The embodiment will be described in detail with reference to the following drawings.
a illustrates an example of driving signal of the plasma display apparatus of the embodiment;
b illustrates a voltage difference between a first electrode and a second electrode according to a supply of a first pulse and a second pulse;
a to 4d illustrate an operation of the driver of
a to 6d illustrate an operation of the driver of
a illustrates another example of the driving signal of the plasma display apparatus of the embodiment;
b illustrates a voltage difference between the first electrode and the second electrode according to the first pulse and the second pulse;
a to 10d illustrate an operation of the driver of
Embodiments will be described in a more detailed manner with reference to the drawings.
The plasma display panel 100 includes a first electrode Y1-Yn, a second electrode Z1-Zn and a third electrode X1-Xm. The first electrode Y1-Yn is parallel with the second electrode Z1-Zn, and the third electrode X1-Xm crosses the first electrode Y1-Yn and the second electrode Z1-Zn. An area where the third electrode X1-Xm crosses the first electrode Y1-Yn and the second electrode Z1-Zn corresponds to a discharge cell.
The driver 200 respectively supplies a first pulse and a second pulse to the first electrode Y1-Yn and the second electrode Z1-Zn during a reset period. The first electrode driver 210 of the driver 200 supplies the first pulse to the first electrode Y1-Yn, and the second electrode driver 210 of the driver 200 supplies the second pulse to the second electrode Z1-Zn. As a result of supply of the first pulse and the second pulse, a voltage difference between the first electrode Y1-Yn and the second electrode Z1-Zn gradually rises from a magnitude of a first voltage to a sum of magnitudes of the first voltage and a second voltage. Due to the voltage difference generated by the supply of the first pulse and the second pulse, wall charges of all discharge cells of the plasma display panel 100 are uniformed. The first electrode driver 210 of the driver 200 supplies scan pulses to the first electrodes Y1-Yn during an address period sequentially, and the third electrode driver 230 supplies data pulses synchronized with the scan pulses to the third electrodes X1-Xm. The driver 200 supplies a sustain pulse swinging from a positive sustain voltage to a negative sustain voltage to the second electrode during a sustain period.
a illustrates an example of driving signal of the plasma display apparatus of the embodiment. As illustrated in
The second electrode driver 220 supplies to the second electrode Z the second pulse P2 falling from the reference voltage to the first voltage −V1 during the reset period. The second electrode driver 220 supplies a sustain bias voltage Vbias to the second electrode Z during the address period. The second electrode driver 220 supplies the sustain pulse SP swinging from the positive sustain voltage Vs to the negative sustain voltage −Vs to the second electrode Z during the sustain period. The sustain pulse SP generates sustain discharge in a discharge cell selected by the scan pulse Pscan and the data pulse.
As a result of the supply of the first pulse P1 and the second pulse P2, the voltage difference between the first electrode Y and the second electrode Z, as illustrated in
Due to the supply of the first pulse P1 rising to the second voltage V2 and the second pulse P2 falling to the first voltage −V1, the wall charges of the discharge cells are uniformed. Accordingly, the driver 200 has low withstanding characteristic. A manufacture cost of the driver 200 decreases, and an interference and a distortion of driving signal are reduced.
A drive IC SDIC of the first electrode driver 210 includes a switch Q8 and a switch Q9, of which a common node is connected to the first electrode Y, supplies a driving signal to the first electrode Y.
A switch Q5 of the first electrode driver 210 supplies the first pulse of
During the supply of the first pulse P1, a switch Q4 of the second electrode driver 220 is turned on, and the second pulse P2 is supplied. As illustrated in
After the supply of the first pulse P1, a switch Q6 of the first electrode driver 210 supplies to the first electrode Y a third pulse P3 gradually falling from the reference voltage to a third voltage −V3 through the drive IC SDIC. A slope of the third pulse P3 varies according to a resistance of a variable resistor connected to the switch Q6. One terminal of the switch Q6 is connected to the switch Q9 of the drive IC. When the third pulse P3 is supplied, a switch Q12 of the second electrode driver 220 is turned on, and the reference voltage is supplied to the second electrode Z. A current path for the supply of the third pulse P3 is illustrated in
After the supply of the third pulse P3, a switch Q7 of the first electrode driver 210 supplies to the first electrode Y a scan reference voltage Vsb of
A switch Q10 of the first electrode driver 210 supplies the scan pulse Pscan of
A current path A for supply the scan pulse and a current path B for supplying the scan reference voltage are illustrated in
During the address period, the switch Q12 of the second electrode driver 220 supplies the reference voltage to the second electrode Z by maintaining a turn-on state.
The switch Q11 supplies the reference voltage to the first electrode Y during the sustain period. An energy recovery circuit 225 of the second electrode driver 220 generates a sustain discharge by a supply of a sustain pulse swinging from a positive sustain voltage Vs to a negative sustain voltage −Vs.
A switch Q4 of the energy recovery circuit 225 of
A switch Q1 is turned on, and the rest switches Q2, Q3 and Q4 are turned off. Energy is recovered from the second electrode Z and an inductor LL1 to a capacitor CS1 through a resonance state. Accordingly, a voltage of the second electrode Z rises from the negative sustain voltage −Vs to the positive sustain voltage Vs. A voltage between both terminals of the capacitor CS1 recovering the energy is substantially equal to 0V, because the voltage between both terminals of the capacitor CS1 recovering the energy is 0.5 time of a sum of the negative sustain voltage −Vs and the positive sustain voltage Vs.
A switch Q3 is turned on, and the rest switches Q1, Q2 and Q4 are turned off. Accordingly, the positive sustain voltage Vs is supplied to the second electrode Z.
A switch Q2 is turned on, and the rest switches Q1, Q3 and Q4 are turned off. Energy is supplied from the capacitor CS1 to the inductor LL1 and the second electrode Z through a resonance state. Accordingly, a voltage of the second electrode Z falls from the positive sustain voltage Vs to the negative sustain voltage −Vs.
As described with reference to the above figures, the first electrode driver and the second electrode driver of the driver uniforms wall charges of the discharge cells by supplying the first pulse and the second pulse. Because the first electrode driver does not an energy recovery circuit, the second electrode driver generates a sustain discharge by supplying the sustain pulse swinging from the positive sustain voltage and the negative sustain voltage. Accordingly, a structure of the driver is simple, a manufacture cost of the driver and a distortion of a driving signal are reduced.
The first electrode driver 210 includes a drive IC SDIC, a switch Q1, a second voltage source Vsource2, a first ground switch SW1, a second ground switch SW2. The drive IC SDIC includes a switch Q8 and a switch Q9 of which a common node is connected to the first electrode Y, and supplies a driving signal to the first electrode Y. The switch Q1 is connected to one terminal of the drive IC SDIC, namely, the switch Q1 is connected to one terminal of the switch Q8. The second voltage source Vsource2, which is connected to the other terminal of the drive IC SDIC and the switch Q1, supplies the second voltage V2. The first ground switch SW1 is connected to the one terminal of the drive IC SDIC and a ground. The second ground switch SW2 is connected to the other terminal of the drive IC SDIC and the ground.
a to 6d illustrate an operation of the driver of
During a reset period, the switch Q1 operates in an active region where a Miller capacitor (not shown) discharges, and the second ground switch SW2 and the switch Q8 of the drive IC SDIC are turned on. The drive IC SDIC supplies the first pulse P1 of
After the supply of the first pulse P1, the switch Q1 continuously operates in the active region during a reset period. When the first ground switch SW1 and the switch Q9 are turned on, the drive IC supplies the third pulse P3 gradually falling from the ground level voltage to the second voltage −V2 to the first electrode Y. In
After the third pulse P3, the switch Q1 maintains a turn-on state. Accordingly, the switch Q1 operates in an saturation region during an address period. When the first ground switch SW1 and the switch Q9 are turned on, a current path CP1 of FIG. 6c is formed. The drive IC SDIC supplies a scan pulse falling to the second voltage −V2 to the first electrode Y.
When the switch Q1 is turned off and the first ground switch SW1 and the switch Q8 are turned on, a scan reference voltage of the ground level is supplied to the first electrode Y.
When the electrode driver 220 of
A structure of the driver of
Because the second electrode driver 220 supplies the sustain pulse swinging from the negative sustain voltage to the positive sustain voltage, the first electrode driver does not include a circuit for generating a sustain pulse. The first driving board does not include a board for a generation of the sustain pulse. Accordingly, a structure of the first driving board 400 is simple, and the manufacture cost of the first driving board 400 can be reduced.
C1, C2 and C3 of
a illustrates another example of the driving signal of the plasma display apparatus of the embodiment.
As illustrated in
The first electrode driver 210 supplies a scan pulse Pscan falling from the scan reference voltage Vsb to the fourth voltage −V4 to the first electrode Y during the address period. The level of the scan reference voltage Vsb may be lower than a ground level. The first electrode driver 210 supplies the reference voltage to the first electrode Y during the sustain period. The reference voltage may be the ground level voltage.
The second electrode driver 220 of the driver 200 supplies to the second electrode Z the second pulse P2 gradually falling from the reference voltage to the first voltage −V1. The second electrode driver 220 may supply a sustain bias voltage Vbias higher than the ground level voltage. The second electrode driver 220 supplies a sustain pulse swinging from a positive sustain voltage Vs to a negative sustain voltage −Vs during the sustain period.
In
Because wall charges of discharge cells are uniformed as a result of the supply of the first pulse P1 and the second pulse P2, the driver 200 has a low withstanding voltage, a manufacture cost is reduced, and a distortion and an interference of a driving signal are decreased.
As illustrated in
A drive IC SDIC includes a switch Q8 and a switch Q9, and a common node of the switch Q8 and the switch Q9 is connected to the first electrode Y.
A switch Q2 of the first electrode driver 210 is connected to a second voltage source Vsource2 supplying the second voltage V2, and supplies the reference voltage Vref when the first pulse and the sustain pulse are supplied. The switch Q2 is connected to the switch Q9 of the drive IC SDIC. The reference voltage Vref may be the ground level voltage. When the switch Q2 and the switch Q8 are turned on, a current path CPa of
After a supply of the first pulse P1, the switch SW3 of the first electrode driver 210 supplies the third pulse P3 gradually falling to the third voltage −V3 during the reset period through the drive IC SDIC. A slope of the third pulse P3 is decided by a variable resistor VR3 connected to the switch Q3. As illustrated in
A switch SW4 of the first electrode driver 210 supplies a scan pulse falling to a fourth voltage −V4 during the address period. As illustrated in
A switch SW4 supplies to the first electrode Y a sum of the second voltage V2 of the second voltage source Vsource2 and the fourth voltage −V4 of a fourth voltage source (not shown) during the address period through the drive IC. As illustrated in
The second electrode driver 220 supplies the sustain bias voltage Vbias of
As illustrated in
As describe above, because the driver supplies the first pulse and the second pulse to the first electrode and the second electrode, a structure of the driver is simple, a withstanding voltage of the driver is low, a manufacture cost of the driver and a distortion of a driving signal are reduced.
The foregoing embodiments and advantages are merely exemplary and are not to be construed as limiting the present invention. The present teaching can be readily applied to other types of apparatuses. The description of the foregoing embodiments is intended to be illustrative, and not to limit the scope of the claims. Many alternatives, modifications, and variations will be apparent to those skilled in the art. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Moreover, unless the term “means” is explicitly recited in a limitation of the claims, such limitation is not intended to be interpreted under 35 USC 112(6).
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0035442 | Apr 2006 | KR | national |
10-2006-0037969 | Apr 2006 | KR | national |