Plasma bipolar forceps

Information

  • Patent Grant
  • 9788882
  • Patent Number
    9,788,882
  • Date Filed
    Monday, September 10, 2012
    12 years ago
  • Date Issued
    Tuesday, October 17, 2017
    7 years ago
Abstract
An electrosurgical wand. At least some of the illustrative embodiments are electrosurgical wands configured as a surgical forceps including opposed legs that defines respective distal end portions, the legs of the forceps operable to be actuated between an open position and a closed position, an active and return electrode disposed on one of the respective distal end portions, a discharge aperture on one of the distal end portions coupled to a first fluid conduit, and an aspiration aperture through the return electrode on the other of the distal end portions fluidly coupled to a second fluid conduit. In embodiments, the position of the forceps' legs, and the electrical energy applied to the electrodes, is adjusted to provide dissection or coagulation to the tissue. A stop or latch on the forceps' legs may maintain the active and return electrode a fixed distance from one another.
Description
FIELD OF THE INVENTION

The present invention relates to electrosurgery and in particular, to electrosurgical bipolar forceps.


BACKGROUND

The field of electrosurgery includes a number of loosely related surgical techniques which have in common the application of electrical energy to modify the structure or integrity of patient tissue. Electrosurgical procedures usually operate through the application of very high frequency currents to cut or ablate tissue structures, where the operation can be monopolar or bipolar. Monopolar techniques rely on a separate electrode for the return of current that is placed away from the surgical site on the body of the patient, and where the surgical device defines only a single electrode pole that provides the surgical effect. Bipolar devices comprise two or more electrodes on the same support for the application of current between their surfaces.


Electrosurgical procedures and techniques are particularly advantageous because they generally reduce patient bleeding and trauma associated with cutting operations. Additionally, electrosurgical ablation procedures, where tissue surfaces and volume may be reshaped, cannot be duplicated through other treatment modalities.


Radiofrequency (RF) energy is used in a wide range of surgical procedures because it provides efficient tissue resection and coagulation and relatively easy access to the target tissues through a portal or cannula. Conventional monopolar high frequency electrosurgical devices typically operate by creating a voltage difference between the active electrode and the target tissue, causing an electrical arc to form across the physical gap between the electrode and tissue. At the point of contact of the electric arcs with tissue, rapid tissue heating occurs due to high current density between the electrode and tissue. This high current density causes cellular fluids to rapidly vaporize into steam, thereby producing a “cutting effect” along the pathway of localized tissue heating. Thus, the tissue is parted along the pathway of evaporated cellular fluid, inducing undesirable collateral tissue damage in regions surrounding the target tissue site. This collateral tissue damage often causes indiscriminate destruction of tissue, resulting in the loss of the proper function of the tissue. In addition, the device does not remove any tissue directly, but rather depends on destroying a zone of tissue and allowing the body to eventually remove the destroyed tissue.


Present electrosurgical devices used for cutting and dissection, such as monopolar electrocautery instruments, are able to cut and coagulate tissue, but cause high levels of collateral thermal damage to surrounding tissue. This limits the use of the monopoloar electrocautery devices to relatively “safe” areas away from sensitive structures such as blood vessels and nerves. In comparison, a traditional bipolar forceps may be used routinely for coagulation of small to medium sized vessels and may be preferred over monopolar electrocautery devices in the vicinity of sensitive structures because use of traditional bipolar forceps typically results in much less collateral thermal damage due to the localization of energy around the active and return electrodes at the tip of the device. However, these bipolar forceps do not have the ability to effectively cut or dissect tissue, requiring a physician needing to cut coagulated tissue to select another instrument (scissors, monopolar electrocautery, etc.) to complete the dissection. The necessity of so many instruments for one surgical procedure requires frequent switching between instruments, adding significant time to the procedure and frustration for the physician. Additionally, vessel sealing solutions presently exist for use where coagulation is desired and can typically involve use of sutures, clips, or energy-based devices to heat, seal, and/or cut large blood vessels. However, these devices are limited in that they do not provide fine dissection of tissue.


Accordingly, improved systems and methods in the configuration of surgical forceps are still desired with the ability to perform fine dissection of tissue, while preserving the ability to coagulate vessels and tissue. In particular, improved systems designed to integrate plasma-based cutting combined with effective coagulation abilities into a pair of bipolar forceps would provide a competitive advantage.





BRIEF DESCRIPTION OF THE DRAWINGS

For a detailed description of exemplary embodiments, reference will now be made to the accompanying drawings in which:



FIG. 1 shows a plasma bipolar forceps device in accordance with at least some embodiments;



FIG. 2 shows a distal portion of a plasma bipolar forceps in a closed position in accordance with at least some embodiments;



FIG. 3 shows a distal portion of a plasma bipolar forceps in an open position in accordance with at least some embodiments;



FIG. 4 shows a plasma bipolar forceps in an open condition in accordance with at least some embodiments;



FIG. 5 shows a plasma bipolar forceps in a closed position in accordance with at least some embodiments;



FIG. 6 shows a partial cross-sectional view of a latch mechanism for a plasma bipolar forceps in accordance with at least some embodiments;



FIG. 7 shows a perspective view of a latch mechanism including a first arm and a second arm engaged in a first track and second track respectively; and



FIGS. 8a-8e show partial cross sections of the latch mechanism shown in FIG. 7 as the bipolar forceps are closed and opened.





NOTATION AND NOMENCLATURE

Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, companies that design and manufacture electrosurgical systems may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function.


In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . ” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection or through an indirect electrical connection via other devices and connections.


Reference to a singular item includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “an,” “said” and “the” include plural references unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement serves as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Lastly, it is to be appreciated that unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.


“Active electrode” shall mean an electrode of an electrosurgical wand which produces an electrically-induced tissue-altering effect when brought into contact with, or close proximity to, a tissue targeted for treatment.


“Return electrode” shall mean an electrode of an electrosurgical wand which serves to provide a current flow path for electrons with respect to an active electrode, and/or an electrode of an electrical surgical wand which does not itself produce an electrically-induced tissue-altering effect on tissue targeted for treatment.


A fluid conduit said to be “within” an elongate shaft shall include not only a separate fluid conduit that physically resides within an internal volume of the elongate shaft, but also situations where the internal volume of the elongate shaft is itself the fluid conduit.


Where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein.


All existing subject matter mentioned herein (e.g., publications, patents, patent applications and hardware) is incorporated by reference herein in its entirety except insofar as the subject matter may conflict with that of the present invention (in which case what is present herein shall prevail). The referenced items are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such material by virtue of prior invention.


DETAILED DESCRIPTION

Before the various embodiments are described in detail, it is to be understood that this invention is not limited to particular variations set forth herein as various changes or modifications may be made, and equivalents may be substituted, without departing from the spirit and scope of the invention. As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention. All such modifications are intended to be within the scope of the claims made herein.



FIG. 1 illustrates an electrosurgical system 100 in accordance with at least some embodiments. In particular, the electrosurgical system comprises a plasma bipolar forceps 102 (hereinafter “forceps”) operable to be coupled to an electrosurgical controller (not shown). Forceps 102 comprises legs 104 and 106 each defining a distal end portion 105, 107, where at least some electrodes are disposed. Forceps 102 may be referred to as bayonet-style surgical forceps, with 0.5-2.0 mm size tips. The forceps 102 further define a handle or proximal end 110, where a physician grips the forceps 102 during surgical procedures. The forceps 102 further comprises a flexible multi-conductor cable 112 housing a plurality of electrical leads (not specifically shown in FIG. 1), and the flexible multi-conductor cable 112 electrically couples forceps 102 to the electrosurgical generator/controller.


In some embodiments the forceps 102 has one or more fluid conduits operable to be coupled to externally accessible tubular members (for access to a fluid receptacle or wall suction). As illustrated, the forceps 102 has a flexible tubular member 116 and a second flexible tubular member 118. In some embodiments, the flexible tubular member 116 is used to provide electrically conductive fluid (e.g., saline) to the distal end portion 105 of the leg 104. Likewise in some embodiments, flexible tubular member 118 is used to provide aspiration to the distal end portion 107 of the leg 106.


The electrosurgical system 100 of the various embodiments may have a variety of operational modes. One such mode employs Coblation® technology. In particular, the assignee of the present disclosure is the owner of Coblation technology. Coblation technology involves the application of a radio frequency (RF) signal between one or more active electrodes and one or more return electrodes of the wand 102 to develop high electric field intensities in the vicinity of the target tissue. The electric field intensities may be sufficient to vaporize an electrically conductive fluid over at least a portion of the one or more active electrodes in the region between the one or more active electrodes and the target tissue. The electrically conductive fluid may be inherently present in the body, such as blood, or in some cases extracelluar or intracellular fluid. In other embodiments, the electrically conductive fluid may be a liquid or gas, such as isotonic saline. In some embodiments, such as surgical procedures on a disc between vertebrae, the electrically conductive fluid is delivered in the vicinity of the active electrode and/or to the target site by the wand 102, such as by way of the internal passage and flexible tubular member 116.


When the electrically conductive fluid is heated to the point that the atoms of the fluid vaporize faster than the atoms recondense, a gas is formed. When sufficient energy is applied to the gas, the atoms collide with each other causing a release of electrons in the process, and an ionized gas or plasma is formed (the so-called “fourth state of matter”). Stated otherwise, plasmas may be formed by heating a gas and ionizing the gas by driving an electric current through the gas, or by directing electromagnetic waves into the gas. The methods of plasma formation give energy to free electrons in the plasma directly, electron-atom collisions liberate more electrons, and the process cascades until the desired degree of ionization is achieved. A more complete description of plasma can be found in Plasma Physics, by R. J. Goldston and P. H. Rutherford of the Plasma Physics Laboratory of Princeton University (1995), the complete disclosure of which is incorporated herein by reference.


As the density of the plasma becomes sufficiently low (i.e., less than approximately 1020 atoms/cm3 for aqueous solutions), the electron mean free path increases such that subsequently injected electrons cause impact ionization within the plasma. When the ionic particles in the plasma layer have sufficient energy (e.g., 3.5 electron-Volt (eV) to 5 eV), collisions of the ionic particles with molecules that make up the target tissue break molecular bonds of the target tissue, dissociating molecules into free radicals which then combine into gaseous or liquid species. Often, the electrons in the plasma carry the electrical current or absorb the electromagnetic waves and, therefore, are hotter than the ionic particles. Thus, the electrons, which are carried away from the target tissue toward the active or return electrodes, carry most of the plasma's heat, enabling the ionic particles to break apart the target tissue molecules in a substantially non-thermal manner.


By means of the molecular dissociation (as opposed to thermal evaporation or carbonization), the target tissue is volumetrically removed through molecular dissociation of larger organic molecules into smaller molecules and/or atoms, such as hydrogen, oxygen, oxides of carbon, hydrocarbons and nitrogen compounds. The molecular dissociation completely removes the tissue structure, as opposed to dehydrating the tissue material by the removal of liquid within the cells of the tissue and extracellular fluids, as occurs in related art electrosurgical desiccation and vaporization. A more detailed description of the molecular dissociation can be found in commonly assigned U.S. Pat. No. 5,697,882, the complete disclosure of which is incorporated herein by reference.


In addition to the Coblation mode, the electrosurgical system 100 of FIG. 1 may also in particular situations be useful for sealing larger vessels (e.g., on the order of about 1-5 mm in diameter), when used in what is known as a coagulation mode. Thus, the system of FIG. 1 may have an ablation mode where RF energy at a first voltage is applied to one or more active electrodes sufficient to effect molecular dissociation or disintegration of the tissue, and the system of FIG. 1 may have a coagulation mode where RF energy at a second, lower voltage is applied to one or more active electrodes (either the same or different electrode(s) as the ablation mode) sufficient to heat, shrink, seal, fuse, and/or achieve homeostasis of severed vessels within the tissue. In addition, pressure may be applied between the legs of the forceps to compress a target vessel, allowing better penetration of the energy to help seal the vessel.


The energy density produced by electrosurgical system 100 at the distal end of the wand 102 may be varied by adjusting a variety of factors, such as: the number of active electrodes; electrode size and spacing; electrode surface area; asperities and/or sharp edges on the electrode surfaces; electrode materials; applied voltage; current limiting of one or more electrodes (e.g., by placing an inductor in series with an electrode); electrical conductivity of the fluid in contact with the electrodes; density of the conductive fluid; and other factors. Accordingly, these factors can be manipulated to control the energy level of the excited electrons. Because different tissue structures have different molecular bonds, the electrosurgical system 100 may be configured to produce energy sufficient to break the molecular bonds of certain tissue but insufficient to break the molecular bonds of other tissue. For example, fatty tissue (e.g., adipose) has double bonds that require an energy level higher than 4 eV to 5 eV (i.e., on the order of about 8 eV) to break. Accordingly, the Coblation® technology in some operational modes does not ablate such fatty tissue; however, the Coblation technology at the lower energy levels may be used to effectively ablate cells to release the inner fat content in a liquid form. Other modes may have increased energy such that the double bonds can also be broken in a similar fashion as the single bonds (e.g., increasing voltage or changing the electrode configuration to increase the current density at the electrodes).


A more complete description of the various phenomena can be found in commonly assigned U.S. Pat. Nos. 6,355,032; 6,149,120 and 6,296,136, the complete disclosures of which are incorporated herein by reference.


Referring now to FIGS. 2 and 3, a discreet portion of the distal end portion 105 of leg 104 is electrically connected to the controller and configured as active electrode 202. Likewise, a discreet portion of distal end portion 107 of leg 106 is electrically connected to the controller and configured as return electrode 204 for completing the current path between active electrode 202 and the controller. The exposed area of active electrode 202 may be partially insulated to enable quick initiation of plasma for cutting (i.e., maintain a smaller exposed surface area on the active electrode as compared to the return electrode). The outer edges of active electrode 202 can have localized areas of high current density, such as sharpened edges, notches, or other features to preferentially initiate plasma on the desired cutting surfaces. Likewise, the inside surfaces of active electrode 202 can be smooth and rounded to help minimize plasma formation on non-cutting surfaces that are primarily intended for resistive heating in coagulation mode.


Return electrode 204 is preferably a semi-annular member defining the exterior of distal end portion 107, and a distal portion of return electrode 204 is preferably exposed. At least a proximal portion of return electrode 204 is disposed within an electrically insulative sheath 206, which is typically formed as one or more electrically insulative sheaths or coatings, such as polytetrafluoroethylene, polyimide, and the like. The provision of the electrically insulative sheath 206 encircling over a portion of return electrode 204 prevents direct electrical contact between return electrode 204 and any adjacent body structure or the surgeon. Such direct electrical contact between a body structure (e.g., vessel) and an exposed common electrode member 204 could result in unwanted heating and necrosis of the structure at the point of contact causing necrosis. Return electrode 204 is preferably formed from an electrically conductive material, usually metal, which is selected from the group consisting of stainless steel alloys, platinum or its alloys, titanium or its alloys, molybdenum or its alloys, and nickel or its alloys.


Forceps 102 are operable in manner consistent with similar grasping-type devices, in that concurrent pressure applied to the outer surface of each the legs 104, 106 actuates the legs 104, 106, and particularly the distal end portions 105, 107, toward one another. As such, the legs 104, 106 of forceps 102 may be selectively positioned in either an open position (i.e., legs 104, 106 are separated by some distance) as shown in FIG. 3, or a closed position (i.e., legs 104, 106 are positioned in relatively close proximity to one another) as shown in FIG. 2. Forceps 102 is designed to provide optimal plasma formation (and hence, optimal cutting performance) when legs 104, 106 are disposed in the closed position, although distal end portions 105, 107 must be spaced a certain distance to enable plasma formation without permitting arcing between active electrode 202 and return electrode 204. The preferred distance between distal end portions 105, 107 is between 0.020-0.050 inches. However, active electrode 202 could still provide a cutting ability when distal end portions 105, 107 are separated as well. In certain embodiments, a small stopper (not shown) may be used to ensure distal end portions 105, 107 never get closer than a preferred and predetermined distance to prevent arcing between active electrode 202 and return electrode 204. Further, a provision of suitable insulative material could be used to maintain the gap between distal end portions 105, 107 when forceps 102 is disposed in its closed position.


In addition, in certain embodiments the inside edge of active electrode 202 may be temporarily insulated when forceps 102 are configured in the closed position, which is the preferential position when forceps 102 are used for cutting. The placement of additional insulation on the inside edge of active electrode 202 helps prevent plasma from forming on that surface, enabling plasma to preferentially form on the outside edge and tip of active electrode 202. In certain embodiments, the insulative material could be mounted on return electrode 204, so that it covers active electrode 202 when the forceps 102 are in the closed position. Alternatively, the placement of the additional insulation may be on distal tip 105 and arranged to create a staggered effect as compared to the exposed surface of return electrode 204 on distal tip 107, where the insulated surface on leg 104 extends farther distally than the insulated surface of leg 106 (see FIG. 2). When the forceps 102 are in the open position and used for clamping or coagulation of a band of tissue or vessels, the full active electrode area is exposed for maximum current delivery and resistive heating through tissue to provide hemostasis.


As discussed above, the forceps 102 is ideally configured for plasma formation and cutting operation when disposed in its closed position. In the closed position, active electrode 202 provides for fine dissection particularly at its most distal tip 203. However, the outside edge of active electrode may also be suitably utilized for plasma-mediated tissue dissection when activated in the closed position. It also follows that plasma formation and the ability to cut tissue adjacent to active electrode 202 is possible when the forceps is configured in the open position. For example, a physician may grasp a band of tissue between legs 104, 106, and then activate the plasma initiation on the surface of active electrode 202 to effective cut and sever the band of engaged tissue.


In some embodiments saline is delivered to the area of forceps 102 placed adjacent to the surgical field, possibly to aid in plasma creation. Specifically, forceps 102 may have integrated suction and saline delivery for added functionality. Saline delivery is required for optimal formation of plasma, but it also can be used to help flush the surgical field if blood is encountered without the use of an external syringe. Referring to FIG. 3, discharge aperture 208 is illustrated in the vicinity of the distal end portion 105 and in proximity to active electrode 202. The discharge aperture 208 is fluidly coupled to the flexible tubular member 116 (FIG. 1) of forceps 102. Thus, saline or other fluid may be pumped into the flexible tubular member 116 (FIG. 1) and discharged through discharge aperture 208 to further aid in developing consistent wetting around the exposed surface of active electrode 202 and return electrode 204 ideal for efficient plasma formation.


More particularly, saline delivery is accomplished via discharge aperture 208, which is integrated on the inside edge of the active electrode 202 and allows the saline to wick down between distal end portions 105, 107 to form a fluid meniscus between the active and return electrodes. When operating the forceps 102 in closed position, it is preferable that saline delivery provide good wetting of the active and return electrodes so that a saline meniscus forms between distal end portions 105, 107. This meniscus is maintained and replenished by the saline delivery and kept in balance with integrated suction at the distal end of the return electrode. The saline also wicks best to distal end portions 105, 107 when there is a slight angle between distal end portions 105, 107, with the narrowest portion being present at the most distal end. This helps takes advantage of capillary action to draw the fluid electrodes for better wetting and plasma formation at active electrode 202.


In yet still further embodiments, aspiration is provided at the area of the forceps 102 placed adjacent to the surgical field. FIGS. 2 and 3 illustrate aspiration aperture 207 (i.e., suction port 207) disposed through return electrode 204. Suction is integrated inside leg 106 of the return electrode 204 (through a hypo tube) and connected to wall suction via flexible tubular member 118. Suction port 207 provides a path to aspirate the area near the surgical field, such as to remove excess fluids, ablative by-products, and remnants of ablation created by active electrode 202. The location of suction port 207 further provides for ample wetting of the active and return electrodes, with the saline flowing out from discharge aperture 208 and then being pulled toward active electrode 202 by the fluid flow induced from suction port 207. Without being bound to theory, providing broader wetting of the exposed surface of return electrode 204, enabling more uniform plasma formation particularly on active electrode 202.


Integrated suction via suction port 207 for evacuating the saline helps maintain a dry field for identification of tissue and fine dissection. Integrated suction also allows rapid evacuation of blood from a bleeding vessel to localize the origin of the bleeding for effective coagulation application. Suction port 207 is preferentially positioned at the distal end of the return electrode 204, so that suction helps draw saline to the tip for good wetting and plasma formation, and also optimally positioned to evacuate fluids from the surgical field (e.g., saline, blood). In certain embodiments, discharge aperture 208 and suction port 207 may be integrated on the same legs of forceps 102, or swapped to the opposing sides as current described.


As shown for example in FIGS. 2 and 3, return electrode 204 is not directly connected to active electrode 202. To complete a current path so that active electrode 202 is electrically connected to return electrode 204 in the presence of a target tissue, electrically conducting liquid (e.g., isotonic saline) is caused to flow along liquid paths emanating from discharge aperture 208 toward suction port 207, and contacting both return electrode 204 and active electrode 202. When a voltage difference is applied between active electrode 202 and return electrode 204, high electric field intensities will be generated at active electrode 202. As current flows from active electrode 202 to the return electrode 204 in the presence of electrically conductive fluid, the high electric field intensities cause ablation of target tissue adjacent active electrode 202.


The ergonomic configuration forceps 102 affords some unique tissue manipulation and visualization abilities versus other surgical instruments. This includes the ability to open/close legs 104, 106 to grasp tissue or influence the extent of thermal penetration. The preferred length of legs 104, 106 also provide good visualization of the targeted tissue by providing a clear view between distal end portions 105, 107 for precise manipulation and positioning. The forceps 102 can be used similar to other bipolar forceps for coagulation of small vessels and tissue by either positioning the distal end portions 105, 107 with a slight gap on the targeted tissue, or by grasping a vessel or band of tissue, or even sliding the distal end portions 105, 107 along a band of tissue or vessel to provide hemostasis. In addition to coagulation, forceps 102 have the unique ability to perform plasma-mediated cutting and fine dissection of tissue and vessels when activated in ablate/cut mode.


Referring now to FIGS. 4-6, in certain embodiments a latch mechanism 300 can also be used to keep the forceps 102 closed, maintaining the optimal gap between distal end portions 105, 107 for plasma formation. Latch mechanism 300 comprises a spring pin 302 disposed on leg 104 and a detent 304 disposed on leg 106 (although it is contemplated that the spring pin and detent may swap positions and be respectively located on opposite legs), and provides a similar function to a ballpoint pen with retractable mechanism. In operation, detent 304 is engaged by spring pin 302 such that legs 104, 106 are retained in the closed position upon initial engagement by a single compression motion that positions the legs in proximity to one another.


Upon engagement of the spring pin 302 within detent 304, a first follower arm of spring pin 302 is forced into the dual-track cam system of detent 304 to secure spring pin 302 within detent 304. A subsequent compression of the legs 104, 106 releases a second follower arm of the spring pin 302 from engagement within the detent 304. The dual-track cam system of detent 304 and its interplay with the two follower arms of spring pin 302 that engage in the tracks at different positions provide a robust latching mechanism for repeated use. The mechanism can also be made primarily of plastic or other materials to provide an insulating layer between the active and return electrode legs.



FIG. 7 shows a perspective view of a latch mechanism 400 including spring 402 and detent or support 404. Pin 402 is shown including a first arm 412 and a second arm 414. The first arm 412 and second arm 414 are shown engaged in a first track 420 and a second track 422 of a multi- or dual-track system of support 404. As will be described in more detail herein, the arms and tracks of the latch cooperate together to conveniently close and open the forceps upon a first and a second push.



FIGS. 8a-8e show a partial cross section of the latch 400 shown in FIG. 7. In particular, FIGS. 8a-8e illustrate the travel path of each of arms 412, 414 as the forceps' legs are closed and opened.



FIG. 8a shows the arms 412, 414 in a roughly 12 o'clock starting position. This arm position corresponds to the forceps in an open first position. The arms are axially aligned. The arms and spring are not in tension with one another.



FIG. 8b corresponds to the user providing a first push to the forceps' legs 105, 107. As the user presses on the forceps' legs, pin arms 412 and 414 are moved in a counter clockwise direction to a roughly 9 o'clock position. The arms follow separate guides or tracks. As the user continues to push on the forceps' legs, the arms 412, 414 become non-axially aligned and are placed into tension with one another.



FIG. 8c shows the arms moved further along the tracks in a counter clockwise direction. As the user continues to push on the forceps' legs, the arms approach a track bottom. The arms also are shown axially aligned with one another, thereby relieving some of the tension from the above recited step.



FIG. 8d shows the arms 412, 414 in an intermediate, roughly 6 o'clock position. This substantially tension-free position corresponds to the forceps in a closed second configuration. In particular, when the user releases pressure on the forceps' legs from the first push, the arms 412, 414 snap into the intermediate position shown in FIG. 8d. A ledge on first track 420 prevents the arms from returning to the position shown in FIG. 8c. A ramp on second track 422 urges the arms into the position shown in FIG. 8e, described below.



FIG. 8e corresponds to arm position when the user provides a second push to the forceps. In particular, FIG. 8e shows the arms 412, 414 moved in the counter clockwise direction to a roughly 4 o'clock position. A ledge on first track 420 prevents the arms from returning to the position shown in FIG. 8d. Instead, the arms 412, 414 are urged back to the (relatively tension-free neutral) position shown in FIG. 8a, namely, the open or first position.


In this manner, the forceps may be closed and opened by application of a first, and a second push. Each push, in combination with tension from the spring, and the dual track system, locks and unlocks the forceps' legs.


The above discussion is meant to be illustrative of the principles and various embodiments of the present invention. Numerous variations and modifications possible. For example, while in some cases electrodes were designated as upper electrodes and lower electrodes, such a designation was for purposes of discussion, and shall not be read to require any relationship to gravity during surgical procedures. It is intended that the following claims be interpreted to embrace all such variations and modifications.


While preferred embodiments of this disclosure have been shown and described, modifications thereof can be made by one skilled in the art without departing from the scope or teaching herein. The embodiments described herein are exemplary only and are not limiting. Because many varying and different embodiments may be made within the scope of the present inventive concept, including equivalent structures, materials, or methods hereafter though of, and because many modifications may be made in the embodiments herein detailed in accordance with the descriptive requirements of the law, it is to be understood that the details herein are to be interpreted as illustrative and not in a limiting sense.

Claims
  • 1. An electrosurgical bipolar forceps for use with an electrosurgical controller, said controller comprising a plurality of energy delivery modes including an ablation mode that comprises a plasma and a coagulation mode, said forceps comprising: a first leg and a second leg, each leg having a proximal and distal end portion and a respective leg length therebetween, wherein the first leg comprises an active electrode;wherein the second leg comprises a return electrode;wherein the first leg and second leg lengths are configured to move relative to each other upon application of pressure on an outer surface of each of the first and second leg lengths so as to move the first and second legs between an open first position and a closed second position; and
  • 2. The forceps of claim 1, wherein the elongate gap defines a first distance when the legs are in the first position, and wherein the elongate gap defines a second distance when the legs are in the second position, and the second distance is substantially less than the first distance.
  • 3. The forceps of claim 2, wherein the second distance ranges from 0.02 to 0.05 inches.
  • 4. The forceps of claim 2, further comprising a latch mechanism for retaining the first and second legs in one of the first and second positions.
  • 5. The forceps of claim 4, wherein the latch mechanism comprises a pin, and a detent, and wherein the pin is disposed on one of the first leg and the second leg, and the detent is disposed on the leg opposite the leg having the pin.
  • 6. The forceps of claim 5, wherein the detent comprises a first track and a second track, the second track having a different shaped path than the first track.
  • 7. The forceps of claim 6, wherein the pin comprises a first follower arm, and the first track is configured to receive and guide the first follower arm when the pin is pushed towards the detent.
  • 8. The forceps of claim 7, wherein the pin comprises a second follower arm, and the second track is configured to receive and guide the second follower arm when the pin is pushed towards the detent.
  • 9. The forceps of claim 8, wherein the pin comprises a spring-like property such that when the first follower arm and second follower arm are axially unaligned, a tension is created in the pin to urge the pin to return to a neutral configuration wherein the first follower arm and second follower arm are axially aligned.
  • 10. The forceps of claim 1, wherein the fluid delivery element comprises a first tubular member that extends along an inner surface of the first leg.
  • 11. The forceps of claim 1, wherein the fluid aspiration element is a second tubular member that defines a portion of the second leg length and the return electrode.
  • 12. The forceps of claim 1, wherein the fluid delivery element and the fluid aspiration element are configured to flow a fluid through their respective apertures at a defined rate, and wherein the aspiration and delivery apertures and the defined flow rate are configured so as to promote and maintain a meniscus along the elongate gap between the active electrode and return electrode.
  • 13. The forceps of claim 12, wherein the active electrode and the return electrode form an angle when the forceps is in the second position, and wherein the angle ranges from 0 to 30 degrees.
  • 14. The forceps of claim 1, wherein the active electrode has a different shape than the return electrode.
  • 15. The forceps of claim 1, wherein the active electrode tapers to a sharp point.
  • 16. The forceps of claim 1, wherein when the first leg and second leg are in the closed second position, the active electrode and the return electrode are spaced apart a distance configured to improve plasma formation without permitting arcing.
  • 17. The forceps of claim 1 wherein the active electrode is shaped to electrosurgically dissect or ablate the tissue adjacent the first leg or the second leg when the controller is in the ablation mode and the forceps are in the closed second position; and wherein the active and return electrodes are shaped to provide hemostasis or coagulation to tissue adjacent the first leg or the second leg when the controller is in the coagulation mode and the forceps are in the first open position or an intermediate position between the closed second position and the first open position.
  • 18. An electrosurgical bipolar forceps for use with an electrosurgical controller, comprising: a first leg and a second leg, each leg having a proximal and distal end portion and a respective leg length therebetween, wherein the first leg distal end portion comprises an active electrode;wherein the second leg distal end portion comprises a return electrode;wherein the first leg and second leg lengths are configured to move relative to each other upon application of pressure on an outer surface of each of the first and second leg lengths so as to move the first and second legs between an open first position and a closed second position; and
  • 19. An electrosurgical bipolar forceps for use with an electrosurgical controller, comprising: a first leg and a second leg, each leg having a proximal and distal end portion and a respective leg length therebetween, wherein the first leg distal end portion comprises an active electrode;wherein the second leg distal end portion comprises a return electrode;wherein the first leg and second leg lengths are configured to move relative to each other between an open first position and a closed second position; and wherein the active electrode and the return electrode are electrically connected to an electrical first lead and a second lead respectively for delivering electrosurgical energy to tissue adjacent to one of the first leg or the second leg; andwherein the forceps comprise a fluid delivery element associated with at least one of the legs having an aperture disposed adjacent a proximal end of the active and return electrode and a fluid aspiration element associated with at least one of the legs having an aspiration aperture disposed distal to both the active and return electrode, configured such that fluid flows from the fluid delivery aperture and is drawn distally along an elongate gap between the active and return electrodes towards the aspiration aperture.
CROSS REFERENCE TO RELATED APPLICATIONS

The present invention claims priority to U.S. Provisional Application No. 61/532,474, entitled Plasma Bipolar Forceps, filed Sep. 8, 2011, the complete disclosure of which is hereby incorporated by reference in its entirety for all purposes.

US Referenced Citations (445)
Number Name Date Kind
2050904 Talley Aug 1936 A
2056377 Wappler Oct 1939 A
3633425 Sanford Jan 1972 A
3815604 O'Malley et al. Jun 1974 A
3828780 Morrison, Jr. et al. Aug 1974 A
3901242 Storz Aug 1975 A
3920021 Hiltebrandt Nov 1975 A
3939839 Curtiss Feb 1976 A
3970088 Morrison Jul 1976 A
4033351 Hetzel Jul 1977 A
4040426 Morrison, Jr. Aug 1977 A
4043342 Morrison, Jr. Aug 1977 A
4074718 Morrison, Jr. Feb 1978 A
4092986 Schneiderman Jun 1978 A
4116198 Roos Sep 1978 A
4181131 Ogiu Jan 1980 A
4184492 Meinke et al. Jan 1980 A
4202337 Hren et al. May 1980 A
4228800 Degler, Jr. et al. Oct 1980 A
4232676 Herczog Nov 1980 A
4248231 Herczog et al. Feb 1981 A
4301802 Poler Nov 1981 A
4326529 Doss et al. Apr 1982 A
4381007 Doss Apr 1983 A
4474179 Koch Oct 1984 A
4476862 Pao Oct 1984 A
4532924 Auth et al. Aug 1985 A
4548207 Reimels Oct 1985 A
4567890 Ohta et al. Feb 1986 A
4582057 Auth et al. Apr 1986 A
4590934 Malis et al. May 1986 A
4593691 Lindstrom et al. Jun 1986 A
4658817 Hardy Apr 1987 A
4660571 Hess et al. Apr 1987 A
4674499 Pao Jun 1987 A
4682596 Bales et al. Jul 1987 A
4706667 Roos Nov 1987 A
4709698 Johnston et al. Dec 1987 A
4727874 Bowers et al. Mar 1988 A
4765331 Petruzzi et al. Aug 1988 A
4785823 Eggers et al. Nov 1988 A
4805616 Pao Feb 1989 A
4823791 D'Amelio et al. Apr 1989 A
4832048 Cohen May 1989 A
4860752 Turner Aug 1989 A
4907589 Cosman Mar 1990 A
4920978 Colvin May 1990 A
4931047 Broadwin et al. Jun 1990 A
4936281 Stasz Jun 1990 A
4936301 Rexroth et al. Jun 1990 A
4943290 Rexroth et al. Jul 1990 A
4966597 Cosman Oct 1990 A
4967765 Turner et al. Nov 1990 A
4976711 Parins et al. Dec 1990 A
4979948 Geddes et al. Dec 1990 A
4998933 Eggers et al. Mar 1991 A
5007908 Rydell Apr 1991 A
5009656 Reimels Apr 1991 A
5035696 Rydell Jul 1991 A
5047026 Rydell Sep 1991 A
5047027 Rydell Sep 1991 A
5057105 Malone et al. Oct 1991 A
5057106 Kasevich et al. Oct 1991 A
5078716 Doll Jan 1992 A
5078717 Parins et al. Jan 1992 A
5080660 Buelna Jan 1992 A
5083565 Parins Jan 1992 A
5084044 Quint Jan 1992 A
5085659 Rydell Feb 1992 A
5088997 Delahuerga et al. Feb 1992 A
5098431 Rydell Mar 1992 A
5099840 Goble Mar 1992 A
5102410 Dressel Apr 1992 A
5108391 Flachenecker et al. Apr 1992 A
RE33925 Bales et al. May 1992 E
5112330 Nishigaki et al. May 1992 A
5122138 Manwaring Jun 1992 A
5125928 Parins et al. Jun 1992 A
5156151 Imran Oct 1992 A
5167659 Ohtomo et al. Dec 1992 A
5167660 Altendorf Dec 1992 A
5171311 Rydell et al. Dec 1992 A
5178620 Eggers et al. Jan 1993 A
5190517 Zieve et al. Mar 1993 A
5192280 Parins Mar 1993 A
5195959 Smith Mar 1993 A
5195968 Lundquist et al. Mar 1993 A
5196007 Ellman Mar 1993 A
5197466 Marchosky et al. Mar 1993 A
5197963 Parins Mar 1993 A
5207675 Canady May 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217459 Kamerling Jun 1993 A
5249585 Turner et al. Oct 1993 A
5261410 Alfano et al. Nov 1993 A
5267994 Gentelia et al. Dec 1993 A
5267997 Farin et al. Dec 1993 A
5273524 Fox et al. Dec 1993 A
5277201 Stern Jan 1994 A
5281216 Klicek Jan 1994 A
5281218 Imran Jan 1994 A
5290282 Casscells Mar 1994 A
5300069 Hunsberger et al. Apr 1994 A
5306238 Fleenor Apr 1994 A
5312400 Bales et al. May 1994 A
5314406 Arias et al. May 1994 A
5324254 Phillips Jun 1994 A
5330470 Hagen Jul 1994 A
5334140 Phillips Aug 1994 A
5334183 Wuchinich Aug 1994 A
5334193 Nardella Aug 1994 A
5336220 Ryan et al. Aug 1994 A
5336443 Odashima Aug 1994 A
5342357 Nardella Aug 1994 A
5363861 Edwards et al. Nov 1994 A
5366443 Eggers et al. Nov 1994 A
5370675 Edwards et al. Dec 1994 A
5374261 Yoon Dec 1994 A
5375588 Yoon Dec 1994 A
5380277 Phillips Jan 1995 A
5380316 Aita Jan 1995 A
5383876 Nardella Jan 1995 A
5383917 Desai et al. Jan 1995 A
5389096 Aita Feb 1995 A
5395312 Desai Mar 1995 A
5395363 Billings et al. Mar 1995 A
5395368 Ellman et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5401272 Perkins Mar 1995 A
5403311 Abele et al. Apr 1995 A
5417687 Nardella et al. May 1995 A
5419767 Eggers et al. May 1995 A
5423810 Goble et al. Jun 1995 A
5423811 Imran et al. Jun 1995 A
5423812 Ellman et al. Jun 1995 A
5423882 Jackman et al. Jun 1995 A
5436566 Thompson et al. Jul 1995 A
5437662 Nardella Aug 1995 A
5438302 Goble Aug 1995 A
5441499 Fritzsch Aug 1995 A
5451224 Goble et al. Sep 1995 A
5454809 Janssen Oct 1995 A
5456662 Edwards et al. Oct 1995 A
5458596 Lax et al. Oct 1995 A
5487757 Truckai et al. Jan 1996 A
5490850 Ellman et al. Feb 1996 A
5496312 Klicek Mar 1996 A
5496314 Eggers Mar 1996 A
5496317 Goble et al. Mar 1996 A
5505728 Ellman et al. Apr 1996 A
5505730 Edwards Apr 1996 A
5514130 Baker May 1996 A
5554152 Aita Sep 1996 A
5556397 Long et al. Sep 1996 A
5562503 Ellman et al. Oct 1996 A
5562703 Desai Oct 1996 A
5569242 Lax et al. Oct 1996 A
5571100 Goble et al. Nov 1996 A
5571101 Ellman et al. Nov 1996 A
5584872 LaFontaine et al. Dec 1996 A
5609151 Mulier et al. Mar 1997 A
5624439 Edwards et al. Apr 1997 A
5630812 Ellman et al. May 1997 A
5633578 Eggers et al. May 1997 A
5647869 Goble et al. Jul 1997 A
5658278 Imran et al. Aug 1997 A
5662680 Desai Sep 1997 A
5674191 Edwards et al. Oct 1997 A
5676693 LaFontaine et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5683366 Eggers et al. Nov 1997 A
5683386 Ellman et al. Nov 1997 A
5683387 Garito et al. Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5695495 Ellman et al. Dec 1997 A
5697281 Eggers et al. Dec 1997 A
5697536 Eggers et al. Dec 1997 A
5697882 Eggers et al. Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5700262 Acosta et al. Dec 1997 A
5707349 Edwards Jan 1998 A
5718702 Edwards Feb 1998 A
5725524 Mulier et al. Mar 1998 A
5728094 Edwards Mar 1998 A
5733282 Ellman et al. Mar 1998 A
5738114 Edwards Apr 1998 A
5743870 Edwards Apr 1998 A
5746224 Edwards May 1998 A
5749869 Lindenmeier et al. May 1998 A
5766153 Eggers et al. Jun 1998 A
5775338 Hastings Jul 1998 A
5776128 Eggers Jul 1998 A
5782828 Chen et al. Jul 1998 A
5800379 Edwards Sep 1998 A
5800429 Edwards Sep 1998 A
5807395 Mulier et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5810809 Rydell Sep 1998 A
5817049 Edwards Oct 1998 A
5820580 Edwards et al. Oct 1998 A
5823197 Edwards Oct 1998 A
5827277 Edwards Oct 1998 A
5836875 Webster, Jr. Nov 1998 A
5843019 Eggers et al. Dec 1998 A
5843021 Edwards et al. Dec 1998 A
5843077 Edwards Dec 1998 A
5860951 Eggers Jan 1999 A
5860974 Abele Jan 1999 A
5860975 Goble et al. Jan 1999 A
5871469 Eggers et al. Feb 1999 A
5873855 Eggers et al. Feb 1999 A
5879349 Edwards Mar 1999 A
5885277 Korth Mar 1999 A
5888198 Eggers et al. Mar 1999 A
5891095 Eggers et al. Apr 1999 A
5891134 Goble et al. Apr 1999 A
5897553 Mulier Apr 1999 A
5902272 Eggers et al. May 1999 A
5916214 Cosio et al. Jun 1999 A
5919190 Vandusseldorp Jul 1999 A
5921983 Shannon, Jr. Jul 1999 A
5944715 Goble et al. Aug 1999 A
5954716 Sharkey et al. Sep 1999 A
5988171 Sohn et al. Nov 1999 A
6004319 Goble et al. Dec 1999 A
6006755 Edwards Dec 1999 A
6009877 Edwards Jan 2000 A
6013076 Goble et al. Jan 2000 A
6015406 Goble et al. Jan 2000 A
6024733 Eggers et al. Feb 2000 A
6026816 McMillan et al. Feb 2000 A
6027501 Goble et al. Feb 2000 A
6032674 Eggers et al. Mar 2000 A
6039734 Goble et al. Mar 2000 A
6044846 Edwards Apr 2000 A
6047700 Eggers et al. Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6056746 Goble et al. May 2000 A
6063079 Hovda et al. May 2000 A
6066134 Eggers et al. May 2000 A
6066139 Ryan et al. May 2000 A
6068628 Fanton et al. May 2000 A
6071281 Burnside et al. Jun 2000 A
6073052 Zelickson et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
6086585 Hovda et al. Jul 2000 A
6090106 Goble et al. Jul 2000 A
6093186 Goble et al. Jul 2000 A
6102046 Weinstein et al. Aug 2000 A
6105581 Eggers et al. Aug 2000 A
6109268 Thapliyal et al. Aug 2000 A
6117109 Eggers et al. Sep 2000 A
6126682 Sharkey et al. Oct 2000 A
6142992 Cheng et al. Nov 2000 A
6149620 Baker et al. Nov 2000 A
6159194 Eggers et al. Dec 2000 A
6159208 Hovda et al. Dec 2000 A
6168593 Sharkey et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6179824 Eggers et al. Jan 2001 B1
6179836 Eggers et al. Jan 2001 B1
6183469 Thapliyal et al. Feb 2001 B1
6190381 Olsen et al. Feb 2001 B1
6203542 Ellsberry et al. Mar 2001 B1
6210402 Olsen et al. Apr 2001 B1
6210405 Goble et al. Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6228078 Eggers May 2001 B1
6228081 Goble May 2001 B1
6234178 Goble et al. May 2001 B1
6235020 Cheng et al. May 2001 B1
6237604 Burnside et al. May 2001 B1
6238391 Olsen et al. May 2001 B1
6254600 Willink et al. Jul 2001 B1
6258086 Ashley et al. Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6261311 Sharkey et al. Jul 2001 B1
6264652 Eggers et al. Jul 2001 B1
6270460 McCartan et al. Aug 2001 B1
6270476 Santoianni et al. Aug 2001 B1
6277112 Underwood et al. Aug 2001 B1
6280441 Ryan Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6296636 Cheng et al. Oct 2001 B1
6296638 Davison et al. Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6308089 von der Rur et al. Oct 2001 B1
6309387 Eggers et al. Oct 2001 B1
6312408 Eggers et al. Nov 2001 B1
6322549 Eggers et al. Nov 2001 B1
6355032 Hovda et al. Mar 2002 B1
6363937 Hovda et al. Apr 2002 B1
6364877 Goble et al. Apr 2002 B1
6379350 Sharkey et al. Apr 2002 B1
6379351 Thapliyal et al. Apr 2002 B1
6387093 Ellman et al. May 2002 B1
6391025 Weinstein et al. May 2002 B1
6411852 Danek et al. Jun 2002 B1
6413254 Hissong et al. Jul 2002 B1
6416491 Edwards et al. Jul 2002 B1
6416507 Eggers et al. Jul 2002 B1
6416508 Eggers et al. Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6427089 Knowlton Jul 2002 B1
6432103 Ellsberry et al. Aug 2002 B1
6464699 Swanson Oct 2002 B1
6468274 Alleyne et al. Oct 2002 B1
6468275 Wampler et al. Oct 2002 B1
6482201 Olsen et al. Nov 2002 B1
6491690 Goble et al. Dec 2002 B1
6517498 Burbank et al. Feb 2003 B1
6530922 Cosman Mar 2003 B2
6530924 Ellman et al. Mar 2003 B1
6551032 Nolan et al. Apr 2003 B1
6572613 Ellman et al. Jun 2003 B1
6578579 Burnside Jun 2003 B2
6589235 Wong et al. Jul 2003 B2
6589237 Woloszko et al. Jul 2003 B2
6602248 Sharps et al. Aug 2003 B1
6620156 Garito et al. Sep 2003 B1
6632193 Davison et al. Oct 2003 B1
6632220 Eggers et al. Oct 2003 B1
6702810 McClurken et al. Mar 2004 B2
6736810 Hoey et al. May 2004 B2
6746447 Davison et al. Jun 2004 B2
6749604 Eggers et al. Jun 2004 B1
6749608 Garito et al. Jun 2004 B2
6770071 Woloszko et al. Aug 2004 B2
6780178 Palanker et al. Aug 2004 B2
6780180 Goble et al. Aug 2004 B1
6802842 Ellman et al. Oct 2004 B2
6837887 Woloszko et al. Jan 2005 B2
6837888 Ciarrocca et al. Jan 2005 B2
6896674 Woloszko et al. May 2005 B1
6920883 Bessette et al. Jul 2005 B2
6929640 Underwood et al. Aug 2005 B1
6942662 Goble et al. Sep 2005 B2
6949096 Davison et al. Sep 2005 B2
6955172 Nelson et al. Oct 2005 B2
6960204 Eggers et al. Nov 2005 B2
6974453 Woloszko et al. Dec 2005 B2
6984231 Goble et al. Jan 2006 B2
6991631 Woloszko et al. Jan 2006 B2
7004941 Tvinnereim et al. Feb 2006 B2
7041102 Truckai et al. May 2006 B2
7066936 Ryan Jun 2006 B2
7070596 Woloszko et al. Jul 2006 B1
7090672 Underwood et al. Aug 2006 B2
7094215 Davison et al. Aug 2006 B2
7104986 Hovda et al. Sep 2006 B2
7131969 Hovda et al. Nov 2006 B1
7160296 Pearson et al. Jan 2007 B2
7169143 Eggers et al. Jan 2007 B2
7179255 Lettice et al. Feb 2007 B2
7186234 Dahla et al. Mar 2007 B2
7192428 Eggers et al. Mar 2007 B2
7195630 Ciarrocca Mar 2007 B2
7201750 Eggers et al. Apr 2007 B1
7217268 Eggers et al. May 2007 B2
7235073 Levine Jun 2007 B2
7241293 Davison Jul 2007 B2
7270658 Woloszko et al. Sep 2007 B2
7270659 Ricart et al. Sep 2007 B2
7270661 Dahla et al. Sep 2007 B2
7276063 Davison et al. Oct 2007 B2
7297143 Woloszko et al. Nov 2007 B2
7297145 Woloszko et al. Nov 2007 B2
7318823 Sharps et al. Jan 2008 B2
7331956 Hovda et al. Feb 2008 B2
RE40156 Sharps et al. Mar 2008 E
7357798 Sharps et al. Apr 2008 B2
7387625 Hovda et al. Jun 2008 B2
7419488 Ciarrocca et al. Sep 2008 B2
7429260 Underwood et al. Sep 2008 B2
7429262 Woloszko et al. Sep 2008 B2
7435247 Woloszko et al. Oct 2008 B2
7442191 Hovda et al. Oct 2008 B2
7445618 Eggers et al. Nov 2008 B2
7449021 Underwood et al. Nov 2008 B2
7462178 Woloszko et al. Dec 2008 B2
7468059 Eggers et al. Dec 2008 B2
7491200 Underwood et al. Feb 2009 B2
7507236 Eggers et al. Mar 2009 B2
7572251 Davison et al. Aug 2009 B1
7632267 Dahla Dec 2009 B2
7691101 Davison et al. Apr 2010 B2
7704249 Woloszko et al. Apr 2010 B2
7708733 Sanders et al. May 2010 B2
7824398 Woloszko et al. Nov 2010 B2
7879034 Woloszko et al. Feb 2011 B2
7892230 Woloszko et al. Feb 2011 B2
7901403 Woloszko et al. Mar 2011 B2
8012153 Woloszko et al. Sep 2011 B2
8114071 Woloszko et al. Feb 2012 B2
8469991 Kerr Jun 2013 B2
8568405 Cox et al. Oct 2013 B2
8747401 Gonzalez et al. Jun 2014 B2
9011428 Nguyen et al. Apr 2015 B2
20020026186 Woloszko et al. Feb 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020049438 Sharkey et al. Apr 2002 A1
20020111608 Baerveldt Aug 2002 A1
20020120259 Lettice et al. Aug 2002 A1
20030013986 Saadat Jan 2003 A1
20030014050 Sharkey et al. Jan 2003 A1
20030088245 Woloszko et al. May 2003 A1
20030097129 Davison et al. May 2003 A1
20030158545 Hovda et al. Aug 2003 A1
20030171743 Tasto et al. Sep 2003 A1
20030208196 Stone Nov 2003 A1
20030212396 Eggers et al. Nov 2003 A1
20040054366 Davison et al. Mar 2004 A1
20040116922 Hovda et al. Jun 2004 A1
20040127893 Hovda Jul 2004 A1
20040230190 Dahla et al. Nov 2004 A1
20050004634 Ricart et al. Jan 2005 A1
20050043728 Ciarrocca Feb 2005 A1
20050119650 Sanders et al. Jun 2005 A1
20050261754 Woloszko et al. Nov 2005 A1
20050283149 Thorne et al. Dec 2005 A1
20050288665 Woloszko et al. Dec 2005 A1
20060036237 Davison et al. Feb 2006 A1
20060095031 Ormsby May 2006 A1
20060129145 Woloszko et al. Jun 2006 A1
20060189971 Tasto et al. Aug 2006 A1
20060253117 Hovda et al. Nov 2006 A1
20060259025 Dahla Nov 2006 A1
20060259031 Carmel et al. Nov 2006 A1
20070010808 Dahla Jan 2007 A1
20070106288 Woloszko et al. May 2007 A1
20070149966 Dahla et al. Jun 2007 A1
20070161981 Sanders et al. Jul 2007 A1
20070208335 Woloszko et al. Sep 2007 A1
20070282323 Woloszko et al. Dec 2007 A1
20080200972 Rittman et al. Aug 2008 A1
20090030414 Bayat Jan 2009 A1
20100204690 Bigley et al. Aug 2010 A1
20120101494 Cadouri et al. Apr 2012 A1
20120191089 Gonzalez et al. Jul 2012 A1
20120203219 Evans et al. Aug 2012 A1
20120226273 Nguyen et al. Sep 2012 A1
20130197506 Evans et al. Aug 2013 A1
20140200581 Aluru et al. Jul 2014 A1
20150196346 Nguyen et al. Jul 2015 A1
Foreign Referenced Citations (85)
Number Date Country
12222065 Jul 1999 CN
3930451 Mar 1991 DE
202014002299.20 Jul 2014 DE
102014003645.00 Sep 2014 DE
0509670 Oct 1992 EP
0703461 Mar 1996 EP
0740926 Nov 1996 EP
0754437 Jan 1997 EP
0694290 Nov 2000 EP
0959787 Oct 2007 EP
2198799 Jun 2010 EP
2313949 Jan 1977 FR
2 308 979 Jul 1997 GB
2 308 980 Jul 1997 GB
2 308 981 Jul 1997 GB
2 327 350 Jan 1999 GB
2 327 351 Jan 1999 GB
2 327 352 Jan 1999 GB
2477353 Aug 2011 GB
2479582 Oct 2011 GB
2488039 Aug 2012 GB
2522352 Feb 2015 GB
57-57802 Apr 1982 JP
57-117843 Jul 1982 JP
58-13213 Jan 1983 JP
10-43198 Feb 1998 JP
9003152 Apr 1990 WO
9007303 Jul 1990 WO
9221278 Dec 1992 WO
9313816 Jul 1993 WO
9320747 Oct 1993 WO
9404220 Mar 1994 WO
9408654 Apr 1994 WO
9410924 May 1994 WO
9426228 Nov 1994 WO
9534259 Dec 1995 WO
9600042 Jan 1996 WO
9623449 Aug 1996 WO
9637156 Nov 1996 WO
9639914 Dec 1996 WO
9700646 Jan 1997 WO
9700647 Jan 1997 WO
9715237 May 1997 WO
9718765 May 1997 WO
9724073 Jul 1997 WO
9724074 Jul 1997 WO
9724993 Jul 1997 WO
9724994 Jul 1997 WO
9730644 Aug 1997 WO
9730645 Aug 1997 WO
9730646 Aug 1997 WO
9730647 Aug 1997 WO
9741785 Nov 1997 WO
9741786 Nov 1997 WO
9741787 Nov 1997 WO
9741788 Nov 1997 WO
9743969 Nov 1997 WO
9743970 Nov 1997 WO
9743972 Nov 1997 WO
9743973 Nov 1997 WO
9744092 Nov 1997 WO
9748345 Dec 1997 WO
9748346 Dec 1997 WO
9803117 Jan 1998 WO
9807468 Feb 1998 WO
9827879 Jul 1998 WO
9827880 Jul 1998 WO
9908613 Feb 1999 WO
9909919 Mar 1999 WO
9917690 Apr 1999 WO
9930655 Jun 1999 WO
9951155 Oct 1999 WO
9951158 Oct 1999 WO
0062698 Oct 2000 WO
0187154 May 2001 WO
0236028 May 2002 WO
02085230 Oct 2002 WO
03005882 Jan 2003 WO
03024305 Mar 2003 WO
03047446 Jun 2003 WO
03068095 Aug 2003 WO
2004050171 Jun 2004 WO
2005125287 Dec 2005 WO
2006002337 Jan 2006 WO
2006125007 Nov 2006 WO
Non-Patent Literature Citations (94)
Entry
Barry et al., “The Effect of Radiofrequency-generated Thermal Energy on the Mechanical and Histologic Characteristics of the Arterial Wall in Vivo: Implications of Radiofrequency Angioplasty” American Heart Journal vol. 117, pp. 332-341, 1982.
BiLAP Generator Settings, Jun. 1991.
BiLAP IFU 910026-001 Rev A for BiLAP Model 3525, J-Hook, 4 pgs, May 20, 1991.
BiLAP IFU 910033-002 Rev A for BiLAP Model 3527, L-Hook; BiLAP Model 3525, J-Hook; BiLAP Model 3529, High Angle, 2 pgs, Nov. 30, 1993.
Codman & Shurtleff, Inc. “The Malis Bipolar Coagulating and Bipolar Cutting System CMC-II” brochure, early, 2 pgs, 1991.
Codman & Shurtleff, Inc. “The Malis Bipolar Electrosurgical System CMC—III Instruction Manual” , 15 pgs, Jul. 1991.
Cook et al., “Therapeutic Medical Devices: Application and Design”, Prentice Hall, Inc., 3pgs, 1982.
Dennis et al. “Evolution of Electrofulguration in Control of Bleeding of Experimental Gastric Ulcers,” Digestive Diseases and Sciences, vol. 24, No. 11, 845-848, Nov. 1979.
Dobbie, A.K., “The Electrical Aspects of Surgical Diathermy, Bio Medical Engineering” Bio-Medical Engineering vol. 4, pp. 206-216, May 1969.
Elsasser, V.E. et al., “An Instrument for Transurethral Resection without Leakage of Current” Acta Medicotechnica vol. 24, No. 4, pp. 129-134, 1976.
Geddes, “Medical Device Accidents: With Illustrative Cases” CRC Press, 3 pgs, 1998.
Honig, W., “The Mechanism of Cutting in Electrosurgery” IEEE pp. 58-65, 1975.
Kramolowsky et al. “The Urological App of Electorsurgery” J. of Urology vol. 146, pp. 669-674, 1991.
Kramolowsky et al. “Use of 5F Bipolar Electrosurgical Probe in Endoscopic Urological Procedures” J. of Urology vol. 143, pp. 275-277, 1990.
Lee, B et al. “Thermal Compression and Molding of Artherosclerotic Vascular Tissue with Use” JACC vol. 13(5), pp. 1167-1171, 1989.
Letter from Department of Health to Jerry Malis dated Jan. 24, 1991, 3 pgs.
Letter from Department of Health to Jerry Malis dated Jul. 25, 1985, 1 pg.
Letter from Jerry Malis to FDA dated Jul. 25, 1985, 2 pgs.
Lu, et al., “Electrical Thermal Angioplasty: Catheter Design Features, In Vitro Tissue Ablation Studies and In Vitro Experimental Findings,” Am J. Cardiol vol. 60, pp. 1117-1122, Nov. 1, 1987.
Malis, L., “Electrosurgery, Technical Note,” J. Neursurg., vol. 85, pp. 970-975, Nov. 1996.
Malis, L., “Excerpted from a seminar by Leonard I. Malis, M.D. at the 1995 American Association of Neurological Surgeons Meeting,” 1pg, 1995.
Malis, L., “Instrumentation for Microvascular Neurosurgery” Cerebrovascular Surgery, vol. 1, pp. 245-260, 1985.
Malis, L., “New Trends in Microsurgery and Applied Technology,” Advanced Technology in Neurosurgery, pp. 1-16, 1988.
Malis, L., “The Value of Irrigation During Bipolar Coagulation” See ARTC 21602, 1 pg, Apr. 9, 1993.
Nardella, P.C., SPIE 1068: pp. 42-49, Radio Frequency Energy and Impedance Feedback, 1989.
O'Malley, Schaum's Outline of Theory and Problems of Basic Circuit Analysis, McGraw-Hill, 2nd Ed., pp. 3-5, 1992.
Olsen MD, Bipolar Laparoscopic Cholecstectomy Lecture (marked confidential), 12 pgs, Oct. 7, 1991.
Pearce, John A. “Electrosurgery”, pp. 17, 69-75, 87, John Wiley & Sons, New York, 1986.
Pearce, John A., “Electrosurgery”, Handbook of Biomedical Engineering, chapter 3, Academic Press Inc., N.Y., pp. 98-113, 1988.
Piercey et al., “Electrosurgical Treatment of Experimental Bleeding Canine Gastric Ulcers” Gastroenterology vol. 74(3), pp. 527-534, 1978.
Protell et al., “Computer-Assisted Electrocoagulation: Bipolar v. Monopolar in the Treatment of Experimental Canine Gastric Ulcer Bleeding,” Gastroenterology vol. 80, No. 3, pp. 451-455, 1981.
Ramsey et al., “A Comparison of Bipolar and Monopolar Diathermy Probes in Experimental Animals”, Urological Research vol. 13, pp. 99-102, 1985.
Selikowitz et al., “Electric Current and Voltage Recordings on the Myocardium During Electrosurgical Procedures in Canines,” Surgery, Gynecology & Obstetrics, vol. 164, pp. 219-224, Mar. 1987.
Shuman, “Bipolar Versus Monopolar Electrosurgery: Clinical Applications,” Dentistry Today, vol. 20, No. 12, 7 pgs, Dec. 2001.
Slager et al. “Spark Erosion of Arteriosclerotic Plaques” Z. Kardiol. 76:Suppl. 6, pp. 67-71, 1987.
Slager et al. “Vaporization of Atherosclerotice Plaques by Spark Erosion” JACC 5(6): pp. 1382-1386, Jun. 1985.
Stoffels, E. et al., “Investigation on the Interaction Plasma-Bone Tissue”, E-MRS Spring Meeting, 1 pg, Jun. 18-21, 2002.
Stoffels, E. et al., “Biomedical Applications of Plasmas”, Tutorial presented prior to the 55th Gaseous Electronics Conference in Minneapolis, MN, 41 pgs, Oct. 14, 2002.
Stoffels, E. et al., “Plasma Interactions with Living Cells”, Eindhoven University of Technology, 1 pg, 2002.
Stoffels, E. et al., “Superficial Treatment of Mammalian Cells using Plasma Needle”, J. Phys. D: Appl. Phys. 26, pp. 2908-2913, Nov. 19, 2003.
Stoffels, E. et al., “Plasma Needle”, Eindhoven University of Technology, 1 pg, Nov. 28, 2003.
Stoffels, E. et al., “Plasma Physicists Move into Medicine”, Physicsweb, 1 pg, Nov. 2003.
Stoffels, E. et al., “Plasma Treated Tissue Engineered Skin to Study Skin Damage”, Biomechanics and Tissue Engineering, Materials Technology, 1 pg, 2003.
Stoffels, E. et al., “Plasma Treatment of Dental Cavities: A Feasibility Study”, IEEE Transaction on Plasma Science, vol. 32, No. 4, pp. 1540-1542, Aug. 2004.
Stoffels, E. et al., “The Effects of UV Irradiation and Gas Plasma Treatment on Living Mammalian Cells and Bacteria: A Comparative Approach”, IEEE Transaction on Plasma Science, vol. 32, No. 4, pp. 1544-1550, Aug. 2004.
Stoffels, E. et al., “Electrical and Optical Characterization of the Plasma Needle”, New Journal of Physics 6, pp. 1-14, Oct. 28, 2004.
Stoffels, E. et al., “Where Plasma Meets Plasma”, Eindhoven University of Technology, 23 pgs, 2004.
Stoffels, E. et al., “Gas Plasma effects on Living Cells”, Physica Scripta, T107, pp. 79-82, 2004.
Stoffels, E. et al., “Plasma Treatment of Mammalian Vascular Cells: A Quantitative Description”, IEEE Transaction on Plasma Science, vol. 33, No. 2, pp. 771-775, Apr. 2005.
Stoffels, E. et al., “Deactivation of Escherichia coli by the Plasma Needle”, J. Phys. D: Appl. Phys. 38, pp. 1716-1721, May 20, 2005.
Stoffels, E. et al., “Development of a Gas Plasma Catheter for Gas Plasma Surgery”, XXVIIth ICPIG, Endoven University of Technology, pp. 18-22, Jul. 2005.
Stoffels, E. et al., “Development of a Smart Positioning Sensor for the Plasma Needle”, Plasma Sources Sci. Technol. 15, pp. 582-589, Jun. 27, 2006.
Stoffels, E. et al., Killing of S. Mutans Bacteria Using a Plasma Needle at Atmospheric Pressure, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1317-1324, Aug. 2006.
Stoffels, E. et al., “Plasma-Needle Treatment of Substrates with Respect to Wettability and Growth of Excherichia coli and Streptococcus mutans”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1325-1330, Aug. 2006.
Stoffels, E. et al., “Reattachment and Apoptosis after Plasma-Needle Treatment of Cultured Cells”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1331-1336, Aug. 2006.
Stoffels, E. et al., “UV Excimer Lamp Irradiation of Fibroblasts: The Influence on Antioxidant Homostasis”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1359-1364, Aug. 2006.
Stoffels, E. et al., “Plasma Needle for In Vivo Medical Treatment: Recent Developments and Perspectives”, Plasma Sources Sci. Technol. 15, pp. S169-S180, Oct. 6, 2006.
Swain, C.P., et al., “Which Electrode, A Comparison of four endoscopic methods of electrocoagulation in experimental bleeding ulcers” Gut vol. 25, pp. 1424-1431, 1987.
Tucker, R. et al., Abstract P14-11, p. 248, “A Bipolar Electrosurgical Turp Loop”, Nov. 1989.
Tucker, R. et al. “A Comparison of Urologic Application of Bipolar Versus Monopolar Five French Electrosurgical Probes” J. of Urology vol. 141, pp. 662-665, 1989.
Tucker, R. et al. “In vivo effect of 5 French Bipolar and Monopolar Electrosurgical Probes on the Porcine Bladder” Urological Research vol. 18, pp. 291-294, 1990.
Tucker, R. et al., “Demodulated Low Frequency Currents from Electrosurgical Procedures,” Surgery, Gynecology and Obstetrics, 159:39-43, 1984.
Tucker et al. “The interaction between electrosurgical generators, endoscopic electrodes, and tissue,” Gastrointestinal Endoscopy, vol. 38, No. 2, pp. 118-122, 1992.
Valley Forge Scientific Corp., “Summary of Safety and Effective Information from 510K”, 2pgs, 1991.
Valley Forge's New Products, Clinica, 475, 5, Nov. 6, 1991.
Valleylab SSE2L Instruction Manual, 11 pgs, Jan. 6, 1983.
Valleylab, Inc. “Valleylab Part No. 945 100 102 A” Surgistat Service Manual, pp. 1-46, Jul. 1988.
Wattiez, Arnaud et al., “Electrosurgery in Operative Endoscopy,” Electrosurgical Effects, Blackwell Science, pp. 85-93, 1995.
Wyeth, “Electrosurgical Unit” pp. 1181-1202, 2000.
Rand et al., “Effect of Elecctrocautery on Fresh Human Articular Cartilage”, J. Arthro. Surg., vol. 1, pp. 242-246, 1985.
European Search Report for EP00123324.6 4 pgs, Mailed Jan. 16, 2001.
European Search Report for EP00928246 4 pgs, Mailed Mar. 7, 2008.
European Search Report for EP09153983 9 pgs, Mailed Apr. 1, 2009.
European Search Report for EP98964730.0 3 pgs, Mailed Nov. 20, 2000.
European Search Report for EP99922855.4 3 pgs, Aug. 2, 2001.
European Search Report for EP05762588 3 pgs, Apr. 12, 2010.
European Search Report for EP06760025.4 5 pgs, Nov. 10, 2010.
PCT International Preliminary Examination Report for PCT/US00/10674 4pgs, Mailed Mar. 7, 2001.
PCT International Preliminary Examination Report for PCT/US98/26624 4pgs, Mailed Oct. 12, 1999.
PCT International Preliminary Examination Report for PCT/US99/10062 3pgs, Jun. 20, 2000.
PCT International Preliminary Report on Patentability for PCT/US05/22373 4pgs, Dec. 28, 2006.
PCT International Preliminary Report on Patentability for PCT/US06/19095 6pgs, Nov. 20, 2007.
PCT International Search Report for PCT/US00/10674 1 pg, Mailed Jul. 27, 2000.
PCT International Search Report for PCT/US03/38782 1 pg, Mailed Jun. 30, 2004.
PCT International Search Report for PCT/US05/22373 1 pg, Mailed Oct. 3, 2006.
PCT International Search Report for PCT/US06/19095 2 pgs, Mailed Oct. 4, 2007.
PCT International Search Report for PCT/US96/08077 1 page, Mailed Sep. 16, 1996.
PCT International Search Report for PCT/US98/26624 1 page, Mailed Mar. 3, 1999.
PCT International Search Report for PCT/US99/10062 1 pg, Mailed Aug. 23, 1999.
UK Search Report for GB1111622.5 4pgs, Mailed Oct. 26, 2011.
UK Search Report for GB1202275.2 7pgs May 11, 2012.
UK Search Report for GB1202275.2 5pgs Sep. 12, 2014.
UK Combined Search and Exam Report for GB1404394.7 6pgs Sep. 17, 2014.
CN First OA for CN app No. 201410129644.0 dated Sep. 2, 2015, 28 pages, Sep. 2, 2015.
Related Publications (1)
Number Date Country
20130066317 A1 Mar 2013 US
Provisional Applications (1)
Number Date Country
61532474 Sep 2011 US