This application claims priority to and the benefit of Korean Patent Application No. 10-2004-0038279 filed on May 28, 2004 in the Korean Intellectual Property Office, the entire content of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to a plasma display apparatus that reduces the occupying area of the driving boards on a chassis base thereof.
2. Description of the Related Art
A plasma display panel (PDP) is a display device that uses plasma generated by gas discharge to produce an image thereon and has dozens to hundreds of millions of pixels (discharge cells) arranged in matrix depending on the screen size thereof. The PDP is classified into a direct current (DC) type and an alternating current (AC) type with respect to the waveform of the driving voltage and the structure of the discharge cell.
In the case of the DC PDP, the electrodes are exposed to the discharge space, and the current flows through the discharge space while the voltage is applied. Therefore, the DC PDP has the shortcoming of making a resistance to restrict the current. On the other hand, the AC PDP has a dielectric layer covering the electrodes so that the current is restricted by a capacitance formed naturally and the electrodes are protected from the ion bombardment during the discharge. Therefore, the AC PDP has the advantage of a long life over the DC PDP.
In the AC PDP, a single frame is generally divided into and driven by plural subfields, each subfield consisting of a reset period, an address period and a sustain period. The reset period is a period when the state of each discharge cell 12 is initialized to carry out addressing in the discharge cell 12 effectively. The address period is a period when the discharge cell to be turned on is selected from the discharge cells of the PDP and wall charges are accumulated in the selected discharge cell to be tuned on (the discharge cell addressed). The sustain period is a period when discharge occurs in the discharge cell to be tuned on for producing an image.
For these operations, sustain pulses are alternatingly applied to the scan electrode and the sustain electrode during the sustain period, and a reset waveform and a scan waveform are applied to the scan electrode during the reset and the address period, respectively. Therefore, it is necessary to have both a scan driving board for driving the scan electrode and a separate sustain driving board for driving the sustain electrode. Two separate driving boards need a large area for installation on the chassis base, and the cost rises due to two driving boards.
Therefore, it has been proposed that two driving boards be integrated into a single board. The single board would be placed at one end of the scan electrode and connected to the sustain electrode by extending one end of the sustain electrode. However, such an integrated driving board has the disadvantage of large impedance due to very elongated sustain electrodes.
The present invention provides a plasma display apparatus minimizing the occupying area of the driving boards on the chassis base by using an integrated driving board capable of driving scan electrodes and sustain electrodes.
The plasma display apparatus in accordance with the present invention is composed so as to apply a driving waveform to the scan electrode with a sustain electrode biased to a constant voltage.
The plasma display apparatus in accordance with the present invention includes a chassis base, a plasma display panel fixed to the chassis base, and driving boards attached on the chassis base. The plasma display panel includes a plurality of first electrodes (sustain electrodes or X electrodes), a plurality of second electrodes (scan electrodes or Y electrodes), and a plurality of third electrodes (address electrodes or A electrodes) extending in a direction crossing a plurality of the first and the second electrodes. The driving boards generate a driving voltage and apply the driving voltage to the electrodes. The first electrode is grounded to the chassis base or may be grounded to the chassis base through a flexible printed circuit (FPC).
In an embodiment in accordance with the present invention, a plasma display apparatus includes a chassis base, a plasma display panel fixed to the chassis base, and driving boards attached on the chassis base. The plasma display panel includes a plurality of first electrodes, a plurality of second electrodes, and a plurality of third electrodes extending in the direction crossing a plurality of the first and the second electrodes. Also, the driving boards include an image processing and controlling board receiving image signals from outside and generating controlling signals, and the image signals from outside is composed of a plurality of frames. Moreover, each frame is generally divided into plural subfields, and one subfield at least includes a reset period, an address period and a sustain period. In the reset period, with the first electrode (sustain electrode, X electrode) biased to a first voltage (0 V), a voltage to the second electrode (scan electrode, Y electrode) rises from a second voltage (Vs) to a third voltage (Vset) gradually and then, falls from a fourth voltage (Vs) to a fifth voltage (Vnf) gradually. A discharge cell to be turned on is selected in the address period. In the sustain period, with the first electrode biased to the first voltage (0 V), pulses having a sixth voltage (Vs) and a seventh voltage (−Vs) lower than the sixth voltage alternatingly are applied to the second electrode to make the sustain discharge occur in the selected discharge cell. A voltage applied to the third electrode in a first time period, the first time period being at least a part of the time period when the voltage to the second electrode rises from the second voltage to the third voltage, may be formed higher than an eighth voltage applied to the third electrode during the time period when the voltage to the second electrode falls to the fifth voltage (Vnf).
A voltage difference between the sixth voltage and the first voltage is equal to the voltage difference between the first voltage and the seventh voltage.
The driving boards include an image processing and controlling board, an address buffer board, a scan driving board and a power supplying board. The image processing and controlling board receives image signals from outside and generates controlling signals to drive the third electrode (address electrode, A electrode) and controlling signals to drive the second electrodes (scan electrodes or Y electrodes). The address buffer board receives controlling signals from the image processing and controlling board and applies to the third electrode (address electrode) a voltage to select the discharge cell to be displayed. The scan driving board receives driving signals from the image processing and controlling board and applies the driving voltage to the second electrode (scan electrodes or Y electrodes) The power supplying board supplies power to drive the plasma display panel.
The FPC may be grounded to the chassis base through a ground board grounded to the chassis base.
The FPC may also be grounded directly on the chassis base.
Referring to
The PDP 10, as shown in
Referring to
An address buffer board 100 is formed respectively at an upper and a lower portions (of the drawing) in the chassis base 20. The address buffer board 100 may consist of a single board as shown in the drawing or plural boards (not shown).
A scan driving board 200 is positioned in the left side (of the drawing) of the chassis base 20. The scan driving board 200 is electrically connected to the scan electrodes Y1–Yn via a scan buffer board 300. The sustain electrodes X1–Xn are biased to a predetermined voltage (0 V for example). The scan buffer board 300 applies a voltage to the scan electrode Y1–Yn for selecting the scan electrode Y1–Yn sequentially during the address period. The scan driving board 200 receives driving signals from the image processing and controlling board 400 and applies the driving voltage to the scan electrode Y1–Yn.
The image processing and controlling board 400 receives image signals from outside, generates respective controlling signals to drive the address electrodes A1–Am and the scan electrodes Y1–Yn, and applies the respective controlling signals to the address buffer board 100 and the scan driving board 200.
A power supplying board 500 supplies power to drive the PDP 10. The image processing and controlling board 400 and the power supplying board 500 may be placed at the center of the chassis base 20.
As shown in
The FPC 50 may be grounded to the chassis base through a grounding board 60, as shown in
The grounding board 60, as shown in
As aforementioned, the sustain electrodes X1–Xn are grounded to the chassis base 20, and the scan electrodes Y1–Yn are connected to the scan driving board 200 via the scan buffer board 300. The address electrodes A1–Am are connected to the address buffer board 100. And, both the scan buffer board 300 and the address buffer board 100 are connected to the image processing and controlling board 400 and operated by various controlling signals from the image processing and controlling board 400
To be more specific, the sustain electrodes X1–Xn can be grounded to the chassis base through the FPC 50 because a constant voltage, not a time-varying voltage, is applied to the sustain electrodes X1–Xn during the operation of the PDP 10 in the embodiments in accordance with the present invention. In other words, the sustain electrodes X1–Xn can be grounded to the chassis base by using the FPC 50 and the grounding board 60 because the sustain electrodes X1–Xn are biased to a reference voltage 0 V. Also, the sustain electrodes X1–Xn may be grounded to the chassis base 20 by connecting the FPC 50 directly to the chassis base 20.
With the sustain electrodes X1–Xn grounded to the chassis base 20, there is no need for any driving board to drive the sustain electrodes X1–Xn which reduces not only the occupying area of the driving boards 100–500 on the chassis base but also the total cost of the circuits necessary for driving the PDP 10.
When the ground voltage is applied to the sustain electrode and relatively a large voltage difference is applied to the scan electrode, the ground voltage applied to the sustain electrode may vary due to the variation in voltage applied to the scan electrode. In the case where the ground voltage applied to the sustain electrode is varied, the sustain discharge between the sustain electrode X1–Xn and the scan electrode Y1–Yn is affected. In addition, the sustain discharge may not occur even if a predetermined voltage is applied between the sustain electrode X1–Xn and the scan electrode Y1–Yn because the voltage to be applied otherwise between the sustain electrode X1–Xn and the scan electrode Y1–Yn is not applied therebetween. Therefore, the direct connection of the FPC 50 to the chassis base 20, as shown for the second embodiment, enlarges the grounding area where the FPC 50 is combined. As a result, the sustain electrode can be grounded with reliability and the variation in ground voltage can be prevented.
Hereinafter, explanations are given as to driving waveforms for the PDP 10 that are controlled by the driving boards 100–500.
For convenience, respective driving waveforms applied to the X, Y, A electrodes of a single discharge cell are explained. In
As shown in
In the ascending period of the reset period, while the voltage to the X electrode is maintained at a first voltage (a reference voltage, 0 V in
In the case that the voltage to the Y electrode rises gradually as shown in
In the descending period of the reset period, with the A electrode maintained at the reference voltage, the voltage to the Y electrode decreases gradually from a fourth voltage (Vs) to a fifth voltage (Vnf). Meanwhile, a weak discharge occurs between the Y electrode and X electrode and between the Y electrode and A electrode. Then, the negative (−) and the positive (+) wall charges previously formed on the Y electrode and on the X and the A electrodes respectively are erased. Generally, Vnf is set at a voltage around the discharge firing voltage. If so, the wall voltage between the X electrode and the Y electrode becomes almost to 0 V and can prevent the discharge cell where no address discharge occurred previously from misdischarging during the sustain period. Since the A electrode is maintained at the reference voltage, the wall voltage between the Y electrode and the A electrode is determined by the magnitude of Vnf.
Next, a scan pulse with a voltage VscL and an address pulse with an eighth voltage (Va) are applied to the Y electrode and the A electrode, respectively, to select the discharge cell 12 to be turned on in the address period. The non-selected Y electrode is biased to a voltage VscH higher than VscL, and the A electrode of the discharge cell 12 not to be turned on is provided with the reference voltage. In order to carry out such an operation, the scan buffer board 300 selects, from the Y electrodes Y1–Yn, one Y electrode to which the scan pulse of VscL is to be applied. For instance, in the single driving, the scan buffer board 300 may select a Y electrode in sequential order of the column direction. And, at the time when one Y electrode is selected, one A electrode that the address pulse of Va is to be applied to is selected by the address buffer board 100 from the A electrodes A1–Am corresponding to the discharge cells formed by the selected Y electrode.
Specifically, a scan pulse of VscL is first applied to the scan electrode (Y1 in
In such an address period, the voltage VscL is generally set equal to or lower than the voltage Vnf. In addition, the voltage Va is set higher than the reference voltage. The reason of the address discharge by the voltage Va in the discharge cell 12 is explained in an exemplified case that the voltage VscL is equal to the voltage Vnf.
When the voltage Vnf is applied during the reset period, the sum of the wall voltage between the A electrode and the Y electrode and the external voltage (Vnf) between the A electrode and the Y electrode is determined by the discharge firing voltage (Vfay) between the A electrode and the Y electrode. However, the voltage Vfay is formed between the A electrode and the Y electrode when the reference voltage (0 V) and the voltage VscL(=Vnf) are applied to the A electrode and the Y electrode, respectively. This condition may cause a discharge. However, no discharge occurs, though, in general because the discharge delay time in this case is longer than the widths of the scan pulse and the address pulse. In the case that the voltages of Va and VscL(=Vnf) are applied, respectively, to the A electrode and the Y electrode, however, the voltage formed between the A electrode and the Y electrode is larger than Vfay. Therefore, the discharge can occur because the discharge delay time is shorter than the width of the scan pulse. In order to ignite the address discharge easily, the voltage VscL may be set lower than the voltage Vnf.
In the discharge cell 12 that the address discharge occurred previously in the address period, the wall voltage Vwxy of the Y electrode with respect to the X electrode is high. Therefore, the sustain discharge is ignited between the X electrode and the Y electrode during the sustain period by applying a pulse having a voltage Vs to the Y electrode first. The voltage Vs is set in the range that the voltage Vs is lower than the discharge firing voltage (Vfxy) between the X electrode and the Y electrode, and the voltage Vs+Vwxy is higher than Vfxy. By the sustain discharge, (−) wall charges are formed on the Y electrode, and (+) wall charges are formed on the X and the A electrodes. And the wall voltage Vwyx of the X electrode with respect to the Y electrode is high.
Next, because the wall voltage Vwyx of the X electrode with respect to the Y electrode is high, the sustain discharge is ignited between the X electrode and the Y electrode by applying a pulse having a voltage −Vs to the Y electrode. As a result, (+) wall charges are formed on the Y electrode, and (−) wall charges are formed on the X and the A electrodes. Accordingly, the sustain discharge becomes ready to occur under the condition that the voltage Vs is applied to the Y electrode. After that, applying the scan pulse of Vs to the scan electrode (Y) and applying the scan pulse of −Vs to the scan electrode are repeated by the number corresponding to the weighted factor that the relevant subfield displays.
In accordance with the present invention, as explained above, the reset operation, the address operation and the sustain discharge operation can be carried out by only a driving waveform applied to the Y electrode under the condition that the X electrode is biased to the reference voltage. Therefore, the driving board for the X electrode can be eliminated by simply biasing the X electrode to the reference voltage.
According to
As explained earlier, the final voltage Vnf is set around the discharge firing voltage between the X electrode and the Y electrode. In general, the discharge firing voltage (Vfay) between the Y electrode and the A electrode is lower than the discharge firing voltage (Vfxy) between the Y electrode and the X electrode. Therefore, the potential on the Y electrode is higher due to the wall charge than that on the A electrode at the time when the final voltage (Vnf) is applied in the descending period. Therefore, the wall voltage on the Y electrode with respect to the A electrode may set to be positive. Since no sustain discharge occurs in the discharge cell where no address discharge was occurred previously, the reset period of the next subfield is carried out while maintaining the such a state of the wall charge. In the discharge cell 12 with this state, the wall voltage on the Y electrode with respect to the A electrode is greater than the wall voltage on the Y electrode with respect to the X electrode. As a result, in the ascending period of the reset period when the voltage to the Y electrode rises, the voltage between the A electrode and the Y electrode exceeds the discharge firing voltage (Vfay), and after a certain time, the voltage between the X electrode and the Y electrode exceeds the discharge firing voltage (Vfxy)
Since the high voltage is applied to the Y electrode in the ascending period of the reset period, the Y electrode serves as an anode, and the A and the X electrodes as a cathode. The discharge in the discharge cell 12 is determined by the amount of secondary electrons emitted from the cathode at the time that positive ions collide with the cathode. This is called a γ-process. In general, the A electrode of the PDP 10 is covered with a phosphor material to produce colors, and both the X electrode and the Y electrode are covered with a material having a high coefficient of secondary electron emission such as a MgO layer for an efficient sustain discharge. Although the voltage between the A electrode and the Y electrode exceeds the discharge firing voltage (Vfay) in the ascending period, the discharge between the A electrode and the Y electrode is delayed due to the A electrode, which is covered with the phosphor material and plays as a cathode. Due to the delay of the discharge, the voltage between the A electrode and the Y electrode is greater than the discharge firing voltage (Vfay) at the moment that the real discharge is ignited between the A electrode and the Y electrode. Such a high voltage may ignite a strong discharge between the A electrode and the Y electrode rather than a weak discharge therebetween. This strong discharge may cause a strong discharge between the X electrode and the Y electrode, and therefore, more wall charges are formed in the discharge cell than the wall charges formed in the normal ascending period. More priming particles may also be produced.
If so, the large amount of the wall charges and the priming particles may cause a strong discharge in the descending period, and the wall charges formed between the X electrode and the Y electrode may not be eliminated completely, as shown in
In the embodiments in accordance with the present invention, therefore, the voltage applied to the Y electrode rises from the voltage Vs to the voltage Vset gradually in the ascending period of the reset period with the A electrode kept biased to a predetermined voltage (greater than the reference voltage). Also, there is no need for an additional power source in the case that the biased voltage for the A electrode is set at Va as shown in
According to the present invention, the first electrode (the sustain electrode or the X electrode) is biased to a predetermined voltage (0 V), and the driving waveform is applied to only the second electrode (the scan electrode or the Y electrode). Therefore, the driving board to drive the first electrode can be eliminated by grounding the FPC in connection with the first electrode on the chassis base. This means that the driving boards are integrated into a single driving board substantially and that the cost is reduced thereby.
Also, the direct connection of the FPC to the chassis base may enlarge the grounding area where the FPC is attached. As a result, the sustain electrode can be grounded with reliability and the variation in ground voltage can be prevented.
Although exemplary embodiments in accordance with the present invention have been described in detail hereinabove, it should be understood that many variations and/or modifications of the basic inventive concept taught therein will still fall within the spirit and scope of the present invention, as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2004-0038279 | May 2004 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5745086 | Weber | Apr 1998 | A |
6407508 | Kawada et al. | Jun 2002 | B1 |
7059473 | Watanabe et al. | Jun 2006 | B2 |
20050168407 | Lee et al. | Aug 2005 | A1 |
20050231442 | Kim et al. | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
2004-29389 | Jan 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20050264235 A1 | Dec 2005 | US |