This invention relates to methods and apparatus for plasma-assisted processing of work pieces in a manufacturing line.
Plasmas can be used to assist in a number of processes, including the joining and heat-treating of materials. However, igniting, modulating, and sustaining plasmas for these purposes can be difficult for a number of reasons.
For example, it is known that a plasma can be ignited in a cavity by directing a large amount of microwave radiation into the cavity containing a gas. If the radiation intensity is large enough, the plasma can ignite spontaneously. However, radiation sources capable of supplying such large intensities can have several disadvantages; they can be expensive, heavy, bulky, and energy-consuming. Moreover, these large radiation sources normally require large electrical power supplies, which can have similar disadvantages.
One way of igniting a plasma with a lower radiation intensity is to reduce the pressure in the cavity. However, vacuum equipment, which can be used to reduce this pressure, can limit manufacturing flexibility, especially as the plasma chambers become large and especially in the context of manufacturing lines.
A sparking device can also be used to ignite a plasma using a lower radiation intensity. Such a device, however, only sparks periodically and therefore can only ignite a plasma periodically, sometimes causing an ignition lag. Moreover, conventional sparking devices are normally powered with electrical energy, limiting their use and position in many manufacturing environments.
A method of plasma-assisted processing of a plurality of work pieces can be provided. In one embodiment, a method of plasma-assisted processing a plurality of work pieces is provided. A method of plasma-assisted processing a plurality of work pieces can include placing each of the plurality of work pieces in a plurality of movable carriers; moving a first subset of movable carriers into a first irradiation zone with a conveyance system; flowing a gas into the first irradiation zone; igniting the gas in the first irradiation zone to form a first plasma; sustaining the first plasma for a period of time sufficient to at least partially plasma process work pieces in the first subset of movable carriers in the first irradiation zone; removing the first subset of movable carriers out of the first irradiation zone with the conveyance system; moving a second subset of movable carriers into a second irradiation zone with the conveyance system; and processing the second subset of movable carriers with a second plasma ignited in the second irradiation zone. In some embodiments, the first subset of movable carriers is processed in the first irradiation zone concurrently with processing the second subset of movable carriers in the second irradiation zone. In some embodiments, the first subset of movable carriers is identical with the second subset of movable carriers. In some embodiments, the plasma-processing is at least one of sintering, annealing, normalizing, spheroiding, tempering, age hardening, case hardening, joining, doping, nitriding, carburizing, decrystallizing, carbo-nitriding, cleaning, sterilizing, vaporizing, coating and ashing.
An apparatus for plasma-assisted processing a plurality of work pieces according to the present invention can include a first chamber, the first chamber coupled to receive a gas flow and radiation in order to ignite a first plasma within the first chamber; a second chamber, the second chamber coupled to receive a gas flow and radiation in order to ignite a second plasma within the second chamber; and a conveyance system coupled to shuttle work pieces in and out of each of the first chamber and the second chamber. Each of the chambers can include a plurality of magnetrons to provide microwave power. In some embodiments, a chamber can include microwave absorbers positioned to maximize the microwave energy at a cavity. In some embodiments a chamber can include more than one cavity.
Additional plasma catalysts, and methods and apparatus for igniting, modulating, and sustaining a plasma for producing a gas consistent with this invention are also provided.
Further aspects of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
This invention relates to methods and apparatus for plasma-assisted processing in a manufacturing line and can be used to lower energy costs and increase manufacturing flexibility.
The following commonly owned, concurrently filed U.S. patent applications are hereby incorporated by reference in their entireties: Kumar et al. U.S. patent application Ser. No. 10/513,221 (Atty. Docket No. 1837.0008), U.S. patent application Ser. No. 10/513,393 (Atty. Docket No. 1837.0009), PCT Application PCT/US03/14132 (Atty. Docket No. 1837.0010, now abandoned), U.S. patent application Ser. No. 10/513,394 (Atty. Docket No. 1837.0011), U.S. patent application Ser. No. 10/513,305 (Atty. Docket No. 1837.0012), U.S. patent application Ser. No. 10/513,607 (Atty. Docket No. 1837.0013), U.S. Pat. No. 6,870,124 (Atty. Docket No. 1837.0015), PCT Application No. PCT/US03/14034 (Atty. Docket No. 1837.0016, now abandoned), U.S. patent application Ser. No. 10/430,416 (Atty. Docket No. 1837.0017), U.S. patent application Ser. No. 10/430,415 (Atty. Docket No. 1837.0018), PCT Application No. PCT/US03/14133 (Atty. Docket No. 1837.0020, now abandoned), U.S. patent application Ser. No. 10/513,606 (Atty. Docket No. 1837.0021), U.S. patent application Ser. No. 10/513,309 (Atty. Docket No. 1837.0023), U.S. patent application Ser. No. 10/513,220 (Atty. Docket No. 1837.0024), PCT Application No. PCT/US03/14122 (Atty. Docket No. 1837.0025, now abandoned), U.S. patent application Ser. No. 10/513,397 (Atty. Docket No. 1837.0026), PCT Application No. PCT/US03/14137 (Atty. Docket No. 1837.0028, now abandoned), U.S. patent application Ser. No. 10/430,426 (Atty. Docket No. 1837.0029), PCT Application No. PCT/US03/14121 (Atty. Docket No. 1837.0030, now abandoned), U.S. patent application Ser. No. 10/513,604 (Atty. Docket No. 1837.0032), and PCT Application No. PCT/US03/14135 (Atty. Docket No. 1837.0033).
Illustrative Plasma System
In one embodiment, cavity 12 is formed in a vessel made of ceramic. Due to the extremely high temperatures that can be achieved with plasmas consistent with this invention, a ceramic capable of operating at about 3,000 degrees Fahrenheit can be used. The ceramic material can include, by weight, 29.8% silica, 68.2% alumina, 0.4% ferric oxide, 1% titania, 0.1% lime, 0.1% magnesia, 0.4% alkalies, which is sold under Model No. LW-30 by New Castle Refractories Company, of New Castle, Pa. It will be appreciated by those of ordinary skill in the art, however, that other materials, such as quartz, and those different from the one described above, can also be used consistent with the invention.
In one successful experiment, a plasma was formed in a partially open cavity inside a first brick and topped with a second brick. The cavity had dimensions of about 2 inches by about 2 inches by about 1.5 inches. At least two holes were also provided in the brick in communication with the cavity: one for viewing the plasma and at least one hole for providing the gas. The size of the cavity can depend on the desired plasma process being performed. Also, the cavity can at least be configured to prevent the plasma from rising/floating away from the primary processing region.
Cavity 12 can be connected to one or more gas sources 24 (e.g., a source of argon, nitrogen, hydrogen, xenon, krypton) by line 20 and control valve 22, which may be powered by power supply 28. Line 20 may be tubing (e.g., between about 1/16 inch and about ¼ inch, such as about ⅛″), but could be any device capable of delivering gas. Also, if desired, a vacuum pump can be connected to the chamber to remove fumes that may be generated during plasma processing. In one embodiment, gas can flow in and/or out of cavity 12 through one or more gaps in a multi-part vessel. Thus, gas ports consistent with this invention need not be distinct holes and can take on other forms as well, such as many small distributed holes.
A radiation leak detector (not shown) was installed near source 26 and waveguide 30 and connected to a safety interlock system to automatically turn off the radiation (e.g., microwave) power supply if a leak above a predefined safety limit, such as one specified by the FCC and/or OSHA (e.g., 5 mW/cm2), was detected.
Radiation source 26, which may be powered by electrical power supply 28, can direct radiation energy into chamber 14 through one or more waveguides 30 or by using a coaxial cable. It will be appreciated by those of ordinary skill in the art that source 26 can be connected directly to cavity 12 or chamber 14, thereby eliminating waveguide 30. The radiation energy entering cavity 12 is used to ignite a plasma within the cavity. This plasma can be substantially sustained and confined to the cavity by coupling additional radiation with the catalyst.
Radiation energy can be supplied through circulator 32 and tuner 34 (e.g., 3-stub tuner). Tuner 34 can be used to minimize the reflected power as a function of changing ignition or processing conditions, especially after the plasma has formed because microwave power, for example, will be strongly absorbed by the plasma.
As explained more fully below, the location of radiation-transmissive cavity 12 in chamber 14 may not be critical if chamber 14 supports multiple modes, and especially when the modes are continually or periodically mixed. As also explained more fully below, motor 36 can be connected to mode-mixer 38 for making the time-averaged radiation energy distribution substantially uniform throughout chamber 14. Furthermore, window 40 (e.g., a quartz window) can be disposed in one wall of chamber 14 adjacent to cavity 12, permitting temperature sensor 42 (e.g., an optical pyrometer) to be used to view a process inside cavity 12. In one embodiment, the optical pyrometer output can increase from zero volts as the temperature rises to within the tracking range.
Sensor 42 can develop output signals as a function of the temperature or any other monitorable condition associated with a work piece (not shown) within cavity 12 and provide the signals to controller 44. Dual temperature sensing and heating, as well as automated cooling rate and gas flow controls can also be used. Controller 44 in turn can be used to control operation of power supply 28, which can have one output connected to source 26 as described above and another output connected to valve 22 to control gas flow into cavity 12.
The invention may be practiced with microwave sources at, for example, both 915 MHz and 2.45 GHz provided by Communications and Power Industries (CPI), although radiation having any frequency less than about 333 GHz can be used. The 2.45 GHz system provided continuously variable microwave power from about 0.5 kilowatts to about 5.0 kilowatts. A 3-stub tuner allowed impedance matching for maximum power transfer and a dual directional coupler was used to measure forward and reflected powers. Also, optical pyrometers were used for remote sensing of the sample temperature.
As mentioned above, radiation having any frequency less than-about 333 GHz can be used consistent with this invention. For example, frequencies, such as power line frequencies (about 50 Hz to about 60 Hz), can be used, although the pressure of the gas from which the plasma is formed may be lowered to assist with plasma ignition. Also, any radio frequency or microwave frequency can be used consistent with this invention, including frequencies greater than about 100 kHz. In most cases, the gas pressure for such relatively high frequencies need not be lowered to ignite, modulate, or sustain a plasma, thereby enabling many plasma-assisted processes to occur at atmospheric pressures and above in any manufacturing environment.
The equipment was computer controlled using LabView 6i software, which provided real-time temperature monitoring and microwave power control. Noise was reduced by using sliding averages of suitable number of data points. Also, to improve speed and computational efficiency, the number of stored data points in the buffer array were limited by using shift-registers and buffer-sizing techniques. The pyrometer measured the temperature of a sensitive area of about 1 cm2, which was used to calculate an average temperature. The pyrometer sensed radiant intensities at two wavelengths and fit those intensities using Planck's law to determine the temperature. It will be appreciated, however, that other devices and methods for monitoring and controlling temperature are also available and can be used consistent with this invention. For example, control software that can be used consistent with this invention is described in commonly owned, concurrently filed Kumar et al. PCT Application No. PCT/US03/14135 (Attorney Docket No. 1837.0033, now abandoned), which is hereby incorporated by reference in its entirety.
Chamber 14 had several glass-covered viewing ports with radiation shields and one quartz window for pyrometer access. Several ports for connection to a vacuum pump and a gas source were also provided, although not necessarily used.
System 10 also included a closed-loop deionized water cooling system (not shown) with an external heat exchanger cooled by tap water. During operation, the deionized water first cooled the magnetron, then the load-dump in the circulator (used to protect the magnetron), and finally the radiation chamber through water channels welded on the outer surface of the chamber.
In some embodiments of the invention, microwave absorbers 11 can be placed within chamber 14. Microwave absorber 11 can, for example, be formed of graphite plates or rods. Placement of microwave absorber 11 around chamber 14, and in some embodiments beneath cavity 12, can direct microwave power into the plasma. Such a technique maximizes the microwave power being directed to the plasma.
In some embodiments, multiple processes can be performed in chamber 14. For example, it typically takes a very long time to sinter and then braze powder metal parts. By controlling the process flow gas that enters cavity 12, it is possible to sinter, braze, and then apply a surface treatment to powder metal parts without moving the part from cavity 12. Any surface treatment can be accomplished, for example coating, carburization, nitriding, and other surface treatments.
Utilizing system 10 as shown in
Plasma Catalysts
A plasma catalyst consistent with this invention can include one or more different materials and may be either passive or active. A plasma catalyst can be used, among other things, to ignite, modulate, and/or sustain a plasma at a gas pressure that is less than, equal to, or greater than atmospheric pressure.
One method of forming a plasma consistent with this invention can include subjecting a gas in a cavity to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a passive plasma catalyst. A passive plasma catalyst consistent with this invention can include any object capable of inducing a plasma by deforming a local electric field (e.g., an electromagnetic field) consistent with this invention, without necessarily adding additional energy through the catalyst, such as by applying an electric voltage to create a spark.
A passive plasma catalyst consistent with this invention can also be a nano-particle or a nano-tube. As used herein, the term “nano-particle” can include any particle having a maximum physical dimension less than about 100 nm that is at least electrically semi-conductive. Also, both single-walled and multi-walled carbon nanotubes, doped and undoped, can be particularly effective for igniting plasmas consistent with this invention because of their exceptional electrical conductivity and elongated shape. The nanotubes can have any convenient length and can be a powder fixed to a substrate. If fixed, the nanotubes can be oriented randomly on the surface of the substrate or fixed to the substrate (e.g., at some predetermined orientation) while the plasma is ignited or sustained.
A passive plasma catalyst can also be a powder consistent with this invention, and need not comprise nano-particles or nano-tubes. It can be formed, for example, from fibers, dust particles, flakes, sheets, etc. When in powder form, the catalyst can be suspended, at least temporarily, in a gas. By suspending the powder in the gas, the powder can be quickly dispersed throughout the cavity and more easily consumed, if desired.
In one embodiment, the powder catalyst can be carried into the cavity and at least temporarily suspended with a carrier gas. The carrier gas can be the same or different from the gas that forms the plasma. Also, the powder can be added to the gas prior to being introduced to the cavity. For example, as shown in
In one experiment, a plasma was ignited in a cavity by placing a pile of carbon fiber powder in a copper pipe that extended into the cavity. Although sufficient radiation was directed into the cavity, the copper pipe shielded the powder from the radiation and no plasma ignition took place. However, once a carrier gas began flowing through the pipe, forcing the powder out of the pipe and into the cavity, and thereby subjecting the powder to the radiation, a plasma was nearly instantaneously ignited in the cavity.
A powder plasma catalyst consistent with this invention can be substantially non-combustible, thus it need not contain oxygen or burn in the presence of oxygen. Thus, as mentioned above, the catalyst can include a metal, carbon, a carbon-based alloy, a carbon-based composite, an electrically conductive polymer, a conductive silicone elastomer, a polymer nanocomposite, an organic-inorganic composite, and any combination thereof.
Also, powder catalysts can be substantially uniformly distributed in the plasma cavity (e.g., when suspended in a gas), and plasma ignition can be precisely controlled within the cavity. Uniform ignition can be important in certain applications, including those applications requiring brief plasma exposures, such as in the form of one or more bursts. Still, a certain amount of time can be required for a powder catalyst to distribute itself throughout a cavity, especially in complicated, multi-chamber cavities. Therefore, consistent with another aspect of this invention, a powder catalyst can be introduced into the cavity through a plurality of ignition ports to more rapidly obtain a more uniform catalyst distribution therein (see below).
In addition to powder, a passive plasma catalyst consistent with this invention can include, for example, one or more microscopic or macroscopic fibers, sheets, needles, threads, strands, filaments, yarns, twines, shavings, slivers, chips, woven fabrics, tape, whiskers, or any combination thereof. In these cases, the plasma catalyst can have at least one portion with one physical dimension substantially larger than another physical dimension. For example, the ratio between at least two orthogonal dimensions can be at least about 1:2, but could be greater than about 1:5, or even greater than about 1:10.
Thus, a passive plasma catalyst can include at least one portion of material that is relatively thin compared to its length. A bundle of catalysts (e.g., fibers) may also be used and can include, for example, a section of graphite tape. In one experiment, a section of tape having approximately thirty thousand strands of graphite fiber, each about 2-3 microns in diameter, was successfully used. The number of fibers in and the length of a bundle are not critical to igniting, modulating, or sustaining the plasma. For example, satisfactory results have been obtained using a section of graphite tape about one-quarter inch long. One type of carbon fiber that has been successfully used consistent with this invention is sold under the trademark Magnamite®, Model No. AS4C-GP3K, by the Hexcel Corporation, of Anderson, S.C. Also, silicon-carbide fibers have been successfully used.
A passive plasma catalyst consistent with another aspect of this invention can include one or more portions that are, for example, substantially spherical, annular, pyramidal, cubic, planar, cylindrical, rectangular or elongated.
The passive plasma catalysts discussed above can include at least one material that is at least electrically semi-conductive. In one embodiment, the material can be highly conductive. For example, a passive plasma catalyst consistent with this invention can include a metal, an inorganic material, carbon, a carbon-based alloy, a carbon-based composite, an electrically conductive polymer, a conductive silicone elastomer, a polymer nanocomposite, an organic-inorganic composite, or any combination thereof. Some of the possible inorganic materials that can be included in the plasma catalyst include carbon, silicon carbide, molybdenum, platinum, tantalum, tungsten, carbon nitride, and aluminum, although other electrically conductive inorganic materials may work just as well.
In addition to one or more electrically conductive materials, a passive plasma catalyst consistent with this invention can include one or more additives (which need not be electrically conductive). As used herein, the additive can include any material that a user wishes to add to the plasma. Therefore, the catalyst can include the additive itself, or it can include a precursor material that, upon decomposition, can form the additive. Thus, the plasma catalyst can include one or more additives and one or more electrically conductive materials in any desirable ratio, depending on the ultimate desired composition of the plasma and the process using the plasma.
The ratio of the electrically conductive components to the additives in a passive plasma catalyst can vary over time while being consumed. For example, during ignition, the plasma catalyst could desirably include a relatively large percentage of electrically conductive components to improve the ignition conditions. On the other hand, if used while sustaining the plasma, the catalyst could include a relatively large percentage of additives. It will be appreciated by those of ordinary skill in the art that the component ratio of the plasma catalyst used to ignite and sustain the plasma could be the same.
A predetermined ratio profile can be used to simplify many plasma processes. In many conventional plasma processes, the components within the plasma are added as necessary, but such addition normally requires programmable equipment to add the components according to a predetermined schedule. However, consistent with this invention, the ratio of components in the catalyst can be varied, and thus the ratio of components in the plasma itself can be automatically varied. That is, the ratio of components in the plasma at any particular time can depend on which of the catalyst portions is currently being consumed by the plasma. Thus, the catalyst component ratio can be different at different locations within the catalyst. And, the current ratio of components in a plasma can depend on the portions of the catalyst currently and/or previously consumed, especially when the flow rate of a gas passing through the plasma chamber is relatively slow.
A passive plasma catalyst consistent with this invention can be homogeneous, inhomogeneous, or graded. Also, the plasma catalyst component ratio can vary continuously or discontinuously throughout the catalyst. For example, in
Alternatively, as shown in
Another way to vary the ratio of components in a sustained plasma is by introducing multiple catalysts having different component ratios at different times or different rates. For example, multiple catalysts can be introduced at approximately the same location or at different locations within the cavity. When introduced at different locations, the plasma formed in the cavity can have a component concentration gradient determined by the locations of the various catalysts. Thus, an automated system can include a device by which a consumable plasma catalyst is mechanically inserted before and/or during plasma igniting, modulating, and/or sustaining.
A passive plasma catalyst consistent with this invention can also be coated. In one embodiment, a catalyst can include a substantially non-electrically conductive coating deposited on the surface of a substantially electrically conductive material. Alternatively, the catalyst can include a substantially electrically conductive coating deposited on the surface of a substantially electrically non-conductive material.
A single plasma catalyst can also include multiple coatings. If the coatings are consumed during contact with the plasma, the coatings could be introduced into the plasma sequentially, from the outer coating to the innermost coating, thereby creating a time-release mechanism. Thus, a coated plasma catalyst can include any number of materials, as long as a portion of the catalyst is at least electrically semi-conductive.
Consistent with another embodiment of this invention, a plasma catalyst can be located entirely within a radiation cavity to substantially reduce or prevent radiation energy leakage. In this way, the plasma catalyst does not electrically or magnetically couple with the vessel containing the cavity or to any electrically conductive object outside the cavity. This prevents sparking at the ignition port and prevents radiation from leaking outside the cavity during the ignition and possibly later if the plasma is sustained. In one embodiment, the catalyst can be located at a tip of a substantially electrically non-conductive extender that extends through an ignition port.
In another embodiment, shown in
Another method of forming a plasma consistent with this invention includes subjecting a gas in a cavity to electromagnetic radiation having a frequency less than about 333 GHz in the presence of an active plasma catalyst, which generates or includes at least one ionizing particle.
An active plasma catalyst consistent with this invention can be any particle or high energy wave packet capable of transferring a sufficient amount of energy to a gaseous atom or molecule to remove at least one electron from the gaseous atom or molecule in the presence of electromagnetic radiation. Depending on the source, the ionizing particles can be directed into the cavity in the form of a focused or collimated beam, or they may be sprayed, spewed, sputtered, or otherwise introduced.
For example,
Examples of ionizing particles consistent with this invention can include x-ray particles, gamma ray particles, alpha particles, beta particles, neutrons, protons, and any combination thereof. Thus, an ionizing particle catalyst can be charged (e.g., an ion from an ion source) or uncharged and can be the product of a radioactive fission process. In one embodiment, the vessel in which the plasma cavity is formed could be entirely or partially transmissive to the ionizing particle catalyst. Thus, when a radioactive fission source is located outside the cavity, the source can direct the fission products through the vessel to ignite the plasma. The radioactive fission source can be located inside the radiation chamber to substantially prevent the fission products (i.e., the ionizing particle catalyst) from creating a safety hazard.
In another embodiment, the ionizing particle can be a free electron, but it need not be emitted in a radioactive decay process. For example, the electron can be introduced into the cavity by energizing the electron source (such as a metal), such that the electrons have sufficient energy to escape from the source. The electron source can be located inside the cavity, adjacent the cavity, or even in the cavity wall. It will be appreciated by those of ordinary skill in the art that any combination of electron sources is possible. A common way to produce electrons is to heat a metal, and these electrons can be further accelerated by applying an electric field.
In addition to electrons, free energetic protons can also be used to catalyze a plasma. In one embodiment, a free proton can be generated by ionizing hydrogen and, optionally, accelerated with an electric field.
Multi-Mode Radiation Cavities
A radiation waveguide, cavity, or chamber can be designed to support or facilitate propagation of at least one electromagnetic radiation mode. As used herein, the term “mode” refers to a particular pattern of any standing or propagating electromagnetic wave that satisfies Maxwell's equations and the applicable boundary conditions (e.g., of the cavity). In a waveguide or cavity, the mode can be any one of the various possible patterns of propagating or standing electromagnetic fields. Each mode is characterized by its frequency and polarization of the electric field and/or the magnetic field vectors. The electromagnetic field pattern of a mode depends on the frequency, refractive indices or dielectric constants, and waveguide or cavity geometry.
A transverse electric (TE) mode is one whose electric field vector is normal to the direction of propagation. Similarly, a transverse magnetic (TM) mode is one whose magnetic field vector is normal to the direction of propagation. A transverse electric and magnetic (TEM) mode is one whose electric and magnetic field vectors are both normal to the direction of propagation. A hollow metallic waveguide does not typically support a normal TEM mode of radiation propagation. Even though radiation appears to travel along the length of a waveguide, it may do so only by reflecting off the inner walls of the waveguide at some angle. Hence, depending upon the propagation mode, the radiation (e.g., microwave) may have either some electric field component or some magnetic field component along the axis of the waveguide (often referred to as the z-axis).
The actual field distribution inside a cavity or waveguide is a superposition of the modes therein. Each of the modes can be identified with one or more subscripts (e.g., TE10 (“tee ee one zero”)). The subscripts normally specify how many “half waves” at the guide wavelength are contained in the x and y directions. It will be appreciated by those skilled in the art that the guide wavelength can be different from the free space wavelength because radiation propagates inside the waveguide by reflecting at some angle from the inner walls of the waveguide. In some cases, a third subscript can be added to define the number of half waves in the standing wave pattern along the z-axis.
For a given radiation frequency, the size of the waveguide can be selected to be small enough so that it can support a single propagation mode. In such a case, the system is called a single-mode system (i.e., a single-mode applicator). The TE10 mode is usually dominant in a rectangular single-mode waveguide. As the size of the waveguide (or the cavity to which the waveguide is connected) increases, the waveguide or applicator can sometimes support additional higher order modes forming a multi-mode system. When many modes are capable of being supported simultaneously, the system is often referred to as highly moded.
A simple, single-mode system has a field distribution that includes at least one maximum and/or minimum. The magnitude of a maximum largely depends on the amount of radiation supplied to the system. Thus, the field distribution of a single mode system is strongly varying and substantially non-uniform.
Unlike a single-mode cavity, a multi-mode cavity can support several propagation modes simultaneously, which, when superimposed, result in a complex field distribution pattern. In such a pattern, the fields tend to spatially smear and, thus, the field distribution usually does not show the same types of strong minima and maxima field values within the cavity. In addition, as explained more fully below, a mode-mixer can be used to “stir” or “redistribute” modes (e.g., by mechanical movement of a radiation reflector). This redistribution desirably provides a more uniform time-averaged field distribution within the cavity.
A multi-mode cavity consistent with this invention can support at least two modes, and may support many more than two modes. Each mode has a maximum electric field vector. Although there may be two or more modes, one mode may be dominant and has a maximum electric field vector magnitude that is larger than the other modes. As used herein, a multi-mode cavity may be any cavity in which the ratio between the first and second mode magnitudes is less than about 1:10, or less than about 1:5, or even less than about 1:2. It will be appreciated by those of ordinary skill in the art that the smaller the ratio, the more distributed the electric field energy between the modes, and hence the more distributed the radiation energy is in the cavity.
The distribution of plasma within a plasma cavity may strongly depend on the distribution of the applied radiation. For example, in a pure single mode system, there may only be a single location at which the electric field is a maximum. Therefore, a strong plasma may only form at that single location. In many applications, such a strongly localized plasma could undesirably lead to non-uniform plasma treatment or heating (i.e., localized overheating and underheating).
Whether or not a single or multi-mode cavity is used consistent with this invention, it will be appreciated by those of ordinary skill in the art that the cavity in which the plasma is formed can be completely closed or partially open. For example, in certain applications, such as in plasma-assisted furnaces, the cavity could be entirely closed. See, for example, commonly owned, concurrently filed Kumar et al. PCT Application No. PCT/US03/14133 (Atty. Docket No. 1837.0020, now abandoned), which is fully incorporated herein by reference. In other applications, however, it may be desirable to flow a gas through the cavity, and therefore the cavity must be open to some degree. In this way, the flow, type, and pressure of the flowing gas can be varied over time. This may be desirable because certain gases, such as argon, which facilitate formation of plasma, can be easier to ignite but may not be needed during subsequent plasma processing.
Mode-Mixing
For many plasma-assisted applications, a cavity containing a uniform plasma is desirable. However, because radiation can have a relatively long wavelength (e.g., several tens of centimeters), obtaining a uniform distribution can be difficult to achieve. As a result, consistent with one aspect of this invention, the radiation modes in a multi-mode cavity can be mixed, or redistributed, over a period of time. Because the field distribution within the cavity must satisfy all of the boundary conditions set by the inner surface of the cavity, those field distributions can be changed by changing the position of any portion of that inner surface.
In one embodiment consistent with this invention, a movable reflective surface can be located inside the radiation cavity. The shape and motion of the reflective surface should, when combined, change the inner surface of the cavity during motion. For example, an “L” shaped metallic object (i.e., “mode-mixer”) when rotated about any axis will change the location or the orientation of the reflective surfaces in the cavity and therefore change the radiation distribution therein. Any other asymmetrically shaped object can also be used (when rotated), but symmetrically shaped objects can also work, as long as the relative motion (e.g., rotation, translation, or a combination of both) causes some change in the location or orientation of the reflective surfaces. In one embodiment, a mode-mixer can be a cylinder that is rotable about an axis that is not the cylinder's longitudinal axis.
Each mode of a multi-mode cavity may have at least one maximum electric field vector, but each of these vectors could occur periodically across the inner dimension of the cavity. Normally, these maxima are fixed, assuming that the frequency of the radiation does not change. However, by moving a mode-mixer such that it interacts with the radiation, it is possible to move the positions of the maxima. For example, mode-mixer 38 can be used to optimize the field distribution within cavity 12 such that the plasma ignition conditions and/or the plasma sustaining conditions are optimized. Thus, once a plasma is excited, the position of the mode-mixer can be changed to move the position of the maxima for a uniform time-averaged plasma process (e.g., heating).
Thus, consistent with this invention, mode-mixing can be useful during plasma ignition. For example, when an electrically conductive fiber is used as a plasma catalyst, it is known that the fiber's orientation can strongly affect the minimum plasma-ignition conditions. It has been reported, for example, that when such a fiber is oriented at an angle that is greater than 60° to the electric field, the catalyst does little to improve, or relax, these conditions. By moving a reflective surface either in or near the cavity, however, the electric field distribution can be significantly changed.
Mode-mixing can also be achieved by launching the radiation into the applicator chamber through, for example, a rotating waveguide joint that can be mounted inside the applicator chamber. The rotary joint can be mechanically moved (e.g., rotated) to effectively launch the radiation in different directions in the radiation chamber. As a result, a changing field pattern can be generated inside the applicator chamber.
Mode-mixing can also be achieved by launching radiation in the radiation chamber through a flexible waveguide. In one embodiment, the waveguide can be mounted inside the chamber. In another embodiment, the waveguide can extend into the chamber. The position of the end portion of the flexible waveguide can be continually or periodically moved (e.g., bent) in any suitable manner to launch the radiation (e.g., microwave radiation) into the chamber at different directions and/or locations. This movement can also result in mode-mixing and facilitate more uniform plasma processing (e.g., heating) on a time-averaged basis. Alternatively, this movement can be used to optimize the location of a plasma for ignition or other plasma-assisted process.
If the flexible waveguide is rectangular, a simple twisting of the open end of the waveguide will rotate the orientation of the electric and the magnetic field vectors in the radiation inside the applicator chamber. Then, a periodic twisting of the waveguide can result in mode-mixing as well as rotating the electric field, which can be used to assist ignition, modulation, or sustaining of a plasma.
Thus, even if the initial orientation of the catalyst is perpendicular to the electric field, the redirection of the electric field vectors can change the ineffective orientation to a more effective one. Those skilled in the art will appreciate that mode-mixing can be continuous, periodic, or preprogrammed.
In addition to plasma ignition, mode-mixing can be useful during subsequent plasma processing to reduce or create (e.g., tune) “hot spots” in the chamber. When a radiation cavity only supports a small number of modes (e.g., less than 5), one or more localized electric field maxima can lead to “hot spots” (e.g., within cavity 12). In one embodiment, these hot spots could be configured to coincide with one or more separate, but simultaneous, plasma ignitions or processing events. Thus, the plasma catalyst can be located at one or more of those ignition or subsequent processing positions.
Multi-Location Ignition
A plasma can be ignited using multiple plasma catalysts at different locations. In one embodiment, multiple fibers can be used to ignite the plasma at different points within the cavity. Such multi-point ignition can be especially beneficial when a uniform plasma ignition is desired. For example, when a plasma is modulated at a high frequency (i.e., tens of Hertz and higher), or ignited in a relatively large volume, or both, substantially uniform instantaneous striking and restriking of the plasma can be improved. Alternatively, when plasma catalysts are used at multiple points, they can be used to sequentially ignite a plasma at different locations within a plasma chamber by selectively introducing the catalyst at those different locations. In this way, a plasma ignition gradient can be controllably formed within the cavity, if desired.
Also, in a multi-mode cavity, random distribution of the catalyst throughout multiple locations in the cavity increases the likelihood that at least one of the fibers, or any other passive plasma catalyst consistent with this invention, is optimally oriented with the electric field lines. Still, even where the catalyst is not optimally oriented (not substantially aligned with the electric field lines), the ignition conditions are improved.
Furthermore, because a catalytic powder can be suspended in a gas, each powder particle may have the effect of being placed at a different physical location within the cavity, thereby improving ignition uniformity within the cavity.
Dual-Cavity Plasma Igniting/Sustaining
A dual-cavity arrangement can be used to ignite and sustain a plasma consistent with this invention. In one embodiment, a system includes at least a first ignition cavity and a second cavity in fluid communication with the first cavity. To ignite a plasma, a gas in the first ignition cavity can be subjected to electromagnetic radiation having a frequency less than about 333 GHz, optionally in the presence of a plasma catalyst. In this way, the proximity of the first and second cavities may permit a plasma formed in the first cavity to ignite a plasma in the second cavity, which may be sustained with additional electromagnetic radiation.
In one embodiment of this invention, the first cavity can be very small and designed primarily, or solely for plasma ignition. In this way, very little radiation energy may be required to ignite the plasma, permitting easier ignition, especially when a plasma catalyst is used consistent with this invention.
In one embodiment, the first cavity may be a substantially single mode cavity and the second cavity is a multi-mode cavity. When the first ignition cavity only supports a single mode, the electric field distribution may strongly vary within the cavity, forming one or more precisely located electric field maxima. Such maxima are normally the first locations at which plasmas ignite, making them ideal points for placing plasma catalysts. It will be appreciated, however, that when a plasma catalyst is used, it need not be placed in the electric field maximum and, many cases, need not be oriented in any particular direction.
Illustrative Plasma-Assisted Processing in a Manufacturing Line
Methods and apparatus for plasma-assisted processing of work pieces in a manufacturing line may be provided. A plasma-assisted process can include any operation, or combination of operations, involving the use of a plasma. The work pieces can be plasma-processed continuously, periodically, in batches, in sequence, or any combination thereof.
Plasma-assisted processes consistent with this invention can include, for example, sintering, annealing, normalizing, spheroiding, tempering, age hardening, case hardening, or any other type of hardening or process that involves heat-treatment. Plasma-assisted processing can also include joining materials that are the same or different from one another. For example, plasma-assisted processing can include brazing, welding, bonding, soldering, and other types of joining processes. Additional plasma-assisted processes, such as doping, nitriding, carburizing, decrystallizing, carbo-nitriding, cleaning, sterilizing, vaporizing, coating, and ashing, can also be included consistent with this invention.
Source 305 can irradiate zone 325 from any direction. For example, radiation source 305 can be located above, below, or in the same horizontal plane as zone 325 and waveguide 307 can be used to direct the radiation from source 305 to zone 325. If radiation source 305 is capable of directing radiation in the form of a beam (e.g., a diverging, converging, or collimated beam), then waveguide 307 can be eliminated and the zone can be irradiated simply by directing the radiation beam toward zone 325. In another embodiment, source 305 can supply radiation to zone 325 via one or more coaxial cable (not shown). In yet another embodiment, the radiation output of source 305 can directly irradiate zone 325.
When apparatus 300 includes waveguide 307, waveguide can have any cross-sectional shape to selectively propagate any particular radiation mode or modes. For example, as shown in
A conveyor can include at least one carrier portion for conveying work pieces. As used herein, a carrier portion can be any portion of a conveyor adapted to carry, support, hold, or otherwise mount one or more work pieces. As shown in
Conveyor 310 need not include holes 350 consistent with this invention. For example, as shown in
Any number of work pieces can be carried by carrier portions consistent with this invention.
A waveguide and at least one carrier portion can cooperate to form a plasma-processing cavity consistent with this invention. For example,
As shown in
In any case, cavity 369 can have the appropriate dimensions to substantially confine the plasma and prevent plasma formation outside cavity 369. Thus, work pieces 320, which can be carried by carrier portions 340 and 342, can be conveyed sequentially into a plasma processing station below tip 370 by rotating conveyor 310 with motor 374.
To prevent gas and plasma from traveling up through waveguide 370, radiation-transmissive plate 373 (e.g., made from quartz or ceramic), can be used as shown in
In another embodiment (not shown), a work piece can be lowered or otherwise positioned at a plasma-processing station using the carrier portion. And, once again, a processing cavity can be formed between either the work piece or the carrier portion and a waveguide tip. Alternatively, as shown in
Although work pieces can be carried into place by carrier portions, those work pieces need not carry or otherwise support the work pieces during processing. That is, carrier portions can place the work pieces in a plasma cavity and then remove them from the cavity after processing. The same or different carrier portions can also be used to remove the work pieces after they have been plasma-processed.
As used herein, a conveyor can be any device capable of moving work pieces from one location to another, and in particular to and from a plasma-processing station. Thus, in addition, or as an alternative, to the rotatable table-type conveyors shown in
Conveyor 310, as well as plasma-processing cavity 325, can be located in radiation chamber 304 to prevent potentially harmful radiation from escaping the processing station. Radiation chamber 304 can be substantially reflective or otherwise opaque to the radiation supplied by source 305 and being used to form the plasma. Chamber 304 can be particularly useful when one or more of the components that form cavity 325 are substantially transmissive to the radiation supplied by source 305 or when cavity 325 is at least partially open. It will be appreciated, however, that if cavity 325 is sealed (e.g., by waveguide tip 370 and carrier portion 320) potentially harmful radiation can not escape cavity 325 during plasma-assisted processing and chamber 304 may be redundant. However, chamber 304 may still be used to trap the processing gas.
Apparatus 300 can include one or more ports for moving work pieces in and out of apparatus 300. For example, apparatus 300 can include entrance port 380 for moving parts 320 into apparatus 300 for plasma-assisted processing. Entrance port 380 can be part of gas lock 384 that substantially isolates a processing gas (e.g., argon, helium, nitrogen, etc.) in chamber 304 from a gas (e.g., air) outside chamber 304. Similarly, apparatus 300 can include exit port 382 for removing parts 320 from apparatus 300 after plasma-assisted processing is complete. Exit port 382 can also be part of gas lock 386 that substantially isolates the processing gas from the gas outside chamber 304. Mechanical arms or guides (not shown) can be used to assist in the loading of parts onto, and the unloading of parts off of, conveyor 310, if desired.
As described more fully above, an active or passive plasma catalyst can be used to ignite, modulate, or sustain a plasma at pressures below, at, or above atmospheric pressure consistent with this invention. Because these catalysts have already been described in detail above, they will not be described again here. In addition, sparking devices, and other devices for inducing a plasma, can also be used consistent with this invention. In any case, the plasma catalyst can be placed in an operable location to relax, or improve, the plasma-ignition requirements. In one embodiment, the plasma catalyst can be located on and carried by a carrier portion or the work piece itself. In another embodiment, the plasma catalyst can be attached or otherwise positioned adjacent to waveguide tip 370.
A plasma-processing method consistent with this invention can selectively expose one or more of the work pieces to a plasma. This includes exposing one or more work pieces for a relatively long period of time compared to the others, or to a higher temperature plasma for the same period of time, or a combination thereof. For example, as shown in
In one embodiment, an electric bias can be applied to one or more of the work pieces within an irradiation zone to produce a more uniform and rapid plasma-assisted process. For example, a potential difference can be applied between an electrode (e.g., suspended in a plasma cavity) and a work piece. The work piece can be connected to a voltage source directly, or through one of the moveable carriers. The voltage source can be outside the applicator or irradiation zone and the voltage can be applied through a microwave filter to prevent, for example, microwave energy leakage. The applied voltage can, for example, take the form of a continuous or pulsed DC or AC bias. In the case of a plasma-assisted coating process, the applied voltage may attract charged ions, energizing them, and facilitate coating adhesion and quality.
Multi-Chamber Processing
As described above,
Two frequencies in the microwave range are currently available for industrial use, 2.45 GHz and 915 MHz. As discussed above, reactors such as that shown in
Further, the number of industrial processes that can benefit by utilization of reactors according to the present invention is large and can, for example, include sintering, brazing, melting, bonding, heat treatments, carburizing, coatings, corrosion treatments, exhaust and waste treatment, and gas production. Each of these processes may require different considerations in the reactor utilized to perform that process. However, in some cases, several of these processes may be combined in one manufacturing line. Therefore, some embodiments of the invention provide for a manufacturing line with multiple reactors that can perform multiple processes on a work piece.
A microwave processing system according to some embodiments of the present invention can provide a batch, semi-continuous or continuous processing of any processing procedure.
Conveyance system 1601 can transport work pieces between reactors 1602 and radiation chamber staging 1604. In some embodiments, system 1600 also includes buffer cooling pots 1606. In many manufacturing processes, especially of metal parts, the cool down cycle is more critical than the heat up cycle. System 1600 can employ multiple cool down Buffer Pods 1606 that provide an environment outside of reactors 1602 for quenching or slow cooling of a work piece depending upon the process being performed on that work piece in system 1602. Each buffer pod 1606 can be independently controlled for each work piece that is processed in them. Buffer pods 1606 can each include independent cooling and heating systems as well as gas flow systems to control the temperature and environment of work pieces.
Modularity and flexibility are some of the more salient aspects of embodiments of this invention. For example, a system can contain one plasma reactor 1602 or can be expanded to “N” reactors 1602, depending upon the production throughput that is required. Further, each reactor 1602 can have one magnetron or several. In some embodiments, reactor 1602 is octagonally shaped and includes eight magnetrons. The power level of each magnetron can be the same or different depending upon the process power requirements. That is, each magnetron can have a different maximum power output, or they can all be the same. Some magnetrons can be left unused and brought into service in the event that one of the active magnetrons becomes faulty. This minimizes any potential downtime on the flow rate through the system.
As shown in
As is further shown in
As illustrated in
In some embodiments, as a precursor for processing a work piece, an ignition catalyst can be placed next to the part(s) on the carrier before entering the system. In some embodiments, the ignition catalyst can be transported into the gas flow accesses 2014 of reactor 1602. From the part staging area, into the reactor, to the cooling pods, doors 1612 are located that open and close under system control to insure that no undesirable gases enter or exit system 1600 during operation. Additionally, doors 1612 provide a secondary guard against radiation leakage outside the system.
In some embodiments, the control of the system is a two-level scheme. At the top of the hierarchy would be a supervisory control 1901, which in turn provides control to and from the subsystem controls.
Another multi-chamber system can employ the lazy-Susan concept discussed with respect to
As shown in
As shown in
In general, any system to perform a manufacturing process has its own set of unique parameters that are controlled to achieve optimum results. In some embodiments, single plasma processing chambers can be intermingled with other processing stations in order to perform a complete manufacturing processes. Extremely high operating temperatures can be attained very quickly in processes according to the present invention.
Containment materials for parts, therefore, should withstand the thermal shock of rapid heating and extended high temperature soaks. Further, such materials should be capable of cycling many times. Ceramic or refractory materials may be suited for this task.
In the foregoing described embodiments, various features are grouped together in a single embodiment for purposes of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the following claims are hereby incorporated into this Detailed Description of Embodiments, with each claim standing on its own as a separate preferred embodiment of the invention.
This application is a continuation-in-part of U.S. application Ser. No. 10/513,605, filed on Nov. 5, 2004, claiming priority to PCT Application Serial No. PCT/US03/14055, filed on May 7, 2003, claming priority to U.S. Provisional Patent Application No. 60/378,693, filed May 8, 2002, No. 60/430,677, filed Dec. 4, 2002, and No. 60/435,278, filed Dec. 23, 2002, all of which are fully incorporated herein by reference. This application further claims priority to U.S. Provisional Application 60/663,295, filed on Mar. 18, 2005, which is also herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60378693 | May 2002 | US | |
60430677 | Dec 2002 | US | |
60435278 | Dec 2002 | US | |
60663295 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10513605 | Aug 2005 | US |
Child | 11378779 | Mar 2006 | US |