Plasma-assisted atomic layer deposition of alumina and Parylene-C bi-layer encaps

Information

  • Research Project
  • 9336676
  • ApplicationId
    9336676
  • Core Project Number
    R43EB018200
  • Full Project Number
    3R43EB018200-02S1
  • Serial Number
    018200
  • FOA Number
    PA-16-287
  • Sub Project Id
  • Project Start Date
    9/30/2016 - 7 years ago
  • Project End Date
    6/30/2017 - 6 years ago
  • Program Officer Name
    WOLFSON, MICHAEL
  • Budget Start Date
    9/30/2016 - 7 years ago
  • Budget End Date
    6/30/2017 - 6 years ago
  • Fiscal Year
    2016
  • Support Year
    02
  • Suffix
    S1
  • Award Notice Date
    9/24/2016 - 7 years ago

Plasma-assisted atomic layer deposition of alumina and Parylene-C bi-layer encaps

DESCRIPTION (provided by applicant): A range of neurological diseases are now being researched or treated using fully implantable electronic systems to either record or modulate brain activity in humans. These implants are currently being protected using polymer coatings that envelop the implant and help keep body fluids away from the sensitive electronics. Brain implants with complex three-dimensional geometries, like the Utah Electrode Array (UEA) shown in the figure, provide a challenge for current encapsulation techniques. Parylene has been the gold standard for encapsulation of neural and biomedical implants in general due to its well-suited combination of biocompatibility, electrical properties and chemical inertness. However recording capabilities of long-term neural implants (>6 months) encapsulated with Parylene show signs of degradation. To combat this problem Blackrock Microsystems proposes a novel bi-layer encapsulation scheme that combines Plasma Assisted Atomic Layer Deposited (PA-ALD) alumina layer underneath the Parylene layer. This encapsulation scheme, novel to biomedical field, will retain all the advantages of Parylene while utilizing vastly superior dielecric properties of underlying ALD alumina layer to create a much longer lasting and more electrically stable biomedical implants. This bi-layer encapsulation scheme may be seamlessly incorporated into our existing fabrication process flow for our flagship product, the UEA. The bi-layer The UEA with integrated electronics encapsulation method will work on different surfaces (metal, semiconductor, polymer, ceramic) and on devices with integrated wireless components making it ideal for coating any complex medical device intended for long term implant. The project has 4 specific aims: Specific Aim 1: Optimize an ALD alumina/Parylene bi-layer encapsulation scheme and compare performance with Parylene-only encapsulation on test devices. Specific Aim 2: Develop etch methods to selectively expose active electrode sites on UEAs coated with optimized ALD alumina/Parylene bi-layer. Specific Aim 3: Evaluate charge injection/impedance characteristics of ALD alumina/Parylene bi-layer coated UEAs. Specific Aim 4: Comparison of in vivo performance of ALD alumina/Parylene bi-layer coated UEAs to Parylene-only coated UEAs. Our preliminary results with Parylene and alumina coated planar interdigitated electrode (IDE) test structures are very promising in support of the proposed work. We have shown that the bi-layer encapsulation yields more stable leakage current, and stable impedance (with <5% change) at 67 ?C for about 5 months (approximately equivalent to 40 months at 37 ?C). This superior performance of bi-layer encapsulation suggests its potential usefulness for chronic implants with complex surface geometries. At the end of the Phase I 'Lab to Marketplace' SBIR project, Blackrock expects to have developed protocols and standards to transform this research from its current early-stage lab setting into a commercial-grade manufacture process.

IC Name
NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING
  • Activity
    R43
  • Administering IC
    EB
  • Application Type
    3
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    90357
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    286
  • Ed Inst. Type
  • Funding ICs
    NIBIB:90357\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
  • Study Section Name
  • Organization Name
    BLACKROCK MICROSYSTEMS
  • Organization Department
  • Organization DUNS
    827132015
  • Organization City
    SALT LAKE CITY
  • Organization State
    UT
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    841081229
  • Organization District
    UNITED STATES