This application claims priority to and the benefit of Korean Patent Application No. 10-2006-0106997, filed on Nov. 1, 2006, in the Korean Intellectual Property Office, the entire content of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to a plasma display apparatus which displays images using a gas discharge and a manufacturing method of the same, and more particularly, to a thin plasma display apparatus and its method of manufacturing.
2. Description of the Related Art
Flat panel display apparatuses such as plasma display apparatuses have large screens with superior characteristics in terms of high-definition, thin size, light weight, and a wide viewing angle. Also, plasma display apparatuses can be manufactured to have large-scale screens more easily in comparison with other flat-panel display apparatuses and thereby are regarded as large-scale flat-panel display apparatuses of the next generation.
The chassis base 50 having a supporting structure protects the plasma display panel 30, which is conventionally composed of a glass material, from external impact, and provides a surface on which the driving circuit units 60 can be mounted. The chassis base 50 is composed of an aluminum material having superior thermal conductivity and, thereby, rapidly spreads discharge heat generated by the plasma display panel 30 throughout its surface and dissipates the driving heat generated by a plurality of heat generating elements of the driving circuit units 60. Two-sided tapes 45, which provide adhesive means, and a heat-dissipation sheet 40, which facilitates conduction of heat, are included between the plasma display panel 30 and the chassis base 50.
The rear glass substrate 20 and the chassis base 50 are composed of different materials. The rear glass substrate 20 is composed of a glass material in order to provide an insulated discharge environment and the chassis base 50 is composed of an aluminum material, which has superior thermal conductivity for heat dissipation and is also appropriate for grounding. However, the conventional plasma display apparatus as described above requires components such as the two-sided tapes 45 and the heat-dissipation sheet 40 to combine the rear glass substrate 20 and the chassis base 50 structurally and thermally. Further, processes are required to press the rear glass substrate 20 and the chassis base 50 together to combine the two parts.
Embodiments of the present invention provide a plasma display apparatus, which can be manufactured to be thin and light due to fewer required components and can be manufactured at lower costs due to fewer required components and manufacturing processes, and a manufacturing method of the same.
According to an aspect of the present invention, there is provided a plasma display apparatus including a front substrate, a rear substrate formed from a metallic substance in which a plurality of grooves are formed on a surface facing the front substrate and an oxidation layer covered at least on the surface facing the front substrate, a plurality of barrier ribs which are located between the front and rear substrates, and define a plurality of discharge cells corresponding to the grooves of the rear substrate, a plurality of discharge electrodes which are located in the barrier ribs, extend surrounding at least portions of the discharge cells, and are separated from one another at predetermined intervals, a plurality of fluorescent substances located in the grooves of the rear substrate, and a discharge gas filled in the discharge cells.
According to another aspect of the present invention, there is provided a method of manufacturing a plasma display apparatus including preparing a front substrate, preparing a rear substrate, forming a plurality of barrier ribs in which discharge electrodes are buried by stacking dielectric sheets having electrode patterns on one another, and performing frit sealing in order to combine the front and rear substrates facing each other having the barrier ribs between the front and rear substrates. The preparing of the rear substrate includes preparing an aluminum plate as a main material of the rear substrate, forming photoresist masks which expose regions in which grooves are to be formed on one surface of the aluminum plate, forming the grooves by selectively etching the exposed surface of the aluminum plate, forming an anti-oxidation layer which covers the other surface of the aluminum plate, performing an anodizing process which forms an oxidation layer on the etched surface of the aluminum plate by oxidizing the aluminum plate, removing the anti-oxidation layer, and coating fluorescent substances in the grooves.
Referring to
The barrier ribs 130 may be composed of a dielectric having a predetermined relative dielectric constant in order to provide sufficient withstanding voltage characteristics, thereby providing an advantageous environment for discharge. For example, the dielectric characteristic of the barrier ribs 130 induces an accumulation of wall charges and helps prevent first and second discharge electrodes 131, 132 from direct conduction during discharge. Additional protective layers 135 may cover the side walls of the barrier ribs 130 which directly contact the discharge cells S in order to prevent damage to the barrier ribs 130 from collision of charged particles. The protective layers 135 may be composed of, for example, a thin layer of MgO.
The first and second discharge electrodes 131, 132 are buried in the barrier ribs 130 and are located with a distance between them. The distance at which the first and second discharge electrodes 131, 132 are set apart, may be predetermined. The circular first and second discharge electrodes 131, 132 of the embodiment shown in
The second discharge electrodes 132 are separated from and located under the first discharge electrodes 131 along the z-axis of the drawing. The second discharge electrodes 132 have a structure similar to the structure of the first discharge electrodes 131. Therefore, the second discharge electrodes 132 include discharge portions 132a, which surround the discharge cells S, and conduction portions 132b which electrically connect the adjacent discharge portions 132a to each other. The second discharge electrodes 132 extend in a direction different from the first discharge electrodes 131. For example, the second discharge electrodes 132 may extend in a y-direction of the drawing, which crosses the direction of the first discharge electrodes 131 at a right angle. By extending the first and second discharge electrodes 131, 132 along intersecting directions, a passive matrix display is enabled. Specifically, the first and second discharge electrodes 131, 132 may function as address electrodes and scan electrodes and thereby, selective operation of the discharge cells S, in which a display discharge is generated, is enabled. For example, the first discharge electrodes 131 can perform as the address electrodes and the second discharge electrodes 132 can perform as the scan electrodes. The discharge portions 131a, 131b of the first and second discharge electrodes 131, 132 form electric fields in order to generate discharge in the discharge cells S.
The first and second discharge electrodes 131, 132 may be formed of electrically conductive substance such as Al, Cu, Ag having in order to prevent a voltage drop by resistance along the first and second discharge electrodes 131, 132. When an alternating voltage that is sufficient to generate discharge between the first and second discharge electrodes 131, 132 is applied, electric fields are formed in the discharge cells S according to the applied voltage and discharge is generated in the z-axis direction. The electric fields thus generated pass through the sidewalls of the barrier ribs 130 which define the discharge cells S. Application of a predetermined alternating voltage produces a predetermined electric field.
Referring back to
Second grooves 111 in which the fluorescent substances 125 are coated may be formed in the front substrate 110. The second grooves 111 may be formed in a striped pattern, with stripes which extend parallel to each other at predetermined intervals to correspond to the rows of the discharge cells S. The second grooves 111 provide regions in addition to the first grooves 121 of the rear substrate 120, in which the fluorescent substances 125 are coated. The additional regions for the fluorescent substances 125 provided by the second grooves 111 further improve emission efficiency. Specifically, by coating the fluorescent substances 125 on both top and bottom regions corresponding to the discharge cells S, ultraviolet rays generated by the discharge are prevented from being transmitted to the outside and being lost. Instead, the ultraviolet rays that would be otherwise lost, are transformed into visible rays which participate in the formation of the image by the plasma display. As a result, the emission efficiency of the plasma display apparatus is improved. To prevent color mixture, the second grooves 111 of the front substrate 110, are coated with fluorescent substances 125 of the same color as the fluorescent substances 125 coating the corresponding first grooves 121 of the rear substrate 120.
The rear substrate 120 according to one embodiment of the present invention is chassis-base-integrated to function as both a glass substrate and a chassis base. The rear substrate 120 may also function as a chassis base as described in detail with reference to
The rear substrate 120 may be formed of an aluminum plate, which provides sufficient rigidity as a supporting structure, and also has thermal and electrical conductivity for heat dissipation and grounding as described below.
When intensive heat is generated in some of the discharge cells S due to a large number of discharges occurring in these discharge cells S, the rear substrate 120 rapidly spreads the heat on its surface in order to prevent the heat from accumulating in some sectional regions. Moreover, the rear substrate 120 dissipates the heat into the air through the second surface 120b that is exposed to the outside air. The temperature of the ambient air is generally sufficiently low for the heat dissipation to occur. In addition to the heat generated by the discharge, the rear substrate 120 also dissipates heat generated by a plurality of heat generating elements included in the driving circuit unit 160 that is mounted on the second surface 120b of the rear substrate 120.
Furthermore, the rear substrate 120 that is formed of a metallic substance having good electrical conductivity may function as a ground region, which maintains a uniform ground voltage over a wide region. Accordingly, the driving ICs and circuit boards included in the driving circuit unit 160 may maintain a common ground voltage by directly being grounded to the rear substrate 120.
The oxidation layer 122 is formed on the first surface 120a of the rear substrate 120. The oxidation layer 122 covers regions of the first grooves 121 and regions in between the first grooves 121 with an approximately equal thickness To. In one embodiment, where the rear substrate 120 is made from aluminum, the oxidation layer 122 may be formed from Alumina (Al2O3), that is, an oxide of the main material of the aluminum plate of the rear substrate 120. The oxidation layer 122 may be formed through an anodizing process. The anodizing process is performed by an oxidation from the surface to the inside of the raw material. The thickness To of the oxidation layer 122 may be optimized by controlling the anodizing process conditions such as process time, applied current, and electrolytic solution. The thickness To of the oxidation layer 122 may be selected in a range of 1 μm-50 μm in consideration of voltages that are to be withstood. The oxidation layer 122 that is formed in several to several tens of μm may withstand a voltage that is sufficient for driving the plasma display apparatus due to its fine internal structure. For example, the oxidation layer 122 having a thickness of 20 μm can withstand approximately 500V without an insulation breakdown. The rear substrate 120 on which the oxidation layer 122 is formed provides an insulated discharge environment together with the front substrate 110 and the barrier ribs 130 that define the discharge cells S. In the present embodiment, the oxidation layer 122 forms an insulation boundary layer between the discharge cells S and the rear substrate 120 and thereby prevents the electrically conductive plate of the rear substrate 120 from being directly exposed to the discharge cells S and affecting the discharge environment.
As described above, the oxidation layer 122 having a thickness To may be formed by an oxidizing process on the first surface 120a of the rear substrate 120, which contacts the discharge cells S directly. However, other parts of the rear substrate 120 may not need to be electrically insulated. For example the second surface 120b, which is exposed to the external air, does not have to be electrically insulated. Not forming the oxidation layer 122 on the second surface 120b of the rear substrate 120 maintains the high thermal and electrical conductivity of this surface and favors heat dissipation and grounding considerations. On the other hand, the general affinity between oxygen and a conductive metal, such as aluminum, or durability consideration for a plate, favor forming an additional oxidation layer (not shown) on the second surface 120b of the rear substrate 120 by an artificial anodizing process or by exposing the second surface 120b to air. In various embodiments, the oxidation layer 122 formed on the first surface 120a and an oxidation layer formed on the second surface 120b may have different thicknesses due to different purposes of the oxidation layer 122 formed on the first surface 120a and the oxidation layer formed on the second surface 120b.
Generally, in an oxidation (or oxidizing) process such as anodizing, all exposed surfaces of an element to be processed are oxidized in a tub of electrolytic solution. Therefore, if only the first surface 120a of the rear substrate 120 has to be oxidized and the second surface 120b of the rear substrate 120 does not have to be oxidized, the second surface 120b has to be covered with an anti-oxidation layer (not shown) such that oxygen is not able to permeate the second surface 120b. Alternatively, the oxidation layer 122 of the first surface 120a and the oxidation layer of the second surface 120b can be formed with different thicknesses by covering one of layers with an oxidation-delay layer in order to control the speed of oxidation. For example, the second surface 120b may be covered with the oxidation-delay layer to yield a thinner oxidation layer on the second surface of the rear substrate 120.
In a plasma display apparatus according to embodiments of the present invention, a chassis-base-integrated rear substrate functions both as a glass substrate and a chassis base at the same time. The integrated rear substrate is obtained by forming the rear substrate using a substance such as aluminum that is thermally and electrically conductive, and forming an oxidation layer on a surface of the rear substrate. Accordingly, thin and light plasma display apparatuses may be manufactured that require fewer components and fewer manufacturing processes and are, therefore, manufactured at lower costs.
First, referring to
Then, referring to
Then, referring to
Then, referring to
Then, referring to
Then, referring to
Then, referring to
Then, referring to
The plasma display apparatus according to an embodiment of the present invention may be provided through the processes described below with reference to
Referring to
After the stacking of the first through fifth barrier-rib sheets 130a through 130e, the first through fifth barrier-rib sheets 130a through 130e are fused and integrated with each other by a baking process at a high temperature. Then, the integrated first through fifth barrier-rib sheets 130a through 130e are punched in order to form opening patterns at regular intervals that form walls of the discharge cells S. MgO films, which function as protective layers 135, are formed on the sidewalls of the discharge cells S by a sputtering method. For the convenience of explanation, it is assumed that the barrier ribs 130 having a sufficient height are formed by stacking the first through fifth barrier-rib sheets 130a through 130e as in the current embodiment of the present invention. However, in different embodiments, additional sheets may be included for forming the barrier-ribs in order to provide sufficient space inside the discharge cells S.
The front substrate 110 may be formed by forming the grooves 111 at predetermined positions and coating the R, G and B fluorescent substances 125 on the grooves 111. Finally, the front and rear substrates 110, 120 are located facing each other including the barrier ribs 130 therebetween, and then are combined by a frit sealing material 180 coated along the rim of the rear substrate 120. As described above, the plasma display apparatus according to the embodiments of the present invention is completed. Subsequently, the driving circuit unit 160 including the driving ICs and circuit boards, which generate and transfer a driving signal to be applied to the first and second discharge electrodes 131, 132, can be mounted on the rear substrate 120.
Similar to the plasma display apparatus according to the embodiment of the present invention that is illustrated in
The third discharge electrodes 233 are located between the first and second discharge electrodes 231, 232, and extend, for example, in a y-direction crossing at right angles the direction of the first and second discharge electrodes 231 and 232. The third discharge electrodes 233 generate an address discharge together with the first discharge electrodes 231 or the second discharge electrodes 232 in order to select the discharge cells S. In the present embodiment, the address discharge is a kind of preliminary discharge to facilitate the display discharge to be generated appropriately. In consideration of emission efficiency, additional grooves 211 in which fluorescent substances 225 are coated can also be formed on the front substrate 210 according to the current embodiment of the present invention. Protective layers 235 may be formed on the sidewalls of the barrier ribs 230 that define the discharge cells S.
As described above, by forming a rear substrate from a conductive metallic substance such as aluminum and forming an oxidation layer able to withstand a high voltage on at least one surface of the rear substrate so as to provide an insulated discharge environment, the rear substrate that integrates a chassis base according to the embodiments of the invention performs functions of a glass substrate and a chassis base at the same time. As a result, the number of required components is reduced. In particular, by not employing a two-sided tape for combining the glass substrate and the chassis base and a heat-dissipation sheet for heat transference, the number of required components is further reduced. Also, by omitting additional assembling processes to press-combine the glass substrate and the chassis base, assembling processes are also reduced.
Furthermore, dissipating heat generated in the discharge cells is accomplished and improved by removing the glass substrate, which has low heat dissipation capabilities.
While the present invention has been particularly shown and described with reference to certain exemplary embodiments, it will be understood that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0106997 | Nov 2006 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5053673 | Tomii et al. | Oct 1991 | A |
6160345 | Tanaka et al. | Dec 2000 | A |
6373191 | Jang et al. | Apr 2002 | B1 |
20040189199 | Komaki et al. | Sep 2004 | A1 |
20060164012 | Kweon et al. | Jul 2006 | A1 |
20070046206 | Kim et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
1 467 396 | Oct 2004 | EP |
06-168669 | Jun 1994 | JP |
8-15677 | Jan 1996 | JP |
10-116556 | May 1998 | JP |
2004-162087 | Jun 2004 | JP |
2005-222938 | Aug 2005 | JP |
1999-0042897 | Jun 1999 | KR |
10-2003-0039463 | May 2003 | KR |
10-2004-0080373 | Sep 2004 | KR |
Number | Date | Country | |
---|---|---|---|
20080100217 A1 | May 2008 | US |