The present invention in general relates to a system for converting waste into useful co-products, including hydrocarbon based gases, hydrocarbon-based liquids, and carbonized material; and in particular to carbonation systems using plasma arc units as heating sources.
Pyrolysis is a general term used to describe the thermochemical decomposition of organic material at elevated temperatures without the participation of oxygen. Pyrolysis differs from other high-temperature processes like combustion and hydrolysis in that it usually does not involve oxidative reactions. Carbonization in these instances operates at less than 5 atomic % oxygen and typically less than 2 atomic % and is often characterized by irreversible simultaneous change of chemical composition and physical phase.
Pyrolysis is a case of thermolysis, and is most commonly used for organic materials, and is one of the processes involved in charring. Charring is a chemical process of incomplete combustion of certain solids when subjected to high heat. The resulting residue matter is called char. By the action of heat, charring reductively removes hydrogen and oxygen from the solid, so that the remaining char is composed primarily of carbon in a zero-oxidation state. Polymers such as thermoplastics and thermoset, as well as most solid organic compounds like wood and biological tissue, exhibit charring behavior when subjected to a pyrolysis process, which starts at 200-300° C. (390-570° F.) and goes above 1000° C. or 2150° F., and occurs for example, in fires where solid fuels are burning. In general, pyrolysis of organic substances produces gas and liquid products and leaves a solid residue richer in carbon content, commonly called char. Extreme pyrolysis, which leaves mostly carbon as the residue, is called carbonization.
The pyrolysis process is used heavily in the chemical industry, for example, to produce charcoal, activated carbon, methanol, and other chemicals from wood, to convert ethylene dichloride into vinyl chloride to make PVC, to produce coke from coal, to convert biomass into syngas and biochar, to turn municipal solid waste (MSW), and other carbonaceous matter into safely disposable substances, and for transforming medium-weight hydrocarbons from oil into lighter ones like gasoline. These specialized uses of pyrolysis are called by various names, illustratively including dry distillation, destructive distillation, or cracking. Efficient industrial scale pyrolysis has proven to be difficult to perform and requires adjusting reactor conditions to feedstock variations in order to achieve a desired degree of carbonization.
Converting waste from a liability to an asset is a high global priority. Currently employed technologies rely on incineration to dispose of carbonaceous waste with useable quantities of heat being generated while requiring scrubbers and other pollution controls to limit gaseous and particulate pollutants from entering the environment. Incomplete combustion associated with conventional incinerators and the complexities of operation in compliance with regulatory requirements often mean that waste which would otherwise have value through processing is instead sent to a landfill or incinerated off-site at considerable expense. Alternatives to incineration have met with limited success owing to complexity of design and operation outweighing the value of the byproducts from waste streams.
To address this global concern, many methods have been suggested to meet the flexible needs of waste processing. Most of these methods require the use of a waste processing reactor, or heat source, which are designed to operate at relatively high temperature ranges 200-980° C. (400 to 2200° F.) and allow for continuous or batch processing.
“Chain Drag Carbonizer, System and Method for the Use thereof” as detailed in U.S. Pat. No. 8,801,904; the contents of which are hereby incorporated by reference, provides an apparatus and process for anaerobic thermal conversion processing to convert waste into bio-gas; bio-oil; carbonized materials; non-organic ash, and varied further co-products.
In the technology presented, any carbonaceous waste is converted into useful co-products that can be re-introduced into the stream of commerce at various economically advantageous points. The carbonizer as disclosed has utility to support a variety of processes, including to make, without limitation, carbon, carbon-based inks and dyes, activated carbon, aerogels, bio-coke, and bio-char, as well as generate electricity, produce adjuncts for natural gas, and/or various aromatic oils, phenols, and other liquids, all depending upon the input materials and the parameters selected to process the waste, including real time economic and other market parameters which can result in the automatic re-configuration of the system to adjust its output co-products to reflect changing market conditions.
“Infectious Waste Disposal” as detailed in Patent Cooperation Treaty Application PCT/US16/13067; the contents of which are hereby incorporated by reference provides a medical waste handling and shredding sub-system with a built-in oxidizer to eliminate potential airborne infectious waste prior to converting the medical waste into useful co-products, including hydrocarbon based gases, hydrocarbon-based liquids, precious metals, rare earths (vaporization temperatures range from about 1200° C. to about 3500° C.), and carbonized material in a system having as its transformative element an anaerobic, negative pressure, or carbonization system. The system includes a sealed enclosure that houses a shredder that is fed by a vertical lift and/or a belt conveyor that supplies the infectious waste running from the exterior of the sealed enclosure to the shredder. The shredder further includes a hopper to receive waste and a process airlock where shredded wasted material accumulates and is transferred to the feed conveyor. A rubberized exterior flap permits containerized and bagged waste to enter the sealed enclosure via the belt conveyor. The sealed enclosure may be maintained at a negative pressure. A thermal oxidizer in fluid communication with the sealed enclosure and a hood acts to destroy any airborne infectious matter from the sealed enclosure and any airborne infectious waste collected by the hood. The thermal oxidizer may be run on a mixture of natural gas and reaction-produced carbonization process gases re-circulated to convert heat through the use of either conventional steam boilers or through Organic Rankin Cycle strategies to operate electrical turbine generators, or in the alternative, to conventional or novel reciprocating engine driven generators. A feed conveyor transfers shredded material from the shredder to a carbonizer.
Another approach to improve upon the incomplete combustion associated with conventional incinerators is the use of plasma technology. Plasma is a form of ionized gas, where freely flowing electrons give positive or negative charges to atoms, thus making plasma a highly efficient conductor of electricity and generator of heat. The heat generating properties of plasma are utilized in plasma gasification, a process that can break waste down to 1/300th of its original size by using ionized gases to produce temperatures greater than three times the surface temperature of the sun. The plasma gasification process can safely treat almost all forms of hazardous and non-hazardous wastes by breaking down the waste matter into component molecules and producing a synthesis gas (syngas) which can be used as an industrial feedstock to produce biofuels, synthetic fuels, hydrogen, or simply as a fuel (replacing fossil fuels) to generate steam or electricity.
Continuing with
After leaving the gasifier chamber 18 the syngas 22 passes through a series of filtration systems 26 where the syngas 22 is cooled by using water injection and is filtered of all particulate matter (which can then be fed back into the plasma gasifier). The cooling process acts to prevent the formation of dioxins and furans as these undesirable compounds are known to form within a specific temperature range. The gas will then be reheated to create a series of catalytic reductions to reduce the amount of NOx and convert it into atmospheric nitrogen and water. A series of scrubbers will then remove any acids, chlorides, fluorides, sulphates, phosphates, sodium and calcium.
A turbine may be connected to the process to generate electricity, which can be used to not only power the plant, but also provide an alternate clean source of renewable power. Cogeneration also referred to as combined heat and power (CHP) is the use of a heat engine or a power station to simultaneously generate both electricity and useful heat. All thermal power plants emit a certain amount of heat during electricity generation. The heat produced during electrical generation can be released into the natural environment through cooling towers, flue gas, or by other means. By contrast, CHP captures some or all of the by-product heat for heating purposes, or for steam production. The produced steam may be used for process heating, such as drying paper, evaporation, heat for chemical reactions or distillation. Steam at ordinary process heating conditions still has a considerable amount of enthalpy that could be also be used for power generation.
While there have been many advances in recovering useable byproducts from recycled waste there continues to be a need for further limiting emissions from the recycling and recovery process that further maximizes recovered byproducts. Thus, there exists a need for a process of waste reaction that is efficient to operate to limit environmental pollution in the course of such a conversion, and to produce useful co-products that aid the overall economic value of the process.
A system is provided for treating waste, that includes a carbonizer with one or more plasma arc units, where the carbonizer converts the waste to useable products, and resultant hot gases produced from the carbonizer are supplied to a thermal oxidizer.
A method is provided for treating waste with a plasma arc carbonizer, where the method includes adjusting a set of parameters of the carbonizer based on waste feed stock to be inputted, loading the waste feedstock into the carbonizer; and collecting useable byproducts obtained from the carbonizer.
The present invention is further detailed with respect to the following drawings. These figures are not intended to limit the scope of the present invention but rather illustrate certain attributes thereof.
An inventive system and method for plasma arc anaerobic thermal conversion processing is provided to convert waste into bio-gas; bio-oil; carbonized materials; non-organic ash, and varied further co-products. In the inventive technology presented herein, any carbonaceous waste is converted into useful co-products that can be re-introduced into the stream of commerce at various economically advantageous points. The present invention has utility to support a variety of processes, including to make, without limitation, carbon, carbon-based inks and dyes, activated carbon, aerogels, bio-coke, and bio-char, as well as generate electricity, produce adjuncts for natural gas, and/or various aromatic oils, phenols, and other liquids, all depending upon the input materials and the parameters selected to process the waste, including real time economic and other market parameters which can result in the automatic re-configuration of the system to adjust its output co-products to reflect changing market conditions. In a specific embodiment of the plasma arc carbonizer, off-gases produced during carbinization are supplied to a controlled heated column for refining and recovery of the carbonizer hot gases. The controlled heated column performs hydro-carbon recycling, and acts as a cracking tower that takes the carbonizer off-gas as a feedstock and distills the off-gases into constituent parts under pressure and temperature conditions where the feedstock evaporates and condenses into a fractional column of distillates. The number of theoretical plates needed to exact a desired level of separation is readily calculated using the Fenske equation.
Distillates extracted are appreciated to be a function of the chemical nature of the feedstock and the carbonizer conditions. Illustrative distillates include C2-C36 compounds of alkanes, alkenes, ethers, esters, phenols, aromatics, lignins, polycyclics; and substituted versions thereof where the substituent in place of a hydrogen atom is for example, a hydroxyl, an amine, a sulfonyl, a carboxyl, a halogen, or a combination thereof.
As used herein, the terms “carbonized material”, “carbonaceous product” and “carbonaceous material” are used interchangeably to define solid substances at standard temperature and pressure that are predominantly inorganic carbon by weight and illustratively include char, bio-coke, carbon, activated carbon, aerogels, fullerenes, and combinations thereof.
It is appreciated that a feedstock is readily treated with a variety of solutions or suspensions prior to carbonizer to modify the properties of the resulting inorganic carbon product. By way of example, solutions or suspensions of metal oxides or metal salts are applied to a feedstock to create an inorganic carbon product containing metal or metal ion containing domains. Metals commonly used to dope an inorganic carbon product illustratively include iron, cobalt, platinum, titanium, zinc, silver, and combinations of any of the aforementioned metals.
It is to be understood that in instances where a range of values are provided that the range is intended to encompass not only the end point values of the range but also intermediate values of the range as explicitly being included within the range and varying by the last significant figure of the range. By way of example, a recited range of from 1 to 4 is intended to include 1-2, 1-3, 2-4, 3-4, and 1-4.
Since a core element of the inventive process for refining off-gases that are produced by a carbonizer is carbonization, there are a wide variety of possible operating configurations and parameters to adjust product mixes and waste stream throughput. The system is readily re-configured, and system operating parameters changed, some in real time, to adjust co-product outputs and percentages thereof to reflect on-going market conditions. For illustrative purposes, wood, before entering the process, can have its moisture removed, but not so much as to “burst” the plant cells within the cellular structure of the wood, but rather to rendered contained water as steam and thus destroy the cellular fabric of the wood. The temperature range, duration of exposure, mixing rate, and other factors claimed as part of the inventive process, machine and system of systems herein are thus focused on controlling the many variables inherent in such anaerobic thermal conversion processes in order to produce results with utility for future use as opposed to just destruction.
System configuration in certain embodiments includes carbonization process heat source generators that are plasma arc units. In a specific embodiment, the plasma arc generators are nitrogen based. Reaction-produced carbonization process gases, if present, may be re-circulated to operate the drag chain reactor motors, used to heat water and generate steam for turbines or steam reciprocating engines or to supply subsequent distillation processes. The re-circulated heat in some inventive embodiments may also be used to preheat feedstock or to produce electricity. The pre-processing heating system preheats feedstock material prior to entering the reactor tube.
A carbonization system in specific inventive embodiments also utilizes a thermo-chemical reactor which may be a drag-chain reactor, or others such as, but not limited to batch, continuous-stirred-tank, thermal oxidizers, or plug-in reactors.
Another important element of an inventive system is the use of an air-seal, which not only aids mixing and heat diffusion, but allows pressurization of, or the creation of a partial or complete vacuum within the reactor for various reasons, including preventing gaseous contaminants from escaping the reactor, managing pressures, and managing the flow of gases within the overall reactor and associated processing elements.
Referring now to the figures,
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
This application claims priority of U.S. Provisional Patent Application Ser. No. 62/360,141 filed Jul. 8, 2016, which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/040002 | 6/29/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62360141 | Jul 2016 | US |