a is a graph of driving signals of the plasma display apparatus of
b is a graph of a scan signal and a data signal of the plasma display apparatus of
a is a circuit diagram of a basic unit of a data driver of the plasma display apparatus of
b is a switching timing diagram of the data driver of
a and
a, 10b and 11 are graphs of data signals.
The plasma display panel 105 includes discharge cells 125, scan electrodes Y1, . . . , Yn, sustain electrodes Z1, . . . , Zn, and address electrodes X1, . . . , Xm, including first and second address electrodes X1 and X2 that are adjacent to each other.
The scan driver 110 supplies, to the scan electrodes Y1, . . . , Yn, a reset signal initializing the wall charge state of discharge cells, a scan signal selecting discharge cells to emit light, and a sustain signal that causes the emission of light from the selected discharge cells.
The sustain driver 115 supplies, to the sustain electrodes Z1, . . . , Zn, a sustain bias signal that helps the selection of the discharge cells and a sustain signal that causes emission of light from the selected discharge cells.
The data driver 120 supplies data signals to the address electrodes X1, . . . , Xm at different supply time points. The data signals gradually rise to a data voltage during a first period, are maintained at the data voltage during a second period, and gradually fall from the data voltage during a third period. The address electrodes include a first address electrode and a second address electrode. The data driver 120 supplies a first data signal to the first address electrode, and a second data signal to the second address electrode. The supply start time point of the second data signal, which is the point in time when the first data signal starts to rise in the first period, is different from the supply start time point of the first data signal. The first data signal or the second data signal gradually rises to the data voltage during a first period, is maintained at the data voltage during a second period, and gradually falls from the data voltage during a third period.
The scan driver 110 supplies a scan signal corresponding to the first data signal and the second data signal.
An upper dielectric layer 204 covers the scan electrode 202 and the sustain electrode 203.
The scan electrode 202 and the sustain electrode 203 may include transparent electrodes 202a and 203a and bus electrodes 202b and 203b. The transparent electrodes 202a and 203a are made of Indium Tin Oxide. The bus electrodes 202b and 203b improve the electric conductivity.
Alternatively, the scan electrode 202 and the sustain electrode 203 of
The upper dielectric layer 204 limits a discharge current of the scan electrode 202 and the sustain electrode 203, and insulates the scan electrode 202 and the sustain electrode 203. The upper dielectric layer 204 comprises a glass material including R2O and metal oxide MO2.
The metal oxide MO2 includes at least one of MnO2, CeO2, SnO2, or SbO2, each of which has 3 or 4 valence. R2O includes at least one of Li2O, Na2O, K2O, Rb2O, Cs2O, Cu2O, or Ag2O. MO2 prevents Ag ions or Cu ions of the scan electrode 202 or the sustain electrode 203 from diffusing throughout the upper dielectric layer 204. Accordingly, a discoloration of the upper dielectric layer 204204 is prevented. MO2 may range from 0.5 wt % to 10 wt % of the total weight of the dielectric layer. When MO2 ranges from 0.5 wt % to 10 wt % of the total weight of the dielectric layer, R2O decreases the softening point of a glass, and improves the liquidity of the glass.
A protective layer 205 is positioned on the upper dielectric layer 204, and improves a discharge condition. The protective layer is formed by the diposition of magnecium oxide MgO.
The address electrodes 213 supply data signals to discharge cells. A lower dielectric layer 215 covers the address electrodes 213, and insulates the address electrodes 213.
The lower dielectric layer 215 includes PbO, SiO2, B2O3, Al2O3 and CuO. CuO may range from 0.2 wt % to 0.4 wt % of the total weight of the lower dielectric layer 215. CuO decreases the viscosity of a dielectric paste. Accordingly, when CuO ranges from 0.2 wt % to 0.4 wt % of the total weight of the lower dielectric layer 215, CuO prevents the generation of bubbles inside the lower dielectric layer 215, and thereby decreases the necessary driving voltage. As a result of the decrease of the driving voltage, noise and electromagnetic interference are reduced.
A stripe type barrier rip or a well type barrier rib 212 is formed on the lower dielectric layer 215. The barrier rib partitions discharge cells. A discharge gas is filled in the discharge cells. A phosphor 214 is formed within the discharge cells.
As shown in
The time duration and the number of sustain pulses that are associated with each sustain period increase by the ratio of 2n (where, n=0,1,2,3,4,5,6,7) for each sub-field SF1 to SF8. For example, the duration of the sustaion period of sub-field SF2 is twice the duration of the sustaion period of sub-field SF1. As such, since the duration of the sustain period varies from one sub-field to the next, the gray scale of a discharge cell is achieved by controlling which sustain periods are to be used to emit light from the discharge cell, i.e., by controlling the number of the sustain discharges that are realized in the discharge cell.
a illustrates driving signals of the plasma display apparatus.
The scan driver 110 supplies, to the scan electrode, a rising ramp signal gradually rising to a sum voltage Vs+Vsetup, which is the summation of a sustain voltage Vs and a setup voltage Vsetup, during a setup period of a reset period. The sustain voltage Vs is the highest voltage of a sustain signal.
The rising ramp signal generates a weak dark discharge, i.e., a setup discharge, in the discharge cells. As a result of the setup discharge, wall charges sufficient for the generation of an address discharge are accumulated within the discharge cells. The slope of the rising ramp signal may range between 0.0005V/nsec and 0.005V/nsec.
The scan driver supplies a falling ramp signal gradually falling from a positive voltage, which is lower than the sum voltage Vs+Vsetup, during a setdown period. The falling ramp signal generates a weak erase discharge, i.e., a setdown discharge, within the discharge cells. As a result of the setdown discharge, some of the wall charges accumulated within the discharge cells are erased. The slope of the falling ramp signal may range between −0.0005V/nsec and −0.005V/nsec.
The scan driver 110 supplies to the scan electrode a scan signal which falls from a scan reference voltage Vsc to a scan voltage −Vy, is maintained at the scan voltage −Vy, and rises to the scan reference voltage Vsc.
The data driver 120 supplies a first data signal and a second data signal, which correspond to the scan signal, to the first address electrode and the second address electrode respectively. The first and second address electrodes are adjacent to each other. The first data signal and the second data signal are supplied at different supply time points t1, t2. The first data signal or the second data signal gradually rises to a data voltage Vd during a first period, is maintained at the data voltage Vd during a second period, and gradually falls from the data voltage Vd during a third period.
The durations of the first and the third periods may be between 5% and 20% of the duration of the second period. The durations of the first and the third periods may be between between 50 nsec and 200 nsec. The slope of the data signal during the first period may range between 0.1V/nsec and 1V/nsec. The slope of the data signal during the third period may range between −0.1 V/nsec and −1 V/sec.
When the first data signal or the second data signal as above is supplied, noise and Electro Magnetic Interference due to a voltage variation are reduced because the voltage on the first address electrode and the second address electrode varies gradually.
Also, the supply of the first and second data signals at different supply start time points t1 and t2 reduces noise. When the data signals are supplied at the same supply start time point, the voltage difference between the data signals and the scan signal increases noise. On the other hand, when the data signals are supplied at the different supply start time points t1 and t2, noises generated by the voltage difference of the data signals and the scan signal are spread in time, and the whole noise is reduced.
When the difference Δt between the supply start time points t1 and t2 of the data signals may range from 0.2 times to 1 times the duration of the first period, the noise and the electro magnetic interference are effectively reduced.
When the difference Δt between the supply start time points t1 and t2 of the data signals ranges from 0.4 times to 0.8 times the duration of the first period, the scan signal and the data signals sufficiently overlap for a stable address discharge, and at the same time, the noise and the electro magnetic interference are reduced.
When the difference Δt between the supply start time points t1 and t2 ranges from 10 ns to 300 ns, the noise and the electro magnetic interference are reduced, while preventing an excessive increase of the address period.
The supply start time points t1 and t2 of the data signals may be different from the supply start time point t3 of the scan signal. Then, the noise generated between the scan electrode and the first address electrode or the second electrode is reduced.
The sustain driver 115 supplies a sustain bias voltage Vzb to the sustain electrode during the address period. The sustain bias voltage Vzb prevents the occurrence of an erroneous discharge generated by the interference between the sustain electrode and the scan electrode during the address period.
The scan driver 110 and the sustain driver 115 supply sustain signals to the scan electrode and the sustain electrode during the sustain period. As a result of the supply of the sustain signals, the discharge cells selected during the address period emit light. In another implementation, the scan driver 110 may supply a sustain signal swinging from a positive sustain voltage to a negative sustain voltage to the scan electrode and the sustain driver 115 may supply a ground level voltage to the sustain electrode during the sustain period.
b illustrates exemplary waveforms of the scan signal and the data signal. As illustrated in
When the voltage on the scan electrode and the voltage on the address electrode change gradually and the slope of the scan signal during the fourth period is different from the slope of the data signal during the first period, noise is reduced.
The plasma display panel of the plasma display apparatus may include address electrodes which are divided into address electrode groups. Dada signals are supplied simultaneously to address electrodes in the same address electrode group. However, data signals are supplied at different times to address electrodes in different address electrode groups.
a illustrates an exemplary structure of the basic unit 500 of the data driver of the plasma display apparatus and
As illustrated in
The operation of the data driver basic unit 500 in
When a switch Q1 and the switch Qt are turned on and the other switches are turned off during the second period, the data voltage Vd is supplied to the first address electrode or the second address electrode. A voltage on the first address electrode or the second address electrode is maintained at the data voltage Vd.
When a switch Q3 and the switch Qt are turned on and the other switches are turned off during the third period, the capacitor C recovers the energy from the first address electrode or the second address electrode through the switch Qt, the inductor L, and the switch Q3. The inductor L forms a resonance, and the voltage on the first address electrode or the second address electrode gradually falls from the data voltage Vd to the ground level voltage GND.
When the switch Qb is turned on and the other electrodes are turned off at the end of the third period, the ground level voltage GND is supplied to the first address electrode or the second address electrode.
Diodes D1, D2, D3, Dt and Db of
a and
a illustrates a full black image displayed by the plasma display apparatus. In order to display the full black image of
b illustrates a lattice pattern image displayed by the plasma display apparatus. In order to display the lattice pattern image, the switching frequency of the switch Qt and the switch Qb of
As the switching frequency increases, a noise and an electro magnetic interference increase. In order to decrease the noise and the electro magnetic interference, the data driver 120 may supply the data signals to the first address electrode and the second address electrode at different supply time points according to the load of each address electrode, which is proportional to the switching frequency of the data driver basic unit for each address electrode.
The supply time point of the data signal may be adjusted based on the load. For example, as illustrated in
For example, as illustrated in
Other implementations are within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0043604 | May 2006 | KR | national |