Claims
- 1. A method of operating a plasma addressed data storage or display device that comprises a channel structure defining at least first and second channels, first and second plasma electrodes in the first and second channels respectively, a cover sheet over the channel structure, ionizable gas in the channels, a layer of electro-optic material over the cover sheet and an array of data drive electrodes over the layer of electro-optic material, wherein the method includes,
in a first operating cycle, controlling relative potentials of the data drive electrodes and the first and second plasma electrodes to initiate a discharge in the first channel without initiating a discharge in the second channel, and in a second operating cycle, controlling relative potentials of the data drive electrodes and the first and second plasma electrodes to initiate a discharge in the second channel without initiating a discharge in the first channel.
- 2. A method of operating a plasma addressed data storage or display device that comprises a channel structure defining at least first and second channels, first and second plasma electrodes in the first and second channels respectively, a cover sheet over the channel structure, ionizable gas in the channels, a layer of electro-optic material over the cover sheet and an array of data drive electrodes over the layer of electro-optic material, wherein the method includes,
in a first operating cycle,
applying data voltages to the data drive electrodes respectively, driving the first plasma electrode to a sufficient negative potential relative to the data drive electrodes to initiate a discharge in the first channel while maintaining the second plasma electrode at a potential relative to the data drive electrodes such that no discharge is initiated in the second channel, and changing the potential of the first plasma electrode such as to reduce the potential difference between the first plasma electrode and the data drive electrodes to a level such that the discharge in the first channel is extinguished, and in a second operating cycle, applying data voltages to the data drive electrodes respectively, driving the second plasma electrode to a sufficient negative potential relative to the data drive electrodes to initiate a discharge in the second channel while maintaining the first plasma electrode at a potential relative to the data drive electrodes such that no discharge is initiated in the first channel, and changing the potential of the second plasma electrode such as to reduce the potential difference between the second plasma electrode and the data drive electrodes to a level such that the discharge in the second channel is extinguished.
- 3. A method of operating a plasma addressed data storage or display device that comprises a channel structure defining at least first and second channels, first and second plasma electrodes in the first and second channels respectively, a cover sheet over the channel structure, ionizable gas in the channels, a layer of electro-optic material over the cover sheet and an array of data drive electrodes over the layer of electro-optic material, wherein the method includes,
in a first operating cycle,
applying data voltages to the data drive electrodes respectively, driving the first plasma electrode to potentials of alternating polarity and of sufficient magnitude relative to the data drive electrodes to initiate a discharge in the first channel while maintaining the second plasma electrode at a potential relative to the data drive electrodes that no discharge is initiated in the second channel, and placing the first plasma electrode at a potential relative to the potentials of the data drive electrodes such that the discharge in the first channel is extinguished, and in a second operating cycle, applying data voltages to the data drive electrodes respectively, driving the second plasma electrode to potentials of alternating polarity and of sufficient magnitude relative to the data drive electrodes to initiate a discharge in the second channel while maintaining the first plasma electrode at a potential relative to the data drive electrodes that no discharge is initiated in the first channel, and placing the second plasma electrode at a potential relative to the potentials of the data drive electrodes such that the discharge in the second channel is extinguished.
- 4. A method of operating a plasma addressed data storage or display device that comprises a channel structure defining at least first and second channels, first and second plasma electrodes in the first and second channels respectively, a cover sheet over the channel structure, ionizable gas in the channels, a layer of electro-optic material over the cover sheet and an array of data drive electrodes over the layer of electro-optic material, wherein the method includes,
placing the first plasma electrode at a first potential level, placing the second plasma electrode at a second potential level, which is positive relative to the first potential level, driving the data drive electrodes to a positive potential relative to the second potential level and is such that electric field created in the first channel due to potential difference between the data drive electrodes and the first plasma electrode is sufficient to initiate a discharge in the first channel and electric field created in the second channel due to potential difference between the data drive electrodes and the second plasma electrode is insufficient to initiate a discharge in the second channel, driving the data drive electrodes to data drive voltages, and driving the first plasma electrode to a potential that is negative relative to the data drive voltages and is such that the electric field between the data drive electrodes and the first plasma electrode is sufficient to sustain the discharge in the first channel.
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims the benefit of U.S. Provisional Application No. 60/241,471, filed Oct. 18, 2000.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60241471 |
Oct 2000 |
US |