None.
The present invention relates to electrosurgical systems and methods, and more particularly, to a cold plasma scalpel.
Plasma is an ionized gas that is typically generated in high-temperature laboratory conditions. Recent progress in atmospheric plasmas has led to the creation of cold plasmas with ion temperature close to room temperature. Earlier studies demonstrated the non-aggressive nature of the cold plasma. After it was shown, albeit indirectly, that plasma can interact with organic materials without causing thermal/electric damage to the cell surface, several biological applications were examined. Low-temperature or cold plasmas have an increasing role to play in biomedical applications. The potential use in biomedical applications has driven the development of a variety of reliable and user-friendly plasma sources. There is still some controversy with respect to the mechanism of plasma-cell interaction. Some authors are of the opinion that ion species play the most important role in plasma-cell interactions by triggering intracellular biochemistry. Alternatively, others have suggested that neutral species play the primary role in some plasma-cell interaction pathways. Furthermore, the effects of various ion species may be highly selective; different species can have either “plasma killing” (such as O) or “plasma healing” (such as NO) effects. The role of other species, such as O3 and OH, are not yet clear.
Even less clear has the nature of the interaction between cold plasmas and cancer tissue. Only limited research into the utility of cold plasma for cancer therapy has been performed. For the most part, these in-vitro studies are limited to skin cells and simple cellular responses to the cold plasma treatment. In addition, preliminary reports on plasma's in-vivo antitumor effect are reported. Recent studies have delineated cold plasma's effects on both the cellular and sub-cellular levels. On the cellular level, plasma effects include detachment of cells from the extracellular matrix and decreased migration velocity of cells. On the sub-cellular level, cell surface integrin expression is reduced. We examined the therapeutic potential of a cold plasma jet in cancer cell lines and tumors, focusing on selective tumor cell eradication capabilities and signaling pathway deregulation.
International Patent Application WO 2012/16708 disclosed a device that uses cold plasma to treat cancerous tumors. The device has a gas supply tube with a delivery end. The gas supply tube is configured to carry a gas to the delivery end. A syringe is provided having an opening. The syringe is connected to the supply tube and configured to carry the gas to the opening. A first electrode is positioned inside the syringe, and a second electrode is positioned adjacent to the opening. The first and second electrodes excite the gas to enter a cold plasma state prior to being discharged from the opening of the syringe. An endoscopic tube can be used instead of the syringe. An exhaust tube can be provided to remove gas introduced into the body cavity by the cold plasma jet.
International Patent Application WO 2012/061535 disclosed an electrosurgical method and device for simultaneously cutting and coagulating tissue with an electrosurgical device having an electrode and a channel wherein the channel has a port near a proximal end of the electrode, wherein the method comprises the steps of causing an inert gas to flow through the channel and exit the port, applying high-frequency energy to the electrode while the inert gas flows through the channel, wherein the high-frequency energy applied to the electrode continuously plasmatizes inert gas exiting the port, initiating an electrical discharge from the electrode through the continuously plasmatized inert gas to the tissue, cutting tissue with the electrode, maintaining the electrical discharge from the electrode through the plasmatized inert gas while cutting tissue with the electrode to cause coagulation of the tissue simultaneously with the cutting.
In a preferred embodiment, the present invention is an attachment for an electrosurgical hand piece. The attachment comprises a probe assembly having an elongated tube having a proximal end and a distal end, and an electrode. The electrode has at a proximal end a conductive connector, which has a proximal end, a distal end and a channel extending through the conductive connector. The conductive connector may be comprised of a nickel plated brass alloy. The electrode further has a conductive wire extending from the distal end of the conductive connector, the conductive wire being connected to the distal end of the conductive connector adjacent to the channel in the conductive connector. The conductive wire extends substantially along the length of the elongated tube and may or may not extend out of the end of the tube. The conduct wire may be comprised of tungsten. The attachment may further comprise an insulating tip at the distal end of the elongated tube; wherein the conductive wire extends at least partially through the insulating tip.
Still other aspects, features, and advantages of the present invention are readily apparent from the following detailed description, simply by illustrating a preferable embodiments and implementations. The present invention is also capable of other and different embodiments and its several details can be modified in various obvious respects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and descriptions are to be regarded as illustrative in nature, and not as restrictive. Additional objects and advantages of the invention will be set forth in part in the description which follows and in part will be obvious from the description or may be learned by practice of the invention.
For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following description and the accompanying drawings, in which:
A preferred embodiment of a cold plasma scalpel according to the present invention is described with reference to the figures. A hand piece assembly 200 has a top side piece 300 and a bottom side piece 400. A control button 210 extends from the interior of the hand piece through an opening in the top side piece 300. Within the hand piece is body connector funnel 806, PCB board 808, electrical wiring 120 and hose tubing (PVC medical grade) 140. The wiring 120 and hose tubing 140 are connected to one another to form a wire and tubing bundle 110. A grip over mold 820 extends over the bottom piece portion 400. In other embodiments, a grip may be attached to the bottom piece 400 in other manners. A probe or scalpel assembly 500 is attached to the end of the hand piece. The scalpel assembly 500 has non-bendable telescoping tubing 510, a ceramic tip 520, a column nut or collet 600 and body connector tubing 802. The hose tubing 140 extends out of the proximal end of the hand piece to a body gas connector 150, which has an O-ring 152, gas connector core 154 and gas connector tip 156 for connecting to a source of gas (not shown). The printed circuit board 808 connects to electrical wiring 120 which leads to electrical connector 130 having electrical pins 132.
The collet 600, show in in
The hand piece 200 has a housing having an upper portion 300 shown in
The cold plasma scalpel assembly 500 is described in more detail with reference to
An electrode 700 is inserted into the distal end of the tubing, housing or body 510. The electrode has a connector and a wire or elongated portion. The connector and wire may be formed from the same or different materials. For example, the connector may be nickel-plated brass and the wire tungsten. The connector is at the proximal end of the electrode and has a connector body 710 having a beveled or rounded distal end and a proximal end. The connector may generally be cylindrical in shape but may have a flat portion 714 for alignment of the electrode in the housing 510. The body 710 has a channel 740 extending through it and a ridge, shoulder or flange 712. The wire 720 of the electrode is connected to the distal end of the connector adjacent the opening 740 and extends from the distal end of the connector. The wire 720 has a bent portion 722.
When the attachment 500 is fully assembled, the wire 720 extends down approximately the center of the channel in the housing 510 to a position near or extending from the distal end of the housing 510 and the ceramic tip 520. The distal face of the connector body 710 rests on shoulder 520 in housing 510 and the electrode shoulder 712 rests on the shoulder 522 of housing 510. The rounded or beveled portion 726 of the connector provides a conductive surface for making a connection to connector 802.
During use, an inert gas such as helium or argon flows from a gas source, through the hand piece and into the channel within the housing 510. The gas flows through the opening 740 in the connector body 710 and down the channel in the housing 510. The gas flowing down the channel in the housing 510 surrounds the wire 720. Electrical energy is supplied from an electrosurgical generator and flows through connector 130 to wire 120, through the hand piece and various connectors to the electrode 700. As the gas flows through the attachment, the electrode connector 710 and the wire 720 highly ionize the gas so the gas becomes a cold plasma. The system is monopolar, so the attachment and hand piece include only the active electrode 700. A conductive plate may be placed under the patient and acts as the return electrode or ground.
The foregoing description of the preferred embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The embodiment was chosen and described in order to explain the principles of the invention and its practical application to enable one skilled in the art to utilize the invention in various embodiments as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto, and their equivalents. The entirety of each of the aforementioned documents is incorporated by reference herein.
The present application is a continuation of U.S. patent application Ser. No. 14/876,358, filed Oct. 6, 2015, which claims the benefit of the filing of U.S. Provisional Patent Application Ser. No. 62/060,525 entitled “Cold Plasma Scalpel” filed on Oct. 6, 2014. The aforementioned applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3612807 | Liefkens et al. | Oct 1971 | A |
3825004 | Durden, III | Jul 1974 | A |
3903891 | Brayshaw | Sep 1975 | A |
3938525 | Goucher | Feb 1976 | A |
4040426 | Morrison | Aug 1977 | A |
4057064 | Morrison et al. | Nov 1977 | A |
4232676 | Herczog | Nov 1980 | A |
4682596 | Bales et al. | Jul 1987 | A |
RE33925 | Bales et al. | May 1992 | E |
5233155 | Frind | Aug 1993 | A |
5242442 | Hirschfeld | Sep 1993 | A |
5605539 | Buelna | Feb 1997 | A |
5720745 | Farin et al. | Feb 1998 | A |
5935124 | Klumb et al. | Aug 1999 | A |
6165164 | Hill et al. | Dec 2000 | A |
6679882 | Kornerup | Jan 2004 | B1 |
20010034519 | Goble et al. | Oct 2001 | A1 |
20030004506 | Messing | Jan 2003 | A1 |
20030088247 | Ineson | May 2003 | A1 |
20050240177 | Tabermejo, Jr. | Oct 2005 | A1 |
20060052774 | Garrison | Mar 2006 | A1 |
20070029500 | Coulombe | Feb 2007 | A1 |
20070049927 | Saltzman | Mar 2007 | A1 |
20090065485 | O'Neill et al. | Mar 2009 | A1 |
20110077642 | Farin | Mar 2011 | A1 |
20110112528 | Stieber et al. | May 2011 | A1 |
20120187841 | Kindel et al. | Jul 2012 | A1 |
20120283732 | Lam | Nov 2012 | A1 |
20140378892 | Keidar | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
03028542 | Apr 2003 | WO |
2012061535 | Oct 2012 | WO |
2012167089 | Dec 2012 | WO |
Entry |
---|
E Stoffels, A J Flikweert,W W Stoffels and G M W Kroesen, “Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials,” Plasma Sources Sci. Technol. 11 (2002) 383-388. |
Number | Date | Country | |
---|---|---|---|
20190380764 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
62060525 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14876358 | Oct 2015 | US |
Child | 16550631 | US |