The implementation of this document will be described in detail with reference to the following drawings in which like numerals refer to like elements.
a to 6f are views illustrating operations of the sustain driver according to the timing in
a to 8d are views illustrating operations of the sustain driver according to the timing in
Hereinafter, an implementation of this document will be described in detail with reference to the attached drawings.
Exemplary embodiments of the present invention will now be described with reference to the accompanying drawings.
As shown in
Respective drivers 110 and 120 supply driving voltages to the plurality of electrodes formed on the PDP 100 in one or more subfields included in a frame.
The first driver 110 drives the first electrodes Y1˜Yn and the second electrodes (Z) of the PDP 100. The first electrodes Y1˜Yn may be one of sustain electrodes and scan electrodes, and the second electrodes (Z) may be the other of the sustain electrodes and the scan electrodes, excluding the first electrodes.
The first driver 110 may supply a reset signal to the first electrodes Y1˜Yn in order to form uniform wall charges on discharge cells. In addition, the first driver 110 supplies scan signals for selecting discharge cells for emitting light and sustain signals for allowing the selected discharge cells to emit light to the first electrode Y1˜Yn and the second electrode (Z).
The sustain driver of the first driver 110 supplies the sustain signals to the first electrode Y1˜Yn and the second electrode (Z). The first driver 110 comprises an inductor at which a first directional current flows before and after a voltage between the first electrodes Y1˜Yn and the second electrodes (Z) rises from a negative polarity sustain voltage and a second directional current flows before and after the voltage between the first electrodes Y1˜Yn and the second electrodes (Z) falls from a positive polarity sustain voltage.
In other words, when the voltage between the first electrodes Y1˜Yn and the second electrodes (Z) is maintained at the negative polarity sustain voltage, the inductor is charged with energy by the first directional current. When the voltage between the first electrodes Y1˜Yn and the second electrodes (Z) falls from the voltage negative polarity sustain voltage, the inductor emits the charged energy to thus shorten a falling time taken for the voltage to fall from the positive polarity sustain voltage to the negative polarity sustain voltage. Likewise, when the voltage between the first electrodes Y1˜Yn and the second electrodes (Z) is maintained at the positive polarity sustain voltage, the inductor is charged with energy by the second directional current. When the voltage between the first electrodes Y1˜Yn and the second electrodes (Z) rises from the positive polarity sustain voltage, the inductor emits the charged energy to thus shorten a rising time taken for the voltage to rise from the negative polarity sustain voltage to the positive polarity sustain voltage. Because the rising time and the falling time are shortened, a drive margin during the sustain period can be improved.
The second driver 120 supplies data signals to the third electrodes X1˜Xm formed on the PDP 100.
As shown in
The front panel 200 comprises the first electrodes 202 (Y) and the second electrodes 203 (Z) that perform mutual discharges in a single discharge space, namely, in a single discharge cell, and maintain illumination of the discharge cell. The sustain electrodes may include the first electrodes 202 (Y) and the second electrodes 203 (Z) as pairs, each comprising a transparent electrode (a) made of a transparent ITO material and a bus electrode (b) made of a metallic material. The first electrodes 202 (Y) and the second electrodes 203 (Z) may be covered by an upper dielectric layer 204 (or dielectric layers) that limits a discharge current and insulates the pairs of electrodes. A protection layer 205 may be formed by depositing magnesium oxide (MgO) on an upper surface of the upper dielectric layer 204 in order to facilitate discharge conditions.
On the rear panel 210, there may be arranged barrier ribs 212 in a stripe type (or a well type), forming the plurality of discharge spaces, namely, the discharge cells. In addition, the plurality of third electrodes 213 (X) may be disposed to be parallel with the barrier ribs 212 and perform address discharges to generate vacuum ultraviolet rays. R, G, and B phosphors 2124 are coated on the upper surfaces of the rear panel 210 in order to emit visible rays for displaying images during the address discharges. A lower dielectric layer 215 may be formed between the third electrodes 213 (X) and the phosphors 214 in order to protect the third electrodes 213 (X).
For example, in the PDP as shown in
In addition, for example, the upper dielectric layer 204 as shown in
Moreover, the side surfaces of the barrier ribs 212 may have a depressed (Intaglioed) and raised (embossed) pattern and the phosphor layer 214 is coated thereon accordingly, thereby enhancing luminance of an image displayed on the PDP.
A tunnel may be formed at the side of the barrier ribs 212 in the process of fabricating the PDP in order to improve evacuating characteristics.
In case where one of the first electrodes 202 (Y) and the second electrodes 203 (Z) are not formed and signals for maintaining discharge are supplied to the other remaining electrodes and the third electrodes 213 (X), the other remaining electrodes and the third electrodes 213 (X) serve as the sustain electrodes. In
As shown in
The first driver 110 may supply a set-up signal (Set-up) to the first electrodes (Y) during a set-up period of the reset period. A weak dark discharge occurs within the discharge cells of the entire screen according to the set-up signal (Set-up). According to the set-up discharge, positive polarity wall charges are accumulated in the third electrodes (X) and the second electrodes (Z) and negative polarity wall charges are accumulated in the first electrodes (Y).
Also, after supplying a set-down signal (Set-down) to the first electrodes (Y) during a set-down period of the reset period, the first driver 110 may supply a set-down signal that falls from a positive polarity voltage lower than a maximum voltage of the set-up signal (Set-up) to a voltage below a ground level voltage (GND). Accordingly, a weak erase discharge occurs within the discharge cells to erase the wall charges which have been excessively formed within the discharge cells. Due to the set-down discharge, wall charges, that allow stable address discharge to occur, can remain uniformly in the discharge cells.
The first driver 110 may supply a negative polarity scan signal Scan that falls from a scan bias voltage Vsc-Vy to the first electrodes (Y) during the address period. The second driver 120 supplies a data signal in synchronization with the scan signal (Scan) to the third electrodes (X). When a voltage difference between the scan signal (Scan) and the data signal and a wall voltage generated during the reset period are added, the address discharge occurs within the discharge cells to which the data signal is applied. Wall charges, that are sufficient to allow discharge to occur when a sustain voltage (Vs) is applied, are formed within the discharge cells selected by the address discharge.
During the sustain period, the sustain driver of the first driver 110 supplies a sustain signal SUS to the first and second electrodes Y and Z, the sustain electrodes. In the discharge cells selected by the address discharge, whenever the sustain signal SUS is applied as the wall voltage of the discharge cells and the sustain signal SUS are added, a sustain discharge occurs between the first and second electrodes Y and Z. The positive polarity sustain voltage Vs is a maximum voltage of the sustain signal SUS, and a negative polarity sustain voltage −Vs is a minimum voltage of the sustain signal SUS.
The above-described driving method shows one example and an erasing period may be added.
As shown in
The first sustain controller 410 is turned on to maintain the positive polarity sustain voltage Vs between the first and second electrodes Y and Z. The positive polarity sustain voltage Vs is supplied from a positive polarity constant voltage source SCE.
The first sustain controller 410 comprises a first sustain switch Ysus_up that supplies the positive polarity sustain voltage Vs to the first electrodes (Y), and a first reference switch Zsus_dn that supplies the reference voltage of ground level GND to the second electrodes (Z). One end of the first sustain switch Ysus_up is connected with the positive polarity constant voltage source SCE and the other end of the first sustain switch Ysus_up is connected with the first electrode (Y) of the panel Cp.
The second sustain controller 420 maintains the negative polarity sustain voltage −Vs between the first and second electrodes Y and Z. The second sustain controller 420 comprises a second sustain switch Zsus_up that supplies the positive polarity sustain voltage Vs to the second electrodes (Z) and a second reference switch Ysus_dn that supplies the reference voltage of ground level GND to the first electrodes (Y). One end of the second sustain switch Zsus_up is connected with the positive polarity constant voltage source SCE and the other end of the second sustain switch Zsus_up is connected with the second electrodes (Z) of the panel Cp.
The inductor unit 430 is electrically connected with the PDP Cp, forming resonance with the PDP. The current in the first direction flows through the inductor unit 430 before and after the voltage between the first and second electrodes Y and Z rises from the negative polarity sustain voltage. In addition, the current in the second direction, different from the first direction, flows through the inductor unit 430 before and after the voltage between the first and second electrodes Y and Z falls from the positive polarity sustain voltage. The inductor unit 430 comprises an inductor (L). One end of the inductor (L) is commonly connected with the first electrodes (Y), the other end of the first sustain switch Ysus_up, and one end of the second reference switch Ysus_dn.
The resonance controller 440 controls such that the voltage between the first and second electrodes Y and Z falls from the positive polarity sustain voltage Vs to the reference voltage GND of the ground level or rises from the negative polarity sustain voltage −Vs to the reference voltage GND of the ground level because of resonance formed by the PDP Cp and the inductor unit 430.
The resonance controller 440 comprises a resonance switch ER. One end of the resonance switch ER is connected with the other end of the inductor (L), and the other end of the resonance switch ER is commonly connected with the second electrodes (Z), the other end of the second sustain switch Zsus_up, and one end of the first reference switch Zsus_dn. When the resonance switch ER is turned on, the voltage between the first and second electrodes Y and Z is changed to the reference voltage GND of the ground level because of the resonance formed by the inductor (L) and the PDP Cp.
The bypass unit 450 comprises a bypass diode D1. An anode of the bypass diode D1 is commonly connected with the other end of the inductor (L) and one end of the resonance switch ER, and a cathode of the bypass diode D1 is commonly connected with the positive polarity constant voltage source SCE, one end of the first sustain switch Ysus_up and one end of the second sustain switch Zsus_up. After the voltage between the first and second electrodes Y and Z is changed to the reference voltage, the bypass diode D1 allows the current flowing at the inductor (L) to come out to the positive polarity constant voltage source SCE.
With reference to
First, the voltages Vcp and IL will be described in detail. While the voltage Vcp between the first and second electrodes Y and Z is maintained at the positive polarity sustain voltage +Vs during time periods (t1 and t5), the direction of current IL flowing at the inductor (L) changes from a first direction D1 to a second direction D2.
While the voltage Vcp between the first and second electrodes Y and Z falls from the positive polarity sustain voltage +Vs to the negative polarity sustain voltage −Vs because of the resonance formed as the inductor (L) and the PDP Cp are electrically connected during a time period t2, the current IL flowing at the inductor (L) is maintained in the second direction D2.
At this time, the size of the current IL flowing at the inductor (L) during the time period t2 while the voltage between the first and second electrodes Y and Z falls from the positive polarity sustain voltage +Vs to the negative polarity sustain voltage −Vs because of the resonance is larger than that of the current flowing in the second direction at the inductor (L) during the time periods t1 and t5 while the voltage between the first and second electrodes Y and Z is maintained at the positive polarity sustain voltage +Vs.
Because the current continuously flows to the inductor (I) during the periods t1 and t5 while the voltage Vcp between the first and second electrodes Y and Z is maintained at the positive polarity sustain voltage +Vs, the inductor (L) is charged with energy, and because the previously charged energy of the inductor (L) is used during the time period t2 while the voltage Vcp between the first and second electrodes Y and Z falls, the falling time is shortened. Namely, because the current IL of the inductor (L) flowing in the second direction D2 increases after the time periods t1 and t5 during which the positive polarity sustain voltage +Vs is maintained, when the inductor (L) and the panel Cp form resonance, the size of the current Icp flowing to the panel Cp increases, shortening the time during which the voltage between the first and second electrodes Y and Z falls.
During the time period t3 while the voltage Vcp between the first and second electrodes Y and Z is maintained at the negative polarity sustain voltage −Vs, the direction of the current IL flowing at the inductor (L) is changed from the second direction D2 to the first direction D1. During a time period t4 while the voltage Vcp between the first and second electrodes Y and Z increases from the negative polarity sustain voltage −Vs to the positive polarity sustain voltage +Vs, the current IL in the first direction D1 flows at the inductor (L).
In this case, the size of the current IL flowing in the first direction D1 at the inductor (L) during the time period t4 while the voltage between the first and second electrodes Y and z rises from the negative polarity sustain voltage −Vs to the positive polarity sustain voltage +Vs is larger than that of the current in the first direction D1 flowing at the inductor (L) during the time period t3.
In this manner, while the voltage between the first and second electrodes Y and Z is maintained at the negative polarity sustain voltage −Vs, the current flows continuously at the inductor (L), so that the inductor (L) can be charged with energy, and when the voltage between the first and second electrodes Y and Z rises, the previously charged energy of the inductor (L) is used to shorten the rising time during which the voltage between the first and second electrodes Y and Z rises from the negative polarity sustain voltage −Vs to the positive polarity sustain voltage +Vs. In addition, because the positive polarity sustain voltage +Vs and the negative polarity sustain voltage −Vs are supplied from the single positive polarity constant voltage source SCE, the fabrication cost can be reduced.
a to 6f are views illustrating operations of the sustain driver according to the timing in
As shown in
During the time period t1 while the voltage between the first and second electrodes Y and Z is maintained at the positive polarity sustain voltage +Vs, the direction of the current IL flowing at the inductor (L) is changed from the first direction D1 to the second direction D2.
During a time period T11, the size of the current in the first direction D1 flowing at the inductor (L) is gradually reduced. The description on the circuit operation during the time period T11 will be made with reference to
During a time period t12, a first current path I1 and a second current path I2 are formed. The voltage Vcp between the first and second electrodes Y and Z is maintained at the positive polarity sustain voltage +Vs by the first current path I1. The current in the second direction D2 flows at the inductor (L) by the second current path (I2). The size of the current in the second direction D2 is gradually increased.
Because the current IL flows at the inductor (L) during the time period t1 while the voltage between the first and second electrodes Y and Z is maintained at the positive polarity sustain voltage +Vs, the inductor (L) is previously charged with energy.
Thereafter, as shown in
The current IL of the inductor (L) is continuously maintained in the second direction D2, and the size of the current IL flowing at the inductor (L) in the second direction D2 at a time point when the first sustain switch Ysus_up and the first reference switch Zsus_dn are turned off is larger than that of the current IL flowing in the second direction D2 at the inductor (L) while the voltage Vcp between the first and second electrodes Y and Z is maintained at the positive polarity sustain voltage +Vs. Accordingly, the current Icp introduced to the panel Cp according to the resonance between the panel Cp and the inductor (L) is also increased to shorten the time period t2 during which the voltage Vcp between the first and second electrodes Y and Z falls.
For example, the falling period when the current flows at the inductor during the sustain voltage maintained period may be a half the falling period when the current does not flow at the inductor (L) during the sustain voltage maintained period. Because the falling period is reduced, the drive margin of the sustain period can be improved.
After the size of the current (IL) flowing at the inductor (L) is maximized, while the voltage between the first and second electrodes Y and Z falls from the voltage of the ground level to the negative polarity sustain voltage −Vs, the current in the second direction D2 flowing at the inductor (L) is gradually reduced.
As shown in
When the energy of the inductor (L) is completely discharged, as shown in
As shown in
The current IL flows in the first direction D1 at the inductor (L). At a time point when the resonance is generated as the inductor (L) and the PDP are electrically connected, namely, at a time point when the second sustain switch Zsus_up and the second reference switch Ysus_dn are turned off, the size of the current IL flowing at the inductor (L) in the first direction D1 is larger than that of the current in the first direction D1 flowing at the inductor (L) during the time period t32 in
When the size of the current (IL) flowing at the inductor (L) is maximized, the voltage between the first and second electrodes Y and Z becomes the same and the voltage between the first and second electrodes Y and Z becomes the voltage of the ground level. Thereafter, while the voltage between the first and second electrodes Y and Z rises from the voltage of the ground level to the positive polarity sustain voltage +Vs, the current in the first direction flowing at the inductor (L) is gradually reduced.
As shown in
After the energy charged in the inductor (L) is completely discharged, likewise as the case shown in
The first driver 110 may make the size of the current IL flowing at the inductor (L) 0 during a portion of the time period during which the voltage Vcp between the first and second electrodes Y and Z is maintained at the positive polarity sustain voltage +Vs or the negative polarity sustain voltage −Vs.
For example, as shown in
The size of the current IL flowing in the first direction D1 at the inductor (L) is gradually reduced during the time period t1. The current IL in the first direction D1 flowing at the inductor (L) is reduced to 0 [A]. After the current IL flowing at the inductor (L) becomes 0 [A], when the resonance switch ER is turned off during the time period t2, the size of the current flowing at the inductor (L) is 0 [A]. Accordingly, the time period during which the voltage Vcp between the first and second electrodes Y and Z is maintained at the sustain voltage can be controlled.
During the t3 period, the first reference switch Zsus_dn is maintained in the ON state and the resonance switch ER is turned on, so the voltage Vep between the first and second electrodes Y and Z falls from the positive polarity sustain voltage +Vs to the voltage GND of the ground level.
During the time period t4, the resonance switch ER is turned off and the first reference switch Zsus_dn is maintained in the ON state, so the voltage Vcp between the first and second electrodes Y and Z is maintained at the voltage of the ground level.
At this time, the sustain signal may be finally supplied at a single subfield. Namely, the positive polarity sustain voltage +Vs or the negative polarity sustain voltage −Vs of the sustain signal may be finally supplied at a single subfield.
a to 8d illustrate a current ID1 of the bypass diode D1, a current IER of the resonance switch ER, a current IYsus_dn of the second reference switch Ysus_dn, and a current IZsus_dn of the first reference switch Zsus_dn, in addition to the voltage Vcp of the panel Cp, the current Icp of the panel Cp, and the current IL of the inductor (L).
The first sustain switch Ysus_up is turned on while the voltage Vcp between the first and second electrodes Y and Z is maintained at the positive polarity sustain voltage +Vs, and the first reference switch Zsus_dn is continuously maintained in the ON state starting from the period while the voltage Vcp between the first and second electrodes Y and Z is maintained at the positive polarity sustain voltage +Vs to the time period t4 while it is maintained at the reference voltage GND of the ground level.
As shown in
As shown in
The current IL flows in the second direction D2 at the inductor (L), so the voltage Vcp between the first and second electrodes Y and Z falls. While the voltage Vcp between the first and second electrodes Y and Z is falling, the size of the current IL flowing at the inductor (L) is gradually increased. Because the current IL flowing at the inductor (L) is supplied to the second electrodes (Z), the current IL flowing at the inductor (L) is substantially the same as the current Icp of the panel Cp and the current IER flowing at the resonance switch ER.
Accordingly, because the voltage of the first electrodes (Y) and that of the second electrodes (Y) are the same, the voltage Vcp between the first and second electrodes Y and Z falls from the positive polarity sustain voltage +Vs to the reference voltage GND of the ground level.
c shows a current path formed due to a transitional state of the resonance switch ER when the resonance switch ER is turned off during t41 of the time period t4. Because the voltage of the first electrodes (Y) becomes the reference voltage GND of the ground level and the current IL of the inductor (L) is maintained in the second direction D2, the current path as shown in
Thereafter, when the resonance switch ER gets out of the transitional state and is completely turned off during t42 of the time period t4, a current path as shown in
Namely, the current flowing at the inductor (L) is not instantaneously changed to 0 [A due to a counter electromotive force but gradually reduced, so the current continuously flows at the inductor (L).
If the current IL flowing at the inductor (L) is continuously introduced to the second electrodes (Z) even after the voltage Vcp between the first and second electrodes Y and Z falls to the reference voltage GND of the ground level, the voltage Vcp between the first and second electrodes Y and Z is bound to fall to below the reference voltage GND of the ground level. In this case, the bypass diode D1 serves to prevent the voltage Vcp between the first and second electrodes Y and Z from falling to below the reference voltage GND of the ground level.
In the above description, the sustain driver as shown in
In addition, in the above description, the voltage Vcp between the first and second electrodes Y and Z falls from the positive polarity sustain voltage +Vs to the reference voltage GND of the ground level. But alternatively, when the sustain driver is reconstructed such that the inductor (L) and the resonance switch ER are mutually changed in their positions, the voltage Vcp between the first and second electrodes Y and Z may rise from the negative polarity sustain voltage −Vs to the reference voltage GND of the ground level.
The foregoing embodiments and advantages are merely exemplary and are not to be construed as limiting the present invention. The present teaching can be readily applied to other types of apparatuses. The description of the foregoing embodiments is intended to be illustrative, and not to limit the scope of the claims. Many alternatives, modifications, and variations will be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0088310 | Sep 2006 | KR | national |