Embodiments of the subject matter described herein relate generally to methods, systems and apparatuses for selectively directing airflow in an internal cascade of airfoils. More particularly, embodiments of the subject matter relate to methods, systems and apparatuses using actuated plasma to produce a combined airflow exiting a cascade of internal airfoils in a desired direction.
Gas turbine engines typically comprise an air-compressor-forming section feeding a combustion chamber that produces hot gases to drive the turbine stages downstream. The engine compressor comprises a plurality of moving bladed disks, separated by successive stages of stator cascades of vanes that redirect the airflow. Conventional vanes are generally variable-pitch vanes. The angular position of a variable-pitch vane about its pivotable radial axis can be selectively adjusted in order to improve compressor efficiency. The variable-pitch vanes are oriented using a mechanism known as a variable-pitch mechanism or a VSV which stands for variable stator vane. There are various designs of such mechanisms, but on the whole, they all comprise one or more actuators fixed to the engine casing, synchronization bars or a control shaft, rings surrounding the engine and positioned transversely with respect to the axis thereof, and substantially axial levers also known as pitch control rods, connecting the rings to each of the variable-pitch vanes. The actuators rotate the rings about the engine axis and these cause all the levers to turn synchronously about the vane pivots.
These mechanisms are subjected both to the aerodynamic loads applied to the vanes, which are high, and to loads resulting from friction in the various connections. Further, the mechanisms themselves limit the design of stator cascades of vanes, as clearances are necessary to allow for pivoting the vanes.
It would be desirable to selectively adjust the direction of airflow exiting a stator cascade of vanes without the use of variable-pitch vanes. Further, it would be desirable to obviate the structural requirements of variable-pitch vanes. The use of fixed vanes that provide for control of airflow direction from a cascade of internal vanes could provide for increased performance and reduced mechanical complexity.
Hence, there is a need for a method, system and apparatus for selectively directing airflow around internal airfoils. Use of actuated plasma to produce a combined airflow exiting a cascade of internal airfoils would provide for improved cascade performance and durability. Other desirable features and characteristics of the method, system and apparatus will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the preceding background.
A system for directing airflow, a gas turbine engine, and a method for directing airflow exiting a cascade of internal airfoils are provided. In an exemplary embodiment, the system for directing airflow includes a cascade of internal structures spanning an airflow path. Each of the internal structures includes a rounded trailing edge. The system further includes at least one plasma generating device positioned on the rounded trailing edge of each internal structure. Also, the system includes a controller configured to selectively energize and de-energize each plasma generating device to selectively alter a direction of local airflow around each internal structure to produce a combined airflow exiting the cascade in a desired direction.
A gas turbine engine is also provided. The gas turbine engine includes a cascade of internal airfoils. Each of the internal airfoils includes a first surface and an opposite second surface connected at a rounded trailing edge. A first single dielectric barrier discharge plasma actuator is positioned on the first surface and the rounded trailing edge of each of the internal airfoils. Also, a second single dielectric barrier discharge plasma actuator is positioned on the second surface and the rounded trailing edge of each of the internal airfoils. Each first single dielectric barrier discharge plasma actuator and each second single dielectric barrier discharge plasma actuator are selectively energized and de-energized to selectively alter a direction of local airflow around each of the internal airfoils to produce a combined airflow exiting the cascade in a desired direction.
Also provided is a method for directing airflow exiting a cascade of internal airfoils. The method includes coupling a first plasma generating device on a first surface and a rounded trailing edge of each of the internal airfoils, and coupling a second plasma generating device on an opposite second surface and the rounded trailing edge of each of the internal airfoils. Also, the method includes selectively energizing the first plasma generating device and the second plasma generating device on each of the internal airfoils to produce a plasma and to selectively alter a direction of local airflow around each of the internal airfoils to produce a combined airflow exiting the cascade in a desired direction.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
A more complete understanding of the subject matter may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures and wherein:
The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
As described above, controlling the direction of an airflow exiting a cascade of internal structures, such as airfoils, is provided through selective plasma actuation. Specifically, plasma generating devices are located on trailing edges of internal structures to selectively alter a direction of local airflow around each of the internal structures to produce a combined airflow exiting the cascade in a desired direction. The plasma generating devices can be flush mounted into the structures, producing little or no effect on the flow when not in use, i.e., when turned “off.”
Further, as contemplated herein, fixed internal structures are able to selectively adjust the direction of an airflow exiting a cascade of internal structures through the use of plasma actuators. Specifically, the fixed internal structures electrically control local airflow, rather than providing mechanical control of airflow through pivoting or moving the structures as in conventional methods.
It will be appreciated that while the disclosed examples are directed to a compressor for a gas turbine engine utilizing an internal cascade of airfoils, the disclosed methods, systems and apparatuses may be utilized to provide flow control to any suitable device including an internal cascade of structures in an airflow path.
Referring to
It will be understood that the exposed electrode 20 may be at least partially covered, while the enclosed electrode may be at least partially exposed. During operation, when the controller 29 causes the power supply to provide an applied AC voltage with a sufficient amplitude, the air surrounding the plasma actuator 10 will locally ionize in the region of the largest electric field (i.e. potential gradient) forming a plasma 30. The plasma 30 generally forms at an edge 21 of the exposed electrode 20. Further, the plasma actuator 10 creates a strong electric field that draws ionized particles toward the plasma actuator 10. As a result, selectively energizing and de-energizing the plasma actuator 10 can modify the behavior of local airflow around the plasma actuator 10. The ability to tailor the actuator-induced flow by the arrangement of the plasma actuator 10 on airfoils allows one to achieve a wide variety of actuation strategies for cascades of internal airfoils as described below.
In the present disclosure, surface mounted SDBD plasma actuators 10 are used to alter the direction of airflow exiting an internal cascade of airfoils by active means. The plasma actuators 10 may be flush mounted to the airfoils, producing little or no effect on flow through the internal cascade when not actuated. In other words, the internal cascade will not cause a loss in design operating point efficiency. Furthermore, the plasma actuators may be implemented in an open or closed loop for control of the airflow exiting the internal cascade. An example open loop implementation energizes or de-energizes the plasma actuator based upon the corrected speed and corrected flow direction exiting the internal cascade. An example closed loop implementation utilizes a sensor or sensors 32 to monitor the internal cascade aerodynamics, synthesizing a stability state variable. Each plasma actuator 10 is selectively energized or de-energized to increase or decrease attraction of local airflow toward the plasma actuator 10. As a result, a boundary separation location of the local airflow relative to the airfoil on which the plasma actuator is mounted is adjusted, resulting in a change in the exit angle of the airflow relative to the airfoil.
Referring now to
Cross-referencing
As shown in
Further, each plasma actuator 10 may be independently and selectively energized to provide a desired exit angle of local airflow from the exemplary structure 154. For example, the plasma actuator 10 on the surface 172 may be energized while the plasma actuator 10 on the surface 174 is de-energized. As a result, the airflow above surface 172 may follow arrow 200, while the airflow below surface 174 may follow arrow 192. In combination, such selective actuation may result in airflow exiting the airfoil in the direction of arrow 210. Likewise, de-energizing the plasma actuator 10 on the surface 172 while energizing the plasma actuator 10 on the surface 174 causes the airflow above surface 172 to follow arrow 192, while the airflow below surface 174 may follow arrow 200. In combination, such selective actuation may result in airflow exiting the airfoil in the direction of arrow 212.
In addition to the preceding binary example, the plasma actuators 10 may be operated at varying selected voltages to provide degrees of attraction of airflow toward either surface 172, 174, allowing for the selection of a tailored exit angle of airflow from the structure 154. Further, coordination of the plasma actuators 10 on all of the internal structures 154 in the cascade 152 provides for the selection of a combined airflow exiting the cascade 152 at a desired direction.
The example SDBD plasma actuator 10 utilizes an AC voltage power supply 28 for its sustenance. However, if the time scale associated with the AC signal driving the formation of the plasma 30 is sufficiently small in relation to any relevant time scales for the flow, the associated body force produced by the plasma 30 may be considered effectively steady. However, unsteady actuation may also be applied and in certain circumstances may pose distinct advantages. Signals for steady versus unsteady actuation are contrasted in
As noted above, the example plasma actuator 10 may be implemented in an open or closed loop for control of rotating stall. An example open loop implementation utilizes a controller 29 operatively coupled to the AC voltage power supply 28 to energize or de-energize the plasma actuator 10 based upon the corrected speed and corrected mass flow of the compressor. An example closed loop implementation utilizes a sensor 32 mounted proximate the trailing edge of the cascade 152 to monitor the aerodynamics of airflow exiting the cascade. The exemplary sensor 32 is operatively coupled to the controller 29 to synthesize a stability state variable. In either implementation, the controller 29 selectively energizes or de-energizes each plasma actuator 10 on each structure 154 modify the local airflow around each structure 154.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or embodiments described herein are not intended to limit the scope, applicability, or configuration of the claimed subject matter in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope defined by the claims, which includes known equivalents and foreseeable equivalents at the time of filing this patent application.