consists of a single row 1.2 m long and adjacent plots are spaced 0.76 m apart. Each plot containing a transgenic event is planted with 24 T1 seeds. The control variety, Jake, is planted at the same seeding rate. The zygosity of each plant of transgenic event is determined prior to the application of the herbicide treatment.


The effect of the HPPD herbicide treatments on phenotypic and phenologic characteristics of plants representing each transgenic event and control variety, including tolerance to each herbicide treatment, is assessed during different vegetative and reproductive stages of plant growth.

Claims
  • 1. A method for controlling undesired vegetation at a plant cultivation site, the method comprising the steps of: a) providing, at said site, a plant that comprises at least one nucleic acid comprising a nucleotide sequence encoding a wild-type hydroxyphenyl pyruvate dioxygenase or a mutated hydroxyphenyl pyruvate dioxygenase comprising the sequence of SEQ ID NO: 2, 5, 8, 11, 14, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, or a variant or derivative thereof which is resistant or tolerant to a HPPD-inhibiting herbicide and/orb) applying to said site an effective amount of said herbicide.
  • 2. The method according to claim 1, wherein the plant comprises at least one additional heterologous nucleic acid comprising (iii) a nucleotide sequence encoding a herbicide tolerant enzyme.
  • 3. The method according to claim 1, wherein the benzamide is applied in conjunction with one or more other herbicides.
  • 4. A method of producing a transgenic plant cell having an increased resistance to a HPPD-inhibiting benzamide herbicide as defined in claim 1, as compared to a wild type variety of the plant cell comprising, transforming the plant cell with an expression cassette comprising an HPPD nucleic acid.
  • 5. A method of producing a transgenic plant comprising: (a) transforming a plant cell with an expression cassette comprising an HPPD nucleic acid, and (b) generating a plant with an increased resistance to HPPD-inhibiting benzamide herbicide as defined in claim 1, from the plant cell.
  • 6. The method of claim 5, wherein the HPPD nucleic acid comprises a polynucleotide sequence selected from the group consisting of: a) a polynucleotide as shown in SEQ ID NO: 1, 51, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 52, 54, 56, 68, 69, or a variant or derivative thereof; b) a polynucleotide encoding a polypeptide as shown in SEQ ID NO: 2, 5, 8, 11, 14, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, or a variant or derivative thereof; and c) a polynucleotide complementary to the polynucleotide of any of a) through b).
  • 7. The method of claim 5, wherein the expression cassette further comprises a transcription initiation regulatory region and a translation initiation regulatory region that are functional in the plant.
  • 8. The method of claim 5, wherein the HPPD nucleic acid comprises a polynucleotide sequence selected from the group consisting of: a) a polynucleotide as shown in SEQ ID NO: 1, 51, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 52, 54, 56, 68, 69, or a variant or derivative thereof; b) a polynucleotide encoding a polypeptide as shown in SEQ ID NO: 2, 5, 8, 11, 14, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, or a variant or derivative thereof; and c) a polynucleotide complementary to the polynucleotide of any of a) through b).
  • 9. The method of claim 8, wherein the expression cassette further comprises a transcription initiation regulatory region and a translation initiation regulatory region that are functional in the plant.
Priority Claims (1)
Number Date Country Kind
17177173.6 Jun 2017 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/IB2018/054528 6/20/2018 WO 00