Embodiments of the present disclosure relate generally to plasma assisted, dirty water, direct steam generation system, apparatus, and method.
Direct Steam Generators (DSG) are not well accepted in SAGD and Cyclic Steam Stimulation (CSS) heavy oil recovery. This is due to the fact that the steam is diluted with exhaust gas from the combustion process in a DSG. Many in the oil industry feel that exhaust gas, primarily made up of CO2 and N2, has negative effects in heavy oil production in most wells. This thought process has evolved from the opposite view as disclosed in U.S. Pat. No. 4,565,249, titled “Heavy Oil Recovery Process Using Cyclic Carbon Dioxide Steam Stimulation” and U.S. Pat. No. 5,020,595, titled “Carbon Dioxide-Steam CO-Injection Tertiary Oil Recovery Process” where CO2 was thought to be a benefit when injected in a heavy oil recovery process. The current belief is that no exhaust constituents are the preferred composition of production steam in most of the wells executing heavy oil recovery processes such as SAGD. Dealing with the inevitable solids in all types of steam production has always been problematic. The heavy oil industry today uses 2 to 4 barrels of water (turned into steam) for every barrel of oil it produces. The oil and gas industry currently utilizes extensive water treatment technologies at the well site to clean its process water before making steam, typically in the more accepted Once Through Steam Generators (OTSG). Once Through Steam Generators do not have exhaust gas constituents in the steam they produce, which is one of the primary reasons they are favored. Unfortunately, they do require high quality water to operate on. It is a common comment that modern SAGD sites, due to OTSGs, are really large and expensive water treatment plants attached to a small well pad. The water treatment plant and process currently used in conventional OTSG requires extensive labor and large amounts of expendable chemicals and energy to operate. During normal operations, these water treatment plants produce a significant waste stream of lime sludge and other byproducts that must be disposed of Due to the operational expense and capital required to build ever more complete water treatment plants, the norm in the oil industry is to limit the steam quality from 70 to 80% in the OTSG. In other words 20 to 30% of the liquid input or feed water stays in a liquid state and is not converted to steam. This practice helps to limit the deposits that will build up inside the OTSG, which will eventually disable its operation. To produce a higher quality steam in an OTSG, the water would first have to be treated to a higher purity level adding additional expense and complexity to an already too large and too complex water treatment system. Unfortunately, the practice of low quality OTSG steam production is energy and resource inefficient since the spent process water, or blow down, wastes most of its energy and water resource without recovering any oil product. This practice produces excessive greenhouse gasses (GHG) from the wasted energy and an additional waste stream from the OTSG, which is the blow down fluid. The amount of blow down produced is significant. Only about ⅓ of the blow down water is recovered in most systems. The balance of the blow down waste water contains many contaminated solids, such as CAO3 and MGO3. This blow down must be disposed of in deep wells or again run through very expensive and complex processes to reclaim the valuable water content.
The DSG boilers do not, in many cases, suffer from most of the above problems. The current technology DSG boilers need relatively clean feedwater but not to the level required by OTSG. The DSG boilers typically have limited or no blow down. Their biggest problem is that their steam is contaminated by the exhaust constituents they produce through combustion. They also typically produce an inorganic and ash waste stream, which has to then be dealt with and transported to a land fill.
DSG boilers are typically more efficient than OTSG boilers. This is due to the elimination of the tube heat exchanger used in a OTSG boiler. In comparison, in a DSG boiler, the oxidized fuel transfers its energy directly to the process steam with no intermediate tube. This higher efficiency is a desirable trait. U.S. Pat. No. 7,931,083 titled “Integrated System and Method for Steam-Assisted Gravity Drainage (SAGD)-Heavy Oil Production to Produce Super-Heated Steam Without Liquid Waste Discharge”; U.S. Pat. No. 4,498,542 titled “Direct Contact Low Emission Steam Generating System and Method Utilizing a Compact, Multi-Fuel Burner”; and U.S. Pat. No. 4,398,604 titled “Method and Apparatus for Producing a High Pressure Thermal Vapor Stream” all discuss the positive traits of DSG but offer no solution to removing the bad traits associated with the exhaust constituents such as CO2 and N2 from the steam product. As noted, this makes the existing DSG technology unacceptable and a non-starter for modern heavy oil recovery. A method, apparatus and system of eliminating the bad traits associated with the DSG's exhaust constituents is required to allow their acceptance in the oil recovery sector and other industries.
Embodiments of the present disclosure include a system for generating steam, comprising a direct steam generator. A feed conduit is fluidly coupled to the direct steam generator configured for delivery of feedwater to the direct steam generator, wherein the feedwater includes organic and inorganic constituents. A fossil fuel source is fluidly connected to the direct steam generator to provide power to operate the direct steam generator. At least one of an air conduit and an oxygen enriched air conduit is fluidly coupled with the direct steam generator. A close coupled heat exchanger is fluidly coupled to the direct steam generator. The close coupled heat exchanger is configured to route saturated steam and combustion exhaust constituents produced by the direct steam generator through a condenser portion of the close coupled heat exchanger via a condenser side steam conduit and configured to condense the saturated steam to form a condensate. A separation tank and water return system is fluidly coupled to a condenser side condensate conduit of the condenser portion of the close coupled heat exchanger, wherein the separation tank and water return system is configured to separate the combustion exhaust constituents from the condensate. An evaporator portion of the close coupled heat exchanger is fluidly coupled with the separation tank and water return system via an evaporator side condensate conduit. The evaporator portion is configured to evaporate the condensate from the separation tank and water return system via heat transfer between the condenser portion and evaporator portion to form steam.
Embodiments of the present disclosure include a system for generating steam, comprising a plasma assisted vitrifier that includes a plasma torch and a melt chamber configured to contain a molten metal pool. A cooling ring is disposed around a base of the plasma assisted vitrifier and the molten metal pool. A feed conduit is fluidly coupled to the plasma assisted vitrifier configured for delivery of feedwater to the plasma assisted vitrifier, wherein the feedwater includes organic and inorganic constituents. A fossil fuel source is fluidly coupled to the plasma assisted virtifier to provide power to operate the direct steam generator. At least one of an air conduit and an oxygen enriched air conduit is fluidly coupled with the plasma assisted vitrifier. A close coupled heat exchanger is fluidly coupled to the plasma assisted vitrifier, the close coupled heat exchanger is configured to route saturated steam and combustion exhaust constituents produced by the plasma assisted vitrifier through a condenser portion of the close coupled heat exchanger via a condenser side steam conduit and configured to condense the saturated steam to form a condensate. A separation tank and water return system is fluidly coupled to a condenser side condensate conduit of the condenser portion of the close coupled heat exchanger, wherein the separation tank and water return system is configured to separate the combustion exhaust constituents from the condensate. An evaporator portion of the close coupled heat exchanger is fluidly coupled with the separation tank and water return system via an evaporator side condensate conduit. The evaporator portion is configured to evaporate the condensate from the separation tank and water return system via heat transfer between the condenser portion and evaporator portion to form steam.
Embodiments of the present disclosure include a system for generating steam, comprising a plasma assisted vitrifier that includes a plasma torch and a melt chamber configured to contain a molten metal pool, wherein the plasma assisted vitrifier is configured as a direct steam generator. A cooling ring is disposed around a base of the plasma assisted vitrifier and the molten metal pool. A feed conduit is fluidly coupled to the plasma assisted vitrifier and configured for delivery of feedwater to the plasma assisted vitrifier, wherein the feedwater includes organic and inorganic constituents. A fossil fuel source is fluidly coupled to the plasma assisted virtifier to provide power to operate the direct steam generator. At least one of an air conduit and an oxygen enriched air conduit is fluidly coupled with the plasma assisted vitrifier. A close coupled heat exchanger is fluidly coupled to the plasma assisted vitrifier, the close coupled heat exchanger is configured to route saturated steam and combustion exhaust constituents produced by the plasma assisted vitrifier through a condenser portion of the close coupled heat exchanger via a condenser side steam conduit and configured to condense the saturated steam to form a condensate. A separation tank and water return system is fluidly coupled to a condenser side condensate conduit of the condenser portion of the close coupled heat exchanger, wherein the separation tank and water return system is configured to separate the combustion exhaust constituents from the condensate. An evaporator portion of the close coupled heat exchanger is fluidly coupled with the separation tank and water return system via an evaporator side condensate conduit, wherein the evaporator portion is configured to evaporate the condensate from the separation tank and water return system via heat transfer between the condenser portion and evaporator portion to form steam.
Embodiments of the present disclosure relate generally to a method, apparatus and system for the generation of steam from dirty water, salty water and/or produced water. The system, apparatus and method, in a preferred embodiment, can include a plasma assisted Direct Steam Generation (DSG) unit. A preferred embodiment can include a Zero Liquid Discharge (ZLD), a Zero Waste and a Zero Greenhouse Gas generation system, apparatus and method. Embodiments of the present disclosure can produce a steam product, which can be used in any steam application, but is particularly well suited for Steam Assist Gravity Drain (SAGD) heavy oil applications. CO2 and exhaust constituents can be separated from the steam product and, in some embodiments, sequestered.
Embodiments of the present disclosure can separate the generated process steam produced by a DSG from its exhaust combustion constituents. When oxygen or highly oxygen enriched air is used for combustion, the method and system will gain efficiency and isolate the exhaust constituents primarily made up of CO2 to minimize the generation of GHG. Due to the lack of N2, when highly oxygen enriched air is used for combustion, the NOx production is also minimized or eliminated without the use of after treatments. The plasma assisted or non-plasma assisted DSG can also operate on produced water, sewage, bitumen production pond water, and/or extremely dirty and salty water. Embodiments of the present disclosure eliminate all waste streams including blow down and can be a Zero Liquid Discharge, a Zero Green House Gas and a Zero Waste system, apparatus and method. The method, apparatus and system of the present disclosure, can use fossil fuel, thermal plasma, a multiphase heat exchanger and other components to accomplish its goals, in various embodiments.
Referring first to
Production conduit 2 can be fluidly coupled to the oil separation system 3 and can carry the produced water and bitumen to oil separation system 3. Oil separation system 3 can be implemented many different ways at many different well sites, but can typically include a Free Water Knock Out (FWKO) and other heavy oil separation systems known to those skilled in the art. Crude oil conduit 4 can be fluidly coupled to the oil separation system 3 and can carry an end product of a SAGD operation. For example, the crude oil conduit 4 can carry an acceptable crude oil product that then can be delivered for further processing to a refinery. Diluent additive, centrifuges and other bitumen upgrade processes have not been discussed, however can additionally be included in embodiments of the present disclosure. In some embodiments, 1,000 barrels per day of crude oil product can be produced as an end product of the SAGD operation. However, examples are not so limited and greater than or fewer than 1,000 barrels per day can be produced.
Separated water conduit 5 can be fluidly coupled to the oil separation system 3 and a feed water filtration system 6. The separated water conduit 5, can carry water, also known as “Produced Water,” which has been separated from the crude oil product, to the feed water filtration system 6, which can filter the separated water and output filtered water. The filtered water can travel through a filtered water conduit 7, and can optionally be augmented by makeup water which could be dirty, salty water, sewage, or bitumen production pond water to create a feed stock. The makeup water can be fed through a makeup water conduit 8, fluidly coupled with the separated water conduit 7. The feed stock (optionally augmented with the makeup water) enters a Plasma Assisted Vitrifier (PAV) 9 via feed conduit 35.
In a preferred embodiment, the feed stock can enter the PAV 9, as shown in
In some embodiments, the metal pool cooling ring 121 can be a cooling jacket that is disposed around a perimeter of the base of the PAV 9-2. In an example, the metal pool cooling ring 121 can be built into the base of the PAV 9-2. Alternatively, the metal pool cooling ring 121 can have a general shape of a hollow cylinder and can be attached to an outer surface of the base of the PAV 9-2. For example, the metal pool cooling ring 121 can be formed from hollow semi-cylindrical components that are connected to one another to form the metal pool cooling ring 121.
In some embodiments, vitrified product 14 can be deposited onto a spinner wheel 120 or multiple wheels to begin a fiberizing process, as shown in
With further reference to
The CO2 could also be extracted at turbine feed conduit 36 or turbine feed conduit 236, depicted in
Any particulate from the effluent produced by the PAV 9 can travel through saturated steam conduit 15. In some embodiments, sorbents and/or additives, such as lime, can be injected into the saturated steam conduit 15 via a conduit 37 to convert any carry over Sulfur or other undesirable elements. The saturated steam conduit 15 can be fluidly coupled to a particulate cleaning system 16, which is more fully discussed in relation to
As depicted in
As depicted in
In some embodiments, an oxygen enriched air conduit 140 can supply oxygen enriched air to the PAV 9-2 and/or an air conduit 141 can supply air to the PAV 9-2 via the one or more injection manifolds 138. In some embodiments, each of the one or more injection manifolds 138 can include one or more injection nozzles configured to inject the feed stock, air, and/or oxygen enriched air into the plasma chamber. Air may or may not be fed to the PAV 9-2 via air conduit 141, or DSG 245 depicted in
A second, preferred PAV example, is shown in
In some embodiments, as the saturated steam exits conduit 145 and enters the particulate cleaning system 146, exhaust gases, as well as particulate matter can be mixed with the saturated steam. The particulate cleaning system 146 (e.g., cyclone separator) can strip the particulate matter from the saturated steam, as depicted in
In some embodiments, inorganic solids and/or semi-solids (e.g., particulate matter) can be fed into the PAV 9-2 via the solid feed conduit 133. The solid feed conduit 133 can include a screw feeder disposed inside solid feed conduit 133. The screw feeder can be driven by a motor 124, which turns the screw feeder and delivers solids and/or semi-solids from flash tank 148. The flash tank 148 can include a vent 144 configured to maintain a particular pressure within the flash tank 148 (e.g., atmospheric pressure).
If a blended steam and exhaust constituent product is desired, it could be harvested at saturated steam conduit 149. If a steam product is desired that is void of exhaust constituents then it can be further processed through a multiphase combined (close coupled) heat exchanger 38, as discussed in relation to
As shown in
The close coupling is employed to transfer energy between the evaporator side 25 (e.g., cold side) and condenser side 19 (e.g., hot side). The close coupling can be done through any conventional heat exchanger design such as a tube and shell, plate, or through an additional fluid transfer stage (not shown) such as a thermal oil and independent evaporator and condenser conduits. These thermal transfer techniques are known by those skilled in the art.
As shown in
The evaporator side steam, as shown in
In some embodiments, the separator tank 21 can separate the hot side condensate into a water constituent and an exhaust constituent. The exhaust constituent, in some embodiments, can be processed through an optional turbo expander 29 to turn generator 30 to produce electricity 31, which could be used to self-power the site. Expanded exhaust constituents can be fed via an exhaust conduit 32 to an Air Pollution Control (APC) Process 33 before being exhausted via treated exhaust outlet 34. An optional APC process (e.g., afterburner or other organic processing device), for example APC 43 in
A particulate cleaning system 216 can be fluidly coupled to the saturated steam conduit 215 and can strip particulate matter from the saturated steam, as depicted in
Saturated steam can be fed from the particulate cleaning system 216 via a saturated steam conduit 218 to a condenser side 219 of a multiphase combined (close coupled) heat exchanger 238, as discussed herein. Condensate from the condenser side 219 can be fed to a separator tank 221 via condenser side condensate conduit 220, which can separate the hot side condensate into a water constituent and an exhaust constituent. The exhaust constituent can include a percentage of CO2 by volume in a range from 20 percent to 100 percent. The exhaust constituent can be processed via an optional APC process 243 and turbo expander 229, which can provide for a controlled expansion. Expanded exhaust constituents can be fed via an exhaust conduit 232 to an APC process 233 before being exhausted via treated exhaust outlet 234.
As discussed herein, in some embodiments, a control valve 244 can control a flow of condensate through condensate conduit 224 into the evaporator side 225 of the close coupled heat exchanger 238. The condensate in the evaporator side 225 of the close coupled heat exchanger 238 can be converted to saturated steam and can be fed through evaporator side steam conduit 226 to the steam injection conduit 228, as discussed in relation to
Embodiments are described herein of various apparatuses, systems, and/or methods. Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the endoscope of the embodiments, the endoscope of which is defined solely by the appended claims.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment(s) is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” or “in an embodiment,” or the like, in places throughout the specification, are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features, structures, or characteristics of one or more other embodiments without limitation given that such combination is not illogical or non-functional.
It will be further appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” and “down” may be used herein with respect to the illustrated embodiments. However, apparatus discussed herein may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.
Although at least one embodiment for plasma assisted, dirty water, direct steam generation system, apparatus and method has been described above with a certain degree of particularity, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this disclosure. All directional references (e.g., upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present disclosure, and do not create limitations, particularly as to the position, orientation, or use of the devices. Joinder references (e.g., affixed, attached, coupled, connected, and the like) are to be construed broadly and can include intermediate members between a connection of elements and relative movement between elements. As such, joinder references do not necessarily infer that two elements are directly connected and in fixed relationship to each other. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure can be made without departing from the spirit of the disclosure as defined in the appended claims.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
This application claims priority to U.S. provisional patent application No. 62/166,536 entitled “PLASMA ASSISTED, DIRTY WATER, DIRECT STEAM GENERATION SYSTEM, APPARATUS AND METHOD,” filed 26 May 2015, which is hereby incorporated by reference as though fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
4330038 | Soukup et al. | May 1982 | A |
4398604 | Krajicek et al. | Aug 1983 | A |
4498542 | Eisenhawer et al. | Feb 1985 | A |
4565249 | Pebdani et al. | Jan 1986 | A |
5020595 | Van Slyke | Jun 1991 | A |
5132145 | Valentian | Jul 1992 | A |
7931083 | Betzer Tsilevich | Apr 2011 | B2 |
8166761 | Moghtaderi | May 2012 | B2 |
20040055302 | Kalina | Mar 2004 | A1 |
20090064581 | Nielsen | Mar 2009 | A1 |
20130062189 | Dighe | Mar 2013 | A1 |
20140166934 | Juranitch | Jun 2014 | A1 |
20140305645 | Macadam | Oct 2014 | A1 |
20150218469 | Sastri et al. | Aug 2015 | A1 |
20150369025 | Latimer et al. | Dec 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20160348895 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
62166536 | May 2015 | US |